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INVARIANT SUBSPACES OF VOICULESCU’S
CIRCULAR OPERATOR

K. Dykema and U. Haagerup

1 Introduction

The invariant subspace problem relative to a von Neumann algebra
M ⊆ B(H) asks whether every operator T ∈ M has a proper, nontriv-
ial invariant subspace H0 ⊆ H such that the orthogonal projection p onto
H0 is an element of M; equivalently, it asks whether there is a projection
p ∈ M, p /∈ {0, 1}, such that Tp = pTp. Even when M is a II1-factor, this
invariant subspace problem remains open. In this paper we show that the
circular operator and each circular free Poisson operator (defined below)
has a continuous family of invariant subspaces relative to the von Neumann
algebra it generates. These operators arise naturally in free probability the-
ory (see the book [VDN]), and each generates the von Neumann algebra
II1-factor L(F2) associated to the nonabelian free group on two generators.

Given a von Neumann algebra M with normal faithful state φ, a cir-
cular operator is y = (x1 + ix2)/

√
2 ∈ M, where x1 and x2 are centered

semicircular elements having the same second moments and that are free
with respect to φ. For specificity, we will always take circular elements
as having the normalization φ(y∗y) = 1, which is equivalent to φ(x2i ) = 1.
Voiculescu found [V2] a matrix model for a circular element, showing that if
X(n) is a random matrix whose entries are i.i.d. complex (0, 1/n)-Gaussian
random variables thenX(n) converges in ∗-moments as n → ∞ to a circular
element, meaning that

lim
n→∞

τn
(
X(n)ε(1)X(n)ε(2) · · ·X(n)ε(k)

)
= φ(yε(1)yε(2) · · · yε(k))

for every k ∈ N and for every choice of ε(j) being “∗” or no symbol, where
τn is the expectation of the normalized trace and where y is a circular

K.D. is partially supported by U.S. NSF grant DMS 0070558. U.H. is a member of
MaPhySto, Centre for Mathematical Physics and Stochastics, which is funded by a grant
from The Danish National Research Foundation.



694 K. DYKEMA AND U. HAAGERUP GAFA

element. Using the matrix model, Voiculescu showed that if (yij)1≤i,j≤N
is a ∗-free family of circular elements in a von Neumann algebra M with
respect to a normal faithful state φ, then the matrix y = 1√

N
(yij)1≤i,j≤N ∈

MN (M) is circular with respect to the state φN given by φN
(
(xij)1≤i,j≤N

)
= 1

N

∑N
i=1 φ(xii). Furthermore, he showed that the polar decomposition of

a circular operator y is y = ub where u is a Haar unitary (i.e. a unitary
satisfying φ(uk) = 0 for every integer k > 0), where b is a quarter-circular
element, (i.e. having moments φ(bk) = 1

π

∫ 2
0 t

k
√
4− t2) and where u and b

are ∗-free. These and results of a similar nature have been instrumental in
applications of free probability to the study of the free group factors L(Fn)
and related factors; some of the first of these were [V1], [R1], [Dy1], [R2],
[Dy2].

Voiculescu’s matrix model for the circular element is the starting point
for finding invariant subspaces. Combined with a result of Dyson, it leads
to upper triangular matrix models for the circular operator, namely, a se-
quence Y (n) of upper triangular random matrices whose ∗-moments con-
verge to those of a circular operator. In these models, the elements of Y (n)
that are above the diagonal are complex (0, 1/n)-Gaussian random vari-
ables, and we show that a number of different choices are possible for the
diagonal entries. From these matrix models we show that for any N ≥ 2 a
circular operator can be realized as an N ×N upper triangular matrix

1√
N



a1 b12 b13 · · · b1,N−1 b1N
0 a2 b23 · · · b2,N−1 b2N

0 0 a3
. . .

... b3N
...

...
. . . . . . . . .

...
0 0 · · · 0 aN−1 bN−1,N

0 0 · · · 0 0 aN


(1)

with entries in some W∗-noncommutative probability space, where the col-
lection of N(N + 1)/2 nonzero entries is ∗-free, where the entries bij lying
strictly above the diagonal are circular elements and where the entries aj
on the diagonal are circular free Poisson elements (aj being circular free
Poisson of parameter j). These latter are generalizations of the circular
operator (in the family of R-diagonal elements introduced by Nica and Spe-
icher [NS]) which are quite natural from the perspective of free probability
theory.

Definition 1.1. Let (A,ψ) be a W∗-noncommutative probability space
with ψ faithful and let c ≥ 1. A circular free Poisson element of parameter
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c in (A,ψ) is an element of the form UHc where U, Hc ∈ A, U is a Haar
unitary, Hc ≥ 0, the pair {U, Hc} is ∗-free and H2

c has moments equal
to those of a free Poisson distribution1 with parameter c. Thus, letting
a = (1 − √

c)2 and b = (1 +
√
c)2, the moments of H2

c are equal to those
of the measure νc that is supported on [a, b], is absolutely continuous with
respect to Lebesgue measure and has density

dνc
dλ

(t) =

√
(b− t)(t− a)

2πt
1[a,b](t) .

We hasten to point out that a circular element z with normalization
ψ(z∗z) = 1 is nothing other than a circular free Poisson element of param-
eter c = 1.

The spectrum of a circular free Poisson element of parameter c has been
found by Haagerup and Larsen [HL] to be the annulus centered at zero with
radii

√
c− 1 and

√
c, if c > 1, whereas the spectrum of the circular operator

is the disk of radius 1. In the realization (1) of the circular operator, we have
that the diagonal entry aj is circular free Poisson of parameter j. Therefore,
the spectrum of the diagonal entry aj increases in modulus as j increases,
and the spectra of aj and ak overlap only if |j−k| ≤ 1. These properties of
the realization (1) allow general techniques for upper triangular operators
to be applied in order to find invariant subspaces of the circular operator
y. It turns out that for every 0 < r < 1 there is a unique projection
p ∈ M = {y}′′ such that

(i) yp = pyp

(ii) σ(yp) = {z ∈ C | |z| ≤ r}
(iii) σ((1− p)y) = {z ∈ C | r ≤ |z| ≤ 1}
where in (ii) (respectively (iii)) the spectrum is computed relative to the
algebra pMp, (respectively (1− p)M(1− p)).

In fact, the techniques outlined above can be employed with very lit-
tle extra effort to find invariant subspaces for every circular free Poisson
operator, and the proof is presented in this generality throughout.

In §2, a theory is developed proving the existence of invariant subspaces,
relative to the generated von Neumann algebras, of upper triangular opera-
tors, the spectra of whose diagonal entries satisfy certain conditions. In §3,
we consider upper triangular random matrices whose entries strictly above

1We must point out that the formula found in [VDN, p. 35] for the free Poisson
distribution has some errors. The formula for Rµ found there is correct, but the formulae
for Gµ(z) and for the density are incorrect.
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the diagonal are i.i.d. complex Gaussian random variables which are inde-
pendent of the diagonal entries. The general theme of the results in §3 is
that the diagonal entries may be changed in certain ways but that as matrix
size tends to infinity, the limit ∗-moments remain the same. In §4, we gen-
eralize asymptotic freeness results which Voiculescu originally proved [V2]
for Gaussian random matrices and constant diagonal matrices; we allow
the diagonal matrices to be random, subject to certain conditions. In §5,
the random matrix results of the previous two sections together with re-
sults of Dyson and others are used to find various upper triangular matrix
models for circular free Poisson elements, and these are in turn used to find
an upper triangular realization of the same, as in (1). In §6, this upper
triangular realization of the circular free Poisson element is fed into the
machinery of §2 to find invariant subspaces.

2 An Invariant Subspace for an Upper Triangular
Operator

Suppose H is a Hilbert space and T : H → H is a bounded operator. In
this section we are concerned with invariant subspaces H0 for T such that
the projection from H onto H0 lies in the von Neumann algebra generated
by T . It is easy to see (Lemma 2.1) that for every r ≥ 0 the set

Hr(T ) = {ξ ∈ H | lim sup
k→∞

‖T kξ‖1/k ≤ r} (2)

is such an invariant subspace H0. The question is whether, for any given
operator, these subspaces can be other than {0} or H. We will show (Propo-
sition 2.2) that the answer is yes if T can be written as an upper triangular
operator,

T =

∗ ∗ ∗
0 ∗ ∗
0 0 ∗


with respect to a decomposition H = H1 ⊕ H2 ⊕ H3 under a condition
on the spectra of the elements in the upper left-hand and lower right-hand
corners of the above matrix.

Lemma and Definition 2.1. Let T : H → H be a bounded operator on a
Hilbert space H, let r ≥ 0 and let Hr = Hr(T ) be the subspace (2) defined
above. Then Hr is an invariant subspace for T such that the orthogonal
projection pr = pr(T ) from H onto Hr lies in the von Neumann algebra
{T}′′ generated by T .
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Proof. Consider the subset
Er = Er(T ) =

{
ξ ∈ H

∣∣ lim sup
k→∞

‖T kξ‖1/k ≤ r
}

(3)

which is dense in Hr. To see that Hr is a closed subspace of H, it will
suffice to show that Er is a subspace. Let a ∈ C and ξ1, ξ2 ∈ Er. Since
‖T k(aξ1)‖ = |a| ‖T kξ1‖ and ‖T k(ξ1 + ξ2)‖ ≤ 2max(‖T kξ1‖, ‖T kξ2‖), it
is clear that aξ1 ∈ Er and ξ1 + ξ2 ∈ Er. Moreover, since ‖T k(Tξ)‖ ≤
‖T‖‖T k(ξ)‖ it is clear that Er, and hence also Hr, is invariant for T .

To show that pr ∈ {T}′′ it will be enough to show that Upr = prU
whenever U is a unitary operator on H such that UT = TU . Moreover,
Upr = prU will follow once we show that Uξ ∈ Er for every ξ ∈ Er. But
this holds because

‖T kUξ‖ = ‖UT kξ‖ = ‖T kξ‖ . �
Proposition 2.2. Let T : H → H be a bounded operator on a Hilbert
space H. Suppose that e1, e2, e3 are orthogonal projections in H with
e1 + e2 + e3 = 1 and that e1 and e1 + e2 are invariant for T . This means
that T is upper triangular with respect to this decomposition of H:

T =

e1Te1 ∗ ∗
0 e2Te2 ∗
0 0 e3Te3

 .

Let r ≥ 0 and suppose that

sup
{
|λ|
∣∣ λ ∈ σ(e1Te1)

}
≤ r < inf

{
|λ|
∣∣ λ ∈ σ(e3Te3)

}
,

where σ(ejTej) denotes the spectrum of ejTej acting on ejH. Then the
invariant subspace Hr(T ) and its projection pr = pr(T ) defined in Lemma
and Definition 2.1 satisfy

e1 ≤ pr ≤ e1 + e2 .

Proof. If ξ = e1ξ then T kξ = (e1Te1)kξ so ‖T kξ‖1/k ≤ (‖(e1Te1)k‖‖ξ‖)1/k
while limk→∞ ‖(e1Te1)k‖1/k ≤ r. This shows e1 ≤ pr.

Suppose ξ ∈ H and e3ξ �= 0. Then e3T
kξ = (e3Te3)kξ. As an

operator on e3H, e3Te3 is invertible and its inverse has spectral radius
< r−1. Therefore ‖T kξ‖ ≥ ‖(e3Te3)kξ‖ ≥ ‖(e3Te3)−k‖−1‖e3ξ‖ and hence
lim supk→∞ ‖T kξ‖1/k ≥ limk→∞ ‖(e3Te3)−k‖−1/k > r, so ξ �∈ Er(T ). This
shows that Er(T ) ⊥ e3H, and therefore that pr ≤ e1 + e2. ✷

Invariant projections pr(T ) and the dense subspaces Er(T ) for some
specific operators T are described in §6.

Now we show that for an element x of an abstract W∗-algebra, the pro-
jection pr(x) is defined independently of how the W∗-algebra is represented
as a von Neumann algebra acting on a Hilbert space.



698 K. DYKEMA AND U. HAAGERUP GAFA

Lemma 2.3. Let H and H′ be Hilbert spaces, let T ∈ B(H) and take
r > 0. Then

pr(T )⊗ 1H′ = pr(T ⊗ 1H′) . (4)

Proof. Let Er(T ) be given by (3) and let

Er(T ⊗ 1) =
{
w ∈ H ⊗ H′ | lim sup

k→∞
‖(T k ⊗ 1H′)w‖1/k ≤ r

}
.

Letting � denote the algebraic tensor product of vector spaces, we clearly
have Er(T ) � H′ ⊆ Er(T ⊗ 1), so the inequality ≤ holds in (4). Given
a unit vector η ∈ H′ let Vη : H → H ⊗ H′ be Vη(ξ) = ξ ⊗ η. Then
TV ∗

η = V ∗
η (T ⊗ 1H′), so if w ∈ Er(T ⊗ 1) then V ∗

η w ∈ Er(T ) for every η.
Therefore Er(T ⊗ 1) ⊆ Hr(T )⊗ H′ and ≥ holds in (4). ✷

Lemma and Definition 2.4. If M is a von Neumann algebra, if H is a
Hilbert space and if π : M → B(H) is a normal, faithful ∗-representation
then given x ∈ M we have, for r ≥ 0, the projection

pr(π(x)) ∈ {π(x)}′′ ⊆ π(M) .

