SIMPLE LIE GROUPS WITHOUT THE
APPROXIMATION PROPERTY

UFFE HAAGERUP and TIM DE LAAT

Abstract

For a locally compact group G, let A(G) denote its Fourier algebra, and let MyA(G)
denote the space of completely bounded Fourier multipliers on G. The group G is said
to have the Approximation Property (AP) if the constant function 1 can be approxi-
mated by a net in A(G) in the weak-* topology on the space MyA(G). Recently,
Lafforgue and de la Salle proved that SL(3,R) does not have the AP, implying the
first example of an exact discrete group without it, namely, SL(3,7Z). In this paper
we prove that Sp(2,R) does not have the AP. It follows that all connected simple
Lie groups with finite center and real rank greater than or equal to two do not have

the AP. This naturally gives rise to many examples of exact discrete groups without
the AP.

1. Introduction

Let G be a (second countable) locally compact group, and let A : G —> B(L?(G))
denote the left-regular representation, which is given by (A(x)£€)(y) = £(x~1y),
where x,y € G and &£ € L?(G). Let the Fourier algebra A(G) be the space con-
sisting of the coefficients of A, as introduced by Eymard [12], [13]. More precisely,
¢ € A(G) if and only if there exist &, 7 € L?(G) such that for all x € G we have

p(x) = (A(x)§, 7).
The norm on A(G) is defined by

el ac) =min{lEllInl | Vx € G o(x) = (A(x)E,n)}.

With this norm, A(G) is a Banach space. We have [|¢|| 4(6) > ||¢[lc forall ¢ € A(G),
and A(G) is || - ||oo-dense in Co(G).
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In Eymard’s work, the following characterization of A(G) is given. For two func-
tions f, g € L?(G), the function ¢ = f * g, where g(x) = g(x) = g(x~!) forx € G,
belongs to A(G). Conversely, if ¢ € A(G), then we can find such a decomposition
¢ = f *gsothat || f2Ngll2 = el a)-

Another characterization of the Fourier algebra is given by the fact that A(G)
can be identified isometrically with the predual of the group von Neumann algebra
L(G) of G. The identification is given by the pairing (7, ¢) = (Tf, g) 12(g), Where
T € L(G)and ¢ =g * f for certain f,g € L2(G).

A complex-valued function ¢ is said to be a (Fourier) multiplier if and only
if oy € A(G) for all ¥ € A(G). Note that a multiplier is a bounded and continu-
ous function. Let M A(G) denote the Banach space of multipliers of A(G) equipped
with the norm given by ||¢||ap4(G) = ||my ||, where my, : A(G) — A(G) denotes the
multiplication operator on A(G) associated with ¢. A multiplier ¢ is called com-
pletely bounded if the operator M, : L(G) — L(G) induced by m,, is completely
bounded. The space of completely bounded multipliers is denoted by MyA(G), and
with the norm ||¢||a,4G) = [[Mgllcb, it forms a Banach space. It is known that
A(G) C MyA(G) C MA(G).

Completely bounded Fourier multipliers were first studied by Herz [22], although
he defined them in a different way. Hence, they are also called Herz—Schur mul-
tipliers. The equivalence of both notions was proved by Bozejko and Fendler [2].
They also gave an important characterization of completely bounded Fourier mul-

tipliers; namely, ¢ € MyA(G) if and only if there exist bounded continuous maps
P,Q :G — J, where J is a Hilbert space, such that

o(y'x) = (P(x), 0(») (1

for all x,y € G. Here (-,-) denotes the inner product on #. In this characterization,
¢l Mo a6y = min{|| P || o || @ llco }» Where the minimum is taken over all possible pairs
(P, Q) for which (1) holds.

Completely bounded Fourier multipliers naturally give rise to the formulation
of a certain approximation property, namely weak amenability, which was studied
extensively for Lie groups in [5], [7], [8], [10], [17], and [20]. Other approximation
properties can be formulated in terms of multipliers as well (see [3, Chapter 12]).

Recall that a locally compact group G is amenable if there exists a left-invariant
mean on L°°(G). It was proven by Leptin [29] that G is amenable if and only if
A(G) has a bounded approximate unit; that is, there is a net (¢y) in A(G) with
supy [|9all4() < 1 such that for all » € A(G) we have limy, [|@o ¥ — ¥ || 4G) = 0.

A locally compact group G is called weakly amenable if and only if there is a
net (¢q) in A(G) with supy, ||@alla,4(6) < C for some C > 0, such that ¢, — 1



SIMPLE LIE GROUPS WITHOUT THE APPROXIMATION PROPERTY 927

uniformly on compact subsets of G. The infimum of these constants C is denoted by
A(G), and we put A(G) = oo if G is not weakly amenable.

Amenability of a group G implies weak amenability with A(G) = 1. Weak
amenability was first studied in [5], in which de Canniere and the first author proved
that the free group IF,, on n generators with n > 2 is weakly amenable with A (IF,,) = 1.
This also implied that weak amenability is strictly weaker than amenability, since [F,
is not amenable.

The constant A(G) is known for every connected simple Lie group G and
depends on the real rank of G . First, note that if G has a real rank zero G is amenable.
A connected simple Lie group G with real rank one is locally isomorphic to one of
the groups SO(n, 1), SU(n, 1), Sp(n, 1) with n > 2, or to F4(—20). It is known that

1 if G is locally isomorphic to SO(n, 1) or SU(n, 1),
A(G) = 12n—1 if G is locally isomorphic to Sp(n, 1),
21 if G is locally isomorphic to Fy(—20).

This was proved by Cowling and the first author for groups with finite center [8]. The
finite center condition was removed by Hansen [20].

The first author proved that all connected simple Lie groups with finite center
and real rank greater than or equal to two are not weakly amenable by using the fact
that any such group contains a subgroup locally isomorphic to SL(3,R) or Sp(2,R),
neither of which is weakly amenable [17]. Later, Dorofaeff proved that this result also
holds for such Lie groups with infinite center [10]. Recently, an analogue of this result
was proved by Lafforgue for algebraic Lie groups over non-Archimedean fields [27].
Cowling, Dorofaeff, Seeger, and Wright gave a characterization of weak amenability
for almost all connected Lie groups [7].

A weaker approximation property defined in terms of completely bounded Fourier
multipliers was introduced by the first author and Kraus [18].

Definition 1.1

A locally compact group G is said to have the Approximation Property for groups
(AP) if there is a net (¢y) in A(G) such that ¢, — 1 in the (Mo A(G), My A(G)«)-
topology, where My A(G )+ denotes the natural predual of MyA(G), as introduced in
[5].

It was proved by the first author and Kraus that if G is a locally compact group
and T is a lattice in G, then G has the AP if and only if " has the AP. The AP has
some nice stability properties that weak amenability does not have; for example, if
H is a closed normal subgroup of a locally compact group G such that both H and
G/H have the AP, then G has the AP. This implies that the group SL(2,7Z) x Z? has
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the AP, but it was proven in [17] that this group is not weakly amenable, so the AP is
strictly weaker than weak amenability.

A natural question to ask is which groups do have the AP. When this property
was introduced, it was not clear that there even exist groups without it, but it was
conjectured by the first author and Kraus that SL(3, Z) would be such a group. This
conjecture was recently proved by Lafforgue and de la Salle [28].

Recall that a countable discrete group I' is exact if and only if its reduced group
C*-algebra is exact. For discrete groups it is known that the AP implies exactness
(see [3, Section 12.4]). Note that the result of Lafforgue and de la Salle also gives
the first example of an exact group without the AP. In their paper the property of
completely bounded approximation by Schur multipliers on S?(L2(G)), denoted by
Angl})‘“r, was introduced. For discrete groups, this property is weaker than the AP for
all p € (1,00). Lafforgue and de la Salle proved that SL(3,R) does not satisfy the
Ang{‘“r for certain values of p in this interval, implying that the exact group SL(3, Z)
indeed fails to have the AP, since both the AP and the Angl})‘“r pass from the group to
its lattices and from its lattices to the group.

The main part of this paper concerns the proof of the following result.

THEOREM
The group Sp(2,R) does not have the AP.

Together with the fact that SL(3, R) does not have the AP, the above result gives
rise to the following theorem.

THEOREM
Let G be a connected simple Lie group with finite center and real rank greater than
or equal to two. Then G does not have the AP.

In [11], Effros and Ruan introduced the operator approximation property (OAP)
for C*-algebras and the weak-* operator approximation property (w*OAP) for von
Neumann algebras. By the results of [18, Section 2], it follows that for every lattice I"
in a connected simple Lie group with finite center and real rank greater than or equal
to two, the reduced group C*-algebra C;*(T") does not have the OAP and the group
von Neumann algebra L(I") does not have the w*OAP.

A natural question is whether all connected simple Lie groups with real rank
greater than or equal to two fail to have the AP, that is, if the last mentioned theorem
also holds for groups with infinite center. As of now, we do not know the answer to
this question (see the comments in Section 4).
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This paper is organized as follows. In Section 2 we recall and prove some results
about Lie groups, Gelfand pairs, and the AP. Some of these may be of independent
interest.

