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Abstract
For a locally compact groupG, let A.G/ denote its Fourier algebra, and letM0A.G/

denote the space of completely bounded Fourier multipliers onG. The groupG is said
to have the Approximation Property (AP) if the constant function 1 can be approxi-
mated by a net in A.G/ in the weak-* topology on the space M0A.G/. Recently,
Lafforgue and de la Salle proved that SL.3;R/ does not have the AP, implying the
first example of an exact discrete group without it, namely, SL.3;Z/. In this paper
we prove that Sp.2;R/ does not have the AP. It follows that all connected simple
Lie groups with finite center and real rank greater than or equal to two do not have
the AP. This naturally gives rise to many examples of exact discrete groups without
the AP.

1. Introduction
Let G be a (second countable) locally compact group, and let � W G �!B.L2.G//

denote the left-regular representation, which is given by .�.x/�/.y/ D �.x�1y/,
where x;y 2 G and � 2 L2.G/. Let the Fourier algebra A.G/ be the space con-
sisting of the coefficients of �, as introduced by Eymard [12], [13]. More precisely,
' 2A.G/ if and only if there exist �; � 2L2.G/ such that for all x 2G we have

'.x/D h�.x/�; �i:

The norm on A.G/ is defined by

k'kA.G/ Dmin
®
k�kk�k

ˇ̌
8x 2G '.x/D h�.x/�; �i

¯
:

With this norm,A.G/ is a Banach space. We have k'kA.G/ � k'k1 for all ' 2A.G/,
and A.G/ is k � k1-dense in C0.G/.
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In Eymard’s work, the following characterization of A.G/ is given. For two func-
tions f;g 2L2.G/, the function ' D f � Qg, where Qg.x/D Lg.x/D g.x�1/ for x 2G,
belongs to A.G/. Conversely, if ' 2 A.G/, then we can find such a decomposition
' D f � Qg so that kf k2kgk2 D k'kA.G/.

Another characterization of the Fourier algebra is given by the fact that A.G/
can be identified isometrically with the predual of the group von Neumann algebra
L.G/ of G. The identification is given by the pairing hT;'i D hTf;giL2.G/, where

T 2L.G/ and ' D g � Lf for certain f;g 2L2.G/.
A complex-valued function ' is said to be a (Fourier) multiplier if and only

if ' 2 A.G/ for all  2 A.G/. Note that a multiplier is a bounded and continu-
ous function. Let MA.G/ denote the Banach space of multipliers of A.G/ equipped
with the norm given by k'kMA.G/ D km'k, where m' WA.G/�!A.G/ denotes the
multiplication operator on A.G/ associated with '. A multiplier ' is called com-
pletely bounded if the operator M' W L.G/ �! L.G/ induced by m' is completely
bounded. The space of completely bounded multipliers is denoted by M0A.G/, and
with the norm k'kM0A.G/ D kM'kcb, it forms a Banach space. It is known that
A.G/�M0A.G/�MA.G/.

Completely bounded Fourier multipliers were first studied by Herz [22], although
he defined them in a different way. Hence, they are also called Herz–Schur mul-
tipliers. The equivalence of both notions was proved by Bożejko and Fendler [2].
They also gave an important characterization of completely bounded Fourier mul-
tipliers; namely, ' 2M0A.G/ if and only if there exist bounded continuous maps
P;Q WG �!H , where H is a Hilbert space, such that

'.y�1x/D hP.x/;Q.y/i (1)

for all x;y 2 G. Here h�; �i denotes the inner product on H . In this characterization,
k'kM0A.G/ Dmin¹kP k1kQk1º, where the minimum is taken over all possible pairs
.P;Q/ for which (1) holds.

Completely bounded Fourier multipliers naturally give rise to the formulation
of a certain approximation property, namely weak amenability, which was studied
extensively for Lie groups in [5], [7], [8], [10], [17], and [20]. Other approximation
properties can be formulated in terms of multipliers as well (see [3, Chapter 12]).

Recall that a locally compact group G is amenable if there exists a left-invariant
mean on L1.G/. It was proven by Leptin [29] that G is amenable if and only if
A.G/ has a bounded approximate unit; that is, there is a net .'˛/ in A.G/ with
sup˛ k'˛kA.G/ � 1 such that for all  2A.G/ we have lim˛ k'˛ � kA.G/ D 0.

A locally compact group G is called weakly amenable if and only if there is a
net .'˛/ in A.G/ with sup˛ k'˛kM0A.G/ � C for some C > 0, such that '˛ ! 1
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uniformly on compact subsets of G. The infimum of these constants C is denoted by
ƒ.G/, and we put ƒ.G/D1 if G is not weakly amenable.

Amenability of a group G implies weak amenability with ƒ.G/ D 1. Weak
amenability was first studied in [5], in which de Cannière and the first author proved
that the free group Fn on n generators with n� 2 is weakly amenable withƒ.Fn/D 1.
This also implied that weak amenability is strictly weaker than amenability, since Fn

is not amenable.
The constant ƒ.G/ is known for every connected simple Lie group G and

depends on the real rank ofG. First, note that ifG has a real rank zeroG is amenable.
A connected simple Lie group G with real rank one is locally isomorphic to one of
the groups SO.n; 1/, SU.n; 1/, Sp.n; 1/ with n� 2, or to F4.�20/. It is known that

ƒ.G/D

8̂̂
<
ˆ̂:
1 if G is locally isomorphic to SO.n; 1/ or SU.n; 1/;

2n� 1 if G is locally isomorphic to Sp.n; 1/;

21 if G is locally isomorphic to F4.�20/:

This was proved by Cowling and the first author for groups with finite center [8]. The
finite center condition was removed by Hansen [20].

The first author proved that all connected simple Lie groups with finite center
and real rank greater than or equal to two are not weakly amenable by using the fact
that any such group contains a subgroup locally isomorphic to SL.3;R/ or Sp.2;R/,
neither of which is weakly amenable [17]. Later, Dorofaeff proved that this result also
holds for such Lie groups with infinite center [10]. Recently, an analogue of this result
was proved by Lafforgue for algebraic Lie groups over non-Archimedean fields [27].
Cowling, Dorofaeff, Seeger, and Wright gave a characterization of weak amenability
for almost all connected Lie groups [7].

A weaker approximation property defined in terms of completely bounded Fourier
multipliers was introduced by the first author and Kraus [18].

Definition 1.1
A locally compact group G is said to have the Approximation Property for groups
(AP) if there is a net .'˛/ in A.G/ such that '˛! 1 in the �.M0A.G/;M0A.G/�/-
topology, where M0A.G/� denotes the natural predual of M0A.G/, as introduced in
[5].

It was proved by the first author and Kraus that if G is a locally compact group
and � is a lattice in G, then G has the AP if and only if � has the AP. The AP has
some nice stability properties that weak amenability does not have; for example, if
H is a closed normal subgroup of a locally compact group G such that both H and
G=H have the AP, then G has the AP. This implies that the group SL.2;Z/�Z

2 has
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the AP, but it was proven in [17] that this group is not weakly amenable, so the AP is
strictly weaker than weak amenability.

A natural question to ask is which groups do have the AP. When this property
was introduced, it was not clear that there even exist groups without it, but it was
conjectured by the first author and Kraus that SL.3;Z/ would be such a group. This
conjecture was recently proved by Lafforgue and de la Salle [28].

Recall that a countable discrete group � is exact if and only if its reduced group
C�-algebra is exact. For discrete groups it is known that the AP implies exactness
(see [3, Section 12.4]). Note that the result of Lafforgue and de la Salle also gives
the first example of an exact group without the AP. In their paper the property of
completely bounded approximation by Schur multipliers on Sp.L2.G//, denoted by
APSchur

pcb , was introduced. For discrete groups, this property is weaker than the AP for
all p 2 .1;1/. Lafforgue and de la Salle proved that SL.3;R/ does not satisfy the
APSchur

pcb for certain values of p in this interval, implying that the exact group SL.3;Z/
indeed fails to have the AP, since both the AP and the APSchur

pcb pass from the group to
its lattices and from its lattices to the group.

The main part of this paper concerns the proof of the following result.

THEOREM

The group Sp.2;R/ does not have the AP.

Together with the fact that SL.3;R/ does not have the AP, the above result gives
rise to the following theorem.

THEOREM

Let G be a connected simple Lie group with finite center and real rank greater than
or equal to two. Then G does not have the AP.

In [11], Effros and Ruan introduced the operator approximation property (OAP)
for C �-algebras and the weak-* operator approximation property (w*OAP) for von
Neumann algebras. By the results of [18, Section 2], it follows that for every lattice �
in a connected simple Lie group with finite center and real rank greater than or equal
to two, the reduced group C �-algebra C �

�
.�/ does not have the OAP and the group

von Neumann algebra L.�/ does not have the w*OAP.
A natural question is whether all connected simple Lie groups with real rank

greater than or equal to two fail to have the AP, that is, if the last mentioned theorem
also holds for groups with infinite center. As of now, we do not know the answer to
this question (see the comments in Section 4).
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This paper is organized as follows. In Section 2 we recall and prove some results
about Lie groups, Gelfand pairs, and the AP. Some of these may be of independent
interest.

In Section 3 we give a proof of the fact that Sp.2;R/ does not have the AP. It turns
out to be sufficient to consider completely bounded Fourier multipliers on Sp.2;R/,
rather than multipliers on Schatten classes, so we do not use the APSchur

pcb .
In Section 4 we prove the earlier mentioned theorem that all connected simple

Lie groups with finite center and real rank greater than or equal to two do not have
the AP.

In Section 5 we give a new proof of the result of Lafforgue and de la Salle that
SL.3;R/ does not have the AP based on the method of Section 3.

2. Lie groups and the Approximation Property
In this section we recall some results about Lie groups, Gelfand pairs, and the AP, and
we prove some technical results.

2.1. Polar decomposition
For the details and proofs of the unproved results in this section, we refer the reader
to [21] and [23].

Recall that every connected semisimple Lie group G with finite center can be
decomposed as G D KAK , where K is a maximal compact subgroup (unique up
to conjugation) and A is an abelian Lie group such that its Lie algebra a is a Cartan
subspace of the Lie algebra g ofG. The dimension of a is called the real rank ofG and
is denoted by RankR.G/. The real rank of a Lie group is an important concept for us,
since the main result is formulated for Lie groups with certain real ranks. The KAK
decomposition, also called the polar decomposition, is in general not unique. After
choosing a set of positive roots and restricting to the closure AC of the positive Weyl
chamber AC, we still have G DKACK . Moreover, if gD k1ak2, where k1; k2 2K
and a 2 AC, then a is unique. Note that we can choose any Weyl chamber to be the
positive one by choosing the correct polarization. For the purposes of this paper, the
existence and the explicit form of the polar decomposition for two certain groups is
important.