Let us denote by pr(x) ∈ M the element so that π(pr(x)) = pr(π(x)). Then
pr(x) is independent of the choice of H and π.

Proof. Let H′ be a Hilbert space and π′ : M → B(H′) a normal, faithful ∗-
representation. Using [D, Theorem 1.4.3], we find a Hilbert space H′′ such
that the representations π⊗ 1H′′ and π′ ⊗ 1H′′ are unitarily equivalent, via
a unitary U : H⊗H′′ → H′⊗H′′. Now applying Lemma 2.3 twice, we have

U∗(π′(pr(x))⊗ 1
)
U = π(pr(x))⊗ 1 = pr(π(x))⊗ 1 = pr

(
π(x)⊗ 1

)
= pr

(
U∗(π′(x)⊗ 1)U

)
= U∗pr

(
π′(x)⊗ 1

)
U = U∗(pr(π′(x))⊗ 1

)
U .

Hence π′(pr(x)) = pr(π′(x)). ✷

3 Upper Triangular Random Matrices

In this section, we consider upper triangular random matrices whose entries
strictly above the diagonal are i.i.d. Gaussian, and we prove that the diag-
onal entries can be modified in various ways without affecting the limiting
∗-moments as matrix size increases without bound. Throughout this pa-
per, we consider random matrices whose entries have moments of all orders.
Thus, let (Ω, µ) be a usual probability space, let L =

⋂
1≤p<∞ Lp(µ) and

consider the expectation E(f) =
∫
fdµ. If S1, S2 ⊆ L are sets of random

variables, we say that S1 and S2 are independent sets if the two σ-algebras
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generated by {f−1(A) | f ∈ Si, A Borel subset of C} (i = 1, 2) are in-
dependent with respect to µ, and similarly for families of sets of random
variables. The ∗-algebra of n×n random matrices is Mn = L⊗Mn(C) and
has the trace τn = E ⊗ trn, where trn is the trace on Mn(C) normalized
so that trn(1) = 1. We fix a system of matrix units in Mn(C), denoted by
(e(i, j;n))1≤i,j≤n.
Notation 3.1. Let σ2 > 0 and n ∈ N.

(i) On C, by Lebesgue measure we shall mean d(Re z)d(Im z), i.e. nor-
malized so that the unit disk has measure π. On the space Mn(C) of
n×n complex matrices, Lebesgue measure shall mean the product of
Lebesgue measure on each of the n2 complex entries. On the space
Ms.a.

n of self-adjoint complex n× n matrices, Lebesgue measure shall
mean the product of Lebesgue measure on each of the n(n − 1)/2
complex entries strictly above the diagonal and Lebesgue measure on
each of the n real diagonal entries.

(ii) We say that a random variable a ∈ L is a complex (0, σ2)-Gaussian if
Re a and Im a are independent real Gaussian random variables each
having first moment 0 and second moment σ2/2. Thus E(a) = 0,
E(|a|2) = σ2 and a has density (πσ2)−1e−|z|2/σ2

with respect to
Lebesgue measure.

(iii) Given T ∈ Mn, we will write T ∈ UTGRM(n, σ2) (the acronym
is for “upper triangular Gaussian random matrix”) if the entries tij
of T (1 ≤ i, j ≤ n) satisfy that tij = 0 whenever i ≥ j and that
(tij)1≤i<j≤n is an independent family of random variables, each of
which is complex (0, σ2)-Gaussian.

Our first result is that if T (n) ∈ UTGRM(n, 1/n), if D(n) ∈ Mn is
a diagonal random matrix that is independent of T (n) and if the joint
distribution of the diagonal entries of D(n) is permutation invariant, then
in the limit as n → ∞, the ∗-moments of T (n) +D(n) depend only on the
marginal ∗-distributions of finite sets of the diagonal entries of D(n).
Theorem 3.2. For every n ∈ N let T (n) ∈ UTGRM(n, 1n) and let

D1(n) =
n∑
i=1

a(i;n)⊗ e(i, i;n) ∈ Mn

D2(n) =
n∑
i=1

b(i;n)⊗ e(i, i;n) ∈ Mn

be diagonal random matrices such that T (n) and D1(n) are independent
matrix-valued random variables and T (n) and D2(n) are independent
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matrix-valued random variables. Let dνι(λ1, . . . , λn) be the joint distri-
bution of the diagonal entries of Dι(n). Assume that dνι is invariant under
all permutations of its n variables (ι = 1, 2). Suppose that the marginal
∗-distributions of the diagonal entries of D1(n) are arbitrarily close to those
of D2(n) as n → ∞; namely suppose that

∀p ∈ N ∀r1, s1, . . . , rp, sp ∈ N ∪ {0},
lim
n→∞

(
E(a(1;n)r1a(1;n)

s1 · · · a(p;n)rpa(p;n)
sp)

−E(b(1;n)r1b(1;n)
s1 · · · b(p;n)rpb(p;n)

sp)
)
= 0 . (5)

Let Zι(n) = Dι(n) + T (n). Then
∀m ∈ N ∀ε(1), . . . , ε(m) ∈ {∗, ·} ,

lim
n→∞

(
τn(Z1(n)ε(1) · · ·Z1(n)ε(m))− τn(Z2(n)ε(1) · · ·Z2(n)ε(m))

)
= 0 ,

where we take ε(j) = · to mean ε(j) is “not ∗” or “no symbol.” Therefore
if Z1(n) converges in ∗-moments as n → ∞ then so does Z2(n) and their
limit ∗-moments coincide.
Proof. Write

T (n) =
∑

1≤i<j≤n
t(i, j;n)⊗ e(i, j;n) .

Let us first fix n ∈ N, ι ∈ {1, 2} and let us denote Dι(n) simply by D, T (n)
by T , Zι(n) by Z and the diagonal entries of D by d(i;n), (1 ≤ i ≤ n).
Now each word in Z and Z∗ is a sum of words in D, D∗, T and T ∗; hence
we will investigate words of the form

W =
(
T ε(1) · · ·T ε(l(1))

)
Dκ(1)

(
T ε(l(1)+1) · · ·T ε(l(2))

)
Dκ(2)

· · ·
(
T ε(l(p−1)+1) · · ·T ε(l(p))

)
Dκ(p)

(
T ε(l(p)+1) · · ·T ε(q)

)
(6)

for arbitrary
p, q ∈ N ∪ {0} ,

ε(1), . . . , ε(q) , κ(1), . . . , κ(p) ∈ {∗, ·} ,
0 ≤ l(1) ≤ l(2) ≤ · · · ≤ l(p) ≤ q .

Now, using the independence of T and D, we see that

τn(W ) = n−1
∑

i1,...,iq∈{1,...,n}

( q∏
j=1

Gε(j)(ij , ij+1)
)

· E
(
tε(1)(i1, i2;n)tε(2)(i2, i3;n) · · · tε(q)(iq, iq+1;n)

)
·E
(
dκ(1)(il(1)+1;n)d

κ(2)(il(2)+1;n) · · · dκ(p)(il(p)+1;n)
)
, (7)
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where we have used the convention iq+1 = i1, where Gε(·, ·) is defined by

G(ij , ij+1) =

{
1 if ij < ij+1

0 otherwise

G∗(ij , ij+1) =

{
1 if ij > ij+1

0 otherwise
and where

tε(j)(ij , ij+1;n) =

t(ij , ij+1;n) if ε(j) = ·

t(ij+1, ij ;n) if ε(j) = ∗

dκ(j)(i;n) =

d(i;n) if κ(j) = ·

d(i;n) if κ(j) = ∗
Using that the joint distribution of d(1;n), . . . , d(n;n) is invariant under
permutation of the n variables, we see that each moment

E
(
dκ(1)(il(1)+1;n)d

κ(2)(il(2)+1;n) · · · dκ(p)(il(p)+1;n)
)

(8)
appearing in (7) is equal to a moment

E
(
d(1;n)r(1)d(1;n)

s(1)
d(2;n)r(2)d(2;n)

s(2) · · · d(p;n)r(p)d(p;n)s(p)
)

(9)
where

r(1), s(1), . . . , r(p), s(p) ∈ N ∪ {0} ,
r(1) + s(1) + · · ·+ r(p) + s(p) = p ,

(10)

and by further permutation the moment (8) corresponds to a unique mo-
ment of the form (9) if we make the additional stipulation that

r(1) + s(1) ≥ r(2) + s(2) ≥ · · · ≥ r(p) + s(p)
and, if r(j) + s(j) = r(j + 1) + s(j + 1) then r(j) ≥ r(j + 1) .

(11)

Hence rearranging the sum in (7) we get

τn(W ) = n−1
∑

r(1),s(1),...,r(p),s(p)

E
(
d(1;n)r(1)d(1;n)

s(1) · · · d(p;n)r(p)d(p;n)s(p)
)

·
∑

i1,...,iq

( q∏
j=1

Gε(j)(ij , ij+1)
)
E
(
tε(1)(i1, i2;n) · · · tε(q)(iq, iq+1;n)

)
, (12)

where the first sum is over all r(1), s(1), . . . , r(p), s(p) satisfying (10)
and (11), and the second sum is over all i1, . . . , iq ∈ {1, . . . , n} such that
there is a permutation, σ, of {1, . . . , n} for which
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d
(
σ(il(1)+1);n

)κ(1)
d
(
σ(il(2)+1);n

)κ(2) · · · d(σ(il(p)+1);n)
κ(p)

= d(1;n)r(1)d(1;n)
s(1) · · · d(p;n)r(p)d(p;n)s(p) . (13)

Let Wi (ι ∈ {1, 2}) denote the word on the right-hand side of (6) where
D is taken to be Dι(n). Then

τn(W1)− τn(W2)

= n−1
∑

r(1),s(1),...,r(p),s(p)

(
E
(
a(1;n)r(1)a(1;n)

s(1) · · · a(p;n)r(p)a(p;n)s(p)
)

−E
(
b(1;n)r(1)b(1;n)

s(1) · · · b(p;n)r(p)b(p;n)s(p)
))

·
∑

i1,...,iq

( q∏
j=1

Gε(j)(ij , ij+1)
)
E
(
tε(1)(i1, i2;n) · · · tε(q)(iq, iq+1;n)

)
.

Now in order to prove the lemma it will suffice to show that
limn→∞ τn(W1) − τn(W2) = 0. Since by the hypothesis (5), the differ-
ence of moments of a and b tends to zero as n → ∞, it will suffice to show
that for every p, q ∈ N and every r(1), s(1), . . . , r(p), s(p) ∈ N ∪ {0}, the
quantity

n−1
∑

i1,...,iq

( q∏
j=1

Gε(j)(ij , ij+1)
)
E
(
tε(1)(i1, i2;n) · · · tε(q)(iq, iq+1;n)

)
(14)

remains bounded as n → ∞, where the sum is over all i1, . . . , iq ∈ {1, . . . , n}
such that there is a permutation, σ, of {1, . . . , n} for which (13) holds. But
this follows from the sort of counting arguments used by Voiculescu in [V2].
Indeed, for any 1 ≤ i < i′ ≤ n and for any m,m′ ∈ N ∪ {0},

E
(
t(i, i′;n)mt(i, i′;n)

m′)
�= 0

implies m = m′. Taken together with the independence assumtion on the
entries of T , this shows that for any i1, . . . , iq ∈ {1, . . . , n}, a necessary
condition so that

E
(
tε(1)(i1, i2;n) · · · tε(q)(iq, iq+1;n)

)
�= 0

is that there be a bijection, γ, from {1, . . . , q} to itself, without fixed points,
such that γ2 = id and

∀j ∈ {1, . . . , q} , iγ(j) = ij+1 , and iγ(j)+1 = ij . (15)

Moreover, there is a constant, c1, depending only on q, such that for all
n ∈ N and all choices of i1, . . . , iq,∣∣E(tε(1)(i1, i2;n) · · · tε(q)(iq, iq+1;n))

∣∣ ≤ c1n
−q/2 . (16)
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If γ is a bijection of {1, . . . , q}, let N(γ, n) be the number of choices of
i1, . . . , iq ∈ {1, . . . , n} such that (15) holds. There are only finitely many
bijections, γ, of {1, . . . , q}. Hence, in light of the bound (16), in order to
show that (14) is bounded as n → ∞, it will suffice to show that for each
bijection γ of {1, . . . , q} without fixed points such that γ2 = id, the quantity

n−1−(q/2)N(γ, n) (17)

remains bounded as n → ∞. However, N(γ, n) ≤ nd(γ), where d(γ) is
the number of vertices in the quotient graph, Gγ , which is obtained from
the q-gon graph by identifying the jth and γ(j)th edges with opposite
orientations, for every j. The graph Gγ has q/2 edges, hence at most
1 + (q/2) vertices, which shows that d(γ) ≤ 1 + (q/2) and hence that (17)
remains bounded as n → ∞. ✷

Now we work on results that let us dispense with the permutation in-
variance assumed for the diagonal matrices of the previous theorem. Let
U2 denote the group of unitary 2× 2 complex matrices.

Lemma 3.3. There is a Borel function, U : C3 → U2 such that for all
a, b, c ∈ C,

U(a, b, c)∗
(
a b
0 c

)
U(a, b, c) =

(
c b
0 a

)
.