In Section 3 we give a proof of the fact that Sp(2, R) does not have the AP. It turns
out to be sufficient to consider completely bounded Fourier multipliers on Sp(2, R),
rather than multipliers on Schatten classes, so we do not use the APSE}Q‘".

In Section 4 we prove the earlier mentioned theorem that all connected simple
Lie groups with finite center and real rank greater than or equal to two do not have
the AP.

In Section 5 we give a new proof of the result of Lafforgue and de la Salle that

SL(3,R) does not have the AP based on the method of Section 3.

2. Lie groups and the Approximation Property
In this section we recall some results about Lie groups, Gelfand pairs, and the AP, and
we prove some technical results.

2.1. Polar decomposition
For the details and proofs of the unproved results in this section, we refer the reader
to [21] and [23].

Recall that every connected semisimple Lie group G with finite center can be
decomposed as G = KAK, where K is a maximal compact subgroup (unique up
to conjugation) and A is an abelian Lie group such that its Lie algebra a is a Cartan
subspace of the Lie algebra g of G. The dimension of a is called the real rank of G and
is denoted by Rankg (G). The real rank of a Lie group is an important concept for us,
since the main result is formulated for Lie groups with certain real ranks. The KAK
decomposition, also called the polar decomposition, is in general not unique. After
choosing a set of positive roots and restricting to the closure A+ of the positive Weyl
chamber A, we still have G = K At K. Moreover, if g = kyak,, where k1,k, € K
and a € AT, then a is unique. Note that we can choose any Weyl chamber to be the
positive one by choosing the correct polarization. For the purposes of this paper, the
existence and the explicit form of the polar decomposition for two certain groups is
important.

Example 2.1 (The symplectic groups)
Let the symplectic group be defined as the Lie group

Sp(n.R) := {g € GL(2n.R) | g' Jg = J}.

where
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Here 7, denotes the (n x n)-identity matrix. We will only consider the case n = 2
from now on.
The maximal compact subgroup K of Sp(2, R) is given by

K:{(A _B)GM4(R)‘A+iBeU(2)}.

This group is isomorphic to U(2). The embedding of an arbitrary element of U(2)
into Sp(2, R) under this isomorphism is given by

a e —-b —f
(a+ib e+if)}_> c g —d —h
c+id g+ih b f a e |’

d h ¢ g

where a,b,c,d, e, f,g,h €R. L
A polar decomposition of Sp(2,R) is given by Sp(2,R) = KAt K, where

— 0 e 0 0
At = D(ay.a0) = 0 0 - 0 ap>02>0
0 0 0 e *2

Example 2.2 (The special linear group)

Consider the special linear group SL(3,R). Its maximal compact subgroup is K =
SO(3), sitting naturally inside SL(3,R). A polar decomposition is given by
SL(3,R) = KAT K, where

L e 0 0
At = 0 e*2 0 a1 >0y >3, a1 +or+a3=0
0 0 e*3

2.2. Gelfand pairs and spherical functions

Let G be a locally compact group, and let K be a compact subgroup. We denote
the (left) Haar measure on G by dx and the normalized Haar measure on K by dk.
A function ¢ : G —> C is said to be K-biinvariant if for all g € G and kq,k; € K,
then we have ¢(k1gk>) = ¢(g). We identify the space of continuous K-biinvariant
functions with the space C(K\G/K). If the subalgebra C.(K\G/K) of the convo-
lution algebra C.(G) is commutative, then the pair (G, K) is said to be a Gelfand
pair, and K is said to be a Gelfand subgroup of G. Equivalently, the pair (G, K) is a
Gelfand pair if and only if for every irreducible representation 7 on a Hilbert space
J the space
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Ho={£ € J | Vk € K : w(k)E = £}

is at most one-dimensional.
For ¢ € C(G), define X € C(K\G/K) by

o5 (g) = / okgk’ydk d¥.
KxK

A continuous K-biinvariant function / : G —> C is called a spherical function if
the functional y on C.(K\G/K) given by

1) = [G ph( ) dx, ¢ e Co(K\G/K)

defines a nontrivial character, that is, y(¢ * ¥) = x(p)x(¢) for all ¢,y €
C.(K\G/K). The following characterization of spherical functions is used later: a
continuous K -biinvariant function # : G — C not identical to zero is a spherical
function if and only if for all x,y € G

/Kh(xky)dk = h(x)h(y).

In particular, h(e) = 1.

Spherical functions arise as the matrix coefficients of K-invariant vectors in irre-
ducible representations of G. Hence, they give rise to interesting decompositions of
functions on G.

For an overview of the theory of Gelfand pairs and spherical functions, we refer
the reader to [14] and [9].

2.3. Multipliers on compact Gelfand pairs

For the study of completely bounded Fourier multipliers on a Gelfand pair it is natural
to look at multipliers that are biinvariant with respect to the Gelfand subgroup. In
the case of a compact Gelfand pair (G, K), that is, G is a compact group and K a
closed subgroup such that (G, K) is a Gelfand pair, we get a useful decomposition of
completely bounded Fourier multipliers in terms of spherical functions.

Suppose in this section that (G, K) is a compact Gelfand pair. Recall that for
compact groups every representation on a Hilbert space is equivalent to a unitary rep-
resentation, that every irreducible representation is finite-dimensional, and that every
unitary representation is the direct sum of irreducible ones. Denote by dx and dk the
normalized Haar measures on G and K, respectively. Recall as well that for a Gelfand
pair every irreducible representation r on J the space #, as defined in Section 2.2 is
at most one-dimensional. Let P, = [, (k) dk denote the projection onto H,, and
set Gk = {r € G | Py # 0}, where G denotes the unitary dual of G, that is, the set
of equivalence classes of unitary irreducible representations of G.
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PROPOSITION 2.3
Let (G, K) be a compact Gelfand pair, and let ¢ be a K-biinvariant completely
bounded Fourier multiplier. Then ¢ has a unique decomposition

p(x)= Y crha(x), x€G,

neGg

where hy(x) = (m(x)&x,&x) is the positive definite spherical function associated
with the representation w with K-invariant cyclic vector &, and ZneéK lex| =

ol a0 a(6)-

Proof
Note that for a compact group G, we have A(G) = MyA(G) = MA(G). By defini-
tion of A(G), there exist £, n € L?(G) such that for all x € G,

p(x) = (A(x)€, 7).

and |l¢[l4c) = € llInll. Note that since G is compact, we have

L(G) = P B(¥x)
neC

as an [ direct sum, and
AG) = D S1(x)
rel

as an /! direct sum, where Sy (#,) denotes the space of trace class operators on #;,.
Hence, we can write

o(x) = Z Tr(Sym(x)), x€G,
neG

where S}, is a trace class operator acting on #(,;, and it follows that

lollacy = Y ISzl
reC

where || - |1 denotes the trace class norm.

Since ¢ is K-biinvariant, S, can be replaced by P, S, P, which vanishes when-
ever w ¢ G k> and which equals ¢, P, for some constant ¢, whenever & € G k- We
have |c;;| = ||cx Pr |1, since the dimension of P, is one. Hence,

P(x)= Y cxTr(Pr7(x)).

neGg
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and therefore,

lelay = D 1PeSaPrli= Y lcxl.
nGéK ”eék

For each 7 € G g, choose a unit vector & € Prdy. Then

9(x)= Y cxhn(x),

neGg

where h,(x) = (w(x)&;,&x) is the positive definite spherical function associated
with (7, Hy,Ex). O

2.4. The Approximation Property
Recall from Section 1 that a locally compact group G has the AP if there is a net (¢q)
in A(G) such that ¢, — 1 in the (Mo A(G), Mo A(G)+)-topology, where My A(G )«
denotes the natural predual of MyA(G).

The natural predual can be described as follows (see [5]). Let X denote the com-
pletion of L1 (G) with respect to the norm given by

1£1x = sopf| | 0y dx| | 0 € MoA @) Tollmoaer <1}.

Then X* = MyA(G). On bounded sets, the 6 (MyA(G), My A(G)+)-topology coin-
cides with the o (L%°(G), L (G))-topology.

The AP passes to closed subgroups, as is proved in [18, Proposition 1.14]. Also,
as was mentioned in Section |, if H is a closed normal subgroup of a locally compact
group G such that both H and G/H have the AP, then G has the AP (see [18, The-
orem 1.15]). A related result is the following proposition. First we recall some facts
about groups.

For a group G we denote its center by Z(G), and (if G is finite) we denote its
order by |G|. Recall that the adjoint representation ad : g —> gl(g) of a Lie algebra
g is given by ad(X)(Y) = [X, Y]. The image ad(g) is a Lie subalgebra of gl(g). Let
Ad(g) denote the analytic subgroup of GL(g) with Lie algebra ad(g). The Lie group
Ad(g) is called the adjoint group. For a connected Lie group G with Lie algebra g
we also write the adjoint group as Ad(G). Note that Lie groups with the same Lie
algebra have isomorphic adjoint groups. The adjoint group of a connected Lie group
G is isomorphic to G/ Z(G). For more details, we refer the reader to [21].