Example 2.1 (The symplectic groups)
Let the symplectic group be defined as the Lie group

Sp.n;R/ WD
®
g 2GL.2n;R/

ˇ̌
gtJgD J

¯
;

where

J D

�
0 In

�In 0

�
:
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Here In denotes the (n � n)-identity matrix. We will only consider the case n D 2
from now on.

The maximal compact subgroup K of Sp.2;R/ is given by

K D

²�
A �B

B A

�
2M4.R/

ˇ̌̌
ˇ AC iB 2U.2/

³
:

This group is isomorphic to U.2/. The embedding of an arbitrary element of U.2/
into Sp.2;R/ under this isomorphism is given by

�
aC ib eC if

cC id gC ih

�
7!

0
BB@
a e �b �f

c g �d �h

b f a e

d h c g

1
CCA ;

where a; b; c; d; e; f; g; h 2R.
A polar decomposition of Sp.2;R/ is given by Sp.2;R/DKACK , where

AC D

8̂̂
<
ˆ̂:D.˛1; ˛2/D

0
BB@
e˛1 0 0 0

0 e˛2 0 0

0 0 e�˛1 0

0 0 0 e�˛2

1
CCA
ˇ̌̌
ˇ̌̌
ˇ̌ ˛1 � ˛2 � 0

9>>=
>>; :

Example 2.2 (The special linear group)
Consider the special linear group SL.3;R/. Its maximal compact subgroup is K D
SO.3/, sitting naturally inside SL.3;R/. A polar decomposition is given by
SL.3;R/DKACK , where

AC D

8<
:
0
@e˛1 0 0

0 e˛2 0

0 0 e˛3

1
A
ˇ̌̌
ˇ̌̌ ˛1 � ˛2 � ˛3; ˛1C ˛2C ˛3 D 0

9=
; :

2.2. Gelfand pairs and spherical functions
Let G be a locally compact group, and let K be a compact subgroup. We denote
the (left) Haar measure on G by dx and the normalized Haar measure on K by dk.
A function ' W G �! C is said to be K-biinvariant if for all g 2 G and k1; k2 2K ,
then we have '.k1gk2/D '.g/. We identify the space of continuous K-biinvariant
functions with the space C.KnG=K/. If the subalgebra Cc.KnG=K/ of the convo-
lution algebra Cc.G/ is commutative, then the pair .G;K/ is said to be a Gelfand
pair, and K is said to be a Gelfand subgroup of G. Equivalently, the pair .G;K/ is a
Gelfand pair if and only if for every irreducible representation � on a Hilbert space
H the space
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He D
®
� 2H

ˇ̌
8k 2K W �.k/� D �

¯
is at most one-dimensional.

For ' 2 C.G/, define 'K 2 C.KnG=K/ by

'K.g/D

Z
K�K

'.kgk0/ dk dk0:

A continuous K-biinvariant function h WG �!C is called a spherical function if
the functional � on Cc.KnG=K/ given by

�.'/D

Z
G

'.x/h.x�1/ dx; ' 2 Cc.KnG=K/

defines a nontrivial character, that is, �.' �  / D �.'/�. / for all '; 2
Cc.KnG=K/. The following characterization of spherical functions is used later: a
continuous K-biinvariant function h W G �! C not identical to zero is a spherical
function if and only if for all x;y 2GZ

K

h.xky/dk D h.x/h.y/:

In particular, h.e/D 1.
Spherical functions arise as the matrix coefficients of K-invariant vectors in irre-

ducible representations of G. Hence, they give rise to interesting decompositions of
functions on G.

For an overview of the theory of Gelfand pairs and spherical functions, we refer
the reader to [14] and [9].

2.3. Multipliers on compact Gelfand pairs
For the study of completely bounded Fourier multipliers on a Gelfand pair it is natural
to look at multipliers that are biinvariant with respect to the Gelfand subgroup. In
the case of a compact Gelfand pair .G;K/, that is, G is a compact group and K a
closed subgroup such that .G;K/ is a Gelfand pair, we get a useful decomposition of
completely bounded Fourier multipliers in terms of spherical functions.

Suppose in this section that .G;K/ is a compact Gelfand pair. Recall that for
compact groups every representation on a Hilbert space is equivalent to a unitary rep-
resentation, that every irreducible representation is finite-dimensional, and that every
unitary representation is the direct sum of irreducible ones. Denote by dx and dk the
normalized Haar measures onG andK , respectively. Recall as well that for a Gelfand
pair every irreducible representation � on H the space He as defined in Section 2.2 is
at most one-dimensional. Let P� D

R
K
�.k/dk denote the projection onto He , and

set OGK D ¹� 2 OG j P� ¤ 0º, where OG denotes the unitary dual of G, that is, the set
of equivalence classes of unitary irreducible representations of G.
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PROPOSITION 2.3
Let .G;K/ be a compact Gelfand pair, and let ' be a K-biinvariant completely
bounded Fourier multiplier. Then ' has a unique decomposition

'.x/D
X
�2 OGK

c�h�.x/; x 2G;

where h�.x/ D h�.x/�� ; ��i is the positive definite spherical function associated
with the representation � with K-invariant cyclic vector �� , and

P
�2 OGK

jc� j D

k'kM0A.G/.

Proof
Note that for a compact group G, we have A.G/DM0A.G/DMA.G/. By defini-
tion of A.G/, there exist �; � 2L2.G/ such that for all x 2G,

'.x/D h�.x/�; �i;

and k'kA.G/ D k�kk�k. Note that since G is compact, we have

L.G/Š
M
�2 OG

B.H�/

as an l1 direct sum, and

A.G/Š
M
�2 OG

S1.H�/

as an l1 direct sum, where S1.H�/ denotes the space of trace class operators on H� .
Hence, we can write

'.x/D
X
�2 OG

Tr
�
S��.x/

�
; x 2G;

where S� is a trace class operator acting on H� , and it follows that

k'kA.G/ D
X
�2 OG

kS�k1;

where k � k1 denotes the trace class norm.
Since ' isK-biinvariant, S� can be replaced by P�S�P� , which vanishes when-

ever � … OGK , and which equals c�P� for some constant c� whenever � 2 OGK . We
have jc� j D kc�P�k1, since the dimension of P� is one. Hence,

'.x/D
X
�2 OGK

c� Tr
�
P��.x/

�
;
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and therefore,

k'kA.G/ D
X
�2 OGK

kP�S�P�k1 D
X
�2 OGK

jc� j:

For each � 2 OGK , choose a unit vector �� 2 P�H� . Then

'.x/D
X
�2 OGK

c�h�.x/;

where h�.x/ D h�.x/�� ; ��i is the positive definite spherical function associated
with .�;H� ; ��/.

2.4. The Approximation Property
Recall from Section 1 that a locally compact group G has the AP if there is a net .'˛/
in A.G/ such that '˛! 1 in the �.M0A.G/;M0A.G/�/-topology, whereM0A.G/�

denotes the natural predual of M0A.G/.
The natural predual can be described as follows (see [5]). Let X denote the com-

pletion of L1.G/ with respect to the norm given by

kf kX D sup
°ˇ̌̌Z

G

f .x/'.x/dx
ˇ̌̌ ˇ̌̌
' 2M0A.G/;k'kM0A.G/ � 1

±
:

Then X� DM0A.G/. On bounded sets, the �.M0A.G/;M0A.G/�/-topology coin-
cides with the �.L1.G/;L1.G//-topology.

The AP passes to closed subgroups, as is proved in [18, Proposition 1.14]. Also,
as was mentioned in Section 1, ifH is a closed normal subgroup of a locally compact
group G such that both H and G=H have the AP, then G has the AP (see [18, The-
orem 1.15]). A related result is the following proposition. First we recall some facts
about groups.

For a group G we denote its center by Z.G/, and (if G is finite) we denote its
order by jGj. Recall that the adjoint representation ad W g �! gl.g/ of a Lie algebra
g is given by ad.X/.Y /D ŒX;Y 	. The image ad.g/ is a Lie subalgebra of gl.g/. Let
Ad.g/ denote the analytic subgroup of GL.g/ with Lie algebra ad.g/. The Lie group
Ad.g/ is called the adjoint group. For a connected Lie group G with Lie algebra g

we also write the adjoint group as Ad.G/. Note that Lie groups with the same Lie
algebra have isomorphic adjoint groups. The adjoint group of a connected Lie group
G is isomorphic to G=Z.G/. For more details, we refer the reader to [21].

PROPOSITION 2.4
If G1 and G2 are two locally isomorphic connected simple Lie groups with finite
center such that G1 has the AP, then G2 has the AP.
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Proof
Let G1 and G2 be two locally isomorphic connected simple Lie groups with finite
center, and suppose thatG1 satisfies the AP. The two groups have the same Lie algebra
and hence, their adjoint groups, which are isomorphic to G1=Z.G1/ and G2=Z.G2/,
respectively, are also isomorphic.

Let .'1˛/ be a net of functions in A.G1/ converging to the constant function 1 in
the weak-* topology on M0A.G1/. Define

Q'1˛
�
xZ.G1/

�
WD

1

jZ.G1/j

X
z2Z.G1/

'1˛.xz/:

The summands are elements of the Fourier algebra of G1, and Q'1˛ is independent of
the representative of the coset. By [12, Proposition 3.25], the space A.G1=Z.G1//
can be identified isometrically with the subspace of A.G1/ consisting of the elements
of A.G1/ that are constant on the cosets of Z.G1/, and hence Q'1˛ is in A.G1=Z.G1//.

From the characterization of A.G1=Z.G1// we can also conclude that Q'1˛! 1 in
the weak-* topology on M0A.G1=Z.G1//. The latter can also be identified with the
subspace of M0A.G1/ consisting of the elements of M0A.G1/ that are constant on
the cosets ofZ.G1/. Indeed, the approximating net consists of functions that are finite
convex combinations of left translates of functions approximating 1 in the weak-*
topology on M0A.G1/.

Hence G1=Z.G1/ has the AP, so G2=Z.G2/ has it, as well. From the fact men-
tioned above, namely that whenever H is a closed normal subgroup of a locally com-
pact group G such that both H and G=H have the AP, then G has the AP, it follows
that G2 has the AP.

LEMMA 2.5
Let G be a locally compact group with a compact subgroup K . If G has the AP, then
the net approximating the constant function 1 in the weak-* topology on M0A.G/

can be chosen to consist of K-biinvariant functions.

