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Introduction 

A linear map S from a C*-algebra A 

completely positive if 

into a C*-algebra B is 

S ® i : A ®M ~ B ®M 
m m m 

is positive for all m. Here M m is the algebra of complex mxm 

matrices and i m is the identity on M m Moreover a linear map 

T from A to B is completely bounded if 

sup liT ® imll < 
mE~ 

The supremum is called the completely bounded norm of T and is 

denoted llTl~b. 

In 1979 Wittstock proved the striking result that any completely. 

bounded map from a C*-algebra A into an injective C*-algebra 

B is a linear combination of completely positive maps from A 

to B. More specificly he proved that if T : A ~ B is a com- 

pletely bounded selfadjoint map (i.e. T(x*) = T(x)*, x £ A), then 

there exist completely positive maps TI, T 2 from A to B , 

such that 

T = T I - T 2 and lIT I + T211 ~ llTl~b 

(cf. [27, Satz 4.5]). Later Paulsen found a simpler proof of 

Wittstock's result based on Arveson's extension theorem (cf. 

[15, Cor. 2.6] and [2, Thm. 1.2.9]). He also proved that for any 

(not necessarily selfadjoint) completely bounded linear map T from 
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a C*-algebra A into an injective C*-algebra B , there exist 

completely positive maps $I, S 2 from A to B , such that 

llSill ~ llTl~b i=1,2 , and such that 

< S1(x) T(x*)* ) 

x ~ T(X) S2(x) 

is a completely positive map from A to B ® M 2. (This follows 

from [16, thm. 2.5]). 

In the following we let CP(A,B) (resp. CB(A,B)) denote the set 

of completely positive (resp. completely bounded) maps from a 

C*-algebra A to a C*-algebra B. The main result of this paper 

is the following converse to Wittstock's theorem: 

Let N be a non-injective yon Neumann algebra , then for every 

infinite dimensional C*-al~ebra A , there exists a completely 

bounded map T : A ~ N , which is not a linear combination of 

completely positive maps. It__!, particular avon Neumann algebr ~ 

N i__ss injective if and only if CB(N,N) = span CP(N,N). (cf. 

Theorem 2.6 and corollary 2.8). 

It is essential that N is avon Neumann algebra, because 

Huruya has recently given an example of a non-injective C*-alge- 

bra B , such that CB(A,B) = span CP(A,B) for all C*-algebras 

A (cf. [10]). Smith proved in [20, example 2.1] that for the 

abelian C*-algebra A = C([0,I]), one has 

span CP(A,A) ~ CB(A,A). 

The first example of avon Neumann algebra N for which 

for some C*-algebra 

[11, example 12]). 

span CP(A,N) ~ CB(A,N) 

A was given by Huruya and Tomiyama (cf. 
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We apply our result to show that for every infinite dimensional 

C*-algebra A , there exists a completely bounded map T of A 

into some quotient C*-algebra B/J , which has no completely 

bounded lifting ~ from A to B 

B 

A ~.> B/J 
T 

(cf. corollary 2.9). Hence the Choi-Effros lifting theorem for 

completely positive maps [4] fails for completely bounded maps, 

even if A is abelian. If dim(A) < ~ , T has of course always 

a linear lifting. However, we show that for a particular choice 

of B and J , we can find completely bounded maps T n from 

to B/J , such that 

ii~nJlc~ > n J]T Jlcb 
- = 2 ~  n 

for any linear lifting ~n of T n. (cf. prop. 3.2). This gives 

the negative answer to a problem posed by Paulsen [17]. 

To prove the above mentioned results, it is convenient to in- 

troduce a norm ii 1~e c on span CP(A,B) for arbitrary C*-alge- 

bras A and B. For T 6 span CP(A,B), we let JJTJide c denote 

{ 0 , for which there exist SI,S 2 6 CP(A,B), the infimum of those 

such that 

S I (x) T(X*)* > 

x ~ T(X) S2(X) 

is a completely positive map from A to B ~ M 2. If T is self- 

adjoint, it Tilde c is simply 

liTlide c = inf {JJT 1 + T21J I T = TI-T 2 , T I , T26CP(A,B)} 
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(cf. def. 1.1. and prop. 1.3). We show that the inequality 

llTllcb < llTllde c 

always holds, so by Wittstock's and Paulsen's results 

llTllcb = llTllde c 

whenever B is injective. Our main result (theorem 2.6) is a 

relative easy consequence of the following characterization of 

injective yon Neumann algebras, Which we prove in theorem 2.1: 

A yon Neumann algebra N i__ss injective if and only if there 

exists c 6 ~+ , such that for all linear maps T from £~ to 
n -- 

llTllde c <_ cllTllcb • 

N , 

Here iF denotes n-dimensional abelian C*-algebra Z~{1,...,n}. 

The starting point in the proof of theorem 2.1 is that the hyper- 

finite II1-factor R can be characterized among all factors on 

a separable Hilbert space by the property that 

n 
Jl ~ u i ® uC[l 
i=I i H®H c 

= n 

for any finite set Ul,...,u n of unitaries in R. This was proved 

by Connes as an offshoot of his work on injective factors (cf. [6, 

Remark 5.29]). Thus if N is a non-injective finite factor (on a 

separable Hilbert space) one can choose unitaries Ul,...,u n 6 N 

such that 

I n 

lilZ I U i ® u~ll 
• = H®H c 

< I 

By considering the r'th power of 
n 

u i ®u c , we can obtain m = n r 
i=I 
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unitaries Vl,...,v mqN, such that 

m 

I llz Iv' ®vgU 
.= l i H®H c 

is smaller than any given constant y . 

T : ~ ~ N by 

Now if one define 

m 

T(cl,...,Cm) = >- civ i 
i=I 

it turns out that JITllde c > y-½1iTIicb, which proves theorem 2.1 

in the case of II1-factors on a separable Hilbert space. The 

general case is obtained by extending Connes' result to finite 

von Neumann algebras with a non-trivial center (lemma 2.2) and 

by using Takesaki's decomposition of a type III von Neumann alge- 

bra as a crossed product of a semifinite algebra with a one-para- 

meter group of automorphisms. 

In section 3 we give concrete examples of linear maps T from 
n 

n to the von Neumann algebra JTL(~2) associated with the regular 

representation of the free group on two generators, such that 

|iTnHde c > IITnlicb for n ~ 3 , and 

lITni~ec/IJTnJ~b * ~ for n ~ - 

(cf. example 3. I ). On the other hand, we prove in prop. 3.4 that 

oo 

f o r  a n y  l i n e a r  map T f r o m  ~2 t o  a v o n  Neumann a l g e b r a  N , 

lITii= iJTtlcb = ilTllde c . 
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§1. 

Decomposable linear maps between C*-ai~ebras. 

Let A,B be C*-algebras. We will call a bounded linear map from 

A to B decomposable if it is a linear combination of complete- 

ly positive maps from A to B. Note first that a bounded linear 

map T from A to B is decomposable if and only if there exist 

S 1, S 2 6 CP(A,B) , such that 

(S1(x) T(x*)* > 

(*) R(x) = T(x) S2(x) 

defines a completely positive map from A to B @ M 2 . Assume 
~n 

n a m e l y  t h a t  T = i~" c i T i , c i 6 II~ a n d  T .  £ C P ( A , B )  . T h e n  
i=1 1 

n 
c l e a r l y  S 1 = S 2 = 7 I c  l I T  i c a n  b e  u s e d .  C o n v e r s e l y  i f  

i = 1  

T£ B(A,B) and there exist SI,S 2 £ CP(A,B) such that (*) 

defines a completely positive map R from A to B ® M 2 , one 

checks easily that 

where 

T = (T 1 - T2) + i(T 3 - T 4) 

I 

T I = ~Is 1÷s 2÷T÷T*~ , T 2 = ~IS 1+s 2-T-T*~ P 

= ¼~s 1÷s 2-iT+iT*~ , T 4 = ¼CS 1÷s 2÷iT-iT*l T 3 

are four completely positive maps from A to B. (T* is the 

linear map given by T*(x) = T(x*)*, xqA). 

For two linear maps RI, R 2 from A to B we write 

cp 

if R 2 - R I is completely positive. 
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Definition 1.1 

Let A and B be C*-algebras and let T : A ~ B be a bounded 

linear map. If T is decomposable we let llTllde c denote the 

infimum of those I ~ 0 for which there exist SI,S 2 6 CP(A,B) , 

such that ]ISill ~ I , i = 1,2, and 

(SI(X) T(X*)* ) 

R(X) : T(X) S2(x) 

is a completely positive map from A to B ® M 2 . If T is not 

decomposable, we put llTlide c = +~ . 