Proof. If a = c then let U(a, b, c) = ( 1 0
0 1 ). If a �= c but b = 0, then let

U(a, b, c) = ( 0 1
1 0 ). If a �= c and b �= 0 then let

U(a, b, c) =
1

(|a− c|2 + |b|2)1/2

(
b (a− c)b/b

c− a b

)
.

✷

Lemma 3.4. Fix n ∈ N, let T ∈ UTGRM(n, 1/n) and let

D =
n∑
i=1

d(i)⊗ e(i, i;n) ∈ Mn

be a diagonal random matrix. Suppose that T and D are independent
matrix-valued random variables. Let π be a permutation of {1, . . . , n} and
let

Dπ =
n∑
i=1

d(π(i))⊗ e(i, i;n) ∈ Mn . (18)

Let Z = D+T and Zπ = Dπ+T . Then Z and Zπ have the same ∗-moments
with respect to τn.
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Proof. We may without loss of generality assume that π is a transposition
of neighbors:

π(k) = k + 1
π(k + 1) = k

π(j) = j if j �∈ {k, k + 1} .
We will use Lemma 3.3 to show that there is a unitary random matrix,
V ∈ Mn, such that V ∗ZV has the same distribution as Zπ, and this will
prove the theorem.

Recall that Ω is the usual probability space underlying our random
matrices Mn. For ω ∈ Ω let V (ω) be the block diagonal matrix

V (ω) = Ik−1 ⊕ U
(
d(k)(ω), t(k, k + 1)(ω), d(k + 1)(ω)

)
⊕ In−k−1 .

By this we mean that V (ω) has k− 1 ones down the diagonal, then a 2× 2
block that is the matrix U from Lemma 3.3, then n−k−1 ones. Let x(i, j)
denote the (i, j)th entry of the random matrix V ∗ZV . If we write

T =
∑

1≤i<j≤n
t(i, j)⊗ e(i, j;n)

then

x(i, j) = 0 if i > j

x(i, i) = d(i) if i �∈ {k, k + 1}
x(k, k) = d(k + 1)

x(k + 1, k + 1) = d(k)
x(k, k + 1) = t(k, k + 1) .

Let (
u11 u12
u21 u22

)
= U
(
d(k)(ω), t(k, k + 1)(ω), d(k + 1)(ω)

)
.

If i < k then

x(i, k) = t(i, k)u11 + t(i, k + 1)u21
x(i, k + 1) = t(i, k)u12 + t(i, k + 1)u22

and if j > k + 1 then

x(k, j) = u11t(k, j) + u21t(k + 1, j)
x(k + 1, j) = u12t(k, j) + u22t(k + 1, j) .

In order to show that V ∗ZV and Zπ have the same distribution, it is thus
enough to show
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(a) (x(i, j))1≤i<j≤n is an independent family of complex (0, 1/n)-Gaussian
random variables;

(b) {x(i, i) | 1 ≤ i ≤ n} and {x(i, j) | 1 ≤ i < j ≤ n} are independent
sets of random variables.

From the facts that{
d(i)

∣∣ 1 ≤ i ≤ n
}
∪
{
t(k, k + 1)

}
and

{
t(i, j)

∣∣ 1 ≤ i < j ≤ n, (i, j) �= (k, k + 1)
}

(19)
are independent sets of random variables, each t(i, j) is complex (0, 1/n)-
Gaussian and U is everywhere unitary and is independent of the lower set
in (19), we see that (

x(i, j)
)
1≤i<j≤n, (i,j)
=(k,k+1)

(20)

is an independent family of complex (0, 1/n)-Gaussian random variables.
Moreover, the joint distribution of the family (20) is not changed by con-
ditioning on the values of d(1), . . . , d(n), t(k, k + 1). Hence{

d(i)
∣∣ 1 ≤ i ≤ n} ∪ {t(k, k + 1)

}
and

{
x(i, j)

∣∣ 1 ≤ i < j ≤ n , (i, j) �= (k, k + 1)
}

are independent sets of random variables. But this implies that (a) and (b)
hold. ✷

Lemma 3.5. Let D ∈ Mn be a diagonal random matrix, let T ∈
UTGRM(n, 1/n) and let Z = D + T . Let µ be the joint distribution
of the n random variables, d(1), d(2), . . . , d(n), in that order. For every
permutation π of {1, . . . , n} let µπ be the joint distribution of the random
variables, d(π(1)), d(π(2)), . . . , d(π(n)), in that order. Let A be a nonempty
set of permutations of {1, . . . , n} and let |A| denote the cardinality of A.
Consider the measure on Cn,

µ̃ = 1
|A|
∑
π∈A

µπ .

Let d̃(1), d̃(2), . . . , d̃(n) ∈ L be random variables whose joint distribution is
µ̃ and such that{

d̃(i)
∣∣ 1 ≤ i ≤ n

}
and

{
t(i, j)

∣∣ 1 ≤ i < j ≤ n
}

are independent sets of random variables. Let

D̃ =
n∑
i=1

d̃(i)⊗ e(i, i;n) ∈ Mn

and let Z̃ = D̃ + T (n). Then Z and Z̃ have the same ∗-moments with
respect to τn.
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Proof. We may introduce a uniformly distributed A-valued random vari-
able, σ, that is independent of D. Then D̃ has the same distribution as the
random matrix, Dσ, which at a point ω ∈ Ω takes the value

Dσ(ω) =
n∑
i=1

d(σ(ω)(i))(ω) ⊗ e(i, i;n) .

Now each ∗-moment of Dσ is the average over π ∈ A of the corresponding
∗-moments of the matrices Dπ described in (18). By Lemma 3.4, each of
these is in turn equal to the corresponding ∗-moment of D. ✷

Now we combine Theorem 3.2 and Lemma 3.5 to obtain this section’s
main result.

Theorem 3.6. For each n ∈ N let D1(n),D2(n) ∈ Mn be diagonal ran-
dom matrices, let T (n) ∈ UTGRM(n, 1/n) and let Zι(n) = Dι(n) + T (n),
(ι = 1, 2). Suppose that Z1(n) converges in ∗-moments as n → ∞. For ι ∈
{1, 2} and n ∈ N let ν

(n)
ι be the measure on Cn that is the joint distribution

of the n diagonal entries ofDι(n), and let ν̃
(n)
ι be the symmetrization of ν

(n)
ι .

Suppose that for every p ∈ N and every r(1), s(1), . . . , r(p), s(p) ∈ N ∪ {0},

lim
n→∞

(∫
Cn

λ
r(1)
1 λ1

s(1)
λ
r(2)
2 λ2

s(2) · · ·λr(p)p λp
s(p)dν̃(n)1 (λ1, . . . , λn)

−
∫
Cn

λ
r(1)
1 λ1

s(1)
λ
r(2)
2 λ2

s(2) · · ·λr(p)p λp
s(p)dν̃(n)2 (λ1, . . . , λn)

)
= 0 .

Then also Z2(n) converges in ∗-moments as n → ∞, and its limit ∗-moments
are the same as those of Z1(n).

4 Asymptotically Free Random Matrices

This section concerns asymptotic freeness of self-adjoint i.i.d. Gaussian ran-
dom matrices Y (t, n) and certain diagonal random matrices that are inde-
pendent of the Y (t, n). Voiculescu, in his pioneering paper [V2], proved
asymptotic freeness of such Y (t, n) and constant diagonal matrices. Briefly
stated, our innovation is to let the diagonal matrices be random. (See [Dy1]
and [V3] for some other generalizations.) Using a technique based on the
polar decomposition, Voiculescu parlayed his asymptotic freeness results
for Gaussian random matrices into asymptotic freeness results for Haar dis-
tributed random unitary matrices. In a similar way we prove asymptotic
freeness of Haar distributed random unitaries U(r, n) and certain diagonal
random matrices that are independent of the U(r, n). Finally, this sec-
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tion culminates in a result (Theorem 4.6) about matrix models for (∗-free
families of) certain R-diagonal elements.

See Notation 3.1 for details of some terms used below.
Notation 4.1. (i) For a random matrix X ∈ Mn, we will write X ∈
GRM(n, σ2) (the acronym is for “Gaussian random matrix”) if the entries
xij of X (1 ≤ i, j ≤ n) satisfy that (xij)1≤i,j≤n is an independent family
of random variables, each of which is complex (0, σ2)-Gaussian. Thus X ∈
GRM(n, σ2) if and only if X has density (πσ2)−n

2
exp
(
− 1

σ2Tr(X∗X)
)
with

respect to Lebesgue measure on Mn(C).
(ii) Given Y ∈ Mn and σ2 > 0, we will write Y ∈ SGRM(n, σ2) (“self-

adjoint Gaussian random matrix”) if the entries yij of Y (1 ≤ i, j ≤ n)
satisfy that yij = yji for all i and j, that yij is complex (0, σ2)-Gaussian if
i �= j and is real (0, σ2)-Gaussian if i = j and that (yij)1≤i≤j≤n is an inde-
pendent family of random variables. Thus Y ∈ SGRM(n, σ2) if and only
if Y has density (πσ2)−n

2/2 exp
(
− 1

σ2Tr(Y ∗Y )
)
with respect to Lebesgue

measure on Ms.a.
n .

(iii) Given U ∈ Mn, we will write U ∈ HURM(n) (“Haar unitary ran-
dom matrix”) if U is a random unitary matrix distributed according to
Haar measure on the n× n unitary matrices.

We begin with a preliminary result that is essentially just a combination
of Theorems 2.1 and 2.2 of [V2], in the case of random diagonal matrices.
Lemma 4.2. Let S and T be sets. For any n ∈ N let Y (s, n) ∈
SGRM(n, 1/n) (s∈S), and consider diagonal randommatricesD(t, n) ∈ Mn

(t ∈ T ). Suppose that for some t0 ∈ T , D(t0, n) = In (n ∈ N), that
{D(t, n) | t ∈ T} is closed under multiplication (n ∈ N) and that {D(t, n) |
t ∈ T} converges in moments as n → ∞. Suppose that for every n ∈ N(

{D(t, n) | t ∈ T}, ({Y (s, n)})s∈S
)

(21)

is an independent family of sets of matrix-valued random variables.
Finally, suppose that for every m ∈ N, every s1, . . . , sm ∈ S and every
t1, . . . , tm ∈ T , the quantity∣∣τn(Y (s1, n)D(t1, n) · · · Y (sm, n)D(tm, n))

∣∣ (22)

remains bounded as n → ∞. Then the following are equivalent:

(i) The family (21) of sets of noncommutative random variables is asymp-
totically free as n → ∞.

(ii) Whenever m ∈ N is even, t1, . . . , tm ∈ T are fixed and α : {1, . . . ,m}
→ S is such that for every s ∈ S, α−1(s) has either two or zero
elements,
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(a) if α(1) = α(2) then

lim
n→∞

(
τn(Y (α(1), n)D(t1, n)Y (α(2), n)D(t2, n) · · · Y (α(m), n)D(tm, n))

−τn(D(t1, n))τn(D(t2, n)Y (α(3), n)D(t3, n) · · · Y (α(m), n)D(tm, n))
)
= 0

(b) if α(p) �= α(p+ 1) for every 1 ≤ p ≤ m− 1 and if α(m) �= α(1)
then

lim
n→∞

τn
(
Y (α(1), n)D(t1, n)Y (α(2), n)D(t2, n) · · ·Y (α(m), n)D(tm, n)

)
= 0 .

Proof. We may without loss of generality suppose S = N and T = N.
The implication (i) =⇒ (ii) follows from the last paragraph of [V2, 2.1]
and the fact that the limit moments of each Y (s, n) are those of a centered
semicircle law with second moment 1.

To show (ii) =⇒ (i) we will use [V2, 2.1] and an idea from the proof
of [V2, 2.2]. Let ω be a nontrivial ultrafilter on N. On the algebra,
C〈(Ts)s∈N, (At)t∈N〉, of polynomials in noncommuting variables (Ts)s∈N

and (At)t∈N, let φω be the tracial linear functional defined by φω(p) =
limn→ω τn(πn(p)), where πn : C〈(Ts)s∈N, (At)t∈N〉 → Mn is the algebra ho-
momorphism defined by πn(Ts) = Y (s, n) and πn(At) = D(t, n). Let ∆ de-
note the subalgebra ofC〈(Ts)s∈N, (At)t∈N〉 generated by 1 and {At | t ∈ N}.
We will check that the conditions 1◦ and 2◦ of [V2, 2.1] hold for the sequence
(Ts)s∈N and the subalgebra ∆ with respect to φω. Note that every element
of ∆ is a linear combination of words of the form At1At2 · · ·Atk and that
πn(At1At2 · · ·Atk) = D(t, n) for some t ∈ N. Moreover, πn(1) = D(1, n).
Therefore πn(∆) = span {D(t, n) | t ∈ N} and hence condition 1◦ of [V2,
2.1] follows from the boundedness of (22) as n → ∞.

To see that condition 2◦a of [V2, 2.1] holds, it suffices to see that if
m ∈ N and if α : {1, . . . ,m} → N is such that α−1({α(1)}) has only one
element and if t1, . . . , tm ∈ N then, ∀n ∈ N,
τn
(
Y (α(1), n)D(t1, n)Y (α(2), n)D(t2, n) · · ·Y (α(m), n)D(tm, n)

)
= 0 .