Proof
For f 2 C.G/ or f 2L1.G/ we put

f K.g/D

Z
K

Z
K

f .kgk0/ dk dk0; g 2G;

where dk is the normalized Haar measure on K . Since the norm k � kM0A.G/ is
invariant under left and right translation by elements of K , we have k'KkM0A.G/ �
k'kM0A.G/ for all ' 2M0A.G/. Moreover, for ' 2M0A.G/ and f 2 L1.G/, we
have

h'K ; f i D h';f Ki;
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where L1.G/ is considered as a dense subspace of M0A.G/ and the bracket
h�; �i denotes the duality bracket between M0A.G/ and M0A.G/�. Hence,
kf KkM0A.G/� � kf kM0A.G/� for all f 2 L1.G/. Therefore, the map on L1.G/
defined by f 7! f K extends uniquely to a linear contraction R on M0A.G/�, and
R�' D 'K for all ' 2M0A.G/, where R� 2B.M0A.G// is the dual operator of R.

Assume now that G has the AP. Then there exists a net '˛ in A.G/ such that
'˛ ! 1 in the �.M0A.G/;M0A.G/�/-topology. Hence, 'K˛ D R

�'˛ ! R�1 D 1

in the �.M0A.G/;M0A.G/�/-topology. Moreover, 'K˛ 2 A.G/ \ C.KnG=K/ for
all ˛. This proves the lemma.

The following lemma is used to conclude that a certain subspace of M0A.G/ is
�.M0A.G/;M0A.G/�/-closed.

LEMMA 2.6
Let .X;
/ be a � -finite measure space, and let v W X �! R be a strictly positive
measurable function on X . Then the set

S WD
®
f 2L1.X/

ˇ̌
jf .x/j � v.x/ a.e.

¯
is �.L1.X/;L1.X//-closed.

Proof
Let .f˛/ be a net in S converging to f 2L1.X/ in the �.L1.X/;L1.X//-topology.
Define En D

®
x 2X

ˇ̌
jf .x/j>

�
1C 1

n

�
v.x/

¯
. We will prove that 
.En/D 0 for all

n 2 N. Suppose that for some n 2 N we have 
.En/ > 0. Put En;k D
®
x 2 En j

v.x/� 1
k

¯
. Then En;k%En for k!1. In particular, 
.En;kn/ > 0 for some kn 2

N. By � -finiteness of 
, we can choose Fn �En;kn such that 0 < 
.Fn/ <1. Note
that Fn �En and v.x/� 1

kn
for all x 2 Fn. Define the measurable function g WX �!

C by

g.x/D
1


.Fn/
1Fn.x/

1

v.x/

f .x/

jf .x/j
; x 2X:

Then g 2 L1.X/. It follows that Re
�R
X
f˛g d


�
� 1, since jf˛.x/g.x/j � 1 almost

everywhere on Fn. Hence, Re
�R
X
fg d


�
� 1. Since this integral is real and fg � 0,

it follows that
R
X jfgjd
� 1. On the other hand,Z

X

jfgjd
D
1


.Fn/

Z
Fn

jf .x/j

v.x/
d
.x/� 1C

1

n
:

This gives a contradiction, so 
.En/ D 0 for all n 2 N. This implies that the set
E D

S1
nD1En D ¹x 2 X j jf .x/j > v.x/º has measure 0, so jf .x/j � v.x/ almost

everywhere.
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Let G be a locally compact group with compact subgroup K . Because left and
right translations of a function ' 2 M0A.G/ are continuous with respect to the
�.M0A.G/;M0A.G/�/-topology, the space M0A.G/ \ C.KnG=K/ consisting of
K-biinvariant completely bounded Fourier multipliers is �.M0A.G/;M0A.G/�/-
closed. Together with Lemma 2.6 and the fact that L1.G/ �M0A.G/, this implies
the following.

LEMMA 2.7
Let G be a locally compact group with a compact subgroup K , and let v W G �! R

be a strictly positive measurable function. Define

Sv.G/D
®
f 2L1.G/

ˇ̌
jf .x/j � v.x/ a.e.

¯
:

Then the space M0A.G/\ Sv.G/\C.KnG=K/ is �.M0A.G/;M0A.G/�/-closed.

3. The group Sp.2;R/ does not have the Approximation Property
In this section, let G D Sp.2;R/, and let K , A and AC be as described in Exam-
ple 2.1. The fact thatG does not have the AP follows from the behavior of completely
bounded Fourier multipliers that are biinvariant with respect to the maximal compact
subgroup of Sp.2;R/. Note that the elements of the Fourier algebra, that is, the pos-
sible approximating functions, are themselves completely bounded Fourier multipli-
ers. Moreover, they vanish at infinity. We identify two compact Gelfand pairs sitting
inside Sp.2;R/ and relate the values of biinvariant completely bounded Fourier mul-
tipliers to the values of certain different multipliers on these compact Gelfand pairs.
The spherical functions of these Gelfand pairs satisfy certain Hölder continuity con-
ditions, which give rise to the key idea of the proof: an explicit description of the
asymptotic behavior of completely bounded Fourier multipliers that are biinvariant
with respect to the maximal compact subgroup. In the proof of Lafforgue and de la
Salle for the case SL.3;R/ [28], such an estimate is also one of the important ideas.

THEOREM 3.1
The group G D Sp.2;R/ does not have the AP.

The elements of M0A.G/\C.KnG=K/ are constant on the double cosets of K
in G, so to describe their asymptotic behavior we only need to consider their restric-
tion to AC. Note that by Example 2.1 a general element of AC can be written as
D.˛1; ˛2/D diag.e˛1 ; e˛2 ; e�˛1 ; e�˛2/, where ˛1 � ˛2 � 0.

PROPOSITION 3.2
There exist constants C1;C2 > 0 such that for all K-biinvariant completely bounded
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Fourier multipliers ' WG �!C, the limit limg!1 '.g/D '1 exists and for all ˛1 �
˛2 � 0 we have ˇ̌

'
�
D.˛1; ˛2/

�
� '1

ˇ̌
� C1e

�C2k˛k2k'kM0A.G/; (2)

where k˛k2 D
q
˛21 C ˛

2
2 .

Let us first state an interesting corollary of Proposition 3.2.

COROLLARY 3.3
Every K-biinvariant completely bounded Fourier multiplier can be written as the
sum of a K-biinvariant completely bounded Fourier multiplier vanishing at infinity
and an element of C. More precisely, if ' is a K-biinvariant completely bounded
Fourier multiplier on G, then ' D '0 C '1, where '0 2M0A.G/ \ C0.KnG=K/

and '1 D limg!1 '.g/ 2C.

Proof of Theorem 3.1 using Proposition 3.2.
Recall that the elements of A.G/ vanish at infinity. By Lemma 2.7, it follows that
the unit ball of the spaceM0A.G/\C0.KnG=K/, which by Proposition 3.2 satisfies
the asymptotic behavior of (2) (with '1 D 0 and k'kM0A.G/ � 1), is closed in the
�.M0A.G/;M0A.G/�/-topology. Recall the Krein–Smulian theorem, which asserts
that wheneverX is a Banach space andA is a convex subset of the dual spaceX� such
that A \ ¹x� 2 X� j kx�k � rº is weak-* closed for every r > 0, then A is weak-*
closed (see [6, Theorem V.12.1]). In the case where A is a vector space, which is the
case here, it suffices to check the case r D 1, that is, the weak-* closedness of the
unit ball. It follows that the space M0A.G/ \ C0.KnG=K/ is weak-* closed. Since
A.G/\C.KnG=K/�M0A.G/\C0.KnG=K/, it follows that the constant function
1 is not contained in the �.M0A.G/;M0A.G/�/-closure of A.G/ \ C.KnG=K/.
Hence, by Lemma 2.5, Sp.2;R/ does not have the AP.

The proof of Proposition 3.2 will be given after we prove some preliminary
results. First we identify two Gelfand pairs sitting inside G. We describe them, the
way they are embedded into G, and their spherical functions, and we characterize the
completely bounded Fourier multipliers on them that are biinvariant with respect to
the corresponding Gelfand subgroup.

Consider the group U.2/, which contains the circle group U.1/ as a subgroup via
the embedding

U.1/ ,!

�
1 0

0 U.1/

�
�U.2/:
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Under the identification K Š U.2/, the embedded copy of U.1/ has the following
form:

U.1/ŠK1 D

8̂̂
<
ˆ̂:

0
BB@
1 0 0 0

0 cos� 0 � sin�
0 0 1 0

0 sin� 0 cos�

1
CCA
ˇ̌̌
ˇ̌̌
ˇ̌ � 2 Œ0; 2�/

9>>=
>>; ;

which can be interpreted as the group of rotations in the plane parameterized by the
second and the fourth coordinate. The group K1 commutes with the group generated
by the elements D˛ D diag.e˛; 1; e�˛; 1/, where ˛ 2 R. This group is a subgroup of
A�G, where A is as in Example 2.1.

It goes back to Weyl [33] that .U.2/;U.1// is a Gelfand pair (see, e.g., [23, Theo-
rem IX.9.14]). The homogeneous space U.2/=U.1/ is homeomorphic to the complex
1-sphere S1

C
�C

2 and the space U.1/nU.2/=U.1/ of double cosets is homeomorphic
to the closed unit disc D�C by the map

K1

�
u11 u12

u21 u22

�
K1 7! u11:

The spherical functions for .U.2/;U.1// can be found in [24]. By the homeomor-
phism U.1/nU.2/=U.1/ŠD, they are functions of one complex variable in the closed
unit disc. They are indexed by the integers p;q � 0 and explicitly given by

hp;q

�
u11 u12

u21 u22

�
D h0p;q.u11/;

where in the point z 2D the function h0p;q is explicitly given by

h0p;q.z/D

´
zp�qP

.0;p�q/
q .2jzj2 � 1/ p � q;

zq�pP
.0;q�p/
p .2jzj2 � 1/ p < q:

Here P .˛;ˇ/n denotes the nth Jacobi polynomial. The following is a special case of a
result obtained by the first author and Schlichtkrull [19].