Remark 1.2 

We could equivalently have defined 

those I { 0 for which there exist 

llSill ~ I , i = 1,2, and 

ilTllde c as the infimum of 

SI,S 2 6 CP(A,B), such that 

S I (x11) T* (x12) 

x21 x22 (x21 

is a completely bounded map from A ® M 2 to B ® M 2 . 

is completely positive, so is R , because 

where 

by 

Indeed if 

~=RoP 

P is the completely positive map from A to A ® M 2 given 

(x x) 
P(X) = x x 

To prove the converse, let (eij)i=1, 2 be the matrix units of 

M 2 , and let Q : M 2®M 2 ~ M 2 be the linear map defined by 

e for i=k and j=Z 

Q (ei-'3 ~ ek~ ) = otherwise. 
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One checks easily that Q is completely positive (Q can be 

written as Q = Q2 ~ QI where Q1(x) = exe , e = e11 ®e11 + e22 ®e22 , 

and Q2 is a ,-isomorphism of e(M 2 ®M2)e onto M2). Since 

= (i B ®Q)0(R® i2) 

it follows that R is completely positive whenever R is. 

Proposition 1.3 

Let A and B 

(I) If 

be C*-algebras. 

T6 B(A,B) is a selfadjoint decomposable linear map, then 

llTl~e c = inf {IISII IS 6 CP(A,B) , - S ~ T ~ S} 
cp cp 

= inf {lIT 1 + T2111T1,T 2 6 CP(A,B), T = T I - T 2} 

(2) Let T6B(A,B) and let ~6B(A,B®M 2) 

linear map given by 

~(x) = IT(x)0 T(x*)*h0 / 

then 

llTl~e c = ll~l~e c 

be the selfadjoint 

(3) Any decomposable map T from A to B is completely 

bounded and 

IITI~b ~ llTl~e c 

(4) If T is a completely positive map from A to B , then 

ilTllde c = liTlJcb = 11TII . 

(5) If C is a third C*-algebra, and T 1 6 B(A,B), T 2 6 B(B,C) 

are two decomposable linear maps, then T2o T I is a de- 

composable map from A to C , and 
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lIT2° T 111de c __< lIT 211de c llTllide c 

proof 

(I) If x,y are selfadjoint elements in a C*-algebra D , then 

-Y < x < Y => < Y x > > 0 " =  = x y = 

Moreover, if x,y,z are selfadjoint elements in D , then 

) > 0 => -½(Yl +y2 ) <- x < ½(Yl +y2 ) " 
Yl x \ 

x Y2 = - = 

Applying this to elements in B ® M m , it follows that if 

T , S £ B(A,B) are selfadjoint maps, then 

s T ) M2 ) -S <= T <= S => T S ~ CP(A, B® 
cp cp 

and if T , S I , S 2 £ B(A,B) are selfadjoint maps, then 

S I T 1 
T S 2 6 CP(A, B®M2) => -½(S 1 +S 2) <__ T <__ ½(S I +$2). 

cp cp 

This proves the first equality in (I). To prove the second 

equality in (I), assume that T6 B(A,B), S 6 CP(A,B) and 

-s<=T<_s 
cp cp 

Then T I - T 2 where T I = ½(S + T) , T 2 = ½(S- T) are completely 

positive and T 1 + T 2 = S. Conversely if T = T I - T 2 , where 

T I , T 2 6 CP(A,B), then 

-(T I + T2) ~ T ~ (T I + T2) 
cp cp 

This proves the second equality. 

(2) We prove first that ll~J~e c llTl~e c e 

that llTl~e c < ~ Let z > 0. There exist 

such that 

Clearly we can assume 

S I , S 2 £ CP(A,B) 
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S 1 (x) T(x*)* ) 

R(x) = T(x) S2(x ) , xEA 

is completely positive, and ]ISill <_ llTlldec + c , i = 1,2. 

We put 

glx) : 0 S 2(x) , xE A • 

Then clearly S 6 CP(A,B ® M2) , II~II ~ llTl~e c + ~ and 

-~<~<~. 
= = 

cp cp 

Since 

that 

8>0. 

is arbitrary we have ll~llde c ~ llTl~e c . We prove next 

~JT~ec ~ ~ec We can assume that ~J~l~e c < ~ Let 

By (I) there exists ~E CP(A , B®M2) , such that 

- ~ ' < ~ < 2  
= = 

cp cp 

and I1~11 ~ I ITI I .  

We have $11 (x) / 

g(x) = 
\ S21 (x) 

$12 (x) 

$22 (x)) 
, x6A 

where S11, S22 E CP(A,B) , S21, $12 6 B(A,B) and S12 = $21 

Let u 6 B ® M 2 

Then 

be the unitary 

u = 0 -I 

u ~(x)u* = / S11(x) -$12(x) ) 
\-S21 (x) $22 (x) , x E A 

and 

Therefore 

u~(x)u* = -~(x) 

-ad(u) o ~ __< -~ =< ad(u) oS 
cp cp 

x6A 
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In particular 

ad(u) ~ ~ + ~ > 0 
cp 

Put 

i S11(x) T(x*)* > 
R(x) = T(x) $22(x) 

x6A 

Then R is completely positive, because 

R(x) = ½(S+~) + ½(ad(u)o~+~) 

Moreover 

max {llS111f , JlS221l} = ll~Jl < ll~f~e c + 

This proves that llTl~e c ~ ll~l[de c 

(3) It is clear that any linear combination of completely 

positive maps is completely bounded. Let T 6 B(A,B) be a decom- 

posable map, and assume first that T = T*. Let ~ > 0 By (I) 

there exist T I , T 2 6 CP(A,B) , such that T = T I - T 2 and 

lIT 1 + T211 < llTilde c + 

For R6B(A,B), be put R (m) = R®i m , where i m is the identity 

on the mxm-matrices M m . For x 6 (A®Mm) s.a. we have 

T(m) (x) = T1(m) (x) - T2(m) (x) 

(m) (m) (ixl) < T 1 (Ixl) ÷ T 2 

and similarly 

= (T I + T2) (m) (Ixl) 

-T (m) (x) __< (T I +T 2) (m) (ixl) 

Since T I + T 2 is completely positive, 

lIT I + T2ilcb = JlT I + T211 • 

Thus 
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lit (m) (x)ll <= JiT I + T211 llxll 

If x6A®M m is not selfadjoint, then 

0 O* ) ®M2m) Y = { \ x 6 (A s.a. 

Since (T(m)) * (m) = T we have 

0 T (m) (x) * 
T(2m) 

/ \ 
(Y) = ~ T (m) (x) 0 ) 6 (B®M2m) s.a. 

Hence 

liT(m) (x)il = llT(2m)(y )II ~ lIT I + T211 llyll = lIT 1 + T211 llxll 

This shows that llTiicb ~ llTl~e c + 

(4) It is well known that 

positive map. The equality 

and (3). 

]]Tllcb = ]ITI] for any completely 

llTl~e c = ]]Tllcb follows from (1) 

(5) It is clear that T2o T 1 6 span CP(A,C). Choose 

S~ I) , S~2) 6 CP(A,B) and S~ I) , S~2) 6 CP(B,C) 

such that 

s (1)(x) T[(x) 
Ri(x) =( i > 

T. (x) S. 121 Ix) 
1 1 

• i = 1,2 

defines completely positive maps R 1 £ CP(A,B ® M 2) and 

R 2 6 CP(B,C ®M 2) , such that 

max {IIS (I ~ (2),, i )II , llb i li } <= lIT i[Ide c + 

By remark 1.2 the map ~26B(B®M 2 , CeM2) given by 

S~ I ) ) T2* (x I 2 ) 

x21 x22 T 2 (x21) S 2 (2)(x22) 

is completely positive. Hence R2° R 1 6 CP(A,C ®M2). 
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For x 6 A , s 1)os  1)(x  T2oT 1(x  
 2°R11x' = (T2oT 1(x, S2oSI(x, ) 

Therefore 

IIT2~ T111de c < max {IIS~ I)° S~I)II, IIS~2)~S~2)II} 

< (HT211de c + e) (liT 1 llde c + c) 
This proves (5). 

Proposition 1.4 

Let A and B be C*-algebras. 

(1) The decomposable maps from A to 

with norm II l~e c. 

(2) If every completely bounded map from A to 

then there exists a constant c < ~ , such that 

llTl~e c ~ cllTE~b 

for all T£ CB(A,B). 

