Injectivity and decomposition of completely bounded maps

Uffe Haagerup

Introduction

A linear map S from a C*-algebra A into a C*-algebra B is

completely positive if

S ® i, A® Mm -+ B ® Mm

is positive for all m. Here Mm is the algebra of complex mxm
matrices and im is the identity on Mm . Moreover a linear map

T from A to B is completely bounded if
sup IIT®imI| < o
me€ N
The supremum is called the completely bounded norm of T and is

denoted HTI%b.

In 1979 Wittstock proved the striking result that any completely,
bounded map from a C*-algebra A into an injective C*-algebra
B is a linear combination of completely positive maps from A
to B. More specificly he proved that if T : A - B is a com~
pletely bounded selfadjoint map (i.e. T(x*) = T(x)*, x€A), then

there exist completely positive maps T T from A to B ,

17 "2
such that

T=T -T, and |IT,+ T,Il ¢ Tl

(cf. [27, satz 4.5]). Later Paulsen found a simpler proof of
Wittstock's result based on Arveson's extension theorem (cf.
{15, Cor. 2.6] and [2, Thm. 1.2.9]). He also proved that for any

(not necessarily selfadjoint) completely bounded linear map T from
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a C*-algebra A into an injective C*-algebra B , there exist

completely positive maps S1, S from A to B , such that

2
IlSiII < IITIICb i=1,2 , and such that

S1(x) T(x*)*
I (N S, (x) )

is a completely positive map from A to B ® M2‘ (This follows
from [16, thm. 2.51).

In the following we let CP(A,B) (resp. CB(A,B)) denote the set
of completely positive (resp. completely bounded) maps from a
C*-algebra A to a C*-algebra B. The main result of this paper

is the following converse to Wittstock's theorem:

Let N be a non-injective von Neumann algebra, then for every

infinjte dimensional C*-algebra A , there exists a completely

bounded map T : A » N , which is not a linear combination of

completely positive maps. In particular a von Neumann algebra
N is injective if and only if CB(N,N) = span CP(N,N). (cf.

Theorem 2.6 and corollary 2.8).

It is essential that N is a von Neumann algebra, because
Huruya has recently given an example of a non-injective C*-alge-
bra B , such that CB(A,B) = span CP{(A,B) for all C*-algebras
A (cf. [10]). Smith proved in [20, example 2.1] that for the

abelian C*-algebra A = C([0,1]), one has

span CP(A,A) ¥ CB(A,A).

The first example of a von Neumann algebra N for which

span CP(A,N) § CB(A,N)

for some C*-algebra A was given by Huruya and Tomiyama (cf.

[11, example 12]).
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We apply our result to show that for every infinite dimensional
C*-algebra A , there exists a completely bounded map T of A
into some quotient C*-algebra B/J , which has no completely

bounded lifting ¥ from A to B

i B
,’/,,a '
A > B/J
T

(cf. corollary 2.9). Hence the Choi-Effros lifting theorem for
completely positive maps [4] fails for completely bounded maps,
even if A is abelian. If dim(A) < =« , T has of course always
a linear lifting. However, we show that for a particular choice
of B and J , we can find completely bounded maps Tn from
M, =MI(C) ,n23 to B/J, such that

N n

HT ., > ]
nch = 2VA=T n'cb

for any linear lifting Tn of T . ({(cf. prop. 3.2). This gives

n
the negative answer to a problem posed by Paulsen [17].

To prove the above mentioned results, it is convenient to in-
troduce a norm Il 'bec on span CP(A,B) for arbitrary C*-alge-
bras A and B. For TE€ span CP(A,B), we let IITIIdec denote

the infimum of those X > 0 , for which there exist S1,SZEZCP(A,B),

such that

S1(x) T(x*) *
( T(x) 8,(x) )

is a completely positive map from A to B @ M If T is self-

e
adjoint, HTIIdec is simply

HTlly, = inf {IIT1 + Tl | = T,-T, , T, T €CP(A,B)}

2 2
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(cf. def. 1.1. and prop. 1.3). We show that the inequality

NTiL, < NTlg,

always holds, so by Wittstock's and Paulsen's results

HTH, = Tl

whenever B is injective. Our main result (theorem 2.6) is a
relative easy consequence of the following characterization of

injective von Neumann algebras, which we prove in theorem 2.1:

A von Neumann algebra N is injective if and only if there

exists c€ R_, such that for all linear maps T from R: to N

Tl € clITI, -

Here 2: denotes n-dimensional abelian C*-algebra £ {1,...,n}.
The starting point in the proof of theorem 2.1 is that the hyper-
finite II1—factor R can be characterized among all factors on

a separable Hilbert space by the property that

n
I = 1H_®u§H c =D
i=1 H®H

for any finite set WqresarUy of unitaries in R. This was proved

by Connes as an offshoot of his work on injective factors (cf. [6,

Remark 5.29])., Thus if N is a non-injective finite factor (on a
separable Hilbert space) one can choose unitaries u1,...,unEiN
such that

1 n c

EJIZZ ui®1JiH c < 1 .

i=1 H®H
n c r

By considering the r'th power of z LH.Qui, we can obtain m=n
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unitaries v1,...,vm€5N, such that

1 m c
o H_Z viQViH

i=1 HeHC

is smaller than any given constant y . Now if one define

o

T : %+ N by

. Vs
1cll

nMa

T(Cqreanscy) =
i
it turns out that [IITI; . > Y'%IITI%b , which proves theorem 2.1
in the case of II1-factors on a separable Hilbert space. The
general case is obtained by extending Connes' result to finite
von Neumann algebras with a non-trivial center (lemma 2.2) and
by using Takesaki's decomposition of a type III von Neumann alge-
bra as a crossed product of a semifinite algebra with a one-para-

meter group of automorphisms.

In section 3 we give concrete examples of linear maps Tn from

)
n

£ to the von Neumann algebra Tﬂjfé) associated with the regular
representation of the free group on two generators, such that

UT Hgee > HT ll,, for n 2 3, and

e |

n hec/”Tnl%b o for n=- e

(cf. example 3.1). On the other hand, we prove in prop. 3.4 that

for any linear map T from Z; to a von Neumann algebra N ,

IITl|=llTl£b = Tl -
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§1.

Decomposable linear maps between C*-glgebras.

Let A,B be C*-algebras. We will call a bounded linear map from
A to B decomposable if it is a linear combination of complete-
ly positive maps from A to B, Note first that a bounded linear
map T from A to B is decomposable if and only if there exist
S1, 82€ZCP(A,B) , such that

S1(x) T(x*)*
(*) R(x) ( )

T(x) §,(x)

defines a completely positive map from A to B ® M, . Assume
n

namely that T = ¥ ¢,T, , c,€0 and T, €CP(A,B). Then
joq 174 i i

n
clearly S1 = 52 = X IcilTi can be used. Conversely if
i=1

T€ B(A,B) and there exist §,.5, € CP(A,B) such that (*)
defines a completely positive map R from A to B®M, , one
checks easily that

T = (Ty-T,) + i(Ty-T,)

where
= ] * = 1 Y .
T1 —&-(S1 +SZ+T+T ) T2 .4_(51 +82 T - T%*) ,
=1 - sk = 1 im - {T*
T3 —4(51 +82 iT + iT*) , T4 Z.(S1 +Sz+1'I‘ iT*)

are four completely positive maps from A to B. (T* is the

linear map given by T*(x) = T(x*)*, =x€A),

For two linear maps Rys R, from A to B we write

if R2 - R1 is completely positive.
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Definition 1.1

Let A and B be C*-algebras and let T : A > B be a bounded
linear map. If T is decomposable we let IITIIdec denote the
infimum of those A > 0 for which there exist S1,52€iCP(A,B) R

such that ]ISiII < x, i=1,2, and

S1(x) T(x*)* )

R(x) = ( T(x) S, (x)

is a completely positive map from A to B® M2. If T is not

decomposable, we put

= 400

”T“dec

Remark 1.2

We could equivalently have defined as the infimum of

T30

those A > 0 for which there exist S1,S € CP(A,B), such that

2
lisglg¢x, i=1,2, and

< [ *11 %12 Sq(xqq) THxg))
Rl %, x T\ Tlxy)  S,(x,,)
21 *22 21 2*22

is a completely bounded map from A®M to B@M Indeed if

2 2 °

R is completely positive, so is R , because

R =ReP

where P 1is the completely positive map from A to A®M

X X
P(x) = ( X X ) )

To prove the converse, let (e

2
by

S be the matrix units of
ij'i=1,2

M2 , and let Q : M,oM, - M2 be the linear map defined by

1]

e.. for i=k and j=2
{ 0 otherwise.