PROPOSITION 2.4

If Gy and G, are two locally isomorphic connected simple Lie groups with finite
center such that Gy has the AP, then G, has the AP,
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Proof
Let G; and G, be two locally isomorphic connected simple Lie groups with finite
center, and suppose that G satisfies the AP. The two groups have the same Lie algebra
and hence, their adjoint groups, which are isomorphic to G;/Z(G1) and G,/ Z(G>),
respectively, are also isomorphic.

Let (¢}) be a net of functions in A(G) converging to the constant function 1 in
the weak-* topology on MyA(G1). Define

Pu(x2(G0) = G,

Z Pa(xz).

ZGZ(G])

The summands are elements of the Fourier algebra of Gy, and ¢/ is independent of
the representative of the coset. By [12, Proposition 3.25], the space A(G1/Z(Gy))
can be identified isometrically with the subspace of A(Gy) consisting of the elements
of A(G) that are constant on the cosets of Z(G1), and hence @} is in A(G1/Z(Gy)).

From the characterization of A(G1/Z(G1)) we can also conclude that ¢} — 1in
the weak-* topology on MyA(G1/Z(G1)). The latter can also be identified with the
subspace of MyA(G1) consisting of the elements of MyA(G;) that are constant on
the cosets of Z(G1). Indeed, the approximating net consists of functions that are finite
convex combinations of left translates of functions approximating 1 in the weak-*
topology on My A(G1).

Hence G1/Z(G1) has the AP, so G,/ Z(G>) has it, as well. From the fact men-
tioned above, namely that whenever H is a closed normal subgroup of a locally com-
pact group G such that both H and G/H have the AP, then G has the AP, it follows
that G, has the AP. O

LEMMA 2.5

Let G be a locally compact group with a compact subgroup K. If G has the AP, then
the net approximating the constant function 1 in the weak-* topology on MyA(G)
can be chosen to consist of K -biinvariant functions.

Proof
For f € C(G) or f € L'(G) we put

K _ / /
f (g)—[K/Kf(kgk)dkdk, geG,

where dk is the normalized Haar measure on K. Since the norm || - ||ar,4(G) iS
invariant under left and right translation by elements of K, we have ||¢X | MoA(G) =
llollmoacc) for all ¢ € MoA(G). Moreover, for ¢ € MogA(G) and f € L'(G), we
have

@, £y =1(e. %),
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where L'(G) is considered as a dense subspace of MyA(G) and the bracket
(,-) denotes the duality bracket between MyA(G) and MyA(G).. Hence,
I &N moaey. < I fllmoac), for all f € L1(G). Therefore, the map on L'(G)
defined by f +— fX extends uniquely to a linear contraction R on MyA(G)«, and
R*¢ = X forall p € MyA(G), where R* € B(MyA(G)) is the dual operator of R.

Assume now that G has the AP. Then there exists a net ¢, in A(G) such that
@a — 1 in the 0(MoA(G), My A(G)«)-topology. Hence, X = R*p, — R*1 =1
in the 0(MpA(G), Mo A(G)+)-topology. Moreover, pX € A(G) N C(K\G/K) for
all «. This proves the lemma. O

The following lemma is used to conclude that a certain subspace of MyA(G) is
0 (MpA(G), My A(G)+)-closed.

LEMMA 2.6
Let (X, ) be a o-finite measure space, and let v : X —> R be a strictly positive
measurable function on X. Then the set

S:={feL®X)||f(xX)| <v(x)ae}
is 0(L*®(X), L'(X))-closed.

Proof

Let (f) be anetin S converging to f € L*(X) in the o (L™ (X), L'(X))-topology.
Define E, = {x eX | | f(x)| > (1 + %)v(x)}. We will prove that w(E,) = 0 for all
n € N. Suppose that for some n € N we have u(E,) > 0. Put E, ; = {x e E,|
v(x) > %} Then E, y /' E, for k — oco. In particular, w(E, x,) > 0 for some k, €
N. By o-finiteness of 1, we can choose F,, C E, k, such that 0 < u(F,) < co. Note
that F,, C E, and v(x) > kL,, for all x € F},. Define the measurable function g : X —
C by

1 1 f(x)
p(Fn) v(x) [f(0)]
Then g € L'(X). It follows that Re( [y fagdu) <1, since | fo(x)g(x)| < 1 almost

everywhere on F},. Hence, Re( / x /g du) < 1. Since this integral is real and fg >0,
it follows that [y | fg|du < 1. On the other hand,

R C |
[ st =i [ L auco =141,

This gives a contradiction, so u(E,) = 0 for all n € N. This implies that the set
E=Uy2 En=1{x€ X ||f(x)| > v(x)} has measure 0, so | f(x)| < v(x) almost
everywhere. O

g(x) = ——15,(x) xeX




936 HAAGERUP and DE LAAT

Let G be a locally compact group with compact subgroup K. Because left and
right translations of a function ¢ € MyA(G) are continuous with respect to the
0 (MyA(G), My A(G)+)-topology, the space MyA(G) N C(K\G/K) consisting of
K-biinvariant completely bounded Fourier multipliers is o (MoA(G), My A(G)x)-
closed. Together with Lemma 2.6 and the fact that L'(G) C My A(G), this implies
the following.

LEMMA 2.7
Let G be a locally compact group with a compact subgroup K, and let v: G — R
be a strictly positive measurable function. Define

$4(G) = {f € L®(G) | |f(0)] < v(x) a.e.}.

Then the space My A(G) N Sy(G) N C(K\G/K) is 6 (Mo A(G), My A(G)+)-closed.

3. The group Sp(2,R) does not have the Approximation Property

In this section, let G = Sp(2,R), and let K, A and AT be as described in Exam-
ple 2.1. The fact that G does not have the AP follows from the behavior of completely
bounded Fourier multipliers that are biinvariant with respect to the maximal compact
subgroup of Sp(2,R). Note that the elements of the Fourier algebra, that is, the pos-
sible approximating functions, are themselves completely bounded Fourier multipli-
ers. Moreover, they vanish at infinity. We identify two compact Gelfand pairs sitting
inside Sp(2,R) and relate the values of biinvariant completely bounded Fourier mul-
tipliers to the values of certain different multipliers on these compact Gelfand pairs.
The spherical functions of these Gelfand pairs satisfy certain Holder continuity con-
ditions, which give rise to the key idea of the proof: an explicit description of the
asymptotic behavior of completely bounded Fourier multipliers that are biinvariant
with respect to the maximal compact subgroup. In the proof of Lafforgue and de la
Salle for the case SL(3,R) [28], such an estimate is also one of the important ideas.

THEOREM 3.1
The group G = Sp(2,R) does not have the AP.

The elements of MyA(G) N C(K\G/K) are constant on the double cosets of K
in G, so to describe their asymptotic behavior we only need to consider their restric-
tion to AT. Note that by Example 2.1 a general element of A+ can be written as
D(ay,0z) = diag(e*!,e%2,e™%1,e7%2), where o1 > o > 0.

PROPOSITION 3.2
There exist constants Cy1, Cy > 0 such that for all K-biinvariant completely bounded
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Fourier multipliers ¢ : G —> C, the limit limg o0 9(g) = ¢oo exists and for all oy >
oy > 0 we have

lo(D (1. 22)) — o] < Cre 2112|017 4 (6. 2)

where |la|2 = /a? + a3.

Let us first state an interesting corollary of Proposition 3.2.

COROLLARY 3.3

Every K-biinvariant completely bounded Fourier multiplier can be written as the
sum of a K-biinvariant completely bounded Fourier multiplier vanishing at infinity
and an element of C. More precisely, if ¢ is a K-biinvariant completely bounded
Fourier multiplier on G, then ¢ = ¢g + @00, where g € Mo A(G) N Co(K\G/K)
and Qoo = limg .o (g) € C.

Proof of Theorem 3.1 using Proposition 3.2.

Recall that the elements of A(G) vanish at infinity. By Lemma 2.7, it follows that
the unit ball of the space MyA(G) N Co(K\G/K), which by Proposition 3.2 satisfies
the asymptotic behavior of (2) (with ¢ = 0 and ||@||ar,4(G) < 1), is closed in the
0 (MoA(G), My A(G)+)-topology. Recall the Krein—Smulian theorem, which asserts
that whenever X is a Banach space and A is a convex subset of the dual space X * such
that A N {x* € X* | ||x*|| <r} is weak-* closed for every r > 0, then A is weak-*
closed (see [6, Theorem V.12.1]). In the case where A is a vector space, which is the
case here, it suffices to check the case r = 1, that is, the weak-* closedness of the
unit ball. It follows that the space MyA(G) N Co(K\G/K) is weak-* closed. Since
A(G)NC(K\G/K) C MyA(G)NCo(K\G/K), it follows that the constant function
1 is not contained in the o (MyA(G), My A(G)+)-closure of A(G) N C(K\G/K).
Hence, by Lemma 2.5, Sp(2, R) does not have the AP. O

The proof of Proposition 3.2 will be given after we prove some preliminary
results. First we identify two Gelfand pairs sitting inside G. We describe them, the
way they are embedded into G, and their spherical functions, and we characterize the
completely bounded Fourier multipliers on them that are biinvariant with respect to
the corresponding Gelfand subgroup.