B form a Banach space 

B is decomposable, 

proof 

(I) Put V(A,B) = span CP(A,B). It is clear that II 

is a norm on V(A,B). Since lIT*l~e c = llTl~e c for all 

it is sufficient to prove that the selfadjoint part of (V(A,B), 

|I l~e c) is complete. This follows in fact from [20, Remark p. 

159], but since no proof is given there, we will include a proof: 

Let (Tn)n6 ~ be a sequence of selfadjoint linear maps from A 

to B , such that 

llTnllde c < +~ 
n=1 

Since B(A,B) is a Banach space, there exists an operator 

T6B(A,B) such that 

P 
lim fix T n- TII = 0 
p~n=1 

llde c 

T 6 V(A,B) 
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By prop. 1.3(2), there exists S n 6 CP(A,B), such that 

-S < T < S 
n = n = n 

cp cp 

and I lSnil ~ 211Tnl~e c . In particular 

i lSnll  < 
n=l 

Therefore we can define R 6 B(A,B), by 
P 

R = ~ S , p = 1,2,3,... 
p n=p+ I n 

Each Rp is completely positive. Since the cone 

closed in B(A,B) one gets 

Thus T£ V(A,B). 

-R I <_ T < R = I 
cp cp 

Moreover for all p 6 ~ , 

CP(A,B) is 

P 
-Rp_<T - Z T < R 

n= 1 n = p 

This implies that 

P 
liT- Z Tnf~e c < iJR II < 2 ~ liTi~e c . 

n=1 = P = n=p+l 

Therefore 

P 
lim liT- Z T njI.~ecu = 0 
p~ n=1 

This proves that the selfadjoint part of V(A,B) is complete 

in the I[ tlde c-norm (cf. f.inst. [12, lemma 1.5.2]). 

(2) Follows from (I) by applying the open mapping theorem to 

the identity map from 

(V(A,B) , el Jlde c) to (CB(A,~) , J] J~b ) . 

Remark 1.5 

We do not know whether the infimum in the definition of iITJ~e c 
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is actually a minimum i.e. whether $I, S 2 in definition 1.1 

can be chosen such that 

max {lJS III, Ins211 } = llTtide c 

However, this is true in two important cases, namely if B is 

a yon Neumann algebra or if B is an injective C*-algebra. More 

generally it is true whenever there exists a conditional expectation 

¢ from B** to B : Assume namely that T6 B(A,B) is decom- 

posable. By a simple compactness argument one can find 

S I , S 2 6 CP(A,B**) , such that 

S1(x ) 
R(x) = T(x) 

is a completely positive map from A 

max {liS111, IIS2il} ~ lITDide c 

Then 

~0SllX ) 
R' (x) = T(x) 

T(x*) * ) 

S 2 (x) 

to B** ® M 2 and 

T(x*)* ) 

¢ • S 2 (x) 

defines a completely positive map from A to B ® M 2 , and 

max {ii~oS11i , ii~oS2N} ~ IITJ~e c 

The converse inequality is trivial. 

Clearly, under the same condition on B , one gets also that 

the two in_~ma in Prop. 1.2(I) are actually minima. 

Having remark 1.2 and remark 1.5 in mind Wittstock's and Paulsen's 

theorems [27, Satz 4.5] and [16, theorem 2.5] can be reformulated 

in the following way: 

Theorem 1.6 (Wittstock, Paulsen). 

Let T be a completely bounded linear map from a C*-algebra 

A into an injective C*-algebra B , then T is decomposable 
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l[Tllde c = llTIIcb • 

§2. 

The main results. 

For n £ ~ , we let £~ denote the n-dimensional abelian 
n 

C*-algebra £~{I,...,n}. 

Theorem 2.1 

Let N be avon Neumann algebra. Then the following four con- 

ditions are equivalent 

(1) N is injective 

(2) For every C*-algebra A and every completely 

bounded map T from A to N , llTllde c = llTl~b . 

(3) For every n 6 ~ , and for every linear map T 

from £~n to N , llTllde c = llTl~b 

(4) There exists a constant c 6 ~÷ , such that for 

every n 6 ~ and for every linear map T from 

Z~n to N , llTllde c <= cllTl~b 

Note that (I) => (2) is Wittstock's and Paulsen's result, and 

that (2) => (3) => (4) is trivial, so we have to prove (4) => (I). 

For any complex linear space E we let E c denote the conjugate 

space i.e. the set E equipped with the same addition as before, 

but where the scalar multiplication is given by 

(c,x) ~ ~x , c £ ~ , x6 E. 

For x 6 E , we let x c denote the corresponding element in E c. 

If A is an algebra, we consider A c as an algebra with un- 

changed multiplication i.e. 
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(ab) c = aCb c a,b 6 A 
W 

In [6, Remark 5.29] Connes proved that for a factor N op type III 

acting on a separable Hilbert space H , the following two con- 

ditions are equivalent 

(i) N is injective . 

(ii) For any finite set Ul,...,u n of unitaries in N 

n 

II Z u i ® u c i II H 
i=I ® H c 

= n 

The key step in the proof of (4) => (I) is the following extension 

of Connes' result: 

Lemma 2.2 

Let N be avon Neumann algebra acting on a Hilbert space 

The following two conditions are equivalent: 

(i) 

(ii) 

H. 

proof 

(i) => (ii) : Assume that N is finite and injective. Since 

any non-zero central projection in N dominates a o-finite 

N is finite and injective . 

For any finite set ul,...,u n of unitaries in 

N and for any non-zero central projection p 

in N , 

n 
c 

II Z pu i® (pu i) II = n 
i=I H ® H c 

non-zero central projection it is sufficient to prove (2) when 

p is ~-finite. By passing to the reduced algebra pN , it is 

sufficient to consider the case, where N itself is ~-finite 

and p = I. Let T be a normal faithful tracial state on N. 

For a 6N we let L a (resp. R a) denote the multiplication with 

a from left (resp. from right) on L2(N,T). Since any injective 

yon Neumann algebra is semidiscrete (cf. [26] and [7]), 
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m m 

]# X L R b ,  li ~ ]] X a i ® b~{{ H 
i=1 ai l i=1 ® H c 

for every mE ~ and every al,...,a m , bl,...,b m6 N. 

particular, for any finite set of unitaries Ul,...,u n 

n n 
ilz ui ~ ucli >= Jlz ~ Ru , 
i=I { ® H c i=I ui 1 

In 

in N 

n 
> iJ X u 1ou*{{ 2 = n 
= i=I 1 1 

This proves that (ii) => (i). For the proof of (ii) => (i) 

we shall need the notion of hypertraces introduced by Connes 

[6, Remark 5.34]. A state ~ on B(H) is called a hypertrace 

for N if for all x6 B(H) and all a £N , 

(ax) = ~(xa) . 

Consider now the following two conditions on avon Neumann algebra 

N: 

(iii) 

(iv) 

For every non-zero central projection p in N , 

there exists a hypertrace ~ for N , such that 

~(1-p) = 0. 

For every state ~o on Z(N) (the center of N), 

there exists a hypertrace ~ for N , such that 

~(z) = ~o(Z) for all z E Z(N). 

We will prove that (ii) => (iii) => (iv) => (i). Assume that 

N satisfies (ii). Let HS(H) denote the space of Hilbert- 

Schmidt operators on H and let ]1 IIHS be the Hilbert-Schmidt 

norm. Since HS(H) can be identified in a natural way with 

H®H c, one gets that for al,...,a n , bl,...,bn6B(H) , 

n 

{{ T ai®bC IH i=I i{ = sup {{{XaixblilHS [ x6HS(H) , {{X{{HS < 1}. 
® H c = 
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Let p be a non-zero central projection in N. Let ~ be 

the family of sets 

F = (Ul,U 2 ..... Un,C) 

where n £ ~ , Ul,...,u n are distinct unitaries in N , and ~ > 0. 

Let F = (Ul,...,Un,C) 6 3. By (ii) 

n 
ilp @pC + I (pu i) @ (Pui)Cli = n + I 

i=1 

Therefore we can choose x F 6 HS(H), such that [IXFIIHs __< I , and 

n , 

lip x F p + l pu i x F pu ill > (n+1) - 
i=I 

By exchanging x F with PXFP , we have still lixFllii S ~ 1. 

Moreover 

px F = xFP = x F 

and 
n 

ilx F + Z U i x F U~IIIIs 
i=I 

> (n+l) - 

Since for k=1,...,n we have 

il Z UiXFU~IIHs± ~ n - I 
i%k 

it follows that 

fix F + UkXFU~lJii S > 2 - c , k=1,...,n . 