THEOREM 3.4
There exists a constant C > 0 such that for all nonnegative integers n;ˇ we have

.sin�/
1
2 .cos�/ˇC

1
2 jP .0;ˇ/n .cos2�/j �

C
p
2
.2nC ˇC 1/�

1
4 ; � 2 Œ0;�/:

In particular, for � D �
4

we get
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2�
ˇC1
2 jP .0;ˇ/n .0/j �

C
p
2
.2nC ˇC 1/�

1
4 :

For the special point z D 1p
2

, it follows that

ˇ̌̌
h0p;q

� 1
p
2

�ˇ̌̌
� C.pC qC 1/�

1
4 ;

where C is a constant independent of p and q.
Recall that a function f W X �! Y from a metric space X to a metric space Y

is Hölder continuous with exponent ˛ > 0 if there exists a constant C > 0 such that
dY .f .x1/; f .x2// � CdX .x1; x2/

˛ , for all x1; x2 2 X . The following result gives
Hölder continuity with exponent 1

4
of the spherical functions on the circle in D with

radius 1p
2

, centered at the origin, with a constant independent of p and q.

COROLLARY 3.5
For all p;q � 0, we have

ˇ̌̌
h0p;q

�ei�1
p
2

�
� h0p;q

�ei�2
p
2

�ˇ̌̌
� QC j�1 � �2j

1
4

for all �1; �2 2 Œ0; 2�/, where QC is a constant independent of p and q.

Proof
From the explicit form of h0p;q it follows that for all � 2 Œ0; 2�/,

h0p;q

� ei�
p
2

�
D ei.p�q/�h0p;q

� 1
p
2

�
:

This implies that

ˇ̌̌
h0p;q

�ei�1
p
2

�
� h0p;q

�ei�2
p
2

�ˇ̌̌
D jei.p�q/�1 � ei.p�q/�2 j

ˇ̌̌
h0p;q

� 1
p
2

�ˇ̌̌

� jp � qjj�1 � �2jC.pC qC 1/
� 14

� C.pC qC 1/
3
4 j�1 � �2j

for all �1; �2 2 Œ0; 2�/. We also have the estimate

ˇ̌̌
h0p;q

�ei�1
p
2

�
� h0p;q

�ei�2
p
2

�ˇ̌̌
� 2

ˇ̌̌
h0p;q

� 1
p
2

�ˇ̌̌
� 2C.pC qC 1/�

1
4

for all �1; �2 2 Œ0; 2�/. Combining the two, we get
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ˇ̌̌
h0p;q

�ei�1
p
2

�
� h0p;q

�ei�2
p
2

�ˇ̌̌

�
�
C.pC qC 1/

3
4 j�1 � �2j

� 1
4
�
2C.pC qC 1/�

1
4

� 3
4

D QC j�1 � �2j
1
4

for all �1; �2 2 Œ0; 2�/, where QC D 2
3
4C .

By Proposition 2.3, a U.1/-biinvariant completely bounded Fourier multiplier
' WU.2/�!C can be decomposed as

' D

1X
p;qD0

cp;qhp;q;

where cp;q 2C and
P1
p;qD0 jcp;qj D k'kM0A.U.2//. It follows that

'.u/D '

�
u11 u12

u21 u22

�
D '0.u11/; u 2U.2/

for some continuous function '0 WD�!C.

COROLLARY 3.6
Let ' W U.2/ �! C be a U.1/-biinvariant completely bounded Fourier multiplier.
Then '.u/D '0.u11/, and for all �1; �2 2 Œ0; 2�/ we haveˇ̌̌

'0
�ei�1
p
2

�
� '0

�ei�2
p
2

�ˇ̌̌
� QC j�1 � �2j

1
4 k'kM0A.U.2//:

Proof
Let � 2 Œ0; 2�/, and let u11;� D

ei�p
2

. Then the matrix

u� D

0
@ ei�p

2

1p
2

1p
2
� e
�i�
p
2

1
A

is an element of U.2/. In this way we getˇ̌̌
'0
�ei�1
p
2

�
� '0

�ei�2
p
2

�ˇ̌̌
D j'.u�1/� '.u�2/j

�

1X
p;qD0

jcp;qj
ˇ̌̌
h0p;q

�ei�1
p
2

�
� h0p;q

�ei�2
p
2

�ˇ̌̌

D QCk'kM0A.U.2//j�1 � �2j
1
4 :
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For ˛ 2 R consider the map K �! G defined by k 7! D˛kD˛ , where D˛ D
diag.e˛; 1; e�˛; 1/. Given a K-biinvariant completely bounded Fourier multiplier
on G, this map gives rise to a K1-biinvariant completely bounded Fourier multiplier
on K .

LEMMA 3.7
Let ' W G �! C be a K-biinvariant completely bounded Fourier multiplier, and
for ˛ 2 R let  ˛ W K �! C be defined by  ˛.k/ D '.D˛kD˛/. Then  ˛ is K1-
biinvariant and satisfies

k ˛kM0A.K/ � k'kM0A.G/:

Proof
Using the fact that the group elements D˛ commute with K1, it follows that for all
k 2K and k1; k2 2K1 �K2,

 ˛.k1kk2/D '.D˛k1kk2D˛/D '.k1D˛kD˛k2/D '.D˛kD˛/D ˛.k/;

so  ˛ is K1-biinvariant.
By the characterization of completely bounded Fourier multipliers due to Boże-

jko and Fendler (see Section 1), we know that there exist bounded continuous maps
P;Q W G �! H , where H is a Hilbert space, such that '.y�1x/ D hP.x/;
Q.y/i for all x;y 2G, and, moreover, k'kM0A.G/ D kP k1kQk1.

For all k1; k2 2K we have

 ˛.k
�1
2 k1/D '.D˛k

�1
2 k1D˛/D '

�
.k2D

�1
˛ /�1k1D˛

�
D hP.k1D˛/;Q.k2D

�1
˛ /i D hP˛.k1/;Q˛.k2/i;

where P˛ , Q˛ are the bounded continuous maps from K to H defined by P˛.k/D
P.kD˛/ andQ˛.k/DQ.kD

�1
˛ /. BecauseKD˛ andKD�1˛ are subsets ofG, we get

kP˛k1 � kP k1 and kQ˛k1 � kQk1, and hence k ˛kM0A.K/ � k'kM0A.G/.

From the fact that  ˛ is K1-biinvariant, it follows that  ˛.u/D 0˛.u11/, where
 0˛ WD�!C is a continuous function.

Suppose now that ˛1 � ˛2 � 0, and let D.˛1; ˛2/ be as defined in Example 2.1;
that is, D.˛1; ˛2/ D diag.e˛1 ; e˛2 ; e�˛1 ; e�˛2/. If we find an element of the form
D˛kD˛ in KD.˛1; ˛2/K , we can relate the value of a K-biinvariant completely
bounded Fourier multiplier ' to the value of the multiplier  ˛ that was defined in
Lemma 3.7. This only works for certain ˛1; ˛2 � 0. We specify which possibilities of
˛1 and ˛2 we consider, and it will become clear from our proofs that in these cases
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such ˛ and k exist. It turns out to be sufficient to consider certain candidates for k,
namely, the matrices that in the U.2/-representation of K have the form

uD

 
aC ib �

p
1� a2 � b2

p
1� a2 � b2 a� ib

!
(3)

with a2C b2 � 1. In particular, u 2 SU.2/.
In the following lemmas we let khkHS D Tr.hth/

1
2 and det.h/ denote the

Hilbert–Schmidt norm and the determinant of a matrix in M4.R/, respectively. Note
that det.k/D 1 for all k 2K , because K is a connected subgroup of the orthogonal
group O.4/.

LEMMA 3.8
Let g 2 G D Sp.2;R/. Then g 2 KD.ˇ;�/K , where ˇ;� 2 R are uniquely deter-
mined by the condition ˇ � � � 0 together with the two equations´

sinh2 ˇC sinh2 � D 1
8
kg � .gt /�1k2HS ;

sinh2 ˇ sinh2 � D 1
16

det.g � .gt /�1/:
(4)

Proof
Let g 2 G. By the KACK-decomposition, we have g D k1D.ˇ;�/k2 for some
k1; k2 2 K and some ˇ;� 2 R satisfying ˇ � � � 0. Since ki D .kti /

�1, i D 1; 2,
and D.ˇ;�/ D D.ˇ;�/t , we have .gt /�1 D k1D.ˇ;�/�1k2. Hence, g � .gt /�1 D
k1.D.ˇ; �/�D.ˇ;�/

�1/k2, which implies that

kg � .gt /�1k2HS D kD.ˇ;�/�D.ˇ;�/
�1k2HS D 8.sinh2 ˇC sinh2 �/

and

det
�
g � .gt /�1

�
D det

�
D.ˇ;�/�D.ˇ;�/�1

�
D 16 sinh2 ˇ sinh2 � I

that is, .ˇ; �/ satisfies (4).
Put c1.g/D 1

8
kg�.gt /�1k2HS and c2.g/D 1

16
det.g�.gt /�1/. Then sinh2 ˇ and

sinh2 � are the two solutions of the second order equation x2 � c1.g/xC c2.g/D 0,
and since ˇ � � � 0, the numbers sinh2 ˇ and sinh2 � are uniquely determined by (4).
This also determines .ˇ; �/ 2R2 uniquely under the condition ˇ � � � 0.

LEMMA 3.9
Let ˛ � 0 and ˇ � � � 0. If u 2K is of the form (3) with respect to the identification
of K with U.2/, then D˛uD˛ 2KD.ˇ;�/K if and only if´

sinhˇ sinh� D sinh2 ˛.1� a2 � b2/;

sinhˇ � sinh� D sinh.2˛/jaj:
(5)
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Proof
Let ˛ � 0, and let ˇ � � � 0. By Lemma 3.8, D˛uD˛ 2KD.ˇ;�/K if and only if

sinh2 ˇC sinh2 � D
1

8
kD˛uD˛ �D

�1
˛ uD�1˛ k

2
HS

D sinh2.2˛/a2C 2 sinh2 ˛.1� a2 � b2/; (6)

and

sinh2 ˇ sinh2 � D
1

16
det.D˛uD˛ �D

�1
˛ uD�1˛ /

D sinh4 ˛.1� a2 � b2/2: (7)

Note that (7) implies the first equation of the statement. Moreover, by (6) and the first
equation of the statement, we have .sinhˇ � sinh�/2 D sinh2.2˛/a2, which implies
the second equation of the statement. Hence, (6) and (7) imply (5). Clearly, (5) also
implies equations (6) and (7). This proves the lemma.

Consider now the second Gelfand pair sitting inside Sp.2;R/, namely, the pair
of groups .SU.2/;SO.2//. Both groups are naturally subgroups of U.2/, so under
the embedding into G, they give rise to compact Lie subgroups of G. The subgroup
corresponding to SU.2/ will be called K2, and the one corresponding to SO.2/ will
be called K3. The group K3 commutes with the group generated by the elements
D0˛ D diag.e˛; e˛; e�˛; e�˛/, where ˛ 2R.