Consider the group U(2), which contains the circle group U(1) as a subgroup via
the embedding

1 0
U(1)<—>(0 U(l)) cUQ).
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Under the identification K = U(2), the embedded copy of U(1) has the following
form:

1 0 0 0
0 cos§ 0 —sinf

Ul =K, = 0 0 1 0 0 el0,27) ¢,
0 sinf 0 cosf

which can be interpreted as the group of rotations in the plane parameterized by the
second and the fourth coordinate. The group K; commutes with the group generated
by the elements D, = diag(e*, 1,e™%, 1), where o € R. This group is a subgroup of
A C G, where A is as in Example 2.1.

It goes back to Weyl [33] that (U(2),U(1)) is a Gelfand pair (see, e.g., [23, Theo-
rem 1X.9.14]). The homogeneous space U(2)/U(1) is homeomorphic to the complex
1-sphere S(é C C? and the space U(1)\U(2)/U(1) of double cosets is homeomorphic
to the closed unit disc D C C by the map

Uilz Uiz
f(l 1(1F9>M1L
U1 U2

The spherical functions for (U(2),U(1)) can be found in [24]. By the homeomor-
phism U(1)\U(2)/U(1) = D, they are functions of one complex variable in the closed
unit disc. They are indexed by the integers p, g > 0 and explicitly given by

hp.q (u“ u1z) = h) ,(u1),

Uz1 U2z

where in the point z € D the function h°p> 4 1s explicitly given by

221Dz~ 1) p>g,

he (z) =
P 74P pP4 P22 1) p<q.

Here P,f“’ﬂ ) denotes the nth Jacobi polynomial. The following is a special case of a
result obtained by the first author and Schlichtkrull [19].

THEOREM 3.4
There exists a constant C > 0 such that for all nonnegative integers n, § we have

(sin0) 2 (cos )P+ 2 | POP) (cos 26)| < %(271 +B+1)7E, felo,n).

In particular, for 6 = 7 we get
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_B+1 C _1
27 POP(0)] < NAGRE AR

For the special point z = f’ it follows that

)h (ﬁ)‘<C(p+q+l) 3

where C is a constant independent of p and g.

Recall that a function f : X —> Y from a metric space X to a metric space Y
is Holder continuous with exponent o > 0 if there exists a constant C > 0 such that
dy (f(x1), f(x2)) < Cdx(x1,x2)%, for all x1,x, € X. The following result gives
Holder continuity with exponent % of the spherical functions on the circle in D with
radius —= f’ centered at the origin, with a constant independent of p and q.
COROLLARY 3.5
Forall p,q >0, we have

191 ei92

5 5) - 14(5

for all 01,05 € [0,27), where C is a constant independent of p and q.

)| =Clon -1}

Proof
From the explicit form of 4, it follows that for all § € [0, 27),

et 1
il G5) ()

Pa\’ /3 pa\’ /3

This implies that
eiel i0

‘hg,q< ﬁ) _hg,q(i@

)) — [P0 _ (i (r=0)0: | O

<1p—qllfs —02|C(p+q+ )74
< C(p+q+ 16— 06,

for all 01, 6, € [0, 2r). We also have the estimate

191 i6

‘h (ﬁ)_hp,q(%)‘SZ‘hg,q(%)‘§2C(p+q+1)_411

for all 0, 6, € [0, 2r). Combining the two, we get
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161 i0
o (€ o (€
‘hlw(ﬁ> - ”m(ﬁ))
1 3
<(C(p+q+ 13|61 —6,))* 2C(p + ¢ + 1))
= €16, — 65)4

for all 61,6, € [0,27), where C = B, O

By Proposition 2.3, a U(1)-biinvariant completely bounded Fourier multiplier
¢ : U(2) — C can be decomposed as

o
Q= E Cpahpas
P,q=0

where ¢, 4, € C and Z;‘?qzo Icp.ql = ll@llayacucz))- It follows that

Uz2

Uix Uiz
o= (111 41%) = ). weU)
Uz
for some continuous function ¢° : D — C.

COROLLARY 3.6
Let ¢ : U(2) —> C be a U(1)-biinvariant completely bounded Fourier multiplier.
Then ¢(u) = ¢°(u11), and for all 6y, 0, € [0,27) we have

191 ei@z

’g” (f)_(po(ﬁ)

<C|61 — 6| i el moawez))-

Proof 4
Let 6 €[0,2), and let u1,,9 = %. Then the matrix

mN
T

N

Ug =

S-S

is an element of U(2). In this way we get

101 i6

(5) =" (5)| = lotua) — (s,
ei@z
= 3 enali () 1205

p,q=0

~ 1
= CllollMyawey |01 — 02]%. O
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For o € R consider the map K —> G defined by k +— DykD,, where D, =
diag(e®,1,e7%,1). Given a K-biinvariant completely bounded Fourier multiplier
on G, this map gives rise to a K;-biinvariant completely bounded Fourier multiplier
on K.

LEMMA 3.7

Let ¢ : G —> C be a K-biinvariant completely bounded Fourier multiplier, and
for o € R let Yy : K —> C be defined by Y, (k) = ¢(DykDy). Then ¥y is K-
biinvariant and satisfies

1Vallmoak) < @l mMoacG)-

Proof
Using the fact that the group elements D, commute with K7, it follows that for all
ke Kandki,ky e K1 C K>,

Va(kikks) = ¢(Dokikky Do) = (k1 Dok Dokz) = ¢(Dok Do) = Ya (k).

S0 Y, is K-biinvariant.

By the characterization of completely bounded Fourier multipliers due to Boze-
jko and Fendler (see Section 1), we know that there exist bounded continuous maps
P,Q : G — H#, where J is a Hilbert space, such that ¢(y~'x) = (P(x),
Q(y)) forall x. y € G, and, moreover, [[¢[lso4G) = Il P llool| Q llo-

For all k1, k>, € K we have

Va(ky k1) = p(Doky k1 Do) = ¢((kaDg ')~ k1 Dy)
= (P(k1Dyq). Q(k2Dy ")) = (Py(k1). Qu(k2)).

where P,, Qo are the bounded continuous maps from K to J defined by Py (k) =
P(kDgy) and Qo (k) = Q(kD;'). Because KDy and K D! are subsets of G, we get

| Palloo < IPlloo and || Qulloo =< || Qllco, and hence || Va |l amyack) < @l Mpac). O

From the fact that v, is K;-biinvariant, it follows that ¥ (1) = ¥2(u11), where
Y2 : D —> C is a continuous function.

Suppose now that a; > ap > 0, and let D (a1, az) be as defined in Example 2.1;
that is, D(o, ) = diag(e*!,e%2,e %1, e*2), If we find an element of the form
DykD, in KD(aqp,02)K, we can relate the value of a K-biinvariant completely
bounded Fourier multiplier ¢ to the value of the multiplier v, that was defined in
Lemma 3.7. This only works for certain 1, > 0. We specify which possibilities of
a1 and o, we consider, and it will become clear from our proofs that in these cases
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such « and k exist. It turns out to be sufficient to consider certain candidates for k,
namely, the matrices that in the U(2)-representation of K have the form
a+ib  —1—a2-b2
U= 3
(«/l—az—b2 a—ib ©)
with a? 4+ b? < 1. In particular, u € SU(2).

In the following lemmas we let ||A||gs = Tr(h’h)% and det(k) denote the
Hilbert-Schmidt norm and the determinant of a matrix in M4(R), respectively. Note
that det(k) = 1 for all k € K, because K is a connected subgroup of the orthogonal
group O(4).

LEMMA 3.8
Let g € G = Sp(2,R). Then g € KD(B,y)K, where B,y € R are uniquely deter-
mined by the condition B >y > 0 together with the two equations

{Sinhzﬁ +sinh®y = 4 lg = (8" s

sinh® Bsinh’® y = {¢ det(g — (g)7).

“

Proof

Let g € G. By the KA+ K-decomposition, we have g = k;D(B,y)k, for some
ki,k> € K and some B,y € R satisfying B >y > 0. Since k; = (k!)™', i = 1,2,
and D(B,y) = D(B,y)", we have (¢)"" = ki D(B,y)"'k2. Hence, g — (g') ™" =
ki(D(B.y) — D(B,y) Yk,, which implies that

lg = (g") ' lzrs = ID(B.¥) = D(B.y) "' Fs = 8(sinh? B + sinh? y)
and
det(g — (¢")™") = det(D(B,y) — D(B,y)™") = 165inh? B sinh? y;

that is, (8, y) satisfies (4).