So, by the parallelogramidentity 

llXF_UkXFU~ll 2 ~2 ~ _ (2_g)2 HS <-- 211XFl S + 211UkXFU~l S 

_<_ 4 - (2-~) 2 

< 4g . 

Since lixFliHs = flu k x F u~llHs we have also 

IIXFHIHs > I - ½~ . 
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Define a positive functional ~F on N by 

~F(a) = (ax F , XF)HS = Tr(aXFX~). 

For a6N , and x,y£HS(H), 

I (ax,x)HS - (ay,y)Hsl = ½J (a(x+y) , (x-Y))HS + (a(x-y) , (x+y)) 

<= llall llx-yl~s llx+Yl~s . 

Hence for a 6N and i=1,...,n. 

HS I 

~F(a- uiau* i) _<_ llall llx F- UiXFU[l~sllx F ÷ UiXFUll~s 

< 4~½11all. 

Also ~F(1-p) = 0 , and ~F(1) = iixFi~S > I-~. 

The set ~ is directed with the ordering ~ given by 

(u I ,... ,Un,S) =< (v I ..... Vm,6) 

if {Vl,...,Vm} contains the set {Ul,...,u n} and 6 ~ s . Let 

6 B(H)* be a ~(B(H)*, B(H)) cluster point for the net 

(~F)F6~. Clearly ~ is a state on B(H) , 

~(uxu*) = e(x) , x6B(H) , u6U(N) 

i.e. ~ is a hypertrace for N. Moreover ~(1-p) = 0. 

Hence we have proved that (ii) => (iii). 

(iii) => (iv): Let ~ be a state on Z(N), and let 
o 

p = {pl,...,pr } 

be a "partition of the unity" in Z(N), i.e. r £ ~ and 

pl,...,pr are non-zero pairwise orthogonal projections in Z(N) 

with sum I. If N satisfies (iii) we can choose hypertraces 

~l,...,~r 6 B(H)* for N , such that ~k(1-Pk) = 0. Put now 
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r 

= T ~o (Pk) ~k " Up k=l 

Then ~ is a hypertrace on N , and 
P 

~p(Pk ) = ~o(Pk ) . 

The set ~ of partition of the unity in Z(N) is directed by 

the ordering ~ , where P ~ Q means that each projection in 

P can be written as a sum of projections in Q . Let now 

be a ~(B(H)* , B(H))-cluster point for the net (~P)P6~" 

Then ~ is a hypertrace for N , and ~ coincides with 

~o on every central projection. Hence 

~(x) = ~o(X) , x6 Z(N). 

(iv) => (i) : Assume that N satisfies (iv). We prove first 

that N is finite: Let e 6 Z(N) be the largest finite pro- 

jection in Z(N). If 1-e # 0 , we can choose a state ~ on 
o 

Z(N) , such that ~o(1-e) = I. By (iv) there exists a hyper- 

trace ~ 6 B(H)* for N such that ~(1-e) = 1. The restriction 

of ~ to (1-e)N is a tracial state. This gives a contradiction, 

because (1-e)N is properly infinite. Hence e = 1 and N is 

finite. Since any finite von Neumann algebra is a direct sum of 

o-finite, finite algebras, we can in the rest of the proof of 

(3) => (I) assume that N itself is a-finite and finite. Let 

~o be a normal faithful state on Z(N) and let ~ 6 B(H)* be 

a hypertrace for N that extends ~ The restriction T of 
o 

to N is a trace on N. Let T be the central-valued trace 

on N , then 

T = T O T  = ~ o T . 
o 

This shows that • is a normal, faithful tracial state on N. 
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x 6 B(H), we let ~x be the functional on N given by 

~x(a) = ~(ax) = ~(xa) , a 6 N 

In particular ~01 (a) = T(a). 

then for all a6N + t 

1 

Wx~a) = ~ ( a x )  = ~ ( a ½ x a  ~) >; 0 

~x(a) = T(a) - ~(a½(1-x)a ½) <__ T(a). 

If 0 < X <__ I , 

and 

Therefore 0 <= ~x <-- T . Hence there is a unique b x6 N+ , 

0 < b < 1 , such that 
---- X = 

Since N 

the map 

such that 

Clearly, E 

~x(a) = T(bxa) 

is spanned by the positive elements in N of norm ~ I , 

x ~ b can be extended to a linear map E : B(H) ~ N , 
X 

(E(x)a) = ~0 x(a) = ~(xa) , x6 B(H) , a6N. 

is positive, E(1) = I. Moreover for al,a2 6N 

(E(alxa 2)b) = ~(alxa2b) = ~(xa2ba I) 

= ~(E(x)a2bal) = T(alE(X)a2b) 

for every b£N. This shows that E(alxa 2) = aiE(x)a 2 i.e. 

is a conditional expectation of B(H) onto N. Hence N is 

injective. This completes the proof of lemma 2.2. 

Lemma 2.3 

Let N be avon Neumann algebra on a Hilbert space 

following two conditions are equivalent 

H. The 

(i) N is finite and injective 



192 

(ii') There exists a constant y > 0 , such that 

for every finite set Ul,...,u n of unitaries 

in N and any non-zero central projection p 

in N , 

n 
II x ® (Pui)Cll 
i=I pui H ® H c ~ Y n 

proof 

(i) => (ii') follows from lemma 2.2. To prove (ii') => (i) 

assume that N satisfies (ii') with y = Yo > 0 , but that 

does not satisfy (i). By lemma 2.2 we can choose a central 

projection p and unitaries Ul,...,u n in N , such that 

n 
I1 I ® c 
i=I pui (PUi) ][H ® H c < n 

Put 
n 

= I II Z pu i ® (Pui)Cli 
a ~ i=I H ® H c 

Since a < I , we can choose r 6 ~ , such that ar < Yo 

A = {1,...,n} r. Note that A is a finite set with n r 

For I = (il,...,i r) 6 A , put 

v I = . .... u i UllUl2 r 

Then 

~ pvl® (pvl)C = i p >r 
16A iZ-1- pui ® (Pui)C 

and therefore 

c r r III6AX pvl ® (pvl) In <= (an) < yo n 

This contradicts that N satisfies (ii') with Y = Yo 

(ii') => (i). 

Put 

elements. 

Hence 
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Lemma 2.4 

Let H and K be Hilbert spaces and let al,...,a n 6 B(H) , 

bl,...,b n 6 B(K). Then 

c n b c. ½ n n a c ½ • II X b. ® 11 
II X a i®b II KC < II X a. ® II HC J_ i K c 
i=1 H ®  = i= I 1 l H® i=I K® 

proof 

Assume first that H = K. By the usual identification of 

H®H c with the Hilbert-Schmidt operators HS(H) on H , we have 

n n 
Jl Z a. ®bC[l = sup {lJ Z aixb*l]ii S I JJXlIHS < I} 
i=I l l H ® H c i=1 = 

n 
= sup {Tr( Z aixb.~y*) I IIXlIHS <= I, llyJlHs <__ I}. 

i=I 

Let x,y E HS(H) , IIXlIHS <= I , ]JYllHS =< I , and let x = ulxl, 

y = Ylyl be the polardecompositionsof x and y . Put 

x I = u]xJ ½ , x 2 = Ix] ½ 

Yl = vlyl½ ' Y2 = jyj½ 

Then 

x = XlX 2 , y = yly 2 

IX] = X~X 2 , ly[ = Y~Y2 

Ix*i = XlX ~ , Jy*[ = yly ~ 

Therefore 
n n 
Z Tr(y*akXb ~) = Z Tr(y~akXlX2b~Y ~) 

k=1 k=1 

n 
<= Z Tr(y~akx1(Y~akXl)*)½Tr((X2bkY 2)* * *(x2b*~,*%)½kl2 ' 

k=l 

<n >,in 
__< kZ__1 Tr(y~akx I * * ) Tr(Y2bk x XlakY I kZ_-1 ~x2b~Y 
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< n )}< n )½ 

= kZ=1 Tr(ly*laklx*la ~) kZ__l Tr(lylbklxlb ~) 

n n 
c Cll " 

< II Z ak®akl I II Z bk®b k 
k=1 k=1 

Here we have used that 

II Ixl lIHS = [I Ix*i iIHS = lixJIHS < I and Jl ly[ IIHS = If ly*J JIHS = IIylIHS <__ I 

This completes the proof in the case H = K. The general case 

can be reduced to this case if one puts 

H = H ® K 

and considers the operators ~1' .... ~n' ~I ..... ~n6B(H) given by 

~k(~,~) = (ak~,0) 

~k(~,~) = (0,bkh) 

for ~ 6 H and ~ 6 K . 