(23)
But this follows from the independence of Y (α(1), n) from all the other
matrices appearing in (23) and the fact that all entries of Y (α(1), n) have
expectation zero.

Now conditions 2◦b and 2◦c of [V2, 2.1] follow from the hypotheses 2(a)
and 2(b). Therefore, by [V2, 2.1], given an injection β : N × N → N and
defining

Xm,k = k−1/2
k∑

j=1

Tβ(m,j) ,
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the family of sets of noncommutative random variables,(
∆, ({Xm,k})∞m=1

)
is asymptotically free with respect to φω as k → ∞. However, using the
Gaussianity of the entries of the Y (s, n), we see that for every k ∈ N,
(∆, ({Xm,k})∞m=1) has the same moments as (∆, ({Tm})∞m=1). Hence
(∆, ({Tm})∞m=1) is free with respect to φω. Since ω was arbitrary, and
since each Y (s, n) converges in moments as n → ∞, this implies that(

{D(t, n) | t ∈ N}, ({Y (s, n)})s∈N

)
is asymptotically free as n → ∞. ✷

Theorem 4.3. Let S and T be sets. For s ∈ S and n ∈ N let Y (s, n) ∈
SGRM(n, 1/n). For t ∈ T and n ∈ N let

D(t, n) =
n∑
i=1

d(i;n, t)⊗ e(i, i;n) ∈ Mn

be a diagonal random matrix, and suppose, for some t and every n,
D(1, n) = In, that {D(t, n) | t ∈ T} is closed under multiplication and
that {D(t, n) | t ∈ T} converges in moments as n → ∞. Suppose that for
every n ∈ N (

{D(t, n) | t ∈ T}, ({Y (s, n)})s∈S
)

is an independent family of sets of matrix-valued random variables. Assume
further that

(i) for every t ∈ T and every 1 ≤ p < ∞,

sup
n∈N
1≤i≤n

‖d(i;n, t)‖p < ∞ ;

(ii) for every m,n ∈ N, m ≤ n, every t1, . . . , tm ∈ T and every permuta-
tion, σ, of {1, . . . , n}, the joint distribution of(

d(1;n, t1), d(2;n, t2), . . . , d(m;n, tm)
)

is equal to the joint distribution of(
d(σ(1);n, t1), d(σ(2);n, t2), . . . , d(σ(m);n, tm)

)
;

(iii) for every p ∈ N, every t1, . . . , tp ∈ T and every p-tuple, (i1, . . . , ip),
of distinct, positive integers, we have

lim
n→∞

(
E
(
d(i1;n, t1)d(i2;n, t2) · · · d(ip;n, tp)

)
−

p∏
j=1

E(d(ij ;n, tj))
)

= 0 .
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Then the family (
{D(t, n) | t ∈ T},

(
{Y (s, n)}

)
s∈S
)

of sets of random variables converges in moments and is asymptotically free
as n → ∞.

Proof. We will apply Lemma 4.2. Let us first show that the quantity (22)
remains bounded as n → ∞. Write a(i, j;n, s) for the (i, j)th entry of
Y (s, n). We have

τn
(
Y (s1, n)D(t1, n) · · ·Y (sm, n)D(tm, n)

)
= n−1

∑
i1,...,im∈{1,...,n}

E
(
d(i1;n, t1)d(i2;n, t2) · · · d(im;n, tm)

)
·E
(
a(i0, i1;n, s1)a(i1, i2;n, s2) · · · a(im−1, im;n, sm)

)
, (24)

where i0 = im. Using the generalized Hölder inequality, we have∣∣E(d(i1;n, t1) · · · d(im;n, tm))
∣∣ ≤ ∥∥d(i1;n, t1) · · · d(im;n, tm)

∥∥
1

≤
m∏
j=1

∥∥d(ij ;n, tj)∥∥m .
(25)

But by the assumption (i), there is c2 > 0 such that

∀n ∈ N ∀i1, . . . , im ∈ {1, . . . , n} ,
m∏
j=1

∥∥d(ij ;n, tj)∥∥m ≤ c2 . (26)

Now consider

E
(
a(i0, i1;n, s1)a(i1, i2;n, s2) · · · a(im−1, im;n, sm)

)
. (27)

From the nature of the entries a(i, j;n, s), we see that the quantity (27)
can be nonzero only if there is a bijection γ : {1, . . . ,m} → {1, . . . ,m} such
that γ2 = id, γ has no fixed points and

∀j ∈ {1, . . . ,m}, sj = sγ(j), ij = iγ(j)−1, ij−1 = iγ(j).

One also calculates∣∣E(a(i0, i1;n, s1)a(i1, i2;n, s2) · · · a(im−1, im;n, sm))
∣∣

≤
m∏
j=1

‖a(ij−1, ij ;n, sj)‖m ≤ n−m/2
(
m
2

)
! .

Let us call a bijection, γ, of {1, . . . ,m} without fixed points such that
γ2 = id, a pairing of {1, . . . ,m} and for every pairing γ let

Θ(γ) =
{
(i1,...,im)∈{1,...,n}m

∣∣ ∀j∈{1,...,m} , ij = iγ(j)−1 , ij−1 = iγ(j)
}
.
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From the above estimates we obtain∣∣τn(Y (s1, n)D(t1, n) · · ·Y (sm, n)D(tm, n))
∣∣ ≤ c2

(
m
2

)
!n−(m

2
+1)
∑
γ

|Θ(γ)| ,

(28)

where the sum is over all pairings, γ of {1, . . . ,m}. To each pairing we as-
sociate the quotient graph, Gγ , of the clockwise oriented m-gon graph ob-
tained by identifying with opposite orientation each pair of jth and γ(j)th
edges. The resulting graph has m/2 edges, hence at most m

2 + 1 ver-
tices. Consequently |Θ(γ)| ≤ n

m
2
+1, and the quantity in (28) is bounded

by c2
(
m
2

)
! times the number of pairings, which is finite and independent

of n. This shows that the quantities (22) remain bounded as n→ ∞.
We now show that (ii-a) and (ii-b) of Lemma 4.2 are satisfied. Let α be

as described there. Then

τn
(
Y (α(1), n)D(t1, n) · · ·Y (α(m), n)D(tm, n)

)
= n−1

∑
i1,...,im∈{1,...,n}

E
(
d(i1;n, t1)d(i2;n, t2) · · · d(im;n, tm)

)
·E
(
a(i0, i1;n, α(1))a(i1, i2;n, α(2)) · · · a(im−1, im;n, α(m))

)
, (29)

where we let i0 = im. Consider the clockwise oriented m-gon graph, label
the edges consecutively e1, e2, . . . , em and the vertices v1, v2, . . . , vm so that
the vertices of the edge ej are vj−1 and vj (mod m). Let G be the quotient
of the m-gon graph obtained by identifying edges j and α(j) with opposite
orientation (1 ≤ j ≤ m). The resulting identification of vertices of the
m-gon graph gives an equivalence relation ∼ on {v1, . . . , vm} whose equiv-
alence classes F1, F2, . . . , Fk(G) are precisely the lists of indices labeling the
k(G) vertices of G. The expression

E
(
a(i0, i1;n, α(1))a(i1, i2;n, α(2)) · · · a(im−1, im;n, α(m))

)
(30)

in (29) is nonzero if and only if whenever 1 ≤ p, q ≤ m and vp ∼ vq
then ip = iq, and then the value of (30) is n−m/2. For each equivalence
class Fj = {vp(1), vp(2), . . . , vp(rj)} of ∼ there is t′j ∈ T so that D(t′j , n) =
D(tp(1), n)D(tp(2), n) · · ·D(tp(rj), n); for p ∈ {1, . . . , n} let d(p;n, t′j) be the
pth diagonal entry of D(t′j , n). Thus

τn
(
Y (α(1), n)D(t1, n) · · ·Y (α(m), n)D(tm, n)

)
= n−(m

2
+1)

∑
p1,...,pk(G)∈{1,...,n}

E
(
d(p1;n, t′1)d(p2;n, t

′
2) · · · d(pk(G);n, t

′
k(G))

)
.

(31)
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Using the Hölder inequality estimate (25) and (26), we see that the terms
E
(
d(p1;n, t′1)d(p2;n, t

′
2) · · · d(pk(G);n, t

′
k(G))

)
in (31) are uniformly bounded in modulus. Moreover, because G has m/2
edges, it follows that k(G) ≤ m

2 + 1. If α satisfies the hypothesis in 2(b) of
Lemma 4.2, then every vertex of the m-gon graph is equivalent to at least
one other vertex, so k(G) ≤ m/2 and the quantity (31) tends to zero as
n → ∞, as required. We have proved that (ii-b) of Lemma 4.2 is satisfied.

Suppose that α satisfies the hypothesis in (ii-a) of Lemma 4.2, namely
that α(1) = α(2). We are interested in the limit of the moment (31) as
n → ∞. As the number of terms in the sum (31) where pi = pj for some
i �= j becomes negligibly small compared to n

m
2
+1 as n → ∞, we may

in (31) sum over only all distinct choices of p1, . . . , pk(G) ∈ {1, . . . , n}. The
assumption α(1) = α(2) implies that v1 is not equivalent to any other vertex
under ∼. Therefore, renumbering if necessary, we may take F1 = {v1} and
hence t′1 = t1. By hypotheses (ii) and (iii), we have that

δn
def=E
(
d(p1;n, t′1)d(p2;n, t

′
2) · · · d(pk(G);n, t

′
k(G))

)
−E
(
d(p1;n, t1)

)
E
(
d(p2;n, t′2) · · · d(pk(G);n, t

′
k(G))

)
is independent of the choice of distinct p1, . . . , pk(G) ∈ {1, . . . , n} and that
δn → 0 as n→ ∞. Moreover, an analysis of the quotient graph G similar to
that used to obtain (31), and keeping the same notation as in (31), shows
that

τn
(
D(t2, n)Y (α(3), n)D(t3, n) · · · Y (α(m), n)D(tm, n)

)
= n−m/2

∑
p2,...,pk(G)∈{1,...,n}

E
(
d(p2;n, t′2) · · · d(pk(G);n, t

′
k(G))

)
.

But then

n−(m
2
+1)

∑
p1,...,pk(G)∈{1,...,n}

E
(
d(p1;n, t1)

)
E
(
d(p2;n, t′2) · · · d(pk(G);n, t

′
k(G))

)
=
(
n−1

n∑
p1=1

E
(
d(p1;n, t1)

))
·
(
n−m/2

∑
p2,...,pk(G)∈{1,...,n}

E
(
d(p2;n, t′2) · · · d(pk(G);n, t

′
k(G))

))
= τn

(
D(t1, n)

)
τn
(
D(t2, n)Y (α(3), n)D(t3, n) · · ·Y (α(m), n)D(tm, n)

)
.

Taking the limit as n → ∞, we can at will require pj ’s to be distinct and
then relax this requirement; using that δn → 0, we obtain the conclusion
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of (ii-a) of Lemma 4.2. ✷

Following Voiculescu’s proof [V2, Theorem 3.8], we will use polar de-
composition to extend the asymptotic freeness result of Theorem 4.3 to
include also Haar distributed random unitary matrices.
Theorem 4.4. Let R, S and T be sets. For every n ∈ N and s ∈ S
let Z(s, n) ∈ GRM(n, 1/n) and for every r ∈ R let U(r, n) ∈ HURM(n);
furthermore, for every t ∈ T let

D(t, n) =
n∑
i=1

d(i;n, t)⊗ e(i, i;n) ∈ Mn

be diagnoal random matrices such that the family (D(t, n))t∈T is closed
under multiplication and converges in moments as n → ∞; assume fur-
ther that the entries d(i;n, t) satisfy the conditions (i), (ii) and (iii) of the
statement of Theorem 4.3. Suppose that(

({Z(s, n)})s∈S , ({U(r, n)})r∈R, {D(t, n) | t ∈ T}
)

(32)
is an independent family of sets of matrix-valued random variables. Then
the family(

({Z(s, n)∗, Z(s, n)})s∈S , ({U(r, n)∗, U(r, n)})r∈R, {D(t, n) | t ∈ T}
)

(33)
of sets of noncommutative random variables converges in moments and is
asymptotically free as n → ∞. Furthermore, each Z(s, n) converges in ∗-
moments to a circular element and each U(r, n) converges in ∗-moments to
a Haar unitary, as n → ∞.

Proof. We shall use Theorem 4.3 and adapt the proof of [V2, Theorem 3.8]
to our situation.
Claim 4.4.1. The family(

({Z(s, n)∗, Z(s, n)})s∈S , {D(t, n) | t ∈ T}
)

of sets of random variables is asymptotically free as n → ∞.