The subgroup SU.2/�U.2/ consisting of matrices of the form

uD

�
aC ib �cC id

cC id a� ib

�
(8)

with a; b; c; d 2R such that a2C b2C c2C d2 D 1 is after embedding into G iden-
tified with

K2 D

²�
A �B

B A

� ˇ̌̌
ˇ uDAC iB 2 SU.2/

³

D

0
BB@
a �c �b �d

c a �d b

b d a �c

d �b c a

1
CCA ;

as follows directly from the considerations in Example 2.1.
Recall from Section 2 that a continuous function h not identical to 0 on G that is

biinvariant with respect to a Gelfand subgroup K is a spherical function if and only
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if for all x and y we have
R
K
h.xky/dk D h.x/h.y/. From this, it follows that if

K and K 0 are two unitarily equivalent Gelfand subgroups such that K D uK 0u� and
such that h is a spherical function of the pair .G;K/, we have that Qh.x/D h.uxu�/
defines a spherical function for the pair .G;K 0/. Indeed,

Qh.x/ Qh.y/D h.uxu�/h.uyu�/D

Z
K

h.uxu�kuyu�/ dk

D

Z
K0
h.uxu�uk0u�uyu�/ d.uk0u�/D

Z
K0

Qh.xk0y/dk0:

By a symmetry argument, we find a one-to-one correspondence between the spherical
functions for both pairs.

By [4, Theorem 47.6], the pair .SU.2/;SO.2// is a Gelfand pair. This also fol-
lows from [15, Chapter 9]. Indeed, it is explained there that the pair .SU.2/;K 0/,
where K 0 is the subgroup isomorphic to SO.2/ consisting of elements of the form
diag.eis; e�is/ for real numbers s, is a Gelfand pair, and the spherical functions are
indexed by the integers n� 0, and for an element u 2 SU.2/, as given in (8), they are
given by

Pn.2ju11j
2 � 1/D Pn

�
2.a2C b2/� 1

�
;

where Pn W Œ�1; 1	 �! R is the nth Legendre polynomial. However, the two embed-
dings of SO.2/, that is, the natural one and the one given by K 0, are unitarily equiva-
lent by the following relation:

u

�
cos� � sin�
sin� cos�

�
u� D

�
ei� 0

0 e�i�

�
;

where u is the unitary matrix given by

uD
1
p
2

�
1 i

i 1

�
:

More generally, for an element in SU.2/ we get

u

�
aC ib �cC id

cC id a� ib

�
u� D

�
aC ic bC id

�bC id a� ic

�
;

from which it follows that .SU.2/;SO.2// is a Gelfand pair, and the spherical func-
tions for this pair are indexed by n� 0 and are given by

Pn
�
2.a2C c2/� 1

�
D Pn.a

2 � b2C c2 � d2/;

where the last equality follows from the relation a2C b2C c2C d2 D 1.
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Note also that the double cosets of K 0 in SU.2/ are labeled by a2 C b2 � c2 �
d2, and therefore the double cosets of SO.2/ in SU.2/ are labeled by a2 � b2 C
c2 � d2. Hence, every SO.2/-biinvariant function � W SU.2/ �! C is of the form
�.u/D �0.a2 � b2C c2 � d2/ for a certain function �0 W Œ�1; 1	�!C.

Remark 3.10
The Legendre polynomials Pn.cos�/, without the doubled angle, are the spherical
functions for the Gelfand pair .SO.3/;SO.2// (see [9], [14]).

In what follows, we need the following estimates for the Legendre polynomials
and their derivatives. Analogous results were obtained by Lafforgue [25] and used
by Lafforgue and de la Salle [28]. Our estimates are slightly different. Therefore, we
include a proof.

LEMMA 3.11
For all nonnegative integers n,

jPn.x/�Pn.y/j � 4jx � yj
1
2

for x;y 2
�
�1
2
; 1
2

	
; that is, the Legendre polynomials are uniformly Hölder continu-

ous on
�
�1
2
; 1
2

	
with exponent 1

2
.

Proof
Since P0.x/D 1 and P1.x/D x for x 2 Œ�1; 1	, the statement is clearly satisfied for
n D 0 and n D 1. For n � 2 we use the same integral representation for Legendre
polynomials as in [25, Lemma 2.2]; namely, for all x 2 Œ�1; 1	 we have

Pn.x/D
1

�

Z �

0

.xC i
p
1� x2 cos�/n d�:

Suppose that n� 1. Differentiation under the integral sign gives

P 0n.x/D
n

�

Z �

0

.xC i
p
1� x2 cos�/n�1

�
1� i

x
p
1� x2

cos�
�
d�:

We have
ˇ̌
1� i xp

1�x2
cos�

ˇ̌2
� 1
1�x2

. For x 2 Œ�1; 1	 set

In.x/D
1

�

Z �

0

jxC i
p
1� x2 cos� jn d�:

It follows that for n� 1we have jPn.x/j � In.x/ and jP 0n.x/j �
n

1�x2
In�1.x/. More-

over, jxC i
p
1� x2 cos� j2 D 1� .1� x2/ sin2 � � e�.1�x

2/ sin2 � . It follows that
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In.x/ �
1

�

Z �

0

e�
n
2 .1�x

2/ sin2 � d�

�
2

�

Z �=2

0

e�
n
2 .1�x

2/. 2�� /
2

d�

�
2

�

�p
2n.1� x2/

Z 1
0

e�u
2

du:

The last integral is equal to
p
�

2
. Hence, for x 2

�
�1
2
; 1
2

	
, we get In.x/ �

q
2�
3n
�

2p
n

. Thus, for n � 2 and x 2
�
�1
2
; 1
2

	
, we get jPn.x/j � 2p

n
, and we get jP 0n.x/j �

n
1�x2

In�1.x/ �
8n

3
p
n�1
� 4
p
n. Let now n � 2 and x;y 2

�
�1
2
; 1
2

	
. From the above

inequalities it follows that

jPn.x/�Pn.y/j � jPn.x/j C jPn.y/j �
4
p
n
;

jPn.x/�Pn.y/j �
ˇ̌̌Z y

x

P 0n.t/ dt
ˇ̌̌
� 4
p
njx � yj:

Combining the two, we get

jPn.x/�Pn.y/j �
� 4
p
n

� 1
2

.4
p
njx � yj/

1
2 D 4jx � yj

1
2 ;

which proves the statement for n� 2.

Remark 3.12
The same result can be obtained from [31] (see Theorem 7.3.3, equation (7.33.9), and
Theorem 7.33.3 therein).

For ˛ 2 R consider the map K �! G defined by k 7!D0˛kvD
0
˛ , where D0˛ D

diag.e˛; e˛; e�˛; e�˛/ and v 2Z.K/ is chosen to be the matrix inK that in the U.2/-
representation of K is given by

vD

 
1p
2
.1C i/ 0

0 1p
2
.1C i/

!
: (9)

Given a K-biinvariant completely bounded Fourier multiplier on G, this map gives
rise to a K3-biinvariant completely bounded Fourier multiplier on K . We state the
following result, but omit its proof, as it is similar to the one of Lemma 3.7.

LEMMA 3.13
Let ' W G �! C be a K-biinvariant completely bounded Fourier multiplier, and let
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for ˛ 2R the function Q�˛ WK �!C be defined by Q�˛.k/D '.D0˛kvD
0
˛/. Then Q�˛ is

K3-biinvariant and satisfies

k Q�˛kM0A.K/ � k'kM0A.G/:

Consider the restriction �˛ D Q�˛jK2 , which is a K3-biinvariant completely
bounded Fourier multiplier onK2. It follows that �˛.u/D �0˛.a

2�b2C c2�d2/ for
u 2K2, where a, b, c, d are as before, and k�˛kM0A.K2/ � k'kM0A.G/.

COROLLARY 3.14
Let ' 2M0A.G/\ C.KnG=K/, and let �˛ WK2 �! C be as in Lemma 3.13. Then
�˛.u/D �

0
˛.a

2 � b2C c2 � d2/ for u 2K2, and �0˛ W Œ�1; 1	�!C satisfies

j�0˛.r1/� �
0
˛.r2/j � 4jr1 � r2j

1
2 k'kM0A.G/

for r1; r2 2
�
�1
2
; 1
2

	
.

Proof
By applying Proposition 2.3 to the Gelfand pair .SU.2/;SO.2//, we get �˛.u/ DP1
nD0 cnPn.a

2 � b2 C c2 � d2/, where
P1
nD0 jcnj D k�˛kM0A.K2/ � k'kM0A.G/.

Hence, the corollary follows from Lemma 3.11.

Suppose now that ˛1 � ˛2 � 0, and let D.˛1; ˛2/ be as defined in Example 2.1.
Again, if we find an element of the form D0˛uvD

0
˛ in KD.˛1; ˛2/K , where u now

has to be an element of SU.2/, we can relate the value of a K-biinvariant completely
bounded Fourier multiplier ' to the value of the multiplier �˛ . This again only works
for certain ˛1; ˛2 � 0. Consider a general element of SU.2/:

uD

�
aC ib �cC id

cC id a� ib

�
(10)

with a2C b2C c2C d2 D 1.

LEMMA 3.15
Let ˛ � 0 and ˇ � � � 0, and let u;v 2 K be of the form as in (9) and (10) with
respect to the identification of K with U.2/. Then D0˛uvD

0
˛ 2 KD.ˇ;�/K if and

only if ´
sinh2 ˇC sinh2 � D sinh2.2˛/;

sinhˇ sinh� D 1
2

sinh2.2˛/jr j;

where r D a2 � b2C c2 � d2.
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Proof
The lemma follows from Lemma 3.8. Since for g D D0˛uvD

0
˛ we have .gt /�1 D

.D0˛/
�1uv.D0˛/

�1, it follows by direct computation that

kg � .gt /�1k2HS D 8 sinh2.2˛/;

det
�
g � .gt /�1

�
D 4 sinh4.2˛/r2:

LEMMA 3.16
Let ˇ � � � 0. Then the equations

sinh2.2s/C sinh2 s D sinh2 ˇC sinh2 �;

sinh.2t/ sinh t D sinhˇ sinh�
(11)

have unique solutions s D s.ˇ; �/, t D t .ˇ; �/ in the interval Œ0;1/. Moreover,

s �
ˇ

4
; t �

�

2
: (12)

Proof
The existence and uniqueness of s; t � 0 is obvious, since x 7! sinhx is a continuous
and strictly increasing function mapping Œ0;1/ onto Œ0;1/. From (11), it follows
that for ˇ � � � 0 and s D s.ˇ; �/,

2 sinh2.2s/ � sinh2.2s/C sinh2.s/� sinh2.ˇ/

D 4 sinh2
�ˇ
2

�
cosh2

�ˇ
2

�
� 2 sinh2

�ˇ
2

�
:

Hence, 2s � ˇ
2

. To prove the second inequality in (12), we use that for t D t .ˇ; �/,
we have

sinh2.2t/� sinh.2t/ sinh.t/D sinh.ˇ/ sinh.�/� sinh2.�/;

from which it follows that 2t � � .