Lemma 2.5 

Let Ul,...,u n be n unitaries in a finite yon Neumann algebra 

N , let p be a non-zero central projection in N , and let T 

be the linear map from Z~ to N given by 
n 

T(c I ,...,Cn) = p ciui! . 
i I 

Then 

a) 
n 

JIT1~cb <= n½il Z PUi® (Pui)ClJ ½ 
i=I 

b) JlTJlde c = n 

proof 

a) Let m6 ~ , and put T (m) = T ® i , where i is the identity 
m m 

on M m. An element x in the unitball of £~ ® M m is given by 

a set (xl,...,Xn) of n elements in the unitball of M m . We have 
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n 

I pu k @ x k . 
k=1 

We have M m ~ B(K) , where dim K = n. Hence by lemma 2.4: 

n n 

JjT(m) (x) II < II Z ® (PUk)Cli½ llkZ I c 
= i= I PUk H®H 6 = Xk ®Xkl  c ®K 

n 

< 11Z pu k® (PUk)Cil ½ • n ½ . 
= i=I H®H c 

This proves a). 

b) Since iiTilde c = ll~I~e c , where T : A ~ B ®M 2 is defined by, 

= X c k 6 N®M 2 ~(c1'''''Cn) 0 p k=1 u k 0 

(cf. prop. 1.3(2)) it is sufficient to consider the case where 

Ul,...,u n are selfadjoint unitaries. Put 

<n 
S(c 1,...,c n) = Z p . 

k-1 

Then S is a positive map freom Z ~ to N and 
n 

-S < T < S 

However, by [21, thm. 4] a positive map from ~ to N is 
n 

automaticly completely positive. 

Therefore 

flTllde c ~ lIS(1) II = nilpll = n. 

Let now T be a normal tracial state on N for which T(1-p) = 0, 

and let e ~ p be the support projection of ~. It is well known 

that 

IBxlt I = T(Jxl), x6M 

is a norm on eN , and since 
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llxli I = Uexli I 

for all x6N , II. III is a seminorm on N. Assume that 

N is a completely positive map, such that R : n 

-~<__T<=R 
cp cp 

Put x k = R(Pk) , where P1'''''Pn 

in £~ . Then 
n 

-x k <= pu k =< x k k = 1,...,n 

Therefore 

T(X k) = ]I½(X k +PUk)Jl I + II½(x k-puk)] I 

>= li½(x k + pu k) - ½ (x k- pu k) Ill = 

Hence 
n n 

JIR(1) II = ]IZ Xkll _>_ X T(x k) >= n 
k=1 k=1 

This shows that IETl~e c ~ n . 

are the minimal projections 

llPUkll I = Y(p) = I. 

proof of theorem 2.1 

It remains to be proved that (4) => (I). Assume first that N 

is finite. Let u I ,... ,u n be n 

a non-zero central projection in N , and let 

the linear map 
n 

TlCl, .... Cn) = p( Z ciu i) 
i=I 

unitaries in N , let p be 

T : £~ ~ N be 
n 

By lemma 2.5 

and 

n (PUi) c II ½ ]ITiJcb <= n ½11 ~ pu i ® 
i=I 

11Tllde c = n. 

Thus, if lITildec<= cIITilcb, we get that 
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n 
II Z pu i® (Pui)Cll > n/c 2 
i=1 

Hence, if N satisfies condition (4), it follows from lemma 2.3 

that N is injective. This proves (4) => (I) for N finite. 

To prove (4) => (I) for a general von Neumamn algebra, we show 

first that if avon Neumann algebra M satisfies condition (4) 

in theorem 2.1, then 

(a) Any reduced algebra N = pMp of M satisfies condition 

(4) in theorem 2.1 

(b) Any sub von Neumann algebra of N which is the range 

of a conditional expectation ~ : M * N satisfies 

condition (4) in theorem 2.1. 

Let namely T : ~ N be a linear map. Since in both cases (a) 
n 

and (b) , N ~M, where M satisfies (4) with c = c o , there 

exist completely positive maps $I, S 2 from £~ to M , such 

that ilSiil ~ coliTlicb , i = 1,2 and 

SI(X) T (x*) *> 

R(X) = T(X) S 2 (X) , X 6 Z~n 

is a completely positive map from £~ to M®M 2 (cf. def. 1.1 
n 

! 

and remark 1.4). By putting S i = PSi(.) p in case a) and 

S!l = ~S in case b) one gets completely positive maps S~,S½ 

f r o m  £ ~  t o  N , s u c h  t h a t  
n 

i S~(x) T(x*)* ) ~ 
R'(x) = T(x) S½(x) , x6 n 

defines a completely positive map from ~ to N @ M 2 . Hence 
n 

llTHde c <__ max (IIS~]I,IJS½1]} <= CoilTilcb 



198 

This proves (a) and (b) above. 

Let now N be a semifinite von Neumann algebra that satisfies 

condition (4) in theorem 2.1. By [23, Chap. 5, prop. 1.40], N 

can be written in the form 

N = @ (Ni~B(Hi)) 
i6I 

where (Hi)i£ I is a family of Hilbert spaces and (Ni)i61 is 

a family of finite von Neumann algebras. By (a) above each N i 

satisfies condition (4). Thus by the first part of the proof 

each N i is injective, which implies that N itself is injective 

completing the proof of (4) => (I) for semifinite algebras. 

Assume next that N is avon Neumann algebra of type III that 

satisfies condition (4). By [22] N is the crossed product of 

a semifinite Neumann algebra M and a one-parameter group of 

automorphisms (es) on M 

N = M x@ 

Let e be the dual action of ~ on N (cf. [22, Def. 4.1]), 

and let m be a left invariant mean on ~ . Then 

I s x ~ x )  d m ( s ) .  

defines a conditional expectation ~ of N onto the fixed 

point algebra N^ for e. By [22, tb~. 6.1] N^ is isomorphic to 
8 

M. Thus by (b) above, M also satisfies condition (4), and hence M 

is injective by the first part of the proof. But the crossed product 

of an injective yon Neumann algebra by an abelian group is again in- 

jective (cf. [6, prop. 6.8]). Hence (4) => (I) for von Neumann 

algebras of type III. Since a general yon Neumann algebra is the 

direct sum of a semifinite algebra and a type III-algebra, we are done. 
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Theorem 2.6 

Let N be a non-injective von Neumann algebra. 

a) For every infinite dimensional C*-algebra A , there exists 

a map T6 CB(A,N) , which is not a linear combination of 

completely positive maps from A to N. 

b) For every infinite dimensional von Neumann algebra M , there 

exists a normal map T6 CB(M,N) which is not a linear com- 

bination of completely positive maps from M to N . 

For the proof of theorem 2.6 we shall need 

Lemma 2.7 

Let A be an infinite dimensional C*-algebra. 

there exist completely positive maps 

Rn : £~n ~ A , S n : A ~ ~n 

For each n 6 ~ , 

such that llRnll ~ I llSnll ~ I , and 

SnORn(X) = x , x6 £ n 

If A is avon Neumann algebra R n and S n can be chosen 

normal and unitpreserving. 

proof 

Let B be a maximal abelian *-subalgebra of A. Since B is 

infinite dimensional (cf. : [12, exercise 4.6.12]), the spectrum 
A 

B of B is infinite. Let n 6 ~ . We can choose n distinct 

characters 

~I'''''~n6 B . 