Proof. With
Re Z(s, n) = (Z(s, n) + Z(s, n)∗)/2
Im Z(s, n) = (Z(s, n)− Z(s, n)∗)/2i ,

each of Re Z(s, n) and Im Z(s, n) is in SGRM(n, 1/2n) and(
({Re Z(s, n)})s∈S , ({Im Z(s, n)})s∈S , {D(t, n) | t ∈ T}

)
(34)

is an independent family of sets of matrix-valued random variables. Thus,
by Theorem 4.3, each Re Z(s, n) and each Im Z(s, n) converges in moments
to a semicircular element and the family (34) is asymptotically free as
n → ∞. This proves Claim 4.4.1. ✷
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Now take W (r, n) ∈ GRM(n, 1/n) so that(
({W (r, n)})r∈R, ({Z(s, n)})s∈S , {D(t, n) | t ∈ T}

)
is an independent family of sets of matrix-valued random variables. By
Claim 4.4.1,(

({W (r, n)∗,W (r, n)})r∈R, ({Z(s, n)∗, Z(s, n)})s∈S , {D(t, n) | t ∈ T}
)
(35)

is asymptotically free as n → ∞. IfW (r, n) = V
(
W (r, n)∗W (r, n)

)1/2 is the
polar decomposition ofW (r, n), then V is almost everywhere a unitary, and
is distributed according to Haar measure on the group of n × n unitaries.
Therefore, letting U(r, n) be the polar part, V , of W (r, n), these random
unitary matrices satisfy the hypotheses of the theorem. We will follow the
proof of [V2, Theorem 3.8] to show the asymptotic freeness of (33).

For ε > 0 let Yε(r, n) = W (r, n)(ε+W (r, n)∗W (r, n))−1/2.

Claim 4.4.2. For every ε > 0, the family(
({Yε(r, n)∗, Yε(r, n)})r∈R, ({Z(s, n)∗, Z(s, n)})s∈S , {D(t, n) | t ∈ T}

)
(36)

is asymptotically free as n → ∞.

Proof. Given A ∈ Mn and 1 ≤ p < ∞, let |A|p = (τn(A∗A)p/2)1/p; more-
over, let |A|∞ be the essential supremum of the operator norm of A evalu-
ated at points of the underlying probability space. Let q be a noncommuta-
tive monomial in d = 2a+2b+ c variables (for nonnegative integers a, b, c),
with coefficient equal to 1. Let 0 < δ ≤ 1. By Step I of the proof of [V2,
3.8], letting f be the function f(t) = (ε+ t)−1/2, there is a polynomial Qδ

such that, letting

Aδ(r, n) = W (r, n)Qδ

(
W (r, n)∗W (r, n)

)
,

we have

lim sup
n→∞

|Aδ(r, n)− Yε(r, n)|d < δ .

Because |Yε(r, n)|d ≤ |Yε(r, n)|∞ ≤ 1, it follows that |Aδ(r, n)|d < 1 + δ.
The assumption (i) of Theorem 4.3 on the entries of D(t, n) implies that

for all p ≥ 1 and for all t ∈ T , supn∈N |D(t, n)|p < ∞. Moreover, the conver-
gence in ∗-moments as n → ∞ of Z(s, n) implies that supn≥1 |Z(s, n)|p < ∞
whenever p is an even integer; however, as |Z(s, n)|p is increasing in p, this
holds for all 1 ≤ p < ∞. Fix r1, . . . , ra ∈ R, s1, . . . , sb ∈ S, t1, . . . , tc ∈ T ,
and let
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R1(n, ε) = q
(
(Yε(ri, n)∗)ai=1, (Yε(ri,n))

a
i=1, (Z(si,n)

∗)bi=1,

(Z(si,n))bi=1, (D(ti,n))ci=1

)
R2(n, ε, δ) = q

(
(Aδ(ri, n)∗)ai=1, (Aδ(ri, n))ai=1, (Z(si, n)

∗)bi=1,

(Z(si, n))bi=1, (D(ti, n))ci=1

)
.

We may choose a constant K independent of δ and large enough so that
∀i ∈ {1, . . . , b} lim sup

n→∞

∣∣Z(si, n)∣∣d < K , (37)

∀i ∈ {1, . . . , c} lim sup
n→∞

∣∣D(ti, n)
∣∣
d
< K . (38)

Using Hölder’s inequality we find
lim sup
n→∞

∣∣R1(n, ε)−R2(n, ε, δ)
∣∣
1
≤ 2aK2b+c(1 + δ)2a−1δ ,

and therefore
lim
δ→0

lim sup
n→∞

∣∣τn(R1(n, ε))− τn(R2(n, ε, δ))
∣∣ = 0 . (39)

The asymptotic freeness of(
({Aδ(r, n)∗, Aδ(r, n)})r∈R, ({Z(s, n)∗, Z(s, n)})s∈S , {D(t, n) | t ∈ T}

)
follows from that of (35); this together with (39) implies the asymptotic
freeness of (36), and claim 4.4.2 is proved. ✷

Step III of the proof of [V2, 3.8] shows that for every θ > 0 there is
ε0 > 0 such that

lim sup
n→∞

∣∣Yε(r, n)− U(r, n)
∣∣
d
< θ (40)

whenever 0 < ε ≤ ε0. Let q again be a noncommutative monomial having
coefficient equal to 1 and with degree d = 2a+2b+c, and let r1, . . . , ra ∈ R,
s1, . . . , sb ∈ S, t1, . . . , tc ∈ T . Let

R3(n) = q
(
(U(ri, n)∗)ai=1, (U(ri, n))ai=1, (Z(si, n)

∗)bi=1,

(Z(si, n))bi=1, (D(ti, n))ci=1

)
.

Letting K be a constant so that (37) and (38) hold, we easily see using (40)
and Hölder’s inequality that if 0 < ε ≤ ε0 then

lim sup
n→∞

∣∣R1(n, ε)−R3(n)
∣∣
1
≤ 2aK2b+cθ .

Therefore
lim
ε→0

lim sup
n→∞

∣∣τn(R1(n, ε))− τn(R3(n))
∣∣ = 0 .

This, together with Claim 4.4.2 shows that the family (33) is asymptotically
free as n → ∞ and finishes the proof of the theorem. ✷
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The following sort of result is standard, but a proof is provided here for
completeness.

Lemma 4.5. Let (A,φ) be a W∗-noncommutative probability space, let
B be a unital subalgebra of A, let S be a set and for every s ∈ S let vs ∈ A
be a unitary with φ(vs) = 0. Suppose the family(

B, ({v∗s , vs})s∈S
)

(41)

of |S|+1 sets of noncommutative random variables is free. Then the family

(vsBv∗s)s∈S (42)

of unital subalgebras of A is free.

Proof. From ∗-freeness of B and vs we get φ(vsbv∗s) = φ(b) for every
b ∈ B. Let n ∈ N and let s1, . . . , sn ∈ S be such that sj �= sj+1 for
every j ∈ {1, . . . , n − 1}. For every j ∈ {1, . . . , n} let bj ∈ B be such that
φ(bj) = 0. In order for freeness of (42) to hold, it will suffice that

φ
(
(vs1b1v

∗
s1)(vs2b2v

∗
s2) · · · (vsnbnv

∗
sn
)
)
= 0.

But the above equality follows directly from freeness of (41). ✷

Now we apply the asymptotic freeness results proved previously in this
section to give some matrix models for (∗-free families of) R-diagonal ele-
ments.

Theorem 4.6. Let S be a set and for every s ∈ S let Xs(n) ∈ Mn

and let σs,n be the symmetrized joint distribution of the eigenvalues of

(X∗
s (n)Xs(n))1/2. Given p ∈ {1, . . . , n}, let σ(p)s,n be the marginal distribu-

tion of σs,n corresponding to p of the variables. Suppose that for a com-

pactly supported measure ρs on R+ and for every p ∈ N, σ
(p)
s,n converges in

moments as n → ∞ to the product measure ×p
1 ρs. Suppose also that for

any non-random n× n unitary matrix U , the distributions of UXs(n) and
of Xs(n) are the same.

(i) Fix s ∈ S. Then Xs(n) converges in ∗-moments to an element ushs
of a noncommutative probability space, where us is a Haar unitary,
hs ≥ 0, hs has the same moments as the measure ρs and where the
pair ({us, u∗s}, {hs}) of sets of noncommutative random variables is
free.

(ii) Suppose in addition that

(Xs(n))s∈S (43)
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is a mutually independent family of matrix-valued random variables
and that the joint ∗-moments of (43) are the same as the joint ∗-
moments of (

U (1)
s Xs(n)U (2)

s

)
s∈S (44)

whenever U
(1)
s and U

(2)
s are non-random unitary matrices (s ∈ S).

Then the family (43) is asymptotically ∗-free as n → ∞.

Proof. For brevity we shall prove parts (i) and (ii) simultaneously; while
proving (i), we may from the outset assume that the stronger hypotheses
of (ii) hold, because if we require S to be a single element then they will
in any case be satisfied. We may write Xs(n) = Vs(n)Hs(n) where Vs(n) is
a random unitary matrix and Hs(n) =

(
Xs(n)∗Xs(n)

)1/2. For every s ∈ S
let Ws(n) be a random unitary matrix so that Ds(n) = Ws(n)∗Hs(n)Ws(n)
is diagonal, so that the joint distribution of the diagonal entries of Ds(n)
is invariant under all permutations of the n variables and so that(

{Ds(n), Vs(n),Ws(n)}
)
s∈S

is a mutually independent family of sets of matrix-valued random variables.
Let U (1)

s (n), U (2)
s (n) ∈ HURM(n) be such that(

({Hs(n), Vs(n),Ws(n)})s∈S, ({U (1)
s (n)})s∈S, ({U (2)

s (n)})s∈S
)

is a mutually independent family of sets of matrix-valued random variables.
It follows from the hypotheses of (ii) that(

U (1)
s (n)Xs(n)U (2)

s (n)
)
s∈S

has the same joint ∗-moments as the family (43). We have

U (1)
s (n)Xs(n)U (2)

s (n)

=
(
U (1)
s (n)Vs(n)U (2)

s (n)
)(
U (2)
s (n)∗Ws(n)Ds(n)Ws(n)∗U (2)

s (n)
)
.

Let

Ṽs(n) = U (1)
s (n)Vs(n)U (2)

s (n)

W̃s(n) = U (2)
s (n)∗Ws(n) .

Then Ṽs(n), W̃s(n) ∈ HURM(n) and(
(Ds(n))s∈S, (Ṽs(n))s∈S, (W̃s(n))s∈S

)
(45)

is an independent family of matrix-valued random variables.
Let

∆(n) = {In} ∪ {Ds1(n)Ds2(n) · · ·Dsq(n) | q ∈ N, s1, . . . , sq ∈ S} .
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By hypothesis, each Ds(n) converges in moments as n → ∞. Since ∆(n)
forms a commuting family of self-adjoint random matrices, and since the
family (

Ds(n)
)
s∈S, (46)

is independent, it follows that ∆(n) converges in moments as n → ∞; more-
over, the subfamily (46) converges in ∗-moments to a family (ds)s∈S is some
W∗-noncommutative probability space (A,φ), where ds is positive and has
the same moments as the measure σs, and where for distinct s1, . . . , sm ∈ S
and any k1, . . . , km ∈ N,

φ(dk1
s1d

k2
s2 · · · d

km
sm

) =
m∏
j=1

φ(dkj
sj ). (47)

We shall show that the entries of the set ∆(n) of diagonal random matrices
satisfy the properties (i), (ii) and (iii) in the statement of Theorem 4.3. Let
ds(i, n) denote the ith diagonal entry of Ds(n). Note that E(ds(i, n)k) stays
bounded (in fact converges) as n → ∞, for every k ∈ N and s ∈ S. This,
together with the independence of the family (46), implies condition (i).
Condition (ii) follows from the independence of (46) and the fact that
the joint distribution of the diagonal entries of each Ds(n) is invariant
under permutations of the n variables. Because σ(p)s,n converges to a product
measure, we have for every s ∈ S, m ∈ N, k1, . . . , km ∈ N and every p-tuple
(i1, i2, . . . , im) of distinct, positive integers, that

lim
n→∞

(
E
(
ds(i1, n)k1ds(i2, n)k2 · · · ds(im, n)km

)
−

m∏
j=1

E(ds(ij , n)kj )
)

= 0 .

This together with the independence of (46) implies condition (iii). Hence
we conclude from Theorem 4.4 that(

{Ds(n) | s ∈ S}, ({Ṽs(n)∗, Ṽs(n)})s∈S, ({W̃s(n)∗, W̃s(n)})s∈S
)

is asymptotically free as n → ∞. Therefore the family (45) converges in
∗-moments to a family (

(ds)s∈S, (vs)s∈S, (ws)s∈S
)

in some W∗-noncommutative probability space, where the joint ∗-moments
of (ds)s∈S are as described above, where each vs and each ws is a Haar
unitary and where(

{ds | s ∈ S}, ({v∗s , vs})s∈S, ({w∗
s , ws})s∈S

)
(48)

is free. Therefore, the family (43) converges in ∗-moments as n → ∞ to
the family (

vs(wsdsw
∗
s)
)
s∈S .
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It is clear that wsdsw
∗
s has the same moments as ds, namely the same

moments as the measure σs. From the freeness of (48) and Lemma 4.5, it
follows that the family (

(vs)s∈S, (wsdsw
∗
s)s∈S

)
is ∗-free, and the theorem is proved. ✷

5 Upper triangular Representations of Circular Free
Poisson Elements

In this section, the random matrix results of §3 and §4 are used, together
with results of Dyson and others, to give upper triangular matrix models
of circular free Poisson elements, and finally to give an upper triangular
realization of a circular free Poisson element. An outline of the contents of
this section is as follows: a first intermediate goal is a unitarily invariant
matrix model for a circular free Poisson element (Theorem 5.4); next, a
result of Dyson is quoted (Theorem 5.5) and used to convert the unitarily
invariant matrix model to an upper triangular matrix model for a circular
free Poisson element (Corollary 5.6); then the diagonal elements of this
upper triangular matrix model are decoupled and desymmetrized so as to
yield, in the limit as matrix size increases without bound, a triangular
realization of a circular free Poisson element (Theorem 5.10).