Putci(g) = Lllg—(¢") s and 2(g) = 7 det(g —(g")™"). Then sinh? § and
sinh? y are the two solutions of the second order equation x2 — ¢ (g)x + c2(g) =0,
and since B > y > 0, the numbers sinh? 8 and sinh? y are uniquely determined by (4).
This also determines (8, y) € R? uniquely under the condition 8 >y > 0. O

LEMMA 3.9
Leta>0and B>y >0.Ifu € K is of the form (3) with respect to the identification
of K with U(2), then DquD, € KD(B,y)K if and only if

{sinhﬂ sinhy = sinh? (1 — a? — b?), )

sinh 8 — sinh y = sinh(2)|a|.
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Proof
Leta >0,and let 8 > y > 0. By Lemma 3.8, DquD, € KD(B,y)K if and only if

1
sinh? B + sinh? y = §||DauDa — D 'ubD %
= sinh? 2a)a? + 2sinh? a(1 — a® — b?), (6)
and
1
sinh? Bsinh? y = 6 det(DguDy — D 'uD, ")
= sinh* a(1 —a? — b?). (7

Note that (7) implies the first equation of the statement. Moreover, by (6) and the first
equation of the statement, we have (sinh 8 — sinh y)? = sinh?(2ar)a?, which implies
the second equation of the statement. Hence, (6) and (7) imply (5). Clearly, (5) also
implies equations (6) and (7). This proves the lemma. O

Consider now the second Gelfand pair sitting inside Sp(2, R), namely, the pair
of groups (SU(2),SO(2)). Both groups are naturally subgroups of U(2), so under
the embedding into G, they give rise to compact Lie subgroups of G. The subgroup
corresponding to SU(2) will be called K>, and the one corresponding to SO(2) will
be called K3. The group K3 commutes with the group generated by the elements
D, = diag(e®,e%, e ™, e %), where o € R.

The subgroup SU(2) C U(2) consisting of matrices of the form

a+ib —c+id
u_(c—l-id a—ib) ®)

with a,b,c,d € R such that a? + b% + ¢? + d? = 1 is after embedding into G iden-

tified with
A —-B
=i 7)

u=A+iB eSU(z)}

a —c —-b —-d
¢ a —-d b
b d a —c|’

d -b ¢ a

as follows directly from the considerations in Example 2.1.
Recall from Section 2 that a continuous function / not identical to 0 on G that is
biinvariant with respect to a Gelfand subgroup K is a spherical function if and only
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if for all x and y we have th(xky) dk = h(x)h(y). From this, it follows that if
K and K’ are two unitarily equivalent Gelfand subgroups such that K = uK’u* and
such that / is a spherical function of the pair (G, K), we have that h (x) = h(uxu™)
defines a spherical function for the pair (G, K’). Indeed,

h(x)h(y) = h(uxu*)h(uyu*) =[ h(uxu*kuyu*)dk
K
= h(uxu*uk’u*uyu*)d(uk’u*)=/ h(xk'y)dk'.
K’ K’

By a symmetry argument, we find a one-to-one correspondence between the spherical
functions for both pairs.

By [4, Theorem 47.6], the pair (SU(2),SO(2)) is a Gelfand pair. This also fol-
lows from [15, Chapter 9]. Indeed, it is explained there that the pair (SU(2), K'),
where K’ is the subgroup isomorphic to SO(2) consisting of elements of the form
diag(e” Jeis ) for real numbers s, is a Gelfand pair, and the spherical functions are
indexed by the integers n > 0, and for an element u € SU(2), as given in (8), they are
given by

PuQluii > — 1) = Py (2(a® + b%) — 1),

where P, : [—1, 1] — R is the nth Legendre polynomial. However, the two embed-
dings of SO(2), that is, the natural one and the one given by K, are unitarily equiva-
lent by the following relation:

" cosf —sinf . et 0
sin@ cosf “\o )

where u is the unitary matrix given by

More generally, for an element in SU(2) we get
y a+ib —c+id o a+ic b+id
c+id a-—ib “\-b+id a—ic)’
from which it follows that (SU(2),SO(2)) is a Gelfand pair, and the spherical func-
tions for this pair are indexed by n > 0 and are given by
Py (2((12 +c?)— 1) = P,(a®> —b* +c* —d?),

where the last equality follows from the relation a? 4+ b? + ¢2 +d? = 1.
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Note also that the double cosets of K’ in SU(2) are labeled by a? + h? — ¢? —
d?, and therefore the double cosets of SO(2) in SU(2) are labeled by a? — h? +
¢? — d?. Hence, every SO(2)-biinvariant function y : SU(2) — C is of the form
1) = x°(a* — b% + ¢? — d?) for a certain function y°:[-1,1] — C.

Remark 3.10
The Legendre polynomials P, (cos @), without the doubled angle, are the spherical
functions for the Gelfand pair (SO(3),SO(2)) (see [9], [14]).

In what follows, we need the following estimates for the Legendre polynomials
and their derivatives. Analogous results were obtained by Lafforgue [25] and used
by Lafforgue and de la Salle [28]. Our estimates are slightly different. Therefore, we
include a proof.

LEMMA 3.11
For all nonnegative integers n,

1
| Pn(x) = Pu(y)] < 4|x = y|?

forx,y € [—%, %] that is, the Legendre polynomials are uniformly Holder continu-
ous on [—%, %] with exponent %

Proof

Since Py(x) =1 and P;(x) = x for x € [—1, 1], the statement is clearly satisfied for
n =0 and n = 1. For n > 2 we use the same integral representation for Legendre
polynomials as in [25, Lemma 2.2]; namely, for all x € [—1, 1] we have

1 b1
Pn(x):—/ (x+iv1—x2cos0)*db.
T Jo

Suppose that n > 1. Differentiation under the integral sign gives

n [* X
Pl(x) == VT=x2c0s0)"™! (1 —i ——— cos6) d6.
) (X) n/() (x +1i x2cos6) zmcos )
Wehave|1—i¢1i?0059‘2§ﬁ.Forxe[—l,l] set

1 T
In(x)=—/ |x +iv1—x2cosB|" d6.
T Jo

It follows that for n > 1 we have | Py (x)| < I,(x) and | P, (x)| < 15 In—1(x). More-

over, |x +iv/1—x2cosf|? =1 — (1 — x2)sin? § < e~(1=¥)sin*6 Tt follows that
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I,(x) < 1 /ﬂ o~ 30-x7)sin?0 g
=20

/2
< E/H e~ BU=GY gg
T Jo

2 /4 /OO 2
< - e " du.
7 /2n(1 —x2) Jo
The last integral is equal to 4 Hence, for x € [—1,1], we get I,(x) = /% <
% Thus, for n > 2 and x € [ l] we get | P,(x)| < T and we get | P, (x)| <
2z ln-1(x) = 3J_1 <4./n.Letnow n > 2 and x [—% 5] From the above
inequalities it follows that
4
| Pn(x) = Pa(P)| < [Pr ()| + | Pn(¥)| = —=,
Jn
¥
Pa) = P < | [ a0yt < 4/l = 1,
X
Combining the two, we get
1
2
1Pa )~ o)l < (=) * @/l — yE = afx — 12,
\/_
which proves the statement for n > 2. O

Remark 3.12
The same result can be obtained from [31] (see Theorem 7.3.3, equation (7.33.9), and
Theorem 7.33.3 therein).

For « € R consider the map K —> G defined by k — D/ kvD},, where D, =
diag(e®,e*,e™,e7) and v € Z(K) is chosen to be the matrix in K that in the U(2)-
representation of K is given by

La+i) 0
|2 . 9
v ( 0 L +i) ©)

Given a K-biinvariant completely bounded Fourier multiplier on G, this map gives
rise to a K3-biinvariant completely bounded Fourier multiplier on K. We state the
following result, but omit its proof, as it is similar to the one of Lemma 3.7.

LEMMA 3.13
Let ¢ : G —> C be a K-biinvariant completely bounded Fourier multiplier, and let
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for o € R the function jo : K —> C be defined by jq(k) = ¢(D,kvD)). Then jq is
K3-biinvariant and satisfies

| Xall a0 acky < @l a0 4G)-

Consider the restriction yo, = Jol|k,, Which is a Kj-biinvariant completely
bounded Fourier multiplier on K». It follows that y, (1) = x2(a? —b? + ¢? — d?) for
u € K, where a, b, c, d are as before, and || yo || mya(x>) < ¢l pmy4G)-

COROLLARY 3.14
Let p € MyA(G) N C(K\G/K), and let xy : Ko —> C be as in Lemma 3.13. Then
Xe W) = x%(a? —b% + c? —d?) foru € Ky, and y% : [—1,1] —> C satisfies

1
X9 (r1) — xo(r2)| < 4lr1 — r2|2 |9l Mo acG)

forry,ry € [—%, %]

Proof

By applying Proposition 2.3 to the Gelfand pair (SU(2),SO(2)), we get yqo(u) =
Y omeoCnPa(a® — b* + c* — d?), where Y 72 |enl = | xallMoacks) < I1@llaoa6)-
Hence, the corollary follows from Lemma 3.11. O