Moreover, since B is isomorphic to 

positive selfadjoint elements 

Co(B), we can choose 
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b I ,... ,b n 6 B 

such that llbill =< I , ~i(bi)__ = I 

that the corresponding functions on Co(B) 

Let ~l'''''~n be extensions of e1'''''en 

n 
= Z c b Rn(Cl '''" 'Cn) i=I i i 

and 

for i=I ,...,n and such 

have disjoint supports. 

to states on A. Put 

c.6~ 
l 

S n(a) = (~01 (a) , .... ~0 n(a)) a 6 A 

Since a positive map from a C*-algebra to another C*-algebra is 

automaticly completely positive if one of the algebras is abelian 

(cf. [21, thm. 4] and [2, prop. 1.2.2]), R n and S n are com- 

pletely positive. Moreover one gets easily that llRnll ~ I , 

a Rn(X ) = x for x 6 ~ llSnil ~ I and S n n 

If A is an infinite dimensional von Neumann algebra, let instead 

Cl,...,c n be n non-zero orthogonal projections with sum I, let 

~1,...,~n be normal states on A , such that the support projection 

of ~i is less or equal to c i , i=1,...,n , and define R n and 

S n by the above formulas. Then Rn,S n satisfy all the con- 

ditions stated in the second part of lemma 2.7. 

proof of theorem 2.6 

a) Let N be avon Neumann algebra, and let A be any infinite 

dimensional C*-a!gebra. Assume that every completely bounded map 

from A to N is decomposable. By prop. 1.5, there exists a 

constant c 6 ~+ , such that 

lIT' II < clIT' llcb 

for all T' 6 CB(A,N). For every n 6~ we can choose completely 

£~ ~ A and T : A ~ £~ which satisfy the bounded maps Rn : n n n 

conditions of lemma 2.7. Let T be a linear map from £~ n to N. 
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T = (T o S n) o R n 

we get from prop. 1.3(4)(5) that 

11TNde c ~ JOT ~ Sni~e c 

Therefore 

IITilde c ~ cHT • S~Jcb ~ cJITiJcb . 

Hence N satisfies the condition (4) in theorem 2.1, i.e. N is 

injective. 

b) Let M,N be yon Neumann algebras,dimM = +~ , and assume 

that any normal map T6 CB(M,N) is decomposable. Since 

Vn(M,N) = {T6 span CP(M,N) I T normal } 

is a closed subspace of the Banach space 

(span CP(M,N) , Jl Itde c) 

it follows as in the proof of prop. 1.4 that there exists 

c 6 ~+, such that 

iJT'l~e c ~ c]IT'l%b 

for all normal maps T' 6 CB(M,N). Hence, as in the proof of 

a) we can conclude that N is injective. This proves theorem 

2.6. 

If M and N are two yon Neumann algebras, we let CP (M,N) 
n 

(resp. CBn(M,N)) denote the set of normal completely positive 

(resp. normal completely bounded) maps from M to N. 

Corollary 2.8 

Let N be a yon Neumann algebra. The following three con- 

ditions are equivalent 
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(I) N is injective. 

(2) CB(N,N) = span CP(N,N) . 

(3) CBn(N,N) = span CPn(N,N) . 

proof 

From theorem 2.6 it follows that (I) <=> (2) <=> (3'), where (3') 

is the condition 

(3') CBn(N,N ) c= span CP(N,N) 

However, if a normal map T from N to N is a linear com- 

bination of completely positive maps T I ,...,T n from N to N 

n 
T = Z c.T. 

1 1 
i=I 

then also 

n . T (n) 
T = Z c 

i= I 1 1 

where T!n~1 '''" 'Tn(n) 

[23, def. 2.15]). 

are the normal parts of TI,...,T n (cf. 

Therefore (3) <=> (3'). 

Corollary 2.9 

Let R be the hyperfinite II1-factor with tracial state 

and let ~ be a free ultrafilter on R , 

T , 

R ~ : Z~(~,R)/I 

Z~(~,R) consisting of those bounded where I is the ideal in 

sequences (x n) in R for which 

!im T(X~Xn) = 0. 
n~e 

Then for every infinite dimensional C*-algebra A , there exists 

a completely bounded map T from A to R ~ , such that T has 

no completely bounded lifting ~ : A ~ Z~(~,R) . 

proof 

It is well known that R ~ is a II1-factor with tracial state 
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T given by 

T (X) = lin T(X n) , 
n~ 

where (Xn)n6 ~ is a representing sequence for x 6 R ~ (cf. 

[19, Chap. II, sects. 6,7] and [14, p. 451]. Moreover by an 

argument due to Wassermann R ~ is not injective: Let ~2 be 

the free group on two generators, then by [25, p. 244], there 

exists a sequence of representations (nn)n6~ of finite ~2 

into finite dimensional subfactors F of R such that 
n 

I g = e 
lim 

(nn (g)) = 0 g # e 
T 

n--~oo 

where T is the normalized trace. Hence as in [25, page 245] 

one sees that R ~ contains a subfactor isomorphic to 7~L(~ 2) , 

the von Neumann algebra associated with the regular representation 

of ~2 ' which implies that R ~ is not injective (cf. proof of 

[25, prop. 1.7]). 

Let now A be any infinite dimensional C*-algebra. By theorem 

2.6 there exists a completely bounded map T : A ~ R ~ , which 

is not decomposable. Assume that ~ : A ~ Z~(~,R) is a com- 

pletely bounded lifting of T. Since R is injective, 

i~(~,R) is also an injective yon Neumann algebra. Thus by 

prop. 1.6 , ~ is a linear combination of completely positive 

maps. But since, T = 0 ~ ~ , where p : £~(~,R) ~ R ~ is the 

quotient map, T is also a linear combination of completely 

positive maps, which gives a contradiction. Hence T has no 

completely bounded lifting. 
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§3. 

Examples and complements. 

Example 3.1 

Let F 2 be the free group on two generators a and b , 

and let l be the left regular representation of ~2 . Choose 

a free, infinite set {Xl,X2,...} in ~2 ' f.inst. 

x = bnab -n , n 6 
n 

co 

and define a linear map T n from £n to ~(~2 ) = I(IF2)" 

by 

Tn(C I .... ,c n) - 
I n 

E cil(x i) (n > 2) 
2 n~ i=I 

We will show that 

while 

llTn}l = llTnllcb = I 

_ n 

llTnlldec 2¢~-~ 

In [I], ~emann and Ostrand proved that 

n 

II ~ l(x i) II = 2¢n-C1 - , n >__ 2 . 
i=1 

They also proved ([I], Theorem III F) that, for Cl,...,c n 6 • , 

n n 
II E ci~(xi) II = [I ~ Icil~(xi) II 
i=I i=1 

In particular, 

n 

II Z cil(x i) II = 2/n~ 
i=1 

for n ~ 2 and ICll = Ic2[ ..... Ic n] = I 
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Hence llTn(U) II = I for every unitary operator u 6 £~ n ' 

and since the unit ball in any finite dimensional C*-algebra 

is the convex hull of the unitary operators, we conclude 

that II T II = I n 

Let m 6 IN , and put T (m) = T®i m , where i m is the identity 

on M m . Every unitary operator u 6 Zn®M m is of the form 

U = (U I ..... U n) 

where Ul,...,u n are unitary mxm-matrices. Clearly, 

T (m) (u) I n 
- ~ I (xi) ®u i 

n 2~n-I i=I 

We can identify the subgroup of ~2 generated by {Xl,X 2 .... } 

with the free group ~ on infinite (countable) many 

generators. The restriction I' of 1 to ~ is just a 

multiple of the left regular representation I~ of ~ 

Therefore, 

n 
l IT (m) (u)  II - 1 II Z too (x i )  ® u i  II 

n 2 / ~ - 1  i=1  

Let z be the unitary representation of ~ on the m- 

dimensional Hilbert space ~m for which 

Z(X i) = U i , i 6 IN 

Then, by [8, Addendum 13.11.3], l®~ is unitary equivalent 

to I®~ o , where T O is the trivial representation of ~ 

on ~m 

Hence, 

n 
I I - (m)  ( u )  II - 1 II E t ( x  i )  II 

Tn 2 / ~  i=1  co 

n 
__I II Z l(x i) II = I , 

2 nC~E-1 i=1  
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which proves that liT(m) II = I for all m . Hence lIT II 
n n cb 

Finally, by Lemma 2.5 (b), we have 

llTnllde c _ n 
2n/~-E1 

From Example 3.1 and the proof of Corollary 2.8, we get: 

= 1 

Proposition 3.2 

Let R be the hyperfinite factor, let ~ be a free ultrafilter 

on ~ , and let 

R ~ = £~(]N,R) /I 

as in Corollary 2.8. 