Qle; s @ey )

given
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One checks easily that Q is completely positive (Q can be

written as Q = Q2c Q1 where Q1 (x) = exe , e = e11 ®e11 +e22®e22 ’

and Q2 is a x—isomorphism of e(Mngh)e onto Mz). Since
R=(i;000(RO1,)
it follows that R is completely positive whenever R 1is.

Proposition 1.3

Let A and B be C*-algebras.

(1) If Te€B(A,B) is a selfadjoint decomposable linear map, then
lITIldec = inf {lISll[s€cP(A,B) , - S ¢ T ¢ S}
cp c¢p
= inf {llT1 +T2l||T1,T2€CP(A,B), T=T,-T,} -

(2) Let TEB(A,B) and let TeB(A,BOM,) be the selfadjoint

linear map given by

T - (0 T

T(x) O
then
HTHdec = “T|bec .
(3) Any decomposable map T from A to B 1is completely
bounded and
HTIICb < HTI%QC .
(4) If T is a completely positive map from A to B , then
”Tlhec = HTI%b= nTi .

(5) If C 1is a third C*-algebra, and T, € B(A,B), T, €B(B,C)

2
are two decomposable linear maps, then T2° T1 is a de-

composable map from A to C , and
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Hr. e T, Il

dec £ Ty

TEN]

2 1 lldec dec

Eroof

(1) If x,y are selfadjoint elements in a C*-algebra D , then

— = y X .
vexsy = (L %)z2o0

Moreover, if x,y,z are selfadjoint elements in D , then

Y. % N
(X y2>20 => -;(y1+y2) éxgi(Y1+y2) .

Applying this to elements in B@b%1, it follows that if

T,S€B(A,B) are selfadjoint maps, then

s T

T s ) € CP(A,IB@MZ)

and if T, S1, SZE B(A,B) are selfadjoint maps, then

s, T
1 =
(T Sz)ECP(A,BQMz) => -3(8,+8,) ¢ T < ¥(s,+5,).

This proves the first equality in (1). To prove the second

equality in (1), assume that TE€B(A,B), SE€CP{A,B) and

-S T S

<
c cp

] IA

Then T1--T2 where T1 = i(s+T) , T2 = $(S-T) are completely
positive and T1-+T2 = S, Conversely if T = T1--T2 , where

T1 , T, € CP{(A,B), then

2
=(Ty+T)) ¢ T g (T +7T,)
cp cCp
This proves the second equality.
(2) We prove first that HT]hec < HTlhec. Clearly we can assume
that ]lTlhec < eo ., Let & > 0. There exist S1, 82€ZCP(A,B)

such that
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T(x*) *

S1(x)
Rix) = (Tm) S, (x) ) , X€EA
is completely positive, and ”Si” < “T“dec+ e, 1i=1,2.
We put
S.I(x) 0
B(x) = (0 s (x) )  xea -

~

Then clearly SECP(A,B@MZ) ,» NISH < llTIIdec+ ¢ and

- ¢<T<F.
cp cp
Since ¢ 1is arbitrary we have IITIIdec < “T“dec . We prove next
that MNTIg < ITly . . We can assume that ”ﬁ‘“dec < @ ., Let
€ > 0. By (1) there exists gECP(A,B@MZ), such that
S ¢<TF¢s.
cCp cp
and IS < Tl
We have " $14 (x) S12(X)
(x) = ( ) , XERA
Sp1(x) Sy, (x)
*
where S11, SZZECP(A'B)’ 821, S12€B(A,B) and S12 = 521 B
Let u(—'.B&?IM2 be the unitary
= 1 0 .
u 0 -1
Then
S,,(x) -s.,(x)
11 12
u S(x)u* = (_ ) X €A
Syp(x) 8y, (x) )
and
uT(x)ur = -T(x) XE€EA .
Therefore
-ad{u)e § ¢ -T < ad(u)o§ .
cp cp
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In particular

ad(u) o8 +Txo0 .

cp
Put
811(x) T{x*)*
R(x) ( > XEA .
T (x) S2z(x)
Then R 1is completely positive, because
R(x) = 3(S+T) + }(ad(u)eS+7F) .
Moreover
max {1181111, 1152211} = lS]l < llT!hec + &,

This proves that [Tl . £ Il$lbec

{3) It is clear that any linear combinaticn of completely
positive maps is completely bounded. Let Té€ B(A,B) be a decom-
posable map, and assume first that T = T*., Let ¢ > 0 . By (1)
T

there exist T € CP(A,B) , such that T =T, -1 and

1772 1 2

Ty + Tyl < Nl + & .

(m}

For RE€B(A,B), be put R = R@im , where im is the identity
on the mxm-matrices Mm . For x¢€ U\@Mm)s.a. we have

™y =2 My -, ™ ()

¢, ™ xn o+ 2, ™ (k)
= (m)
= (T1 +T,) (I=1)
and similarly
™) ¢ ey ™axn
Since T1+T2 is completely positive,
Ty + Tylly = HT, + THll .

Thus
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™ ol ¢ iy e T il

If x€A®Mm is not selfadjoint, then

0 x*
Yy = < x 0 ) € (A®M2m)s.a.

(rmy* o plm

Since we have
(2m) 0 ™ 0
T (y) = ( T(m) (x) O > € (B®M2m)s.a.
Hence
™ Gt = e ™oy g o, s Tyl = T s Tl

This shows that IITIIC}O < “T“dec + & .

(4) It is well known that IITIICb= IITHl for any completely

positive map. The equality = IITch follows from (1)

“T”dec
and (3).

(5) It is clear that T,o T, € span CP(A,C). Choose

2 1

31(1), S1(2) € CP(A,B) and sé”, 52(2) € CP(B,C)

such that

. ) si‘” (x) T;(x)
X)) = (2)
Ti(x) Si (x)

defines completely positive maps R1 €CP (A,B@Mz) and

R €CP(B,C®M2) , such that

2

(1)

(2)
max {lis; U1, Hs; 7MY NTyllg o+ e -

By remark 1.2 the map R, €B(BOM, , C®M,) given by

2 2
s(” (x,.) T *(x )
% ( 11 *12 ) _ 2 11 2 ‘*12 )
2 - (2)
X21 %22 T, (%5q) S, “xy,)

is completely positive. Hence §2 o R, €CP(a,C ®M,).
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For xX€A , N 82(1)os1(1)(x) T;oT:(x)
Ry Ry (x) ( T,oT, (x) $,08, (x) ) ‘
Therefore
NTyo Ty ¢ max (s s, usi?es{y
< T llg o+ &) (T lg o + )

This proves (5).