Suppose now that @y > ap > 0, and let D(c1,z) be as defined in Example 2.1.
Again, if we find an element of the form D, uvD), in KD(o1,02)K, where u now
has to be an element of SU(2), we can relate the value of a K-biinvariant completely
bounded Fourier multiplier ¢ to the value of the multiplier y. This again only works
for certain a1, o > 0. Consider a general element of SU(2):

a+ib —c+id
u_(c+id a—ib) (19)

witha? +b? +¢c? +d* = 1.
LEMMA 3.15
Leta >0 and B>y >0, and let u,v € K be of the form as in (9) and (10) with

respect to the identification of K with U(2). Then D,uvD), € KD(B,y)K if and
only if

sinh? B + sinh? y = sinh?(2a),
sinh Bsinhy = % sinh? (2a)|r|,

where r = a? —b% + 2 —d>.
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Proof
The lemma follows from Lemma 3.8. Since for g = D), uvD/, we have (g')~! =
(D))" tuv(DL)™1, it follows by direct computation that

lg — (") t|%s = 8sinh?(2w),

det(g — (g")") = 4sinh*(2a)r2. 0
LEMMA 3.16
Let B >y > 0. Then the equations

sinh?(2s) + sinh?s = sinh? 8 + sinh? y,

(11)
sinh(2¢) sinh ¢ = sinh B sinh y
have unique solutions s = s(B,y), t =t(B,y) in the interval [0, c0). Moreover,
sel a2l (12)
4 2

Proof

The existence and uniqueness of s,z > 0 is obvious, since x > sinh x is a continuous
and strictly increasing function mapping [0, co) onto [0, 00). From (11), it follows
that for § >y >0 and s = 5(8, y),

2sinh?(2s) > sinh?(2s) + sinh?(s) > sinh?(B)
= 4sinh2(é) cosh2<é) > 2sinh2(é).
2 2 2
Hence, 25 > % To prove the second inequality in (12), we use that for t = ¢(8, y),
we have
sinh?(2¢) > sinh(2¢) sinh(¢) = sinh(B) sinh(y) > sinh?(y),

from which it follows that 2¢ > y. O

LEMMA 3.17

There exists a constant C3 > 0 such that whenever >y > 0 and s = s(f,y) is
chosen as in Lemma 3.16, then for all ¢ € My A(G) N C(K\G/K),

lo(D(B.y)) — (D (2s,9))| < C3e™ " ol oG-

Proof
Assume first that § — y > 8. Let « € [0, 00) be the unique solution to sinh? 8 +
sinh? y = sinh?(2a), and observe that 2o > 8 > 2, so in particular & > 0. Define
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[0 %) o] =02
o] =2as
(2s,s)
(2¢,1)
B,7)
03]

Figure 1. The figure shows the relative position of (8, y), (2s,s), and (2¢,¢) as in Lemma 3.17
and Lemma 3.18. Note that (8,y) and (2s,s) lie on a path in the («1,®2)-plane of the form
sinh? oy + sinh? oy = constant, and (8, y) and (2¢, ) lie on a path of the form sinhr sinhary =
constant.

2 sinh B sinh
L L)
sinh“ B 4 sinh“ y

1 1
and a; = (HrT”)2 and b; = (1_%)2 Furthermore, put

ay +ib; 0
= 2
i ( 0 al—ibl)GSU( ),

and let

v:(%““) Y )

as previously defined. We now have 2sinh fsinhy = sinh®*(2e)ry, and a? — b? =
r1, so by Lemma 3.15, we have D, u;vD], € KD(B,y)K. Let s = s(B,y) be as in
Lemma 3.16. Then s > 0 and sinh?(2s) + sinh? s = sinh? B + sinh? y = sinh?(2x).
Put

2 sinh(2s) sinh s

ry = e [0,1],
> sinh?(2s) + sinh? s [0-1]

and

o — a+iby 0
2= 0 az—ibz

) € SU(2),



950 HAAGERUP and DE LAAT

1 1
where a, = (HrT”)2 and by = (1_%)2 Since a3 — b3 = ry, it follows again by
Lemma 3.15 that D, u,vD], € KD(2s,s)K. Now, let yo(u) = ¢(D,uvD)]) foru €
K, = SU(2). Then by Lemma 3.13 and Corollary 3.14, it follows that

1
[Xa (1) = xa(u2)| = |Xg(”1) - Xg(r2)| <d4[r1 — 2|2 |l@llMya(G)-

provided that ry,r; < % Hence, under this assumption, using the K-biinvariance of
@, we get

1
lo(D(B.v)) — 9(D(2s,5))| < 4lr1 — r212 |9l Mo ac6)- (13)
Note that r; < 2“;':15252“”’ = 2::2% Hence, using 8 >y + 8 > y, we get r; <

sinhs __

Y(1—e—2V _ 5 _ o 0
e?(=e”7) —~ 2,v=B In particular, r; < 2e7% < % Similarly, r, < 23855 =
y—8

eB(1—e—28) —
Coslhs <2e¢~°. By Lemma 3.16, equation (12), we obtain that r, < Ze_g <2e 4
22 < % In particular, (13) holds, and since |r; — ;| < max{ry,r;} < Ze#, we

have proved that

lp(D(B.7)) — 0(D(25.5))| < 4v/2e”F |9l moac) (14)

under the assumption that 8 >y + 8. If y < <y + 8, we get from ||¢|c <
el a0 4c) that [(D(B.y)) — (D (25.9))| < 2l|¢llaoacc)- Since 2e < 4+/2, it fol-
lows that equation (14) holds for all (8,y) with >y >0 and C3 = 4+/2. O

LEMMA 3.18
There exists a constant C4 > 0 such that whenever B>y > 0 and t = t(B,y) is
chosen as in Lemma 3.16, then for all p € My A(G) N C(K\G/K),

l0(D(B, 7)) —o(D(21,1))| < Cae™ ¥ 9]l Mo ac6)-

Proof

Let B >y > 0. Assume first that y > 2, and let o > 0 be the unique solution in [0, c0)
to the equation sinh 8 sinhy = % sinh? o, and observe that o > 0, because >y > 2.
Put

sinh 8 — sinh y
a)=———"——" =
sinh(2wr)
Since sinh(2a) = 2 sinh cosha > 2 sinh? o, we have

sinh 8 - sinh 8 1

ap = — = = .
sinh(2e) ~ 2sinh?«  4sinhy
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)
sinh B sinhy = sinh® @(1 — a? — b?) and sinh 8 — sinhy = sinh(2a)a; . Let

+iby -5
u1=<al LT )eSU(z).

In particular, a; < Ly < é. Put now b; = ,/% —a?. Then 1 —a? —b? = % Hence,

e al—ibl

V2
By Lemma 3.9, we have Dyu; Dy € KD(B,y)K.

By Lemma 3.16, we have sinh(2¢) sinh# = sinh sinhy = % sinh? . Moreover,
by (12), we have ¢ > % > 1. By replacing (8, y) in the above calculation with (2¢,1),
we get that the number

sinh(2¢) — sinh¢
ay = ————+——2>0,
sinh(2wr)
satisfies

az = .1 = .1
~ 4sinht ~ 4sinh1

Hence, we can put b, = ,/% — a% and

a2+ib2 —%
Uy = ; .
2 % a2—1b2

1
==
—4

Then
sinh(2¢) sinh¢ = sinh? a(1 — a% — b3),
sinh(2¢) — sinh# = sinh(2a)a,,

and u, € SU(2). Hence, by Lemma 3.9, Dyu, Dy € KD(2t,t)K. Put now 6; =
arg(aj +ibj) = % — sin_l(%) for j =1,2. Since 0 <a; < % for j = 1,2, and

since % sin"lzr = «/11—7 <2fort e [0, %], it follows that

|61 — 6, < ‘sin_l(%) —sin_l(%)‘
< a1 —ax|

< max{a;,az}

1 1
< max{ - ,— }
4sinhy  4sinht
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because 1 > %. Since y > 2, we have sinh 2 = le%(l —e7) > 16% Hence, we
have |0, — 6, < e~ 2. Note that a; = %e J for j = 1,2, so by Corollary 3.6 and

Lemma 3.7, the function ¥, (4) = ¢(DquDy), u € U(2) = K, satisfies
[V 1) = Va(u2)| < €161 = 6213 Vallarg acx)
< Ce ¥ ollanac)- (15)
Since Dyu1 Dy, € KD(B,y)K and Dyu, Dy € KD(2t,1)K, it follows that
le(D(B.1)) — ¢ (DCt.1))| = Ce ¥l ace)

forall y > 2. For y satisfying 0 < y <2, we can instead use that [|¢||co < ||¢|la04(G)-
Hence, with C4 = max{é, 26%}, we obtain

l0(D(B.7)) — o(D21,1))| < Cae™ ¥ 0]l Mo aco)

forall § >y >0. O

LEMMA 3.19
Let s >t > 0. Then the equations
sinh? B + sinh? y = sinh?(2s) + sinh? s,
(16)
sinh B sinh y = sinh(2¢) sinhz?,

2 3
have a unique solution (B,y) € R? for which B >y > 0. Moreover, if 1 <t <s < 3,
then
|B—2s| <1,

(17)
ly +2s —3t| < 1.