(I) For n 6 ~ , n ~ 3 , there exists a linear map, 

£~ + R e 
T : n 

such that, for any lifting of T to a linear map 

from £~ to £~ (IN,R) , 
n 

li~lic b > n IITll 
= 2/~/~ cb 

(2) For n 6 ~ , n ~ 3 , there exists a linear map, 

T : M + R e 
I n 

such that, for every linear lifting of T to a map 

from M n to £~ ( IN, R) , 

ll~llc b > n ilTll 
= 2W~-~ cb 
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Proof 

(I) 

with a subfactor of R ~ . Let n ~ 3 , and let 

£~ R ~ T : n + be the map obtained by composing 

from Example 3.1 with the inclusion map. Then 

and by Lemma 2.5 (b), we have still 

By the proof of Corollary 2.8 we can identify ~(~2 ) 

T 
n 

i]TIicb = I , 

n 
IITII 

dec 2 n/~-l- I 

Let p : £~(]N,R) ÷ R W be the quotient map. If 

isa linear lifting of T , then clearly 

li~llde c ~ lip0~llde c = n/2/~-J~ , 

and since £~(~,R) 

This proves (I). 

is injective, we have ll~llcb = llTllde c 

(2) Let n > 3 , and let (e i ) 
= j i,j--1 ..... n 

o0 

units in M n . Define a linear map R from £n 

co 

and a linear map S from M n to £n by 

n 

R(c I,...,c n) = ~ cieii 
i=I 

be the matrix 

to M 
n 

S(Z aij eij ) = (a11 ..... ann ) 

Then R,S are completely positive, 

R(1) = I , S(I) = I 

and 

(SOR) (x) = x , x £ Z ~ 
n 

R ~ Let T : Z 
n 

T' £ B(Mn,Rm) by 

be chosen as in (1) and define 

T' = T0S 
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Then 

T = T'0R 

From these two equalities we get 

lIT'llcb = l)TIIcb and 1~T'Jlde c = IJTllde c 

(cf. Proposition 1.3 (4) and (5)). If 3' is any linear 

lifting of T' , then, as in (I), we get 

= _ n 

I]~' l]cb : H~' Llde c >= JlT' lJde c HTJlde c 
2/n-1 

while liT' Jlcb = J[Tllcb = I This proves (2). 

It is worthwhile to compare Example 3.1 with an example due 

to Landford, which has been discussed in papers of Loebl 

[13, Lemma 2.1], Tsui [24, Lemma 3.2], and Huruya and Tomiyama 

[11, Lemma I]. We present the example in an updated version: 

Example 3.3 (Landford) 

Let B be the C*-algebra generated by a sequence (Un)n6]N 

of selfadjoint anticommuting operators: 

* 2 

u k = u k , u k = I , UkUz+U£U k = 0 , k~£ . 

From the theory of Clifford algebras it follows that Ul,U2,...,U2n 

generates a finite dimensional factor of type I . Therefore 
(2 n) 

B is isomorphic on the infinite tensorproduct of a sequence 

of 2×2-matrices. In particular, B has a unique tracial state 

T We will consider B in the representation induced by T 

Thus the weak closure of B is the hyperfinite II1-factor R . 

Consider now the linear map T from Z ~ n to R given by 

n 
Tn(C I ,... ,Cn) _ I Z CkUk 

2/~5 k=1 
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Based on computations made in [13] and [24], it was showed 

in [11, Lemma I] that lITl[ ~ 1 and i]Tilcb ~ ~ . In 

fact, it is not hard to show that 

]ITnll = I and ITnJlde c = lITnllcb = 

To prove the first equality, put 

ik~/n k=l .... ,n , Ck = e 

and let a k and b k be the real and imaginary parts of c k 

Since Icki = I and since 

n 2 
[ Ck = 0 

k=1 

we have 

n 2 n 2 n n 
a k = Z b k = ~ and 7. akb k = 0 

k=l k=1 k=1 

Let A and B be the self-adjoint operators defined by 

A / / ~  n akUk , / i n  = ii B = ii bkU k 
k=1 k=1 

A straightforward computation shows that 

A 2 = B 2 = I and AB+BA = 0 , 

from which it follows that 

(A+iB) (A+iB)*(A+iB) = 4 (A+iB) 

Therefore ½(A+iB) is a partial isometry, and since ½(A+iB) # 0, 

we get II½(A+iB) II = I . Using that 

we conclude that 

we have IIT n II dec 

ilT nitcb = ~ " 

Tn(C I ..... c n) = ½(A+iB) , 

llTnll >__ I Hence ilTnll = I . From Lemma 2.5 (b) 

= ~ , and since R is injective, also 
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In Example 3.1, lITnJlcb < JITnllde c for n > 3 and in 

Example 3.3, lITni[ < lITn]Icb for n ~ 3 . However, in both 

cases 

lIT2[l = lIT2Jlcb = ]]T2Jlde c 

This turns out to be true in general: 

Proposition 3.4 

For every yon Neumann algebra N and every linear map T 

oo 

from ~2 to N , 

I[TH = lITllcb = lITIlde c 

The proof of Proposition 3.4 is based on the following lemma: 

Lemma 3.5 

Let N be a yon Neumann algebra with a separating vector. Let 

• + N be given by x I, ..,x n 6 N and let T : n 

n 

T(c I,...,c n) = ~ cix i , c i 6 • . 
i=I 

Then 

n 
ilTIide c = sup{ II Z xiviJ] I vi6N', llvill <__ I} , 

i=I 

where N' is the commutant of N . 

Proof 

We prove first the inequality ~ . We may assume that i[T[Ide c = I . 

Using Remark 1.3, we can choose completely positive maps 

from i~ to N , such that lISill ~ I , i=1,2 S1,S 2 

and such that 
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I S1 (x) T(x*)* 1 
= , x 6 ~ 

R(x) IT(x) S2(x) n 

defines a completely positive map from Z n to N®M 2 . Let 

pl,...,pn be the minimal projections in £n ' and put 

Yi = $I (Pi) ' zi = S2(Pi ) ' i=l,...,n . 

Then Yi ~ 0 , 
n n 

Z i >__ 0 , Z Yi <-- 1 , Z z i <= I , and 
i=I i=I 

xi >= 0 , i=I, .... n 

z i 

Let Ul,...,u n be unitaries in N' , and put 

n 
a = Z x.u. 

i=I i 1 

Then 

[a n Io01 x*l i 0"I >__ z >0 
i=I u i z i 0 u i 

which implies that {{al{ ~ I . By the Russo-Dye Theorem 

[18, Thm. I], the unit ball of N' is the norm closed convex 

hull of the unitary operators in N' . Hence 

n 

sup {l{ Z xivi{{ { vi6N', {Ivil{ <I} < 1 = {{T{{de c 
i=I = = 

To prove next the inequality ~ in Lemma 3.5, we can assume 

that 

(*) 
n 

sup { {{ Z 
i=I 

x.v. lll z I vi6N', llvi{l <I}= = 1 

Let E be the subspace of (N'®£~)®M 2 of operators of the form 

[a;1 b;11 
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where a,b 6 N' and v,w 6 N'®£ ~ . Then E 
n 

adjoint set of operators and 1 6 E , i.e. 

system in the sense of Choi and Effros [4, p. 162]. Let 

be a separating unit vector for N and let ~ be the 

linear functional on E given by 

[a~1 w ] n , , 

= ((a + b + Z (XiVi+XiVi))~O,~O) 
b®1 i=I 

where 

is a self- 

E is an operator- 

~o 

v = (v I, .... v n) , w = (Wl,...,w n) , vi,w i 6 N' 

We will prove that ~ is a positive functional on E . Assume 

that 

[a:1 w 1 x = 6 E+ 
b@1 

' = a+el Then clearly w = v* and a,b 6 N+ . For e>0 , put a e 

and b E = b+el . Then 

I (ae®1) -½v* (be®1) -½] 

(bc81) -½v (ae®1) -½ I J 
is a positive operator, because it is equal to 

la:1 O [a 01 
be®l 1 (x+~1) be®lJ 

Hence II (be@1) -½v (ac®1) -½ II < I , or equivalently 

IIb~½via~½11 <= I , i:I ..... n . 

Therefore, by the assumption (*) 

n Ii _ 

I I Z  xibe~viae½11 ~ I 
i=I 
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Since x i 6 N and vi,ae,b e 6 N' , we get that 

n n 
- ~ ((xivi+xivi)~o,~o) = -2 Re(( ~ xivi)~o,~ O) 
i=I i=I 

= -2 Re(( ~ xib~{via~½)a~(o,b½e(O) 
i=I 

<= 2 Ila (o l l  l ib '~oll 

< (ae~o,(O) + (be~o,~ O) 

= ((a+b)(o,(O) + 2e 

Since e was arbitrary, we conclude that ~ is positive. 

Hence 

I 1 ~ 1 1  = ~ ( 1 )  = 2 . 

(The fact that II~II = ~(I) for positive functionals on 

operator systems can be proved as for C*-algebras, cf. proof 

of [12, Theorem 4.3.2].) Let ~ be a Hahn-Banach extension 
! oo 

of ~ to N ®£n®M2 Then 

]1~11 = ~(I) = 2 

co 

so ~ is a positive functional on N'®£n®M 2 . 