The following is due to Bronk [B]; see also [HT, §5].
Theorem 5.1. Let c ≥ 1 and let Y be an n × n random matrix whose
density with respect to Lebesgue measure on Mn(C) is

K(1)
c,n |detY |2(c−1)n exp

(
− nTr(Y ∗Y )

)
,

where K
(1)
c,n is a constant. Then the symmetrized joint distribution of the

eigenvalues of Y ∗Y has density

K(2)
c,n

( n∏
i=1

λi

)2(c−1)n( ∏
1≤i<j≤n

(λi − λj)2
)
exp
(
− n

n∑
i=1

λi

)
(49)

with respect to Lebesgue measure on (R+)n, where K
(2)
c,n is a constant.

The next theorem is a corollary of a result of Hewitt and Savage [HeS].
Theorem 5.2. Let (Ω,E) be a standard Borel space. Let σ be a Borel
probability measure on the product set ΩN =

∏∞
n=1Ω endowed with the

product topology. Let σ1 and σ2 be the probability measures on Ω and
Ω×Ω, respectively, determined by

σ1(A) = σ(A×Ω×Ω× · · · ) , A ∈ E
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σ2(A1 ×A2) = σ(A1 ×A2 × Ω× Ω× · · · ) , A1, A2 ∈ E .

Suppose that

(i) σ is invariant under all finite permutations of coordinates in ΩN (i.e.
those permutations leaving all but finitely many coordinates fixed);

(ii) σ2 = σ1 × σ1.

Then σ is equal to the product measure ×∞
n=1 σ1.

Proof. Since any noncountable standard Borel space is Borel isomorphic to
the unit interval, and since (N, 2N) is Borel isomorphic to the one-point
compactification of N, it is no loss of generality to assume that Ω is a
separable compact Hausdorff space and E is the Borel σ-algebra associated
to this topology.

For any compact set K, let P (K) denote the set of Borel probability
measures on K. Consider the following subsets of P (ΩN):

P̃ =
{ ∞

×
n=1

µ | µ ∈ P (Ω)
}
,

S̃ =
{
ν ∈ P (ΩN) | ν is invariant under all finite permutations

of the coordinates of ΩN
}
.

Clearly P̃ ⊆ S̃. By [HeS, Theorem 7.2], every ν ∈ S̃ has a representation

ν =
∫
P (Ω)

( ∞
×
n=1

µ
)
dρ(µ) ,

for a unique ρ ∈ P (P (Ω)). In fact (see [S, Theorem 3.1]), P̃ is the set of
extreme points of the compact simplex S̃.

Now let σ be as in the formulation of the theorem. Using hypothesis (i)
we have

σ =
∫
P (Ω)

( ∞
×
n=1

µ
)
dρ(µ)

for a unique ρ ∈ P (P (Ω)). In particular

σ1 =
∫
P (Ω)

µ dρ(µ) and σ2 =
∫
P (Ω)

(µ× µ) dρ(µ) .

By the assumption on Ω, the space C(Ω) of complex valued continuous
functions on Ω is a separable Banach space (in the uniform norm), so we
may let F be a countable dense subset of C(Ω). Given f ∈ C(Ω) and
λ ∈ P (Ω) let us write

λ(f) =
∫
Ω
fdλ .
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With this notation, we have for all f ∈ F ,∫
P (Ω)

|µ(f)− σ1(f)|2dρ(µ)

=
∫
P (Ω)

(µ× µ)(f ⊗ f)dρ(µ)− 2Re
(
σ1(f)

∫
P (Ω)

µ(f)dρ(µ)
)
+ |σ1(f)|2

= σ2(f ⊗ f)− 2Re
(
σ1(f)σ1(f)

)
+ |σ1(f)|2

= σ2(f ⊗ f)− |σ1(f)|2 .
But hypothesis (ii) shows that the above quantity is zero. Hence µ(f) =
σ1(f) for all f ∈ F , for ρ-almost all µ ∈ P (Ω). Hence µ = σ1 for ρ-almost
all µ ∈ P (Ω), which implies ρ = δσ1 , the Dirac measure at the point σ1.
Therefore σ = ×∞

n=1 σ1. ✷

Lemma 5.3. Let c ≥ 1. Given n ∈ N let µn be the measure having den-
sity (49) with respect to Lebesgue measure on Rn

+. Given p ∈ {1, 2, . . . , n}
let µ

(p)
n be the marginal distribution of µn corresponding to the variables

λ1, . . . , λp. Fix p ∈ N. Then the distribution µ
(p)
n converges in the weak∗

topology as n → ∞ to the product measure ×p
1 τ , where τ has density with

respect to Lebesgue measure

dτ
dλ

=

√
(λ− a)(b− λ)

2πλ
1[a,b](λ) , (50)

with a = (1−√
c)2 and b = (1+

√
c)2. Moreover, if f is a continuous func-

tion on [0,∞)p with polynomial growth, in the sense that f(t1, . . . , tp) ≤
K(3)(1 + tk1

1 tk2
2 · · · tkp

p ) for some constant K(3) > 0 and positive integers
k1, . . . , kp, then

lim
n→∞

∫
Rp

+

fdµ(p)n =
∫
Rp

+

fd
( p
×
1
τ
)
. (51)

Proof. It will be more convenient to consider the measure σn whose density
with respect to Lebesgue measure on Rn

+ is

K(4)
c,n

( n∏
i=1

λi

)2(c−1)n( ∏
1≤i<j≤n

(λi − λj)2
)
exp
(
−

n∑
i=1

λi

)
,

for some constant K(4)
c,n ; thus σn is the push forward measure of µn under

the transformation (λ1, λ2, . . . ) �→ (nλ1, nλ2, . . . ). We will find the limit
as n → ∞ of the marginal distributions, σ(p)n , of σn corresponding to the
variables λ1, . . . , λp. Let α = 2(c − 1)n and let φ(α)0 , φ

(α)
1 , φ

(α)
2 , · · · be the

polynomials obtained via Gram–Schmidt orthonormalizaton of 1, λ, λ2, . . .



722 K. DYKEMA AND U. HAAGERUP GAFA

in L2([0,∞), λαe−λdλ). Thus φ(α)k (λ) =
√
n!/Γ(α+ n+ 1)Lαk (λ), where

Lαk are the (generalized) Laguerre polynomials. Using the Vandermonde
determinant we have

∏
1≤i<j≤n

(λj − λi) = det


1 1 · · · 1
λ1 λ2 · · · λn
...

...
...

λn−1
1 λn−1

2 · · · λn−1
n



= K(5)
α,n det


φ
(α)
0 (λ1) φ

(α)
0 (λ2) · · · φ

(α)
0 (λn)

φ
(α)
1 (λ1) φ

(α)
1 (λ2) · · · φ

(α)
1 (λn)

...
...

...
φ
(α)
n−1(λ1) φ

(α)
n−1(λ2) · · · φ

(α)
n−1(λn)


for some constant K

(5)
α,n. Therefore, the density of σn with respect to

Lebesgue measure on Rn
+ is

Dn(λ1,...,λn) = K(6)
c,n

( n∏
i=1

λi

)α( ∑
π∈Sn

sign(π)
n∏
i=1

φ
(α)
π(i)−1(λi)

)2

exp
(
−

n∑
i=1

λi

)
,

for a constant K(6)
c,n . Writing

n∏
i=1

φ
(α)
π(i)−1(λi) = φ

(α)
π(1)−1(λ1)⊗ φ

(α)
π(2)−1(λ2)⊗ · · · ⊗ φ

(α)
π(n)−1(λn)

and noting that as π ranges over the permutation group Sn these form
an orthonormal family with respect to the measure(∏n

i=1 λi
)α exp(−∑n

i=1 λi
)
dλ1 · · · dλn on Rn

+, we findK
(6)
c,n = (n!)−1. More-

over, the density with respect to Lebesgue measure on R+ of the marginal
distribution σ

(1)
n is

Dn,1(λ1)
def=
∫
Rn−1

+

Dn(λ1, . . . , λn)dλ2 · · · dλn =
1
n

( n−1∑
k=0

φ
(α)
k (λ1)2

)
λα1 e

−λ1 .

But then the treatment in §6 of [HT] shows that µ(1)n converges in the weak∗

topology and in moments as n → ∞ to τ .
The density with respect to Lebesgue measure on R+ of the marginal

distribution σ
(2)
n is

Dn,2(λ1)
def=
∫
Rn−2

+

Dn(λ1, . . . , λn)dλ3 · · · dλn
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=
1

n(n− 1)
(λ1λ2)αe−(λ1+λ2)

·
∑

0≤k,(≤n−1
k 
=(

φ
(α)
k (λ1)φ

(α)
( (λ2)

(
φ
(α)
k (λ1)φ

(α)
( (λ2)− φ

(α)
( (λ1)φ

(α)
k (λ2)

)
=

n

n− 1
Dn,1(λ1)Dn,1(λ2)

− 1
n(n− 1)

(λ1λ2)αe−(λ1+λ2)

( n−1∑
j=0

φ
(α)
j (λ1)φ

(α)
j (λ2)

)2

.

We thus have, as elements of C0(R2
+)∗,

‖σ(2)n − σ(1)n ⊗ σ(1)n ‖ ≤ 1
n− 1

∫ ∞

0

∫ ∞

0
Dn,1(λ1)Dn,1(λ2)dλ1dλ2

+
1

n(n− 1)

n−1∑
j=0

∫ ∞

0

∫ ∞

0
φ
(α)
j (λ1)2φ

(α)
j (λ2)2(λ1λ2)αe−(λ1+λ2)dλ1dλ2

=
2

n− 1
. (52)

Since we know that µ(1)n converges in the weak∗ topology as n → ∞ to τ , it
follows from (52) that µ(2)n converges in weak∗ topology as n → ∞ to τ × τ .

Consider the measures µ̃n = µn × δ0 × δ0 × · · · on [0,∞)N and let ν
be a w∗ cluster point in C0([0,∞)N)∗ of these. Let ν(p) be the marginal
distribution of ν corresponding to the first p coordinates of [0,∞)N. Then
from what we have proved above we have

• ν is invariant under finite permutations of the coordinates in [0,∞)N;
• ν(1) = τ ;
• ν(2) = τ × τ .

Hence, by Theorem 5.2, ν = ×∞
p=1 ν

(1). Since ν was an arbitrary cluster
point of (µ̃n)∞n=1 it follows that µ̃n converges in weak∗ topology to ×∞

p=1 τ as

n → ∞. Therefore, for all p ∈ N, the marginal distribution ν
(p)
n converges

in weak∗ topology to the measure ×p
1 τ as n → ∞.

It remains to show that (51) holds whenever f is of polynomial growth.
Claim 5.3.1. Let p ∈ N and let h be a positive continuous function

on [0,∞)p. Then lim infn→∞
∫
hdµ(p)n ≥

∫
hdν(p).

Proof. Choose hj ∈ C0

(
[0,∞)p

)
, hj ≥ 0, so that hj increases pointwise to

h as j → ∞. Then for all j ≥ 1,

lim inf
n→∞

∫
hdµ(p)n ≥ lim inf

n→∞

∫
hjdµ(p)n =

∫
hjdν(p) .
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But ν(p)=×p
1 ν

(1) is supported on [a, b]p; therefore supj
∫
hjdν(p)=

∫
hdν(p),

and the claim is proved. ✷

Claim 5.3.2. Let p ∈ N and suppose f and g are continuous func-
tions on [0,∞)p satisfying g ≥ 0 and −g ≤ f ≤ g, and suppose that

limn→∞
∫
gdµ(p)n =

∫
gdν(p). Then limn→∞

∫
fdµ(p)n =

∫
fdν(p).

Proof. Applying Claim 5.3.1 to g−f gives lim supn→∞
∫
fdµ(p)n ≤

∫
fdν(p),

while applying Claim 5.3.1 to g + f yields lim infn→∞
∫
fdµ(p)n ≥

∫
fdν(p);

the claim is proved. ✷

In order to finish the proof of the lemma, it will suffice to show

lim
n→∞

∫
λk1
1 λk2

2 · · ·λkp
p dµ(p)n =

∫
λk1
1 λk2

2 · · ·λkp
p dν(p) , (53)

for every p ∈ N and all integers k1, k2, . . . , kp ≥ 0. Letting K = k1 + k1 +
· · · + kp, we have 0 ≤ λk1

1 λk2
2 · · ·λkp

p ≤ 1 + λ(1 + λ(2 + · · · + λ(p. Moreover,

because µ(1)n converges in moments to ν(1), we have

lim
n→∞

∫
(1+λ(1+λ

(
2 + · · ·+ λ(p)dµ

(p)
n = 1+p lim

n→∞

∫
λ(1dµ

(1)
n = 1+p

∫
λ(1dν

(1)

=
∫
(1 + λ(1 + λ(2 + · · ·+ λ(p)dν

(p) .