Proof

Put p(s) = sinh?(2s) + sinh? s for s > 0, and o (¢) = 2sinh(2¢) sinh? for ¢ > 0. Then
p and o are strictly increasing functions on [0, o), and for all s > 0, we have p(s) =
o(s) + (sinh(2s) — sinhs)? > 0. Hence, for all s > ¢ > 0, we have p(s) — o (t) >
o(s) —a(t) > 0. If (B,y) € R? is a solution of (16) and B > y > 0, then the pair
(x,y) = (sinh B, sinh y) satisfies x > y > 0, and

(x £ y)> =p(s) £ 0 (2).

Hence,

1
=5 (Vo) +0@) + V) -0 (1),

= (VP T o~ oe) o).
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and thus (B, y) = (sinh~! x,sinh™! y) is the unique solution to (16) satisfying g >
y > 0. To prove (17), first observe that since sinh 8 > sinh y, we obtain from (16) that
%p(s) <sinh? B < p(s) and sinh Bsinhy = %0([). Hence, / @ <sinh 8 < /p(s)

a(t)
4p(s)

<sinhy < clOy Using s > ¢ > 1, we obtain

and 206

1 4s 1
ps) < (" +e¥) = (1472 < e

o(s) > 1(1 o424 > e* (1—e*2> le‘”
— 4 — 4 -5
o(t) < 163’
—_— 2 9
13 —4 N
0(1)253 (1-e)(1-e )256

Altogether, we have proved that

«/—_ .Hence, 1 —e 2 > 1 — ge—z > %,
which implies that e < 4sinh 8 < ﬁe S and ef > 2sinh B > J_o e?S. Therefore,

From the first inequality we have ef >

/7o
1B —2s| < max{log %,bg T} <1

Under the extra assumption s < %, we have 3¢t — 2s > 0. Hence, cosh’y =
sinh®y 4+ 1 < 26745 4 1 < 13674 which implies that ” = sinhy + coshy <

f / e3172s <3 5 €325 Moreover, ¥ > 2sinhy > - 73 ¢3725 Hence,

5
|y+2s—3t|§max{log(3\/;),log\/§}S1. O

LEMMA 3.20

There exists a constant Cs > 0 such that whenever s,t > 0 satisfy 2 <t <s < gt,
then for all p € Mo A(G) N C(K\G/K),

lp(D(2s,5)) — o(D(21,1))| < Cse ™16 |0l myac6)-

Proof

Choose 8 > y > 0 as in Lemma 3.19. Then by Lemma 3.17 and Lemma 3.18, we
have



954 HAAGERUP and DE LAAT

lp(D(25,9)) — (DB, 7))| < C3e™ "% |9l a0 46).
lp(D21,1)) — (DB, V)| < Cae ¥ 10l o acG)-
Moreover, by (17),
B—y>Q2s—1)—@Bt—2s+1)=4s—3t—-2>5-2,

s—2
7

5
y23t—2s—12§s—25—1=

Hence, since s > 2, we have min{e~7, e_(ﬂ_”)} < e, Thus, the lemma follows

from Lemma 3.17 and Lemma 3.18 with C5 = e¥ (C3 + Cy). O

LEMMA 3.21
There exists a constant Cg > 0 such that for all p € MyA(G) N C(K\G/K) the limit
Coo (@) = lim; o0 @(D(2t,1)) exists, and for all t > 0,

lo(DQ21,1)) = coo(9)| < Cse™ 6 |0ll a0 acG)-

Proof
By Lemma 3.20, we have for u > 5 and y € [0, 1] that

lo(Du,u)) — o(DQu + 2y,u + 7))| < Cse™16 ||l sy 4()- (18)

Lets >t >5.Thens =t + n + 8, where n > 0 is an integer and § € [0, 1). Applying
equation (18) to (u,y)=( + j,1), j =0,1,...,n— 1 and (u,y) = (t +n,d), we
obtain

lo(D@1.0) —0(DCs.9)| = C5( 3 T ) Igllmpaco)
j=0

v
< Cse7 1619 My 4(G)-

where C, = (1 — ¢~16)~1Cs. Hence (p(D(21,1)))
Coo (@) = lim; 5o, @(D(2t,1)) exists, and

— is a Cauchy net. Therefore,

|0(D(21.1)) = cool@)| = lim [p(D(21.1)) — p(D(25.5))| < CLe™T6 gl o aco)
forall > 5. Since [|¢|loo < [l@llMya(G), We have forall 0 <t <5,
l0(DQ21,1)) = coo(@)| < 2ll0ll Mo ac6)-

Hence, the lemma follows with C¢ = max{C., DeTs }. O
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Proof of Proposition 3.2

Letp € MyA(G)NC(K\G/K), and let (a1, 2) = (B,y), where § > y > 0. Assume
first 8 > 2y. Then B —y > g, so by Lemma 3.16 and Lemma 3.17, there exists an
s > % such that

lo(D(B.y)) — p(D(2s.9))| < Cae 16 @l a0 4(G)-

By Lemma 3.21,

_5 _B
lo(D(25,5)) — coo(®)| < Coe™T6 @l ppa(6) < Coe™ 8% @]l a0 4(6)-

Hence,

lo(D(B.y)) — cool9)| < (C3 + Cs)e_sﬁ_“ ol amoac6)-

Assume now that § < 2y. Then, by Lemma 3.16 and Lemma 3.18, we obtain that
there exists a ¢t > % > g such that

lp(D(B. 7)) — 0(D2t.1))| < Cae™ 6|0l 1ty acG)

and by Lemma 3.21,

_t _B
(D (21,1)) — coo(@)| < Coe™ 16 |9l Mo ac) < Coe™ 8% @l poa(G)-

Hence,

l0(D(B.7)) = coo®@)| < (Ca + Code™ % |0 |10 46)-

Therefore, for all > y > 0, we have

0(D(B.7)) = coo®)| < Cre™5 |0l 1t (G-

where C; = max{C3 + C¢, C4 + Cg}. This proves the proposition, because || =

VY2 < V2p. =

Remark 3.22

In [26, Definition 4.1], Lafforgue introduces the property (Tschy) for a locally com-
pact group G relative to a specified compact subgroup K of G. It is not hard to see
that our Proposition 3.2 implies the degenerate case (s = 0) of the property (Tscpy) for
G = Sp(2,R) relative to its maximal compact subgroup K = U(2). In the same way,
Proposition 5.2 implies the degenerate case of the property (Tscpyr) for G = SL(3,R)
relative to K = SO(3).
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4. Simple Lie groups with finite center and real rank greater than or equal to
two do not have the Approximation Property

In the previous section we proved that Sp(2,R) does not have the AP. Together with

the fact that SL(3, R) does not have the AP, this implies the following theorem.

THEOREM 4.1
Let G be a connected simple Lie group with finite center and real rank greater than
or equal to two. Then G does not have the AP.

Proof

Let G be a connected simple Lie group with finite center and real rank greater than
or equal to two. By Wang’s method [32], we may assume that G is the adjoint group,
so that G has a connected splitting semisimple subgroup H with real rank 2. Such
a subgroup is closed, as was proved in [10]. It is known that H has finite center
and is locally isomorphic to either SL(3,R) or Sp(2,R) (see [1], [30]). Since the
AP is passed to closed subgroups and as it is preserved under local isomorphisms
(see Proposition 2.4), we conclude that G does not have the AP, since SL(3,R) and
Sp(2,R) do not have the AP. O

Remark 4.2

Note that we could as well have stated the theorem for connected semisimple Lie
groups with finite center such that at least one simple factor has real rank greater
than or equal to two, since this factor would then contain a subgroup that is locally
isomorphic to either SL(3,R) or Sp(2, R).

Letn > 1, and let K be field. Countable discrete subgroups of GL(#, K) are exact,
as was proven in [16]. Recall that a lattice in a second countable locally compact group
is a closed discrete subgroup I" such that G/ I' has bounded G-invariant measure. As
mentioned in Section 1, if I" is a lattice in a second countable locally compact group
G, then G has the AP if and only if I" has the AP. These observations imply the
following result.

THEOREM 4.3
Let T be a lattice in a connected simple linear Lie group with finite center and real

rank greater than or equal to two. Then T" is an exact group and does not satisfy
the AP.

COROLLARY 4.4
For every lattice in a connected simple Lie group with finite center and real rank
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greater than or equal to two, the reduced group C*-algebra C; (T") does not have the
OAP and the group von Neumann algebra L(I") does not have the w*OAP.

Remark 4.5

We do not know yet if the finite center condition in Theorem 4.1 can be omitted.
If G is a connected simple Lie group with real rank greater than or equal to two
(and maybe infinite center), it contains a connected splitting semisimple subgroup
H locally isomorphic to either SL(3,R) or Sp(2,R). This implies that H is a group
isomorphic to a quotient of the universal cover of either SL(3,R) or Sp(2,R) by a
discrete subgroup of the center of the universal cover. If H is locally isomorphic to
SL(3,R), our arguments still hold, since the universal cover is finite. However, the
universal cover of Sp(2,R) is infinite, so our arguments do not work any longer. If
the universal cover of Sp(2,R) does not have the AP, then this would imply that the
finite center condition in the theorem can be omitted.

5. The group SL(3,R)
In this section we consider the group G = SL(3, R) with maximal compact subgroup
K = S0O(3). Recall that Lafforgue and de la Salle proved the following theorem.