Proposition 1.4

et A and B be C*-algebras.
(1) The decomposable maps from A to B form a Banach space

with norm |} Ihec

(2) If every completely bounded map from A to B is decomposable,

then there exists a constant ¢ < » , such that

HTHy o € clTHy

for all T€CB(A,B).

proof
(1) Put V(A,B) = span CP(A,B). It is clear that |l 3ec
is a norm on V(A,B). Since HT*IIdec = IITIIdec for all Te€ev(aA,B)

it is sufficient to prove that the selfadjoint part of (V(a,B),

nou

dec) is complete. This follows in fact from [20, Remark p.

159], but since no proof is given there, we will include a proof:

Let (Tn)nEIJ be a sequence of selfadjoint linear maps from A

to B , such that

[~
= T _dl < 4o,
n=1 n dec

Ssince B(A,B) is a Banach space, there exists an operator

T€B(A,B) such that

P
lim Iz T_- Tl = 0 .
n
pe n=1
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By prop. 1.3(2), there exists SnEZCP(A,B), such that

and ”Sn“

A

2“Tnlhec' In particular

£ s Il <= .
n=1

Therefore we can define Rp€iB(A,B), by

R = pA s, p=1,2,3,...
p n=p+1 n

Each Rp is completely positive. Since the cone CP(A,B) is

closed in B(A,B) one gets

-R, < T

< R
cp  cp

1 -

Thus TEV(A,B). Moreover for all peN,

-R

. P
o T, ¢ R, .

<
cp n
This implies that

iT- ¥ o I b
- T s HR_ I €2 X [Tl .
n=1 D dec = p = n=p+1 dec

Therefore

p
limlJlT- = T

n=1 nlhec

This proves that the selfadjoint part of V(A,B) is complete

in the || Hdec-norm {cf. £.inst. [12, lemma 1.5.2]).

(2) Follows from (1) by applying the open mapping theorem to
the identity map from

(via,By , I 1l

dec) to (CB(A,B) , |l

Nyl -

Remark 1.5

We do not know whether the infimum in the definition of IITIIdec
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is actually a minimum i.e. whether S1, s in definition 1.1

2
can be chosen such that

max ﬂlS1II,II8211} = NTlyee -

However, this is true in two important cases, namely if B is

a von Neumann algebra or if B is an injective C*-algebra. More
generally it is true whenever there exists a conditional expectation
¢ from B** to B : Assume namely that Te€B(A,B) 1is decom-
posable. By a simple compactness argument one can find

S

, S, € CP(A,B**) , such that

1 2

S, (x) T(x*)*
R(x) ( )

T(x) Sz(x)

is a completely positive map from A to B**QBMZ and

max ﬂ|S1H ,IISzll} < IITIIdeC .

Then
EoS1(X) T(x*)* )

R' (x) = ( Tt ees, ()

defines a completely positive map from A to B@M2 , and

maX‘{H8°S1H ,Ileoszu} < “T[hec .

The converse inequality is trivial.

Clearly, under the same condition on B , one gets also that

the two in..ma in Prop. 1.2(1) are actually minima.

Having remark 1.2 and remark 1.5 in mind Wittstock's and Paulsen's
theorems [27, Satz 4.5] and [16, theorem 2.5] can be reformulated
in the following way:

Theorem 1.6 (Wittstock, Paulsen).

Let T be a completely bounded linear map from a C*-algebra

A into an injective C*-algebra B , then T is decomposable
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and

”T]hec = HTI%b .

§2.

The main results.

For n€ N, we let 2: denote the n-dimensional abelian

C*-algebra 2%{1,...,n}.

Theorem 2.1
Let N be a von Neumann algebra. Then the following four con-
ditions are equivalent

(1) N is injective ,

(2) For every C*-algebra A and every completely

bounded map T from A to N , lITIIdec = ”TIEb‘

(3) For every n€ N, and for every linear map T

o0
from Qn to N, ”leec = HTIICb .

(4) There exists a constant c€:R+, such that for
every n€ N and for every linear map T £from
o0
Ly, to N, Tl o ¢ clITH, -
Note that (1) => (2) is Wittstock's and Paulsen's result, and

that (2) => (3) => (4) 1is trivial, so we have to prove (4) => (1).

For any complex linear space E we let ES denote the conjugate
space i.e. the set E equipped with the same addition as before,

but where the scalar multiplication is given by

(c,x) »¢cx , c€C , x€E.

For x€E , we let x® denote the corresponding element in EC.
If A 1is an algebra, we consider A¢ as an algebra with un-

changed multiplication i.e.
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(ab)€ = a%p® , a,ben .

In [6, Remark 5.29] Connes proved that for a factor N op type II

acting on a separable Hilbert space H , the following two con-

ditions are equivalent

(i) N is injective .
(ii) For any finite set Ugreosrly of unitaries in N
n c
Iz 1H_® uiII c =0 .
i=1 H®H

The key step in the proof of (4) => (1) is the following extension

of Connes' result:

Lemma 2.2
Let N be a von Neumann algebra acting on a Hilbert space H.

The following two conditions are equivalent:

(i) N is finite and injective .
(ii) For any finite set u,,...,u of unitaries in
1 n
N and for any non-zero central projection p

in N,

n
HE pu, ® (pu,)H =n .
oof i=1 * * men®

(1) => (ii) : Assume that N is finite and injective. Since
any non-zero central projection in N dominates a o-finite
non-zero central projection it is sufficient to prove (2) when
p is o-finite. By passing to the reduced algebra pN , it is
sufficient to consider the case, where N itself is o-finite
and p = 1. Let 1 be a normal faithful tracial state on N.
For a€N we let La (resp. Ra) denote the multiplication with
a from left (resp. from right) on L2(N,T). Since any injective

von Neumann algebra is semidiscrete (cf. [26] and [7]),

1
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m m c
s L, Ry,lig N> a; el

i=1 % °i i=1 H e H®
for every m€ N and every Aqreeeray ,b1,...,bm€N. In
particular, for any finite set of unitaries Ugreeerty in N
n c n
HE u, ®ull >z . R
i=1 YHeH® T i=1 Y Y
n
o * =
> H'E uy 1 uiH2 n .
i=1

This proves that (ii) => (i). For the proof of (ii) => (i)
we shall need the notion of hypertraces introduced by Connes
[6, Remark 5.34]. A state w on B(H) is called a hypertrace

for N if for all x€B(H) and all a€N ,
w(ax) = wixa).

Consider now the following two conditions on a von Neumann algebra
N:
(iii) For every non-zero central projection p in N ,
there exists a hypertrace w for N , such that
w{l-p) = 0.
{(iv) For every state W, on Z(N) (the center of N),
there exists a hypertrace w for N , such that

w(z) = wo(z) for all =z € Z(N).

We will prove that (ii) => (iii) => (iv) => (i). Assume that

N satisfies (ii). Let HS(H) denote the space of Hilbert-
Schmidt operators on H and let || ”HS be the Hilbert-Schmidt
norm. Since HS(H}) can be identified in a natural way with
H@Hc, one gets that for L b1,...,bn€B(H),

n
c - *
%§1ai®bﬂ%®Hc mm{HZ%}%ﬂHslx€Hsm),IMHHS§1}.
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Let p be a non-zero central projection in N. Let CJ be

the family of sets

F = (u.]'uz,---,un's)

where ne€ W, u1,...,un are distinct unitaries in N , and ¢ > 0.

Let F = (u1,...,un,s)€ G?. By (ii)

n
lp 8p° + = (pu;) @ (pui)cll =n+ 1.

i=1
Therefore we can choose XF€HS(H), such that “xF”HS <1, and
n *
IIppr + i§1 puipruill > (n+1) - ¢ .
By exchanging X, with px.p , we have still “XF”IIS < 1.
Moreover
PXp = XpP = Xp
and
n
* -
HxF+ _Z_ uixFui“HS > (n+1) = ¢ ,
i=1
Since for k=1,...,n we have
HE u,x_u*l <n-1
jsk T F7i ' HS =
it follows that
* - =
lIXF+ ukxFuk”HS> 2-¢ , k=1,...,n .