Now (53) follows from Claim 5.3.2, and the lemma is proved. ✷

Theorem 5.4. Let c ≥ 1 and let Y (n) be an n×n random matrix whose
density with respect to Lebesgue measure on Mn(C) is

K(1)
c,n|detY |2(c−1)n exp

(
−nTr(Y ∗Y )

)
.

Then Y (n) converges in ∗-moments as n → ∞ to a circular free Poisson
element of parameter c.

Proof. Clearly for every non-random n × n unitary matrix U , the distri-
bution of UY (n) is equal to the distribution of Y (n). Let σn be the sym-
metrized joint distribution of the eigenvalues of (Y (n)∗Y (n))1/2 and let
µn be the symmetrized joint distribution of the eigenvalues of Y (n)∗Y (n).
For p ∈ {1, . . . , n} let σ

(p)
n , respectively µ

(p)
n , be the marginal distribu-

tion of σn, respectively µn, corresponding to the first p variables. Given
k1, . . . , kp ∈ N ∪ {0},∫

λk1
1 λk2

2 · · ·λkp
p dσ(p)n (λ1, . . . , λp) =

∫
λ
k1/2
1 λ

k2/2
2 · · ·λkp/2

p dµ(p)n (λ1, . . . , λp) .
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By Theorem 5.1 and Lemma 5.3, it follows that

lim
n→∞

∫
λk1
1 λk2

2 · · ·λkp
p dσ(p)n (λ1, . . . , λp) =

p∏
i=1

∫
λ
ki/2
i dνc(λi) ,

where νc is the free Poisson distribution of parameter c. Therefore σ
(p)
n

converges in moments to ×p
1 ρ, where ρ has density

dρ
dt

=

√
(d21 − t2)(t2 − d20)

πt
1[d0,d1](t) ,

with d0 = 1−
√
c and d1 = 1 +

√
c. Now Theorem 4.6 applies and finishes

the proof. ✷

Every complex n×n matrix A is unitarily conjugate to an upper trian-
gular matrix: A = USU∗, where U is unitary, the (i, j)th entry of S is zero
if i > j and the eigenvalues of A, listed according to generalized multiplic-
ity, may appear in any order down the diagonal of S. If A has n distinct
eigenvalues and if their order on the diagonal of S is specified, then the pair
(U,S) is unique up to replacement by (UD,D∗SD), where D is a diagonal
unitary. Given a random matrix X ∈ Mn, we may ask for a corresponding
random upper triangular matrix S and random unitary matrix U so that
the distribution of USU∗ is equal to the distribution of X. Then X and S
will have the same ∗-moments with respect to the functional τn. For speci-
ficity, we may insist that the distribution of the diagonal entries of S be
symmetric and the joint distribution of the pair (U,S) be the same as the
joint distribution of (UD,D∗SD) for every non-random diagonal unitary D
(i.e. that the joint distribution of (U,S) be invariant under this action of
the n-torus Tn). If the distribution of X is invariant under conjugation
by non-random unitaries and if (U,S) is the pair of random matrices as
described above, then it is clear that the random unitary U is distributed
according to Haar measure on the n × n unitaries and that U and S are
independent. In this case, the relevant question is only the distribution
of S. F. Dyson answered this question when X ∈ GRM(n, 1/n). We state
his result, and then make a slight modification to give, in conjunction with
Theorem 5.4, an upper triangular matrix model for a circular free Poisson
element.
Theorem 5.5 (Dyson, see [M, A.35]). Let T (n) ∈ UTGRM(n, 1/n) and
let D(n) ∈ Mn be a diagonal random matrix, whose diagonal entries have
joint density

K(7)
n exp

(
− n

n∑
i=1

|zi|2
) ∏

1≤i<j≤n
|zi − zj |2 (54)
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with respect to Lebesgue measure on Cn, for some constant K
(7)
n . Let

U(n) ∈ HURM(n), suppose that (D(n), T (n), U(n)) is an independent
family of matrix-valued random variables and let

X(n) = U(n)
(
D(n) + T (n)

)
U(n)∗.

Then X(n) ∈ GRM(n, 1/n). Consequently, D(n) + T (n) converges to a
circular element in ∗-moments as n → ∞.

Corollary 5.6. Let c ≥ 1, let T (n) ∈ UTGRM(n, 1/n) and let
Dc(n) ∈ Mn be a diagonal random matrix, whose diagonal entries have
joint density

K(8)
c,n exp

(
− n

n∑
i=1

|zi|2
)( n∏

i=1

|zi|
)2(c−1)n ∏

1≤i<j≤n
|zi − zj |2

with respect to Lebesgue measure on Cn, for some constant K
(8)
c,n . Let

U(n) ∈ HURM(n), suppose that (Dc(n), T (n), U(n)) is an independent
family of matrix-valued random variables and let

Y (n) = U(n)
(
Dc(n) + T (n)

)
U(n)∗. (55)

Then Y (n) has density with respect to Lebesgue measure on Mn(C) equal
to

K(1)
c,n|detY |2(c−1)n exp

(
−nTr(Y ∗Y )

)
. (56)

Consequently, Dc(n) + T (n) converges, in ∗-moments as n → ∞, to a
circular free Poisson element of parameter c.

Proof. Let Mn be the manifold of matrices in Mn(C) having n distinct
eigenvalues. Then Mn has full Lebesgue measure in Mn(C). Let Un be the
Lie group of n×n unitary matrices, and let Tn be the manifold of all upper
triangular n× n complex matrices, no two of whose diagonal elements are
the same. Let π : Un × Tn → Mn be given by π(U,S) = USU∗. Dyson
proved his result by evaluating the Jacobian of π (after throwing away the
directions in ker dπ) and thereby finding the measure σn on Tn such that
letting µn be Haar measure on Un, the push-forward measure π∗(µn×σn) on
Mn has density K

(1)
1,n exp(−nTr(Y ∗Y )) with respect to Lebesgue measure

on Mn, i.e. the density of a random matrix X(n) ∈ GRM(n, 1/n). This
measure σn was found to have density

K(9)
n

∏
1≤i<j≤n

|Sii − Sjj |2 exp
(
− nTr(S∗S)

)
(57)

with respect to Lebesgue measure on Tn, where for a matrix S ∈ Tn,
Sii is the ith diagonal entry of S; this density (57) is that of the matrix
D(n) + T (n) in Theorem 5.5.
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The matrix Dc(n) + T (n) in the corollary has density

K(10)
c,n

∏
1≤i<j≤n

|Sii − Sjj |2 exp
(
− nTr(S∗S)

)
|det(S)|2(c−1)n

with respect to Lebesgue measure on Tn; since det(USU∗) = det(S), and
building on Dyson’s calculation, it follows that the random matrix Y (n)
of (55) has density (56) with respect to Lebesgue measure on Mn, as
required.

An application of Theorem 5.4 shows that Y (n), and hence also
Dc(n) + T (n), converges, in ∗-moments as n → ∞, to a circular free Poisson
element. ✷

The following lemma shows that the diagonal entries of Dc(n) are in
a specific sense asymptotically independent. This will allow their eventual
decoupling (see Remark 5.9).
Lemma 5.7. For c ≥ 1 and n ∈ N let µn be the probability measure on
Cn whose density with respect to Lebesgue measure is

Dn(z1, . . . , zn) = K(8)
c,n exp

(
− n

n∑
i=1

|zi|2
)( n∏

i=1

|zi|
)2(c−1)n ∏

1≤i<j≤n
|zi − zj |2.

Given p ∈ {1, 2, . . . , n} let µ
(p)
n be the marginal distribution of µn cor-

responding to the first p variables z1, . . . , zp. Then for every p ∈ N,

µ
(p)
n converges in weak∗ topology and in ∗-moments as n → ∞ to the

product measure ×p
1 ρ, where ρ is uniform distribution on the annulus

{z ∈ C |
√
c− 1 < |z| < √

c}.
Proof. This is quite similar to the proof of Lemma 5.3. Let α = (c− 1)n.
Consider first the case p = 1. Let ψ0, ψ1, ψ2, . . . be the polynomials ob-
tained via Gram–Schmidt orthonormalization of the sequence 1, z, z2, . . .
in L2(C, |z|2αe−n|z|2d(Re z)d(Im z)). Then

ψk(z) =

√
nk+α+1

πΓ(k + α+ 1)
zk.

Using the Vandermonde determinant we have

∏
1≤i<j≤n

(zj − zi) = K(11)
c,n det


ψ0(z1) ψ0(z2) · · · ψ0(zn)

ψ1(z1) ψ1(z2) · · · ψ1(zn)
...

...
...

ψn−1(z1) ψn−1(z2) · · · ψn−1(zn)





728 K. DYKEMA AND U. HAAGERUP GAFA

for some constant K(11)
c,n . Therefore

Dn(z1, . . . , zn)

= K(12)
c,n

( n∏
i=1

|zi|
)2α∣∣∣∣ ∑

π∈Sn

sign(π)
n∏
i=1

ψπ(i)−1(zi)
∣∣∣∣2 exp(− n

n∑
i=1

|zi|2
)
.

Writing
n∏
i=1

ψπ(i)−1(zi) = ψπ(1)−1(z1)⊗ ψπ(2)−1(z2)⊗ · · · ⊗ ψπ(n)−1(zn)

and noting that as π ranges over the permutation group Sn these form an or-

thonormal family with respect to the measure
( n∏
i=1

|zi|
)2α exp(−n n∑

i=1
|zi|2
)

on Cn, we find K
(12)
c,n = (n!)−1. Moreover, the density of µ(1)n with respect

to Lebesgue measure on C is

Dn,1(z) =
∫
Cn−1

Dn(z, z2, . . . , zn)d(Re z1)d(Im z1) · · · d(Re zn)d(Im zn)

=
1
n

( n−1∑
k=0

|ψk(z)|2
)
|z|2αe−n|z|2 =

nα

π

n−1∑
k=0

nk|z|2k+2α

Γ(k + α+ 1)
e−n|z|

2
.

We shall show that µ(1)n converges in ∗-moments to ρ. Clearly if a, b∈N∪{0}
and if a �= b then∫

C
zaz bDn,1(z)d(Re z)d(Im z) = 0 =

∫
C
zaz bdρ(z) .

Hence we need only show

lim
n→∞

∫
C
|z|2bdµ(1)n (z) =

∫
C
|z|2bdρ(z)

for all b ∈ N ∪ {0}. We have∫
C
|z|2bdµ(1)n (z) =

n(c−1)n

π

n−1∑
k=0

nk

Γ(k + (c− 1)n+ 1)

·
∫
C
|z|2(b+k+(c−1)n)e−n|z|

2
d(Re z)d(Im z)

=
n−1∑
k=0

nk+(c−1)n

Γ(k + (c− 1)n+ 1)

∫ ∞

0
tb+k+(c−1)ne−ntdt .

Writing

fn(t) =
n−1∑
k=0

nk+(c−1)n

Γ(k + (c− 1)n+ 1)
tb+k+(c−1)ne−nt ,
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we have∫
C
|z|2bdµ(1)n (z) =

∫ ∞

0
tbfn(t)dt = − 1

b+ 1

∫ ∞

0
tb+1f ′n(t)dt

=
1

b+ 1

(
Γ(cn+ b+ 1)
nb+1Γ(cn)

− Γ((c− 1)n+ b+ 1)
nb+1Γ((c− 1)n)

)
=

1
b+1

(
c

(
c+

1
n

)
· · ·
(
c+

b

n

)
−(c−1)

(
(c− 1)+

1
n

)
· · ·
(
(c−1)+

b

n

))
n→∞−→ 1

b+ 1
(
cb+1 − (c− 1)b+1

)
=
∫
C
|z|2bdρ(z) .

Hence µ(1)n converges in ∗-moments to ρ as n → ∞; since ρ is compactly
supported it follows that µ(1)n converges in the weak∗ topology to ρ.

The density of µ(2)n with respect to Lebesgue measure is

Dn,2(z1, z2) =
∫
Cn−2

Dn(z1, z2, . . . , zn)d(Re z3)d(Im z3) · · · d(Re zn)d(Im zn)

=
1
n!

∑
π,σ∈Sn

sign(π)sign(σ)
∫
Cn−2

n∏
i=1

(
ψπ(i)−1(zi)ψσ(i)−1(zi)|zi|2αe−n|zi|2

)
· d(Re z3)d(Im z3) · · · d(Re zn)d(Im zn)

=
1

n(n− 1)

∑
0≤k,(≤n−1

k 
=(

(
|ψk(z1)|2|ψ((z2)|2 − ψk(z1)ψ((z2)ψ((z1)ψk(z2)

)

· |z1|2α|z2|2αe−n(|z1|
2+|z2|2)

=
n

n− 1
Dn,1(z1)Dn,1(z2)−

1
n(n− 1)

∣∣∣∣ n−1∑
k=0

ψk(z1)ψk(z2)
∣∣∣∣2

· |z1|2α|z2|2αe−n(|z1|
2+|z2|2).