THEOREM 5.1 (Lafforgue and de la Salle [28, Theorem C])
The group SL(3,R) does not have the AP.

We give a proof of this theorem along the same lines as our proof for the group
Sp(2,R). In particular, we do not make use of the APSgg”r for 1 < p < o0. Itis clear
that Theorem 5.1 is implied by Proposition 5.2 below in exactly the same way that
Theorem 3.1 is implied by Proposition 3.2, namely, by applying the Krein—Smulian
theorem to show that the space My A(G) N Co(K\G/K) is closed in My A(G) in the
0 (MyA(G), My A(G)+)-topology.

LetG, K, A, AT be as defined in Example 2.2. Then G = K ATK. Following the
notation of [25, Section 2] and [28, Section 5], put D(s,?) = e~ diag(e* ™7, e, 1),
where s, € R. Then A = {D(s,t) | s, € R} and AT = {D(s,t) | s >0, t >0}

PROPOSITION 5.2

Let G = SL(3,R) and K = SO(3), and let MyA(G) N C(K\G/K) denote the set of
K -biinvariant completely bounded Fourier multipliers on G. Then there exist con-
stants C1,Cy > 0 such that for all ¢ € MgA(G) N C(K\G/K) the limit ¢oo :=
limg o0 (g) exists, and for all 5,t > 0,

|0(D(s5,1)) — poo| < Cill@llatoaccye ¢+,
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In [25, Proposition 2.3] Lafforgue proved a similar result for coefficients of cer-
tain nonunitary representations of G = SL(3, R). Below we outline a proof of Propo-
sition 5.2 that relies on the methods of [25, Section 2] and on the previous sections of
this paper.

Consider the pair of compact groups (K, Ko), where K is as above and Ky is the
subgroup of K isomorphic to SO(2) given by the embedding

10
Smmg(osmm)

It is easy to see that if ¢ is a Kj-biinvariant function on K, then ¢ depends only
on the first matrix element g;1; that is, ¢(g) = ¢°(g11) for a certain function ¢° :
[-1,1] —C.

LEMMA 5.3
Let ¢ : K —> C be a Ky-biinvariant completely bounded Fourier multiplier. Then

9(g) = ¢°(g11) and for all x € [-1,1],
1
10 (x) = 0°(0)] < 4llllatoacxy |12

Proof

By [14] and [9], the pair (SO(3),SO(2)) is a compact Gelfand pair, and the spheri-
cal functions are indexed by n > 0 and given by ¢,(g) = P,(g11), where P, again
denotes the nth Legendre polynomial. By Proposition 2.3 the function ¢° can be writ-
tenas % =", o Cn Py, where ¢, € Cand Y, |cn| = [l¢| a1y a(k)- Moreover, by
Lemma 3.11 we know that -

1

|Pn(x)_Pn(O)|§4|x|2 (19)

for n € Ny and x € [—%, %] Since |P,(x)| <1 for all n € Ny and x € [—1, 1], the
inequality given by (19) holds for % < |x| <1 as well. The result now follows. [

LEMMA 5.4
Let ¢ € MygA(G) N C(K\G/K), and let r > 0. Then the function vy, : K — C
defined by Yy, (k) = @(D(r,0)kD(r,0)) is Ko-biinvariant and ||V, ||pmyak) <
lellaoa6)-

Proof
The matrix D(r,0) = e~ 3 diag(e”,1,1) commutes with K. Therefore the lemma
follows from the proof of Lemma 3.7. O
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LEMMA 5.5
Let p € MgA(G) N C(K\G/K), and let q,r € R such that r > q > 0. Then

lo(D(2g, 7 — q)) — (D0, )| < 4e™ =" |9l Mo acc)- (20)

Proof
If r = g = 0, then (20) is trivial, so we can assume that r > 0. Let ¥, (g) = ¥°(g11)
be the map defined in Lemma 5.4. It follows that

cosf sinf 0
w:)(cos@)zgo D(r,0) | sinf cos@ 0] D(r,0)

0 0 1
e?" cosd —e’sinf 0
2r
=¢@le 3| € sinb cos 6 0
0 0 1

By the polar decomposition of SL(2, R), there exist k1, k> € SO(2), and a ¢ > 0 such

that
e"cosf  —sinf e? 0
=k ks.
( sinf e cos 9) ! (0 e_q) 2
Comparing the Hilbert—Schmidt norms (similar to the method we applied for the

case Sp(2,R)) and subtracting 2 = 2(sin? 8 + cos? #) on both sides, we obtain (e” —
e )2 cos? O = (e? — e~ 9)2. It follows that

sinhg = |cosf|sinhr, (21)

and all values of ¢ € [0,r] occur for some 6 € [0, Z]. By defining k; = (i 9) for
i=1,2, we get

cosf sinf O y 5
D(r,0)| sinf cos@® O] D(,0) =k D2q,r —q)ks,
0 0 1

and hence, by the SO(3)-biinvariance of ¢, we get ¥0(cos0) = p(D(2q,r — q)).
For 6 = 7, we have ¢ = 0. Therefore ¥2(0) = ¢(D(0,r)). Hence, for r > 0 and
r>gq >0, wehave ¥(cos0) —¥2(0) = p(D(2q,r —q)) — @(D(0,r)) if (21) holds.
Hence, by Lemma 5.3 we have

sinhg ) 3

[0(DQq.r =) = 0(DO.1)]| < 40l Moace) (S s

_r—q
<4ollmyare” 2 ,
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where we have used that for r > ¢ > 0 and r > 0 the following holds:

sinhg q_r(l —e 24

= — )<l
1—6_2’)_e '

sinh r

This proves the lemma. O

LEMMA 5.6
Let p € MyA(G) N C(K\G/K). Fors,t >0,

‘(p(D(s,t))—go(D(S—;Zt,sgzt))

L
3
)

< 8llellmyacc)e

s
3 .

25+t 25+t
) < 8ll¢llmyacc)e

‘(p(D(s,t))—go(D( 3 o

Proof
From Lemma 5.5, it follows that in the special case ¢ = 3 we have

o(0(5-5))-et00n)

Combined with the estimate of Lemma 5.5 it follows that in the general case we have
—4q

lo(D2q.r —q)) —p(D(3.%))| < A1ll@lmoacc). where Ay = 4e= 2" +e7h).
Substituting (s,¢) = (2¢,r — q), we get for all s,z > 0 that

‘(p(D(s’t))_(p(D(s4;2t’s—|;2t))

<4ellmoacre 3.

< Azl mo 46

where A, = 4(6_% + e_SJEZI) < 86_%, which proves the first inequality of the

lemma.
By the SO(3)-biinvariance of ¢, it follows that

¢ (diag(e®', e*2,e%3)) = p(diag(e®?, 2, ¢*"))

whenever o] + o, + a3 = 0. Hence ¢(D(s, 1)) = o(D(—t,—s)) = ¢(D(t,s)), where
P(g) =¢(g™ ") forall g € G. Since ||@| sy a6) = 19l My a(G), We obtain the second
inequality of the lemma by applying the first inequality to ¢ with s and 7 interchanged.

O

LEMMA 5.7
Let p € MgA(G) N C(K\G/K), and let u,v > 0 such that %u <p< %u Then

lo(D(u,u)) — ¢(D(v,v))| < 16]l¢|lpoacre"°,

where w = min{u, v}.
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Proof

Puts =2v—wuandt =2u—v.Thens,t >0,and u = % and v = %.Henoe,by
Lemma 5.6, we get |p(D(s, t))v— o(D(u,u))| < 8||<p||MOA(G)e_%, and |p(D(s,t)) —
@(D(v,v))| < 8|l¢llmyac)e” 3. Hence,

lo(D(.u)) —9(D(v.v))| < A3ll@lMoa)-

where A3 = 8(e3 +e75) = 8(e~ 5" + e~ *5). By the assumptions on u and v,

5 - — _u _v _w
we obtain 2”3 © > ¢ and MT" > %. Hence, A3 <8(e”¢ +e76) < 16e~ ¢, where
w = min{u, v}. This proves the lemma. O

Proof of Proposition 5.2.
Applying the method of the proof of the case Sp(2,R), it is clear that Lemma 5.7
implies that ¢ := lim,,_, o ¢(D(u,u)) exists. Moreover, for u > 2,

lo(D(u,u)) —c| < Z|<p(D(u+n +Lu+n+1)—o(D+nu+n))|

n=0

o0
<16e”¢|l9llpmoac) Y e ©

n=0
< 112e¢" ¢ ¢l moa(G)-

since Y 0o e~6 < 7. Since |p(D(u,u)) —c| < 2|l@ll moa() for 0 <u <2, we have
for all u > 0 that |@(D(u,u)) —c| < 112e76 lellaoac)- Let now 5,2 > 0. If s <,
then this implies that

1 _stat
lo(D(s,1)) —c| < Be™3 + 112¢™ 18 ) |l9ll sy a(G)
st _stt
<®e” o +112e” 12)|l¢llpmyac6)-

If s > t, then we get the same inequality. Hence the proposition holds with ¢, = ¢,
Cy=120and C; = 3. O
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