So, by the parallelogramidentity

2 2 2 2
-— * * - -
”XF ukXFuk”HS < 2HxFIlHS+ 2HukxFuk|lHS (2-¢)
< 4 - (2-¢) 2
< 4g
Since “XF“HS = Iluk Xp u]*éllHS we have also
HxFIlHS > 1 = de
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Define a positive functional wp on N by

[h) a = ax X = T ax X*
F( ) ( F! F)HS r( F F)‘
For a€¢€N , and x,y € HS(H)},

l(ax,x)HS - (ay,y)HSI = il (a(x+y), (x—y))HS + (a{x-y), (x+y))HSI

nA

ltall Hx=-ylo Ix+ylho .

Hence for a€N and i=1,...,n.

- * - * *
mF(a u;au i) < Nall IIxF uixFuilhslle * uiXFuith
1
< de?llall.
- _ 2 _
Also wF(1—p) = 0 , and wF(1) = IIxFIlHS > 1-¢.

The set & is directed with the ordering ¢ given by

(u1'...,u e) < (v1,...,vm,6)

n
if {v1,...,vm} contains the set {u1,...,un} and 6 < ¢ . Let
w€B(H)* be a o(B(H)*, B(H)) cluster point for the net

(wF)FESZ' Clearly w is a state on B(H) ,
w{uxu*) = wl{x) , x€B(H}) , u€U(N)

i,e. ®w 1is a hypertrace for N. Moreover w(l-p) = 0.

Hence we have proved that (ii) => (iii).

(iii) => (iv): Let 0y be a state on Z(N), and let

P = {p1,...,pr}
be a "partition of the unity" in Z(N), i.e. r€ N and
Pqs...sP, are non-zero pairwise orthogonal projections in Z(N)
with sum 1. If N satisfies (iii) we can choose hypertraces

Wyreeor €B(H)* for N , such that mk(1-pk) = 0. Put now
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m =
Py

nMH

. mo(pk)wk .

Then wp is a hypertrace on N , and
wp(pk) = wo(py) .

The set q’ of partition of the unity in 2Z(N) is directed by
the ordering ¢ , where P < 0 means that each projection in
P can be written as a sum of projections in Q . Let now

w be a o(B(H)* , B(H))~cluster point for the net (mP)ngj.
Then w® is a hypertrace for N , and w coincides with

w, ©On every central projection., Hence

w(x) = wo(x) , XEZ(N).

(iv) => (i) : Assume that N satisfies (iv). We prove first
that N 1is finite: Let e € Z(N) be the largest finite pro-

jection in Z(N). If 1-e+0 , we can choose a state w on

(o}
Z(N) , such that mo(1-e) = 1. By (iv) there exists a hyper-
trace w€B(H)* for N such that w(1-e) = 1. The restriction

of w to (1-e)N is a tracial state. This gives a contradiction,
because (1-e)N is properly infinite. Hence e =1 and N is
finite. Since any finite von Neumann algebra is a direct sum of
o-finite, finite algebras, we can in the rest of the proof of

(3) => (1) assume that N itself is o-finite and finite. Let

Wy be a normal faithful state on Z(N) and let w€B(H)* be

a hypertrace for N that extends Wy - The restriction 1 of

W to N is a trace on N. Let T be the central-valued trace

on N , then

T =7TO0T = o0T ,
o)

This shows that 1T is a normal, faithful tracial state on N,
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For X €B(H), we let mx be the functional on N given by
wx(a) = w(ax) = wixa) , a€EN
In particular w1(a) = 1{a).

If ¢ <x <1, then for all aEZN+ '

3

3
xa?)

wx‘a) = w(ax) = w(a >0
and

o (a) = t(a) -~ wl@a’(1=-x)a’) ¢ t(a).
Therefore 0 ¢ @y € T . Hence there is a unique bxeN+ '

0 ¢b, <1, such that

wx(a) = T(bxa) .

Since N is spanned by the positive elements in N of norm < 1

the map x - bX can be extended to a linear map E : B(H) -» N

such that
T(E{x)a) =<0X(a) = w(xa) , X€EB(H) , a€N.
Clearly, E is positive, E(1) = 1. Moreover for a1,a2€IJ
T(E(a1xa2)b) = w(a1xa2b) = m(xazba1)
= T(E(x)azba1) = T(a1E(x)a2b)
for every b€N. This shows that E(a1xa2) = a1E(x)a2 i.e.

is a conditional expectation of B(H) onto N. Hence N is

injective. This completes the proof of lemma 2.2.

Lemma 2.3
Let N be a von Neumann algebra on a Hilbert space H. The

following two conditions are equivalent

(i) N is finite and injective .
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(ii') There exists a constant Yy > 0 , such that
for every finite set Uqreeesy of unitaries
in N and any non-zero central projection p
in N,

n
i1z

C
Z, pu; ® (pu,) |l 2Yn.

H o u®

proof

(i) => (ii') follows from lemma 2.2. To prove (ii') => (i)
assume that N satisfies (ii') with vy = Yo > 0 , but that N
does not satisfy (i). By lemma 2.2 we can choose a central

projection p and unitaries Ugreeerly in N , such that

n
Il £ pu.®(pu.)CH < n .
i=1 1t 1 pen©
Put
1 n c
a == T pu,® (pu,) Il .
Bog=r s * memr®
Since a < 1 , we can choose r € N, such that af < Y . Put

o
A={1,...,n}Y. Note that A is a finite set with n¥ elements.

For A = (i1,...,ir) € A, put

Then

c p c\*
r pv, ® (pvy) = ( pu. ® (pu,) >
XTI * izt :

and therefore
s pv, ® (pv )Cllg (on)T < vy n¥ .
AEA A A = o)

This contradicts that N satisfies (ii') with vy = Yo * Hence

(ii') => (i).
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Lemma 2.4

Let H and K be Hilbert spaces and let a,,...,a_€B(H) ,
1 n

b1,...,bn€'B(K). Then
n n n
’y
s a, @bl <z a @aln’ ‘nz b eplnt .
i=1 H®K i=1 HOH i=1 K@K
proof

Assume first that H = K. By the usual identification of

H®H®° with the Hilbert-Schmidt operators HS(H) on H , we have

n
sup {1l X a,;xb¥ll o | lxllge ¢ 13

n c
HE a,®b;l
. i i
i=1

i=1 H o B¢

n
sup {Tr( = a;xbiy*)| lixllyg ¢ 1, llyllgg g 13,
i=1

Let x,y € HS(H) , ||x||HS <1, llleHS_<__1 , and let x = ulx!,

vy = wivl be the polardecompositionsof x and y . Put

3 3
Xy = ulxl< , X, = Ix1
1
yq = vaI% ’ Y, = lyl?® .
Then
X = X1X2 ' Yy = Y-IY2
Xl = xgxy o Iyl = vay,
Ix*| = x1x? , ly*l = y1y¥ .
Therefore
n n
* * = *
E Tr (y a, xb¥ § Tr(y¥zﬁ{x1x2biy2)
k=1 k=1
< ; Tr(y*a, x,{y¥*¥a, x )*)% Tr( (x,b*y*)*(x,b* *)ﬁ
2 ko YTy ¥q1¥7 3 X4 2°kY2 2°%Y2

n i, n 3
*
(k§1 Tr(y1akx1xfaiy1)> <k§1 Tr(yzbkxgxzbﬁy§>

A
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n 1, n 3
(2, 2 Qy*iagixriap) ) (&, Te 0y dxing)

n n
< Iy a 8afllllz b,_ebS|.
k=1 K KT k=g kK
Here we have used that
= * = = =
%Il g = %% 1l = Il g €1 and 11y lllgg = Hy*llge = llyll g €1 .