LEMMA 3.17
There exists a constant C3 > 0 such that whenever ˇ � � � 0 and s D s.ˇ; �/ is
chosen as in Lemma 3.16, then for all ' 2M0A.G/\C.KnG=K/,ˇ̌

'
�
D.ˇ;�/

�
� '

�
D.2s; s/

�ˇ̌
� C3e

�ˇ��8 k'kM0A.G/:

Proof
Assume first that ˇ � � � 8. Let ˛ 2 Œ0;1/ be the unique solution to sinh2 ˇ C
sinh2 � D sinh2.2˛/, and observe that 2˛ � ˇ � 2, so in particular ˛ > 0. Define
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˛1D ˛2

˛1 D 2˛2

˛1

˛2

.2t; t/

.2s; s/

.ˇ;�/

Figure 1. The figure shows the relative position of .ˇ; �/, .2s; s/, and .2t; t/ as in Lemma 3.17
and Lemma 3.18. Note that .ˇ; �/ and .2s; s/ lie on a path in the .˛1; ˛2/-plane of the form
sinh2 ˛1C sinh2 ˛2 D constant, and .ˇ; �/ and .2t; t/ lie on a path of the form sinh˛1 sinh˛2 D
constant.

r1 D
2 sinhˇ sinh�

sinh2 ˇC sinh2 �
2 Œ0; 1	;

and a1 D
�
1Cr1
2

� 1
2 and b1 D

�
1�r1
2

� 1
2 . Furthermore, put

u1 D

�
a1C ib1 0

0 a1 � ib1

�
2 SU.2/;

and let

vD

 
1p
2
.1C i/ 0

0 1p
2
.1C i/

!
;

as previously defined. We now have 2 sinhˇ sinh� D sinh2.2˛/r1, and a21 � b
2
1 D

r1, so by Lemma 3.15, we have D0˛u1vD
0
˛ 2 KD.ˇ;�/K . Let s D s.ˇ; �/ be as in

Lemma 3.16. Then s � 0 and sinh2.2s/C sinh2 s D sinh2 ˇ C sinh2 � D sinh2.2˛/.
Put

r2 D
2 sinh.2s/ sinh s

sinh2.2s/C sinh2 s
2 Œ0; 1	;

and

u2 D

�
a2C ib2 0

0 a2 � ib2

�
2 SU.2/;
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where a2 D
�
1Cr2
2

� 1
2 and b2 D

�
1�r2
2

� 1
2 . Since a22 � b

2
2 D r2, it follows again by

Lemma 3.15 that D0˛u2vD
0
˛ 2KD.2s; s/K . Now, let �˛.u/D '.D0˛uvD

0
˛/ for u 2

K2 Š SU.2/. Then by Lemma 3.13 and Corollary 3.14, it follows that

j�˛.u1/� �˛.u2/j D j�
0
˛.r1/� �

0
˛.r2/j � 4jr1 � r2j

1
2 k'kM0A.G/;

provided that r1; r2 � 1
2

. Hence, under this assumption, using the K-biinvariance of
', we get ˇ̌

'
�
D.ˇ;�/

�
� '

�
D.2s; s/

�ˇ̌
� 4jr1 � r2j

1
2 k'kM0A.G/: (13)

Note that r1 �
2 sinhˇ sinh�

sinh2 ˇ
D 2 sinh�

sinhˇ . Hence, using ˇ � � C 8 � � , we get r1 �

2 e
� .1�e�2� /

eˇ.1�e�2ˇ/
� 2e��ˇ . In particular, r1 � 2e�8 � 1

2
. Similarly, r2 � 2 sinh s

sinh2s D

1
cosh s � 2e

�s . By Lemma 3.16, equation (12), we obtain that r2 � 2e�
ˇ
4 � 2e

��ˇ
4 �

2e�2 � 1
2

. In particular, (13) holds, and since jr1 � r2j � max¹r1; r2º � 2e
��ˇ
4 , we

have proved that

ˇ̌
'
�
D.ˇ;�/

�
� '

�
D.2s; s/

�ˇ̌
� 4
p
2e

��ˇ
8 k'kM0A.G/ (14)

under the assumption that ˇ � � C 8. If � � ˇ < � C 8, we get from k'k1 �
k'kM0A.G/ that j'.D.ˇ; �//� '.D.2s; s//j � 2k'kM0A.G/. Since 2e � 4

p
2, it fol-

lows that equation (14) holds for all .ˇ; �/ with ˇ � � � 0 and C3 D 4
p
2.

LEMMA 3.18
There exists a constant C4 > 0 such that whenever ˇ � � � 0 and t D t .ˇ; �/ is
chosen as in Lemma 3.16, then for all ' 2M0A.G/\C.KnG=K/,ˇ̌

'
�
D.ˇ;�/

�
� '

�
D.2t; t/

�ˇ̌
� C4e

� �8 k'kM0A.G/:

Proof
Let ˇ � � � 0. Assume first that � � 2, and let ˛ � 0 be the unique solution in Œ0;1/
to the equation sinhˇ sinh� D 1

2
sinh2 ˛, and observe that ˛ > 0, because ˇ � � � 2.

Put

a1 D
sinhˇ � sinh�

sinh.2˛/
� 0:

Since sinh.2˛/D 2 sinh˛ cosh˛ � 2 sinh2 ˛, we have

a1 �
sinhˇ

sinh.2˛/
�

sinhˇ

2 sinh2 ˛
D

1

4 sinh�
:
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In particular, a1 � 1
4�
� 1
8

. Put now b1 D
q
1
2
� a21 . Then 1 � a21 � b

2
1 D

1
2

. Hence,

sinhˇ sinh� D sinh2 ˛.1� a21 � b
2
1/ and sinhˇ � sinh� D sinh.2˛/a1. Let

u1 D

 
a1C ib1 � 1p

2
1p
2

a1 � ib1

!
2 SU.2/:

By Lemma 3.9, we have D˛u1D˛ 2KD.ˇ;�/K .
By Lemma 3.16, we have sinh.2t/ sinh t D sinhˇ sinh� D 1

2
sinh2 ˛. Moreover,

by (12), we have t � �
2
� 1. By replacing .ˇ; �/ in the above calculation with .2t; t/,

we get that the number

a2 D
sinh.2t/� sinh t

sinh.2˛/
� 0;

satisfies

a2 �
1

4 sinh t
�

1

4 sinh1
�
1

4
:

Hence, we can put b2 D
q
1
2
� a22 and

u2 D

 
a2C ib2 � 1p

2
1p
2

a2 � ib2

!
:

Then

sinh.2t/ sinh t D sinh2 ˛.1� a22 � b
2
2/;

sinh.2t/� sinh t D sinh.2˛/a2;

and u2 2 SU.2/. Hence, by Lemma 3.9, D˛u2D˛ 2 KD.2t; t/K . Put now �j D

arg.aj C ibj / D �
2
� sin�1. ajp

2
/ for j D 1; 2. Since 0 � aj � 1

2
for j D 1; 2, and

since d
dt

sin�1 t D 1p
1�t2
�
p
2 for t 2 Œ0; 1p

2
	, it follows that

j�1 � �2j �
ˇ̌̌
sin�1

� a1
p
2

�
� sin�1

� a2
p
2

�ˇ̌̌
� ja1 � a2j

�max¹a1; a2º

�max
° 1

4 sinh�
;

1

4 sinh t

±

�
1

4 sinh �
2

;
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because t � �
2

. Since � � 2, we have sinh �
2
D 1

2
e
�
2 .1 � e�� / � 1

4
e
�
2 . Hence, we

have j�1 � �2j � e�
�
2 . Note that aj D 1p

2
ei�j for j D 1; 2, so by Corollary 3.6 and

Lemma 3.7, the function  ˛.u/D '.D˛uD˛/, u 2U.2/ŠK , satisfies

j ˛.u1/� ˛.u2/j � QC j�1 � �2j
1
4 k ˛kM0A.K/

� QCe�
�
8 k'kM0A.G/: (15)

Since D˛u1D˛ 2KD.ˇ;�/K and D˛u2D˛ 2KD.2t; t/K , it follows thatˇ̌
'
�
D.ˇ;�/

�
� '

�
D.2t; t/

�ˇ̌
� QCe�

�
8 k'kM0A.G/

for all � � 2. For � satisfying 0 < � � 2, we can instead use that k'k1 � k'kM0A.G/.

Hence, with C4 Dmax¹ QC ;2e
1
4 º, we obtainˇ̌

'
�
D.ˇ;�/

�
� '

�
D.2t; t/

�ˇ̌
� C4e

� �8 k'kM0A.G/

for all ˇ � � � 0.