Let Pl "''Pn be the minimal projections in Zco '" n 

£°i(a) = ~[ a®pi0 00 I 

r0 0 1 
~i(b) = ~L 0 b®Pi 

Put 
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for a,b 6 N' and i=1,...,n By the definition of w 

n [a:1 
~0i(a) : ~ = (a~o,~ O) 

i=I 0 

and 

n r0 01 
~i(b) = ~ = (b~o,~ o) 

i=I [0 b®1J 

for a,b 6 N' . From [9, Part I, Chap. 4, Le~aa I] there exist 

positive operators yl,...,yn,Zl,...,Zn 6 N , such that 

~0i(a) : (aYi~o,~ o) , a 6 N' 

~i(b) = (bZi~o,~ o) , b 6 N' 

n n 

= I , because Note that Z Yi = ~ z l  
i=I i=1 

N' and for all a,b 6 N' : 

t o is cyclic for 

n n 

(Yia~o,b~o) = 
i=I i=I 

~i(b*a) = (a~o,b~ O) 

n n 
(zia~o,b~ o) = 

i=I i=I 
$i(b*a) = (a~o,b~ O) 

Let a,b 6 N' . By the Cauchy-Schwartz inequality for positive 

functionals, we have 

(xia~o,b~o) : (xib*a~o,~o) 

= ~ [b,~®pi O] 0J 

i[0o eli0 
b®P i a®P i 

'a*a®Pi 0] ½ 10 
< [ = 0 0J ~ 0 

= (Yia~o,a~o)½(zib~o,b~o ) } 

0 "~½ 

b*b®PiJ 
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Since t O 

co 

Define now $I'S2 : £n 

Then 

is cyclic for N' , we conclude that 

*1 Xi >__ 0 , i=1 ..... n . 

z i 

÷ N by 

n 
S 1 (c I,...,c n) = Z ciY i 

i=I 

n 

S 2(c I,.--,c n) = ~ ciz i 
i=1 

R(x) = ISI (x) T(x*)*I x £ £~ 

IT(x) S 2(x) ~ ' n 

co 

is clearly a positive map from £n to N®M 2 , and since £~ 
n 

is abelian, it is also completely positive. Since SI(I) = S2(I) = I 

we have 

n 
[tTlJde c < I = sup { Jl Z x.v. ll I v.6N', livill <I} 

= i=I 1 i 1 = 

This completes the proof of Lepta 3.5. 

Proof of Proposition 3.4 

Let T be a linear map from £2 

N . Since 

into avon Neumann algebra 

iiTii ~ iITJicb ~ liTHde c , 

it is sufficient to prove that iITJide c ~ HTti . Let pl,P2 be 

the two minimal projections in £2 and put x i = T(Pi), i=I,2. 

Since the extreme points of the unit ball of ~ are of the form 
n 

(Cl,C 2) , Ci,C2 6~ , JClJ = Jc2J = I , 
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HTH : sup { Hx1+cx2H I c6~, IcJ=l} 

Assume first that N is o-finite. Then• via the G.N.S.- 

representation, we can obtain that N acts on a Hilbert 

space H with a cyclic and separating vector to . By 

Lemma 3.5• 

JITllde c = sup { HXlV1+X2V211 I vi6N' , llvill ~I} 

By the Russo-Dye theorem, it is sufficient to consider unitary 

operators Vl,V 2 in N' In this case, 

W 

llXlV1+X2V2Jl = llx1+x2v2v111 

Therefore 

lITilde c = sup { llx1+x2uH I u£N', u unitary} 

If u has finite spectrum• then 

r 

U = Z lip i 
i=I 

where I i 6 sp(u) and Pi are orthogonal projections in 

with sum I . Since the subspaces Pi(H) , i=1,...,r are 

invariant under x I and x 2 , we get in this case 

llx1+x2ull = sup {llx1+Ix2H I 16sp(u)} 

Since every unitary in N' can be approximated in norm by 

unitaries with finite spectrum• 

lITllde c ~ sup {llx1+cx211 I c6~• ci=I} = lITil 

N' 
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If N is not u-finite, we can choose a net (pl) of u-finite 

projections in N , such that Pl ÷ I strongly. Using the 

first part of the proof on the map T 1 : g2 ÷ plMpl given by 

T l(x) = plxpl , x 6 £2 ' 

we find completely positive maps S I) , S 2) from £2 to 

_(i) [] < []TI] i=1,2 and such that plMpl ~ M , such that IIs I = , , 

IS~I) (x) Tl(x*)* 1 

= [T~ (X) (X) 1 
R~Cx) S~2) x c £2 

is a completely positive map from £2 to N®M 2 . Let 

R : £2 ÷ N®M2 be a clusterpoint for the net (R I) in 

the topology of pointwise o-weak convergence on B(£2,N®M 2) 

Then R is a completely positive map of the form 

I 6S(I) (x) T(x*)* 
R(X) = [ , x £ g2 ' 

T(x) S (2) (x) 

where S(1) ' S(2) : £2 ÷ N are completely positive and 

[IS(i) I[ ~ I[TII . Hence liT[[de c ~ IIT[I 

Corollary 3.6 

Let N be avon Neumann algebra, and let x6N . The following 

two conditions are equivalent 

(i) There exists a 6 Ns.a. , 0~a~1 , such that 

(: x.) 
1-a ~ 0 

(ii) w(x) ~ ½ , where w(x) is the numerical radius of x . 

Proof 

Recall that the numerical range W(x) of an operator x 6 B(H) is 

{(x~,~) ] ~6H, 1[¢]I =1} , 



218 

and the numerical radius w(x) of x is 

w(x) = sup{ill I 16W(x)} 

= sup{l (x~,~) I I ~6H, II~ll =I} 

(cf. [3, pp. I-2]). To prove (i) ~ (ii), let ~6H be a unit 

vector and let c6~ , IcI=1 . Put 6' = (~,c~) 6 HSH and 

put 

If b>=0 , then (bE',~') > 0 . Thus 

I + 2 Re(c(x~,~)) > 0 , 

so by choosing c , such that c(x~,~) = -I (x~,~) I , we get 

l(x~,~)l <__ ½ . 

Conversely, if w(x) <__ ½ , then for c6~ , Ici=1 , 

iicx+~x*ll = sup{l ((cx+cx*)~,~) I I ~6H, li~li =I} 

= 2 sup{iRe(c(x~,~)) i I ~6H, II~ll =I} 

<__ 2w (x) 

<=I 

IIX+C2X *ll <= I Hence also 

given by 

Clearly, 

oo 

Consider now the map T : £2 ÷ N 

T(c I,c 2) = ClX+C2X 

IITII = sup {llx+yx*li I y6~,Iyl=l} <= 1 
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Hence, by Prop. 3.4, JIT[[dec < I . Thus there exist 

yl,Y2,Zl,Z2 £ N+ , such that y1+Y2 <= ~ , z1+z 2 <= I , and 

I: x*i I ) 1 >= 0 , __> 0 . 

Y2 x *  Z 2 

Hence also 

[ x* 1 YI+Z2 ~ 0 

x y2+zl 

Put a = y1+z2 . Then 1-a ~ y2+zl . This proves (i). 

Remark 3.7 

In [4, Thm. 3.4], Choi and Effros proved that a yon Neumann 

algebra N is injective if and only if for n6~ , n~2 , 

any unit preserving, completely positive map T from an 

operator system E ~ M n of codimension I into N can be ex- 

tended to a completely positive map ~ from M n to N . 

It is somewhat surprising that for n=2 such an extension 

exists, even if N is not injective. This follows easily 

from Corollary 3.6: 

Let E be any three-dimensional operator system in M 2 , then, 

by a change of basis, we can obtain that 

Let T : E ÷ N 

and put 

[c21 c22J 
c11 = c22 } 

be completely positive and unit preserving, 

x T[01 :I 
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Since 

1+cx+~x* =T[c ~ 0 

whenever Ici = I , it follows that W(x) ~ ½ . Hence, by 

Cor. 3.6, there exists a 6 N+ , such that 

fax, I 
[x 1-aJ 

Therefore, 

~[ c11 c12i = c 11a + c22(1-a) + c21x + c 12 x* 

Lc21 c22) 

defines a complete positive extension ~ : M 2 + N of 

(use [4, Lemma 2.1]). 

T 

Problem 3.8 

Let N be avon Neumann algebra, such that 

lITiJcb 

for every linear map T from 

= lITHde c 

Z 3 to N . Is N injective? 
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