This completes the proof in the case H = K., The general case

can be reduced to this case if one puts

H=HeoK

and considers the operators 31""’gn’ 51,...,gn€ZB(ﬁ) given by
a (E,n) = (a,£,0)
B (g,m) = (0,b,n)

for £€H and n€K .

Lemma 2.5

Let Ugreenrly be n unitaries in a finite von Neumann algebra

N , let p be a non-zero central projection in N , and let T

be the linear map from 2; to N given by

2 \
T(c1,...,cn) = p<'§ ciui}.
i=1
Then
a) N, <niiz pu, @ (punCnt
ch = i=1 i i
b) IITHdec =n .
proof
a) Let m€ N, and put T(m) =T @ im , where im is the identity
on Mm. An element x in the unitball of 2: ® Mm is given by

a set (XT""’Xn) of n elements in the unitball of Mm . We have
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(m)
T (x) = pu, ® x, .
1 k k

M3

k

We have Mm = B(K) , where dim X = n. Hence by lemma 2.4:

(m) n c o ¢
T (x)!Il € 1L pu, ® (pu,) i T ox, x| .
= y=1 K " Tnen® k=1 ¥ K x®ex
n 1
< NE pu ® (pu)SNY  .nt.
= i=1 K k" nen®
This proves a).
b) Since I|T||dec= IITHdec » where T : A > BOM, is defined by,

o p O n 0 ui
(c1,...,cn) = ( 0 p) . k}=21 Ck< u 0 )E N®M2 ’

(cf. prop. 1.3(2)) it is sufficient to consider the case where

Ujre..,u, are selfadjoint unitaries. Put

n
S(c.l,...,cn) = (k}: ck>p.

Then S is a positive map freom Q: to N and
S <T<S .

However, by [21, thm. 4] a positive map from 2; to N is
automaticly completely positive.
Therefore

HTlyoe € IS = nllpll =n.

Let now T be a normal tracial state on N for which 1(1-p) = 0,
and let e < p be the support projection of 1. It is well known
that

|leH = t({lxl), x€eM

is a norm on eN , and since
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lelH = IIexIH

for all xX€EN , H-IH is a seminorm on N. Assume that

R : 2: -+ N is a completely positive map, such that

-R T R .

p
c cp

o] A

Put X, = R(pk) ;, Where Pyse..,p, are the minimal projections

Lo

in &_ . Then
n

“ Xy < Py, < Xy k=1,00eyn- .
Therefore
(X)) = II%(xk-i-puk)ll1 + ll%(xk--puk)ll1
2 3z +pu) - d(x -py)ll, = lipall, = t(p) = 1.
Hence
n n
HR(DY =1l x I} > £ 1(x,)2>n .
k=1 ¥ T x=1 K F

This shows that IITIIdec >n .

proof of theorem 2.1

It remains to be proved that (4) => (1). Assume first that N
is finite. Let Ugreenrty be n unitaries in N , let p be
a non-zero central projection in N , and let T : 2: > N be

the linear map

n
T(c1,...,cn) = p(-z ciuf .
i=1
By lemma 2.5
b0 c 3
llT||cb <n l2§1 pui.® (pui) Il
and
I‘Tl%ec = n.

Thus, if ”T“dec§ cHTI%b, we get that
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n
Iz

o 2
., pui.® (pui) I 2 n/c” .

Hence, if N satisfies condition {4}, it follows from lemma 2.3

that N is injective. This proves (4) => (1) for N finite.

To prove (4) => (1) for a general von Neumamn algebra, we show
first that if a von Neumann algebra M satisfies condition (4)

in theorem 2.1, then

(a) Any reduced algebra N = pMp of M satisfies condition

(4) in theorem 2.1 .

(b) Any sub von Neumann algebra of N which is the range
of a conditional expectation € : M - N satisfies

condition (4) in theorem 2.1.

Let namely T : 2: -+ N be a linear map. Since in both cases (a)
and (b) , N cM,where M satisfies (4) with c¢ = Cy v there
exist completely positive maps S1, S, from 2: to M , such

that IISill < collTIICb , 1 =1,2 and

Sq (x) T(x*)*
R(x) (

T(x) S, (x) ) P xEL,
is a completely positive map from Q: to M@M2 (cf. def. 1.1
and remark 1.4). By putting Si = pS;(-)p in case a) and

Si = ¢°S .in case b) one gets completely positive maps S%,Sé

from 2: to N , such that

5500 T(x*)* .
R(X) =<T(X) Sé(x) ), X€2n

defines a completely positive map from lz to N@&M Hence

2 *

llTIIdec < max {llSiIl,llSéll} g o HTly, -
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This proves (a) and (b) above.

Let now N be a semifinite von Neumann algebra that satisfies
condition (4) in theorem 2.1. By [23, Chap. 5, prop. 1.40], N

can be written in the form

N =6 (N, ®B(H,))
jer t 1

where (Hi) is a family of Hilbert spaces and (N.) is

i€l i€I
a family of finite von Neumann algebras. By (a) above each Ni

i

satisfies condition (4). Thus by the first part of the proof
each Ni is injective, which implies that N itself is injective

completing the proof of (4) => (1) for semifinite algebras.

Assume next that N is a von Neumann algebra of type III that
satisfies condition (4). By [22] N is the crossed product of
a semifinite Neumann algebra M and a one-parameter group of

automorphisms (es) on M

~

Let 6 be the dual action of R on N (cf. [22, Def. 4.11),

and let m be a left invariant mean on R . Then

X - J Qéx) dm(s).

-—00

defines a conditional expectation ¢ of N onto the fixed

point algebra Ng for 6. By [22, thm. 6.1] N. is isomorphic to

M. Trus by (b) above, M also satisfies conditign (4), and hence M
is injective by the first part of the proof. But the crossed product
of an injective von Neumann algebra by an abelian group is again in-
jective (cf. [6, prop. 6.81). Hence (4) => (1) for von Neumann

algebras of type III. Since a general von Neumann algebra is the

direct sum of a semifinite algebra and a type III-algebra, we are done.
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Theorem 2.6

Let N be a non-injective von Neumann algebra.

a) For every infinite dimensional C*-algebra A , there exists
a map TECB(A,N) , which is not a linear combination of

completely positive maps from A to N.

b) PFor every infinite dimensional von Neumann algebra M , there
exists a normal map T€ CB(M,N) which is not a linear com-

bination of completely positive maps from M to N .
For the proof of theorem 2.6 we shall need

Lemma 2.7
Let A be an infinite dimensional C*-algebra. For each ne€ W,

there exist completely positive maps

L=-]
Rn:JL:-»A N
such that IR Il ¢ 1 its 1 ¢ 1, and

! oo
SnoRn(x) = x , XEILn.

If A is a von Neumann algebra Rn and Sn can be chosen

normal and unitpreserving.

proof

Let B be a maximal abelian *-subalgebra of A. Since B is

infinite dimensional (cf. : [12, exercise 4.6.12]), the spectrum
B of B is infinite. Let n€ N. We can choose n distinct
characters

w1,...,wn€B .

Moreover, since B 1is isomorphic to CO(B), we can choose n

positive selfadjoint elements
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b1""'bn€B

such that Hbill <1 . wi(bi) =1 for i=1,...,n and such

that the corresponding functions on CO(B) have disjoint supports.

Let w1,...,mn be extensions of wT,...,mn to states on A. Put
n
Rn(c1,...,cn) = ’E cibi c;€cC
i=1
and
Sn(a) = (w1(a),...,wn(a)) a€En .