LEMMA 3.19
Let s � t � 0. Then the equations

sinh2 ˇC sinh2 � D sinh2.2s/C sinh2 s;

sinhˇ sinh� D sinh.2t/ sinh t;
(16)

have a unique solution .ˇ; �/ 2R2 for which ˇ � � � 0. Moreover, if 1� t � s � 3t
2

,
then

jˇ � 2sj � 1;

j� C 2s � 3t j � 1:
(17)

Proof
Put .s/D sinh2.2s/C sinh2 s for s � 0, and �.t/D 2 sinh.2t/ sinh t for t � 0. Then
 and � are strictly increasing functions on Œ0;1/, and for all s � 0, we have .s/D
�.s/ C .sinh.2s/ � sinh s/2 � 0. Hence, for all s � t � 0, we have .s/ � �.t/ �
�.s/ � �.t/ � 0. If .ˇ; �/ 2 R

2 is a solution of (16) and ˇ � � � 0, then the pair
.x; y/D .sinhˇ; sinh�/ satisfies x � y � 0, and

.x˙ y/2 D .s/˙ �.t/:

Hence,

x D
1

2

�p
.s/C �.t/C

p
.s/� �.t/

�
;

y D
1

2

�p
.s/C �.t/�

p
.s/� �.t/

�
;
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and thus .ˇ; �/D .sinh�1 x; sinh�1 y/ is the unique solution to (16) satisfying ˇ �
� � 0. To prove (17), first observe that since sinhˇ � sinh� , we obtain from (16) that
1
2
.s/ � sinh2 ˇ � .s/ and sinhˇ sinh� D 1

2
�.t/. Hence,

q
�.s/
2
� sinhˇ �

p
.s/

and �.t/
p
4�.s/

� sinh� � �.t/
p
2�.s/

. Using s � t � 1, we obtain

.s/ �
1

4
.e4s C e2s/�

e4s

4
.1C e�2/�

1

3
e4s;

.s/ �
1

4
.1� e�4s/2e4s �

e4s

4
.1� e�4/2 �

1

5
e4s;

�.t/ �
1

2
e3t ;

�.t/ �
1

2
e3t .1� e�4/.1� e�2/�

1

3
e3t :

Altogether, we have proved that

e2s
p
10
� sinhˇ �

e2s
p
3
;

1

2
p
3
e3t�2s � sinh� �

r
5

8
e3t�2s:

From the first inequality we have eˇ � 2p
10
e2. Hence, 1 � e�2ˇ � 1 � 5

2
e�2 � 1

2
,

which implies that eˇ � 4 sinhˇ � 4p
3
e2s and eˇ � 2 sinhˇ � 2p

10
e2s . Therefore,

jˇ � 2sj �max
®
log 4p

3
; log

p
10
2

¯
� 1.

Under the extra assumption s � 3t
2

, we have 3t � 2s � 0. Hence, cosh2 � D
sinh2 � C 1 � 5

8
e6t�4s C 1 � 13

18
e6t�4s , which implies that e� D sinh� C cosh� ��q

5
8
C
q
13
8

�
e3t�2s � 3

q
5
8
e3t�2s . Moreover, e� � 2 sinh� � 1p

3
e3t�2s . Hence,

j� C 2s � 3t j �max
°

log
�
3

r
5

8

�
; log
p
3
±
� 1:

LEMMA 3.20
There exists a constant C5 > 0 such that whenever s; t � 0 satisfy 2 � t � s � 6

5
t ,

then for all ' 2M0A.G/\C.KnG=K/,ˇ̌
'
�
D.2s; s/

�
� '

�
D.2t; t/

�ˇ̌
� C5e

� s
16 k'kM0A.G/:

Proof
Choose ˇ � � � 0 as in Lemma 3.19. Then by Lemma 3.17 and Lemma 3.18, we
have
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ˇ̌
'
�
D.2s; s/

�
� '

�
D.ˇ;�/

�ˇ̌
� C3e

�ˇ��8 k'kM0A.G/;ˇ̌
'
�
D.2t; t/

�
� '

�
D.ˇ;�/

�ˇ̌
� C4e

� �8 k'kM0A.G/:

Moreover, by (17),

ˇ � � � .2s � 1/� .3t � 2sC 1/D 4s � 3t � 2� s � 2;

� � 3t � 2s � 1�
5

2
s � 2s � 1D

s � 2

2
:

Hence, since s � 2, we have min¹e�� ; e�.ˇ��/º � e�
s�2
2 . Thus, the lemma follows

from Lemma 3.17 and Lemma 3.18 with C5 D e
1
8 .C3CC4/.

LEMMA 3.21
There exists a constant C6 > 0 such that for all ' 2M0A.G/\C.KnG=K/ the limit
c1.'/D limt!1 '.D.2t; t// exists, and for all t � 0,ˇ̌

'
�
D.2t; t/

�
� c1.'/

ˇ̌
� C6e

� t
16 k'kM0A.G/:

Proof
By Lemma 3.20, we have for u� 5 and � 2 Œ0; 1	 thatˇ̌

'
�
D.2u;u/

�
� '

�
D.2uC 2�;uC �/

�ˇ̌
� C5e

� u16 k'kM0A.G/: (18)

Let s � t � 5. Then s D t C nC ı, where n� 0 is an integer and ı 2 Œ0; 1/. Applying
equation (18) to .u; �/D .t C j; 1/, j D 0; 1; : : : ; n � 1 and .u; �/D .t C n; ı/, we
obtain

ˇ̌
'
�
D.2t; t/

�
� '

�
D.2s; s/

�ˇ̌
� C5

� nX
jD0

e�
tCj
16

�
k'kM0A.G/

� C 05e
� t
16 k'kM0A.G/;

where C 05 D .1 � e
� 1
16 /�1C5. Hence

�
'.D.2t; t//

�
t�5

is a Cauchy net. Therefore,
c1.'/D limt!1 '.D.2t; t// exists, andˇ̌
'
�
D.2t; t/

�
� c1.'/

ˇ̌
D lim
s!1

ˇ̌
'
�
D.2t; t/

�
� '

�
D.2s; s/

�ˇ̌
� C 05e

� t
16 k'kM0A.G/

for all t � 5. Since k'k1 � k'kM0A.G/, we have for all 0� t < 5,ˇ̌
'
�
D.2t; t/

�
� c1.'/

ˇ̌
� 2k'kM0A.G/:

Hence, the lemma follows with C6 Dmax¹C 05; 2e
5
16 º.
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Proof of Proposition 3.2
Let ' 2M0A.G/\C.KnG=K/, and let .˛1; ˛2/D .ˇ; �/, where ˇ � � � 0. Assume
first ˇ � 2� . Then ˇ � � � ˇ

2
, so by Lemma 3.16 and Lemma 3.17, there exists an

s � ˇ
4

such that

ˇ̌
'
�
D.ˇ;�/

�
� '

�
D.2s; s/

�ˇ̌
� C3e

� ˇ16 k'kM0A.G/:

By Lemma 3.21,

ˇ̌
'
�
D.2s; s/

�
� c1.'/

ˇ̌
� C6e

� s
16 k'kM0A.G/ � C6e

� ˇ64 k'kM0A.G/:

Hence, ˇ̌
'
�
D.ˇ;�/

�
� c1.'/

ˇ̌
� .C3CC6/e

� ˇ
64 k'kM0A.G/:

Assume now that ˇ < 2� . Then, by Lemma 3.16 and Lemma 3.18, we obtain that
there exists a t � �

2
> ˇ

4
such that

ˇ̌
'
�
D.ˇ;�/

�
� '.D.2t; t//

ˇ̌
� C4e

� ˇ16 k'kM0A.G/;

and by Lemma 3.21,

ˇ̌
'
�
D.2t; t/

�
� c1.'/

ˇ̌
� C6e

� t
16 k'kM0A.G/ � C6e

� ˇ64 k'kM0A.G/:

Hence, ˇ̌
'
�
D.ˇ;�/

�
� c1.'/

ˇ̌
� .C4CC6/e

� ˇ64 k'kM0A.G/:

Therefore, for all ˇ � � � 0, we have

ˇ̌
'
�
D.ˇ;�/

�
� c1.'/

ˇ̌
� C1e

� ˇ64 k'kM0A.G/;

where C1 Dmax¹C3 C C6;C4 C C6º. This proves the proposition, because k˛k2 Dp
ˇ2C �2 �

p
2ˇ.

Remark 3.22
In [26, Definition 4.1], Lafforgue introduces the property (TSchur) for a locally com-
pact group G relative to a specified compact subgroup K of G. It is not hard to see
that our Proposition 3.2 implies the degenerate case .s D 0/ of the property (TSchur) for
G D Sp.2;R/ relative to its maximal compact subgroup K ŠU.2/. In the same way,
Proposition 5.2 implies the degenerate case of the property (TSchur) for G D SL.3;R/
relative to K D SO.3/.
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4. Simple Lie groups with finite center and real rank greater than or equal to
two do not have the Approximation Property

In the previous section we proved that Sp.2;R/ does not have the AP. Together with
the fact that SL.3;R/ does not have the AP, this implies the following theorem.

THEOREM 4.1
Let G be a connected simple Lie group with finite center and real rank greater than
or equal to two. Then G does not have the AP.

Proof
Let G be a connected simple Lie group with finite center and real rank greater than
or equal to two. By Wang’s method [32], we may assume that G is the adjoint group,
so that G has a connected splitting semisimple subgroup H with real rank 2. Such
a subgroup is closed, as was proved in [10]. It is known that H has finite center
and is locally isomorphic to either SL.3;R/ or Sp.2;R/ (see [1], [30]). Since the
AP is passed to closed subgroups and as it is preserved under local isomorphisms
(see Proposition 2.4), we conclude that G does not have the AP, since SL.3;R/ and
Sp.2;R/ do not have the AP.

Remark 4.2
Note that we could as well have stated the theorem for connected semisimple Lie
groups with finite center such that at least one simple factor has real rank greater
than or equal to two, since this factor would then contain a subgroup that is locally
isomorphic to either SL.3;R/ or Sp.2;R/.

Let n� 1, and let K be field. Countable discrete subgroups of GL.n;K/ are exact,
as was proven in [16]. Recall that a lattice in a second countable locally compact group
is a closed discrete subgroup � such that G=� has bounded G-invariant measure. As
mentioned in Section 1, if � is a lattice in a second countable locally compact group
G, then G has the AP if and only if � has the AP. These observations imply the
following result.

THEOREM 4.3
Let � be a lattice in a connected simple linear Lie group with finite center and real
rank greater than or equal to two. Then � is an exact group and does not satisfy
the AP.

COROLLARY 4.4
For every lattice in a connected simple Lie group with finite center and real rank
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greater than or equal to two, the reduced group C �-algebra C �
�
.�/ does not have the

OAP and the group von Neumann algebra L.�/ does not have the w*OAP.

Remark 4.5
We do not know yet if the finite center condition in Theorem 4.1 can be omitted.
If G is a connected simple Lie group with real rank greater than or equal to two
(and maybe infinite center), it contains a connected splitting semisimple subgroup
H locally isomorphic to either SL.3;R/ or Sp.2;R/. This implies that H is a group
isomorphic to a quotient of the universal cover of either SL.3;R/ or Sp.2;R/ by a
discrete subgroup of the center of the universal cover. If H is locally isomorphic to
SL.3;R/, our arguments still hold, since the universal cover is finite. However, the
universal cover of Sp.2;R/ is infinite, so our arguments do not work any longer. If
the universal cover of Sp.2;R/ does not have the AP, then this would imply that the
finite center condition in the theorem can be omitted.

5. The group SL.3;R/
In this section we consider the group G D SL.3;R/ with maximal compact subgroup
K D SO.3/. Recall that Lafforgue and de la Salle proved the following theorem.