Since a positive map from a C*-algebra to another C*-algebra is
automaticly completely positive if one of the algebras is abelian
(ef. [21, thm. 4] and [2, prop. 1.2.21), R~ and S are com-

pletely positive. Moreover one gets easily that IIRnII <1,

(=]
HSnII < 1 and Sn° Rn(x) = x for xE€ Qn .

If A is an infinite dimensional von Neumann algebra, let instead
CqrevesCy be n non-zero orthogonal projections with sum 1, let
w1""'®n be normal states on A , such that the support projection
of w; is less or equal to Ci v i=1,...,n , and define Rn and
Sn by the above formulas. Then Rn,Sn satisfy all the con-

ditions stated in the second part of lemma 2.7.

proof of theorem 2.6

a) Let N be a von Neumann algebra, and let A be any infinite
dimensional C*-algebra. Assume that every completely bounded map
from A to N is decomposable. By prop. 1.5, there exists a

constant c€ZR+ , such that

T < cIlT'llCb

for all T'€CB(A,N). For every n€N we can choose completely

o0

bounded maps R : &7 =+ A and T : A - Q: which satisfy the

conditions of lemma 2.7. Let T be a linear map from 2: to N.
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Since

T = (T °Sn)° Rn

we get from prop. 1.3(4) (5) that

HTH3ec

[VN

II'T GSn”dec .

Therefore

el

jec € ST oS Il ¢ clTI, .

Hence N satisfies the condition (4) in theorem 2.1, i.e. N is

injective.

b) Let M,N be von Neumann algebras,dimM = +o , and assume

that any normal map TE€ CB(M,N) is decomposable. Since
v, (M,N) = {T€ span CP(M,N) | T normal}
is a closed subspace of the Banach space

{span CP(M,N) , |l |}l )

dec

it follows as in the proof of prop. 1.4 that there exists
cE€ IR+ , such that

T o, € T I,

for all normal maps T'€ CB(M,N). Hence, as in the proof of
a) we can conclude that N is injective. This proves theorem

2.6.

If M and N are two von Neumann algebras, we let CPn(M,N)
(resp. CBn(M,N)) denote the set of normal completely positive

(resp. normal completely bounded) maps from M to N.

Corollary 2.8

Let N be a von Neumann algebra. The following three con-

ditions are equivalent



202

(1) N 1is injective.
(2) CB(N,N) = span CP(N,N) .

(3) CB_(N,N) = span CP_(N,N)

proof
From theorem 2.6 it follows that (1) <=> (2) <=> (3'), where (3')

is the condition

(3") CBn(N,N) < span CP(N,N) .

However, if a normal map T from N to N 1is a linear com-

bination of completely positive maps T1""'Tn from N to N

then also

n
T= 5 ¢, ™
, i7i
i=1
{n) {n) ,
where Ti ,...,Tn are the normal parts of T1"“’Tn (ct.
[23, def. 2.15]). Therefore (3) <=> (3').

Corollary 2.9

Let R be the hyperfinite II1-factor with tracial state <1 ,

and let w be a free ultrafilter on R ,

RrRY = lw(l\I,R)/Iw

where Im is the ideal in 2% (N,R) consisting of those bounded

sequences (Xn) in R feor which

113 % =
lim T(ann) 0.
n-w

Then for every infinite dimensional C*-algebra A , there exists
a completely bounded map T from A to RY , such that T has

no completely bounded lifting ¥ : a » 2°(N,R) .

proof

It is well known that RY is a II1—factor with tracial state
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T given by

®
Tw(X) = lin T(Xn) ’
n-w
where (x) is a representing sequence for x¢€ RY (cf.

n neN

[19, Chap. II, sects. 6,7] and [14, p. 451]. Moreover by an
argument due to Wassermann RY is not injective: Let Eé be
the free group on two generators, then by [25, p. 244], there
exists a sequence of representations (“n)nEIJ of finite FZ

into finite dimensional subfactors Frl of R such that

1 g =
lim 1(n_(g)) = {
oo n 0 g % e

where T is the normalized trace. Hence as in [25, page 245]

one sees that RY contains a subfactor isomorphic to’hi(Fz).

the von Neumann algebra associated with the regular representation
of Eé , which implies that RY is not injective (cf. proof of

[25, prop. 1.71).

Let now A be any infinite dimensional C*-algebra. By theorem
2.6 there exists a completely bounded map T : A - RY , which
is not decomposable. Assume that T : A » 2°(N,R) is a com-
pletely bounded lifting of T. Since R 1is injective,

2¥(N,R) is also an injective von Neumann algebra. Thus by
prop. 1.6, T is a linear combination of completely positive
maps. But since, T = po® , where p : 2°(N,R) -» R” is the
quotient map, T is also a linear combination of completely
positive maps, which gives a contradiction. Hence T has no

completely bounded lifting.
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§3.

Examples and complements.

Example 3.1

Let Ié be the free group on two generators a and b ,
and let A Dbe the left regular representation of r, . Choose

a free, infinite set {x1,x2,...} in E& , f£.inst.
x = bPab™ , n € W

and define a linear map T  from l: to TR(EE) = MIF,y) "

by
1 n

T (Ciyeaa,C) = L e, i(xy) (n > 2) .

n n 2/8=7 i=1 *+ ! =
We will show that

HTnH = "Tn”cb =1
while
Tl = .
n' dec 2/0=1

In [1], Akemann and Ostrand proved that

Il
i

[ =]

A(xi)H =2/n-1, n32 2.
1

They also proved ([1], Theorem III F) that, for CqreeesC €T,

n
n n
".Z cik(xi)H = H‘Z lcilk(xi)ﬂ .
i=1 i=1
In particular,
n
I c,x{x)ll = 2/n-1
i=1 +

for n 2 2 and lcyl = lcyl =--e=lc | =1 .
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Hence HTn(u)H = 1 for every unitary operator u € 2: '
and since the unit ball in any finite dimensional C*-algebra
is the convex hull of the unitary operators, we conclude

that HTnH =1,

Let m € IN , and put T(m) = T®im , where im is the identity

on M . Every unitary operator u € 2§®Mm is of the form

u = (u1,...,un)

where Ugr-..,u are unitary mxm-matrices. Clearly,

n

1
2vn-1 1

Tr(lm) (w) = Mx,)eu; .

n~g

1
We can identify the subgroup of IF, generated by {x1,x2,...}

with the free group IF_, on infinite (countable) many

generators. The restriction X' of X to IT_ is just a
multiple of the left regular representation X of TITF_ .
Therefore,
n
™y = ez A xp) el .
2/n-1 1i=1

Let w be the unitary representation of I¥_ on the m-

dimensional Hilbert space ¢™ for which

w(xi) =u , 1emw .

Then, by [8, Addendum 13.11.3], A®n 1is unitary equivalent

to A@To s Where To is the trivial representation of T

on ﬂ:m

Hence,

(m)
e, ™ (a)

|
IIIM.‘j

A (x;) 1

n
- I Alxdlho =1,
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: (m) -
which proves that HTn I =1 for all m . Hence T Il 4

Finally, by Lemma 2.5 (b), we have

T _1l
n"dec 2/n=1

From Example 3.1 and the proof of Corollary 2.8, we get:

Proposition 3.2

Let R be the hyperfinite factor, let ®w be a free ultrafilter

on IN , and let

as in Corollary 2.8.

(1) For n € N , n > 3 , there exists a linear map,

L=

such that, for any lifting of T to a linear map
from z: to Zw(IN,R) ’
s n

2 T .
b = omT cb

T
WTH

(2) For n€ N , n 2 3 , there exists a linear map,

T: M - RY ,
n

such that, for every linear lifting of T to a map T
from Mn to JLm(IN,R) ’

n
2vn-1

N, -
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Proof

(1) By the proof of Corollary 2.8 we can identify THCTZ)
with a subfactor of R” . Let n > 3, and let

T: 20 + R be the map obtained by composing Tn

from Example 3.1 with the inclusion map. Then “T“cb =1,
and by Lemma 2.5 (b), we have still

HTH
dec  o/m=T

® be the quotient map. If T

Let p : ¢°(N,R) - R

isa linear lifting of T , then clearly

IITIIdec 2 leoTIldec = n/2/n-1 ,
s ©o . . » s ~ -
and since £ (IN,R) is injective, we have HTch = “T”dec'

This proves (1).

(2) Let n > 3 , and let (eij)i,j=1,...,n be the matrix
units in Mo Define a linear map R from Qz to M,

o

and a linear map S from M, to 2 by

n
n

R(c1,...,cn) = _§ Ci®ii
i=1

S(zZ aij eij) = (a11,...,ann) .

Then R,S are completely positive,
R(1) =1, s(1) =1
and

(SOR) (X) =x , x € JL: .

Let T : 2: - Rr%

T' € B(Mn,Rm) by

be chosen as in (1) and define

T' = ToS .
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Then
T = T'oR .

From these two equalities we get

HT' Ny, = HTH and ' Ngoe = UTHgec

(cf. Proposition 1.3 (4) and (5)}). If T'  is any linear

lifting of T' , then, as in (1), we get

T = T ' = =
|lT'|lcb = |T Ildec > NIT ||dec ”qudec

2vn=-1

; . _ - : .
while T ch = IITIIcb 1 . This proves (2)

It is worthwhile to compare Example 3.1 with an example due
to Landford, which has been discussed in papers of Loebl
[13, Lemma 2.1], Tsui [24, Lemma 3.2], and Huruya and Tomiyama

[11, Lemma 1]. We present the example in an updated version:

Example 3.3 (Landford)

Let B be the C*-algebra generated by a sequence (un)neni

of selfadjoint anticommuting operators:
U+ U = 1, ukuQ+u2uk =0, k%2

From the theory of Clifford algebras it follows that LERA DR EREL P
generates a finite dimensional factor of type I(2n) . Therefore

B is isomorphic on the infinite tensorproduct of a sequence

of 2x2-matrices. In particular, B has a unique tracial state

T . We will consider B in the representation induced by T .

Thus the weak closure of B is the hyperfinite II1-factor R .
Consider now the linear map T from Qi to R given by

Tn(c1,...,cn) =
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Based on computations made in [13] and [24], it was showed
in {11, Lemma 1] that |IITl < 1 and ”T”cb > /n/2 . In

fact, it is not hard to show that

T =1 and "Tn”dec = NT Il = /n/2 .

To prove the first equality, put

¢ = elkﬂ/n y k=1,...,mn ,
and let ap and bk be the real and imaginary parts of Sk -
Since lckl = 1 and since
n
)X ci =0
k=1
we have
n n n
I al= % b2=2 ana & ab =0.
k=1 k=1 k=1

Let A and B be the self-adjoint operators defined by

2 D z 2
A=/:Zau,B=/—Zbu .
N4 k'k N4 k"k
A straightforward computation shows that

A" = B =1 and AB+BA = 0 ,
from which it follows that

(A+iB) (A+iB) * (A+iB) = 4 (A+iB) .

Therefore 4(A+iB) 1is a partial isometry, and since 4(A+iB) % 0,

we get |3 (A+iB)Il = 1 . Using that

Tn(c»]r---lcn) = %(A*'iB) ’
we conclude that HTnH 2 1 . Hence IITnH = 1 . From Lemma 2.5 (b)
we have ”Tn”dec = /n/2 , and since R is injective, also

T il = /A7Z .
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In Example 3.1, HTanb < “Tn“dec for n > 3 and in

Example 3.3, IITnH < HTanb for n » 3 . However, in both

cases

T = IT, 1l = T

21l 2llep 2Maec -

This turns out to be true in general:

Proposition 3.4

For every von Neumann algebra N and every linear map T

from 2; to N ,

Th = T, = T

dec

The proof of Proposition 3.4 is based on the following lemma:

Lemma 3.5
Let N be a von Neumann algebra with a separating vector. Let

Xyree-sXy € N and let T : 2: -+ N be given by

n
T(c1,...,cn) = i C.X. c. €C .

Then
n
= ¥
HTH 40 sup{ “151 x; vl | ViEN', livill g 1),

where N' is the commutant of N .

Proof

We prove first the inequality » . We may assume that IlTlIdec = 1.
Using Remark 1.3, we can choose completely positive maps

${s8, from .- to N, such that IIS;il ¢ 1, i=1,2,

and such that
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S1(x) T(x*)*

R(x) = , X € lz
T (x) S, (x)
defines a completely positive map from 2: to NOM, . Let
Pqre--sPpy be the minimal projections in 2: , and put
vy = S1(pi) roZy = S2(pi) , i=t1,...,n .
n n
Then Y; 2 o, z; 2 0, 'Z Yi <1, 'Z z; £ 1 , and
i=1 i=1
y X}
[l l]go, i=1,...,n .
X. Z.
i i
Let Ugreesrty be unitaries in N' , and put
n
a = .Z X;uy .
i=1
Then
N
1 a* n 1 0 Yi ¥i T 0
> 2 [ W o2o
a 1 i=1 (0 uy X, 2z 0 u,
which implies that llall ¢ 1 . By the Russo-Dye Theorem

[18, Thm. 1], the unit ball of N' is the norm closed convex
hull of the unitary operators in N' . Hence
n

sup {ll Z xiviH | ViEN', HviH <1} <1 = liTl
i=1 B -

dec

To prove next the inequality < in Lemma 3.5, we can assume

that
n
(*) sup {“i£1 x;vi b | vien', vl g1} = 1 .

Let E be the subspace of (N'®£§)®M2 of operators of the form

ae1 w
v b®1
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where a,b € N' and v,w € N'®li . Then E is a self-
adjoint set of operators and 1 € E , i.e. E 1is an operator-
system in the sense of Choi and Effros [4, p. 162]. Let Eo

be a separating unit vector for N and let  be the

linear functional on E given by

a®1l w n . %
w = ({a + b+ I (x,v,+x.v. D& ,E )
v b®1 jo1 171774747 "o"o
where
v = (v1,...,vn) , W = (w1,...,wn) ro VoW € N' .

We will prove that ®w 1is a positive functional on E . Assume

that

a®l w
€ E+ .

v b®1

Then clearly w = v* and a,b € N, . For >0 , put a, = a+el

and be = b+e1 . Then

1 (a€®1)'*v*(b€®1)'%]

1
-3 -3
(bE®1) v(a€®1) 1
is a positive operator, because it is equal to

- =1
a _®1 07} a_81 01°?
{x+c1) .
0 b€®1 0 b€®1
Hence H(b€®1)-%v(a€®1)_%u < 1, or equivalently
Hb;%via;éﬂ <1, i=1,...,n .

Therefore, by the assumption (*)

z -3, o~}
H;Z xibe via, <1,
i=1
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Since Xy € N and Vi'ae'be € N' , we get that

n P n
—i£1((xivi+xivi)50,£o) -2 Re((ii1 xivi)é;o,io)

3

= =2 Re(( g x.b_ v a_é)a
. iYe "ive €

i=1

3 3
2 laje Il b I

A

A

(aEgrE) + (b E_,E)

((a+b)E_,E0) + 26 .

Since € was arbitrary, we conclude that w 1is positive.

Hence
foll = w(1) =2 .