THEOREM 5.1 (Lafforgue and de la Salle [28, Theorem C])
The group SL.3;R/ does not have the AP.

We give a proof of this theorem along the same lines as our proof for the group
Sp.2;R/. In particular, we do not make use of the APSchur

pcb for 1 < p <1. It is clear
that Theorem 5.1 is implied by Proposition 5.2 below in exactly the same way that
Theorem 3.1 is implied by Proposition 3.2, namely, by applying the Krein–Smulian
theorem to show that the space M0A.G/\C0.KnG=K/ is closed in M0A.G/ in the
�.M0A.G/;M0A.G/�/-topology.

LetG,K ,A;AC be as defined in Example 2.2. ThenG DKACK . Following the
notation of [25, Section 2] and [28, Section 5], putD.s; t/D e�

sC2t
3 diag.esCt ; et ; 1/,

where s; t 2R. Then AD ¹D.s; t/ j s; t 2Rº and AC D ¹D.s; t/ j s � 0; t � 0º.

PROPOSITION 5.2
Let G D SL.3;R/ and K D SO.3/, and let M0A.G/\C.KnG=K/ denote the set of
K-biinvariant completely bounded Fourier multipliers on G. Then there exist con-
stants C1;C2 > 0 such that for all ' 2 M0A.G/ \ C.KnG=K/ the limit '1 WD
limg!1 '.g/ exists, and for all s; t � 0,ˇ̌

'
�
D.s; t/

�
� '1

ˇ̌
� C1k'kM0A.G/e

�C2.sCt/:
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In [25, Proposition 2.3] Lafforgue proved a similar result for coefficients of cer-
tain nonunitary representations of G D SL.3;R/. Below we outline a proof of Propo-
sition 5.2 that relies on the methods of [25, Section 2] and on the previous sections of
this paper.

Consider the pair of compact groups .K;K0/, where K is as above and K0 is the
subgroup of K isomorphic to SO.2/ given by the embedding

SO.2/ ,!

�
1 0

0 SO.2/

�
:

It is easy to see that if ' is a K0-biinvariant function on K , then ' depends only
on the first matrix element g11; that is, '.g/ D '0.g11/ for a certain function '0 W
Œ�1; 1	�!C.

LEMMA 5.3
Let ' W K �! C be a K0-biinvariant completely bounded Fourier multiplier. Then
'.g/D '0.g11/ and for all x 2 Œ�1; 1	,

j'0.x/� '0.0/j � 4k'kM0A.K/jxj
1
2 :

Proof
By [14] and [9], the pair .SO.3/;SO.2// is a compact Gelfand pair, and the spheri-
cal functions are indexed by n � 0 and given by 'n.g/D Pn.g11/, where Pn again
denotes the nth Legendre polynomial. By Proposition 2.3 the function '0 can be writ-
ten as '0 D

P
n�0 cnPn, where cn 2 C and

P
n�0 jcnj D k'kM0A.K/. Moreover, by

Lemma 3.11 we know that

jPn.x/�Pn.0/j � 4jxj
1
2 (19)

for n 2 N0 and x 2
�
�1
2
; 1
2

	
. Since jPn.x/j � 1 for all n 2 N0 and x 2 Œ�1; 1	, the

inequality given by (19) holds for 1
2
< jxj � 1 as well. The result now follows.

LEMMA 5.4
Let ' 2 M0A.G/ \ C.KnG=K/, and let r � 0. Then the function  r W K �! C

defined by  r.k/ D '.D.r; 0/kD.r; 0// is K0-biinvariant and k rkM0A.K/ �
k'kM0A.G/.

Proof
The matrix D.r; 0/ D e�

r
3 diag.er ; 1; 1/ commutes with K0. Therefore the lemma

follows from the proof of Lemma 3.7.
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LEMMA 5.5
Let ' 2M0A.G/\C.KnG=K/, and let q; r 2R such that r � q � 0. Thenˇ̌

'
�
D.2q; r � q/

�
� '

�
D.0; r/

�ˇ̌
� 4e�

r�q
2 k'kM0A.G/: (20)

Proof
If r D q D 0, then (20) is trivial, so we can assume that r > 0. Let  r .g/D  0r .g11/
be the map defined in Lemma 5.4. It follows that

 0r .cos�/D '

0
@D.r; 0/

0
@cos� sin� 0

sin� cos� 0

0 0 1

1
AD.r; 0/

1
A

D '

0
@e� 2r3

0
@e2r cos� �er sin� 0

er sin� cos� 0

0 0 1

1
A
1
A :

By the polar decomposition of SL.2;R/, there exist k1; k2 2 SO.2/, and a q � 0 such
that �

er cos� � sin�
sin� e�r cos�

�
D k1

�
eq 0

0 e�q

�
k2:

Comparing the Hilbert–Schmidt norms (similar to the method we applied for the
case Sp.2;R/) and subtracting 2D 2.sin2 � C cos2 �/ on both sides, we obtain .er �
e�r /2 cos2 � D .eq � e�q/2. It follows that

sinhq D j cos� j sinh r; (21)

and all values of q 2 Œ0; r	 occur for some � 2 Œ0; �
2
	. By defining Qki D

�
ki 0
0 1

�
for

i D 1; 2, we get

D.r; 0/

0
@cos� sin� 0

sin� cos� 0

0 0 1

1
AD.r; 0/D Qk1D.2q; r � q/ Qk2;

and hence, by the SO.3/-biinvariance of ', we get  0r .cos�/ D '.D.2q; r � q//.
For � D �

2
, we have q D 0. Therefore  0r .0/ D '.D.0; r//. Hence, for r > 0 and

r � q � 0, we have  0r .cos�/� 0r .0/D '.D.2q; r �q//�'.D.0; r// if (21) holds.
Hence, by Lemma 5.3 we have

ˇ̌
'
�
D.2q; r � q/

�
� '

�
D.0; r/

�ˇ̌
� 4k'kM0A.G/

� sinhq

sinh r

� 1
2

� 4k'kM0A.G/e
� r�q2 ;
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where we have used that for r � q � 0 and r > 0 the following holds:

sinhq

sinh r
D eq�r

�1� e�2q
1� e�2r

�
� eq�r :

This proves the lemma.

LEMMA 5.6
Let ' 2M0A.G/\C.KnG=K/. For s; t � 0,ˇ̌̌

ˇ'�D.s; t/�� '
�
D
�sC 2t

3
;
sC 2t

3

��ˇ̌̌ˇ � 8k'kM0A.G/e� t3 ;ˇ̌̌
ˇ'�D.s; t/�� '

�
D
�2sC t

3
;
2sC t

3

��ˇ̌̌ˇ � 8k'kM0A.G/e� s3 :
Proof
From Lemma 5.5, it follows that in the special case q D r

3
we haveˇ̌̌

ˇ'
�
D
�2r
3
;
2r

3

��
� '

�
D.0; r/

�ˇ̌̌ˇ� 4k'kM0A.G/e� r3 :
Combined with the estimate of Lemma 5.5 it follows that in the general case we haveˇ̌
'.D.2q; r � q//� '

�
D
�
2r
3
; 2r
3

��ˇ̌
� A1k'kM0A.G/, where A1 D 4.e�

r�q
2 C e�

r
3 /.

Substituting .s; t/D .2q; r � q/, we get for all s; t � 0 thatˇ̌̌
ˇ'�D.s; t/�� '

�
D
�sC 2t

3
;
sC 2t

3

��ˇ̌̌ˇ�A2k'kM0A.G/;
where A2 D 4.e�

t
2 C e�

sC2t
6 / � 8e�

t
3 , which proves the first inequality of the

lemma.
By the SO.3/-biinvariance of ', it follows that

'
�
diag.e˛1 ; e˛2 ; e˛3/

�
D '

�
diag.e˛3 ; e˛2 ; e˛1/

�
whenever ˛1C˛2C˛3 D 0. Hence '.D.s; t//D '.D.�t;�s//D L'.D.t; s//, where
L'.g/D '.g�1/ for all g 2G. Since k L'kM0A.G/ D k'kM0A.G/, we obtain the second
inequality of the lemma by applying the first inequality to L' with s and t interchanged.

LEMMA 5.7
Let ' 2M0A.G/\C.KnG=K/, and let u;v � 0 such that 2

3
u� v � 3

2
u. Thenˇ̌

'
�
D.u;u/

�
� '

�
D.v; v/

�ˇ̌
� 16k'kM0A.G/e

�w=6;

where wDmin¹u;vº.
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Proof
Put s D 2v�u and t D 2u�v. Then s; t � 0, and uD sC2t

3
and vD 2sCt

3
. Hence, by

Lemma 5.6, we get j'.D.s; t//� '.D.u;u//j � 8k'kM0A.G/e
� t3 , and j'.D.s; t//�

'.D.v; v//j � 8k'kM0A.G/e
� s3 . Hence,ˇ̌

'
�
D.u;u/

�
� '

�
D.v; v/

�ˇ̌
�A3k'kM0A.G/;

where A3 D 8.e�
s
3 C e�

t
3 /D 8.e�

2u�v
3 C e�

2v�u
3 /. By the assumptions on u and v,

we obtain 2u�v
3
� u

6
and 2v�u

3
� v

6
. Hence, A3 � 8.e�

u
6 C e�

v
6 / � 16e�

w
6 , where

wDmin¹u;vº. This proves the lemma.

Proof of Proposition 5.2.
Applying the method of the proof of the case Sp.2;R/, it is clear that Lemma 5.7
implies that c WD limu!1 '.D.u;u// exists. Moreover, for u� 2,

ˇ̌
'
�
D.u;u/

�
� c

ˇ̌
�

1X
nD0

ˇ̌
'
�
D.uC nC 1;uC nC 1/

�
� '

�
D.uC n;uC n/

�ˇ̌

� 16e�
u
6 k'kM0A.G/

1X
nD0

e�
n
6

� 112e�
u
6 k'kM0A.G/;

since
P1
nD0 e

�n6 � 7. Since j'.D.u;u//� cj � 2k'kM0A.G/ for 0� u� 2, we have
for all u � 0 that j'.D.u;u//� cj � 112e�

u
6 k'kM0A.G/. Let now s; t � 0. If s � t ,

then this implies that

ˇ̌
'
�
D.s; t/

�
� c

ˇ̌
� .8e�

t
3 C 112e�

sC2t
18 /k'kM0A.G/

� .8e�
sCt
6 C 112e�

sCt
12 /k'kM0A.G/:

If s � t , then we get the same inequality. Hence the proposition holds with '1 D c,
C1 D 120 and C2 D 1

12
.
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