(The fact that llwll = w(1) for positive functionals on

operator systems can be proved as for C*-algebras, cf. proof

of [12, Theorem 4.3.2].) Let & be a Hahn-Banach extension

1 (o]
of w to N ®2n®M2 . Then
Nwil = @(1) = 2
so ® is a positive functional on N'®2§®M2 .

Let Pisee-sPp be the minimal projections in 22 . Put

Nf a@pi 0

wi(a) =0
0 0
o 0

V(o) = wl
0 b®pl

£ b

3

€

£o)
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for a,b € N' and i=1,...,n . By the definition of w

n a®1 0]
L p,{(a) = w = (ag_,&)
i=1 * 0 oJ e e
and
n [0 0 }
Doy (b) = w = (bE,,50)
i=1 * lo be1) °°

for a,b € N' . From [9, Part I, Chap. 4, Lemma 1] there exist

positive operators Yqreeor¥peZqreeorZy € N , such that

- L}
w;la) = (ay;€.,€8.) , a €N
wi(b) = (bz, E Eo) ; b EN' .
n n
Note that b} Y; = z z, = 1 , because Zo is cyclic for
i=1 i=1
N' and for all a,b € N' :
n n
z (yiago,bio) = I wi(b*a) = (aio,bio)
i=1 i=1
n n
_§ (ziaﬁoybio) = 'Z Y. (b*a) = (aﬁo.bio) .
i=1 i=1

Let a,b € N' . By the Cauchy-Schwartz inequality for positive

functionals, we have

(x;ag ,bEJ) = (x;b*af_,&.)
(o o}
= w
b*a®p, oJ
*{O
=
b@p a®p, 0
[a*a®p; W% 0 o 1!
e g " J
*
0 0 0 b*b®p,

= (y;a€_,ab ) z;bE ,bE )Y .



215

Since EO is cyclic for N' , we conclude that

; o, i=1,...,n .

. o
Define now S1,S2 : Qn ~ N by

n
S1(c1,...,cn) = .é c;vy
i=1
n
52(01,...,cn) = _Z c;z; -
i=1
Then
[51(x) T(x*)*}
R(x) = x € &
T (x) Sz(x) J
is clearly a positive map from li to NeuM, , and since £:
is abelian, it is also completely positive. Since §,(1) = §,(1)
we have
n
= ]
Tl g, €1 = sup{ “121 x, vl | v EN', llv Il <1} .

This completes the proof of Lemma 3.5.

Proof of Proposition 3.4

Let T be a linear map from 2; into a von Neumann algebra

N . Since

T ¢ WTH ¢ NTH 5. ’

it is sufficient to prove that < HTHl . Let P,/Py be

"T”dec <
the two minimal projections in 2; and put x; = T(pi), i=1,2.

Since the extreme points of the unit ball of 2: are of the form

(c1,02) ' c1,cz€i¢ ’ Ic1l = Iczl =1,
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we have
ITH = sup { lIx;+cx, Il | cex, lci=1} .

Assume first that N is o-finite. Then, via the G.N.S.-
representation, we can obtain that N acts on a Hilbert
space H with a cyclic and separating vector Eo . By

Lemma 3.5,

P 1
IITlldec = sup { %y vy +x,v, i | ViEN', vyl <1} .

By the Russo-Dye theorem, it is sufficient to consider unitary
operators Vi1V, in N' . In this case,

I + o= llxq+ M|

X VR,V = R AL .
Therefore

HT = sup { llx +x,ull | ue€N', u unitary} .

dec

If u has finite spectrum, then

where Ai € sp(u) and p; are orthogonal projections in N'
with sum 1 . Since the subspaces pi(H) , i=1,...,r are

invariant under X, and X, , wWe get in this case
ltxq+x,ull = sup {llx +xx, Il | A€sp(u)}

Since every unitary in N' «can be approximated in norm by

unitaries with finite spectrum,

Tl 4o € sup {llx +cx | ceec, lci=1} = |ITH

|
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If N 1is not o-finite, we can choose a net (p,) of o-finite
projections in N , such that Py > 1 strongly. Using the

first part of the proof on the map Ty : Q; > pAMpA given by

TA(x) = Py¥Py ¢ X € 22 ’

we find completely positive maps 811) ’ S{z) from 2; to
pP,Mp, € M , such that HSil)H < 0Ty , i=1,2 , and such that
siV(x) T, (x*)* .
RA(X) = X € 8,

. (x) s (x)
A A

is a completely positive map from 2; to N@M2 . Let
R : Q; > N8M, be a clusterpoint for the net (Rx) in
the topology of pointwise o-weak convergence on B(Q?,N@Mz) .

Then R 1is a completely positive map of the form

(s M (x)  T(x*)*

R(x) = , X €85,
T (x) s(2) (x) 2
(1) (2) | ;= -
where S r S : 22 > N are completely positive and
(i)
Is Il ¢ HITI . Hence IITIIdec < T .

Corollary 3.6

Let N be a von Neumann algebra, and let x€N . The following

two conditions are equivalent

(i) There exists a € N , 0<a¢<1 , such that

N
Moo
b
*
~—
i)
o

1-a

(ii) w(x) € ¥ , where w(x) is the numerical radius of x

proof

Recall that the numerical range W(x) of an operator x € B(H)

{(x£,£) | €eH, WEN =1} ,

is
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and the numerical radius wi(x) of x is

w(x) sup{ x| | reW(x)}

sup{l (x£,8) 1 | E€H, llgh =1}

(cf. [3, pp. 1-2]). To prove (i) = (ii), let E€H be a unit
vector and let c€C , lcl=1 . Put &' = (§,cE) € HBH and

put

If b0 , then (bg',£') > 0 . Thus

1 + 2 Rel(c(xE£,8))

v
o
~

so by choosing ¢ , such that c¢(x§,%)

-1 (x£,8)] , we get
I (x£,8)1 < § .

Conversely, if wi(x) ¢ % , then for ce€ , Icl=1,

lex+cx*|l = sup{| ((cx+cx®E,£) | | £eH, NEN =1}

= 2 sup{IRe(c(x£,&)) | | E€H, &l =1}

< 2w (x)

< 1.
Hence also  |lx+G2x*|| < 1 . Consider now the map T : 2, ~
given by

T(c1,c2) = c1x+c2x* .

Clearly,

IT = sup {lIx+yx*ll | ve€€,lyi=1} < 1 .
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Hence, by Prop. 3.4, ”T“dec < 1 . Thus there exist

Yq1¥pr2q+2y € N, such that y.+y, ¢ 1, z,*tz, ¢ 1, and

Hence also

Put a = Yi*z, - Then 1-a 2 Yotzq - This proves (1i).

Remark 3.7

In [4, Thm. 3.4], Choi and Effros proved that a von Neumann
algebra N 1is injective if and only if for n€WN , n2 ,

any unit preserving, completely positive map T from an
operator system E ¢ My of codimension 1 into N can be ex-
tended to a completely positive map T from Mn to N .

It is somewhat surprising that for n=2 such an extension
exists, even if N 1is not injective. This follows easily

from Corollary 3.6:

Let E be any three-dimensional operator system in M2 , then,

by a change of basis, we can obtain that

3
E - €11 12 _
€11 T C22 .
€21 C22

Let T : E + N be completely positive and unit preserving,

and put
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Since
_ f1 ¢
T+cx+cx* = T 2 0
c 1
whenever |lcl|l = 1 , it follows that Ww(x) < % . Hence, by

Cor. 3.6, there exists a € N_, such that

Therefore,

3

c
J = Ccqqa t c22(1—a) t Cyyx *tcC

~

C
T 11 12

12%*

€21 ©22
defines a complete positive extension T : M, + N of T

(use [4, Lemma 2.11).

Problem 3.8

Let N be a von Neumann algebra, such that

Ty, = NTHge.

for every linear map T from lz to N . Is N injective?
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