Hence as a linear functional on C0(C2), the norm of µ(2)n − µ
(1)
n ⊗ µ

(1)
n is

bounded above by 2/(n−1). Therefore µ(2)n converges to ρ×ρ in the weak∗

topology as n → ∞. Arguing as in the proof of Lemma 5.3 and using
Theorem 5.2, we conclude that for every p ≥ 1, µ(p)n converges in weak∗

topology to ×p
1 ρ, which we will denote by ν(p).

It remains to show that µ(p)n converges to ν(p) in ∗-moments, namely
that
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lim
n→∞

∫
zk1
1 z1

(1 · · · zkp
p zp

(pdµ(p)n (z1, . . . , zp)

=
∫
zk1
1 z1

(1 · · · zkp
p zp

(pdν(p)(z1, . . . , zp) (58)

for every k1, . . . , kp, K1, . . . , Kp ∈ N ∪ {0}. Exactly as in the proof of
Claim 5.3.1, we show that if h is a positive continuous function on Cp

then

lim inf
n→∞

∫
hdµ(p)n ≥

∫
hdν(p) .

Then, considering the real and imaginary parts separately and arguing
as in the proof of Claim 5.3.2, we show that if f and g are continuous
functions on Cp, if g ≥ 0, if |f | ≤ g and if limn→∞

∫
gdµ(p)n =

∫
gdν(p), then

limn→∞
∫
fdµ(p)n =

∫
fdν(p). But letting m = k1 + · · ·+ kp + K1 + · · ·+ Kp,

we have

|zk1
1 z1

(1 · · · zkp
p zp

(p | ≤ 1 + |z1|2m + · · ·+ |zp|2m.

Moreover, because µ(1)n converges in ∗-moments to ν(1), we have

lim
n→∞

∫
(1 + |z1|2m + · · ·+ |zp|2m)dµ(p)n

= 1 + p lim
n→∞

∫
|z1|2mdµ(1)n = 1 + p

∫
|z1|2mdν(1)

=
∫
(1 + |z1|2m + · · ·+ |zp|2m)dν(p).

Hence, we have (58) and the lemma is proved. ✷

Lemma 5.8. Let c ≥ 1 and for every n ∈ N let µn and µ′n be the prob-
ability measures on Cn whose densities with respect to Lebesgue measure
are, respectively,

Dn(z1,...,zn)=K(8)
c,n

( n∏
i=1

|zi|
)2(c−1)n( ∏

1≤i<j≤n
|zi−zj |2

)
exp
(
− n

n∑
i=1

|zi|2
)
(59)

D′
n(z1,,zn)=K

(13)
c,n

( n∏
i=1

|zi|
)2(c−1)n( ∑

π∈Sn

n∏
i=1

|zi|2(π(i)−1)

)
exp
(
− n

n∑
i=1

|zi|2
)
.

(60)

For p ∈ {1, . . . , n} let µ
(p)
n and (µ′n)

(p) denote the marginal distributions of
µn and, respectively, µ′n corresponding to the variables z1, . . . , zp. Then for
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every p, (µ′n)(p) is obtained from µ
(p)
n by averaging over the action of the

torus Tp on Cp given by coordinate-wise multiplication:

Tp ×Cp �
(
(w1, . . . , wp), (z1, . . . , zp)

)
�→ (w1z1, . . . , wpzp) .

Consequently, (µ′n)
(p) converges to the measure ×p

1 ρ, in ∗-moments and
in weak∗ topology as n → ∞, where ρ is the uniform distribution on the
annulus {z ∈ C |

√
c− 1 < |z| < √

c}.

Proof. Using the Vandermonde determinant we find∏
1≤i<j≤n

|zi − zj |2 =
∑

π,σ∈Sn

sign(π)sign(σ)
n∏
i=1

z
π(i)−1
i zi

σ(i)−1 . (61)

Averaging (61) over the action of Tn gives∑
π∈Sn

n∏
i=1

|zi|2(π(i)−1) .

From this we can easily see that K(8)
c,n = K

(13)
c,n and that µ′n is obtained from

µn by averaging. In order to show that (µ′n)(p) is obtained from µ
(p)
n by

averaging, it suffices to note that for any measure τ on Cn, the average
over the action of Tp on the marginal distribution, τ (p), corresponding to
the first p variables, is equal to the marginal distribution of the average
over the action of Tn on τ .

Since, by Lemma 5.7, µ(p)n converges in ∗-moments and in weak∗ topol-
ogy as n → ∞ to ×p

1 ρ, which is invariant under the action of Tp, it follows
that (µ′n)(p) converges in ∗-moments and in weak∗ topology to ×p

1 ρ. ✷

Remark 5.9. Our main purpose in proving the immediately preceding
two lemmas was to be able to conclude that

lim
n→∞

(∫
zk1
1 z1

(1 · · · zkp
p zp

(pdµ(p)n −
∫
zk1
1 z1

(1 · · · zkp
p zp

(pd(µ′n)
(p)

)
= 0

(62)

for every p ∈ N and every k1, . . . , kp, K1, . . . , Kp ∈ N ∪ {0}. It is possible to
prove (62) directly using the Vandermonde determinant and combinatorial
arguments, though this sort of proof is not as satisfying as the one above
involving Lemma 5.7, where the limit measure is found.

Theorem 5.10. Let c ≥ 1 and N ∈ N, and let (A,φ) be a W∗-
noncommutative probability space with random variables a1, . . . , aN ∈ A
and bij ∈ A (1 ≤ i < j ≤ N), where aj is a circular free Poisson ele-
ment of parameter (c− 1)N + j, where each bij is a circular element with
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φ(b∗ijbij) = 1, and where the family(
({a∗j , aj})1≤j≤N , ({b∗ij , bij})1≤i<j≤N

)
is free. Consider the W∗-noncommutative probability space (MN (A), φN ),
where

φN
(
(xij)1≤i,j≤N

)
= N−1

N∑
j=1

φ(xjj) ,

and consider the random variable

x =
1√
N



a1 b12 b13 · · · b1,N−1 b1N
0 a2 b23 · · · b2,N−1 b2N

0 0 a3
. . .

... b3N
...

...
. . .

. . .
. . .

...
0 0 · · · 0 aN−1 bN−1,N

0 0 · · · 0 0 aN


∈MN (A) .

Then x is a circular free Poisson element of parameter c.

Proof. For every n ∈ N let Y (nN) be an nN × nN random matrix whose
distribution has density with respect to Lebesgue measure

K
(1)
c,nN |det(Y )|2(c−1)nN exp

(
−nNTr(Y ∗Y )

)
.

Then by Theorem 5.4, Y (nN) converges in ∗-moments as n → ∞ to a
circular free Poisson element of parameter c. By Corollary 5.6, each Y (nN)
has the same ∗-moments as S(1)(nN) def=D(1)(nN)+T (nN), where T (nN) ∈
UTGRM(nN, 1/nN ), D(1)(nN) is a diagonal nN×nN random matrix, the
distribution of whose diagonal entries has density

K
(8)
c,nN

( nN∏
i=1

|zi|
)2(c−1)nN( ∏

1≤i<j≤nN
|zi − zj |2

)
exp
(
− nN

n∑
i=1

|zi|2
)
(63)

with respect to Lebesgue measure on Cn, and where D(1)(nN) and T (nN)
are independent. We will use previous results to show that each S(k)(nN) def=
D(k)(nN) + T (nN) (k ∈ {2, 3, 4, 5, 6}) also converges in ∗-moments as
n → ∞ to a circular free Poisson element of parameter c, where D(k)(nN) is
a diagonal random matrix such that D(k)(nN) and T (nN) are independent
and where the joint distributions of the diagonal entries of D(k)(nN) have,
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in various cases, the following densities with respect to Lebesgue measure
on Cn:

k = 2 : K
(13)
c,nN

( nN∏
i=1

|zi|
)2(c−1)nN( ∑

π∈SnN

nN∏
i=1

|zi|2(π(i)−1)

)
exp
(
−nN

nN∑
i=1

|zi|2
)

k = 3 : K
(14)
c,nN

( nN∏
i=1

|zi|
)2(c−1)nN( nN∏

i=1

|zi|2(i−1)

)
exp
(
−nN

nN∑
i=1

|zi|2
)

k = 4 : K
(15)
c,nN

N∏
j=1

(( n∏
i=1

|z(j−1)n+i|
)2((c−1)N+j−1)n( n∏

i=1

|z(j−1)n+i|2(i−1)

)

· exp
(
− nN

n∑
i=1

|z(j−1)n+i|2
))

k = 5 : K
(16)
c,nN

N∏
j=1

(( n∏
i=1

|z(j−1)n+i|
)2((c−1)N+j−1)n

·
( ∑

π∈Sn

n∏
i=1

|z(j−1)n+i|2(π(i)−1)

)
exp
(
− nN

n∑
i=1

|z(j−1)n+i|2
))

k = 6 : K
(17)
c,nN

N∏
j=1

(( n∏
i=1

|z(j−1)n+i|
)2((c−1)N+j−1)n

·
( ∏

1≤i<i′≤n
|z(j−1)n+i − z(j−1)n+i′ |2

)
exp
(
− nN

n∑
i=1

|z(j−1)n+i|2
))

.

The proof that S(k)(nN) converges in ∗-distribution to a circular free Pois-
son element relies for k = 2 on Lemmas 5.7 and 5.8 (see Remark 5.9), and
Theorem 3.2; for k = 3 we use Theorem 3.6; the density for k = 4 is just a
rewriting of that for k = 3; for k = 5 we again use Theorem 3.6; for k = 6
we again use Lemmas 5.7 and 5.8, and Theorem 3.2.

We may characterize the above successive transformations as follows:
from (63) to k = 2 is decoupling; from k = 2 to k = 3 is desymmetriza-
tion; from k = 3 to k = 4 is regrouping; from k = 4 to k = 5 is partial
resymmetrization; from k = 5 to k = 6 is partial recoupling.

Taking blocks of consecutive rows and columns to writeD(6)(nN)+T (nN)
as an N ×N matrix of n× n random matrices, we have



734 K. DYKEMA AND U. HAAGERUP GAFA

S(6)(nN) =
1√
N



A
(6)
1 B

(6)
12 B

(6)
13 · · · B

(6)
1,N−1 B

(6)
1N

0 A
(6)
2 B

(6)
23 · · · B

(6)
2,N−1 B

(6)
2N

0 0 A
(6)
3

. . .
... B

(6)
3N

...
...

. . . . . . . . .
...

0 0 · · · 0 A
(6)
N−1 B

(6)
N−1,N

0 0 · · · 0 0 A
(6)
N


,

where (
(A(6)

j (n))1≤j≤N , (B
(6)
ij (n))1≤i<j≤N

)
is an independent family of matrix-valued random variables, where
B

(6)
ij (n) ∈ GRM(n, 1/n) for every 1 ≤ i < j ≤ N and where A

(6)
j (n) =

D
(6)
j (n) + Tj(n) with Tj(n) ∈ UTGRM(n, 1/n), with D

(6)
j (n) a diagonal

random matrix, the joint distribution of whose diagonal entries has density
with respect to Lebesgue measure

K
(8)
(c−1)N+j,n

( n∏
i=1

|zi|
)2((c−1)N+j−1)n( n∏

1≤i<i′≤n
|zi − zi′ |2

)
exp
(
− n

n∑
i=1

|zi|2
)

and with D
(6)
j (n) and Tj(n) independent.

Let Uj(n) ∈ HURM(n), (1 ≤ j ≤ N), be such that(
(A(6)

j (n))1≤j≤N , (B
(6)
ij (n))1≤i<j≤N , (Uj(n))1≤j≤N

)
is an independent family of matrix-valued random variables. By conjugat-
ing the matrix S(6)(nN) with diag(U1(n), U2(n), . . . , UN (n)) and by using
Corollary 5.6 and the fact that the class GRM(n, 1/n) is invariant under left
and right multiplication by independent unitaries, it follows that S(6)(nN)
has the same ∗-moments, as

S(7)(nN) =
1√
N



A
(7)
1 B

(7)
12 B

(7)
13 · · · B

(7)
1,N−1 B

(7)
1N

0 A
(7)
2 B

(7)
23 · · · B

(7)
2,N−1 B

(7)
2N

0 0 A
(7)
3

. . .
... B

(7)
3N

...
...

. . . . . . . . .
...

0 0 · · · 0 A
(7)
N−1 B

(7)
N−1,N

0 0 · · · 0 0 A
(7)
N


,

where ((
A
(7)
j (n)

)
1≤j≤N ,

(
B

(7)
ij (n)

)
1≤i<j≤N

)
(64)
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is an independent family of matrix-valued random variables, where
B

(7)
ij (n) ∈ GRM(n, 1/n) for every 1 ≤ i < j ≤ N and where the distri-

bution of A(7)
j (n) has density

K
(1)
(c−1)N+j,n|det(A)|

2((c−1)N+j−1)n exp
(
− nTr(A∗A)

)
with respect to Lebesgue measure on Mn(C).

If (V (1)
j )1≤j≤N , (V (2)

j )1≤j≤N , (U (1)
ij )1≤i<j≤N , (U (2)

ij )1≤i<j≤N are non-
random n× n unitary matrices, then((

V
(1)
j A

(7)
j (n)V (2)

j

)
1≤j≤N ,

(
U

(1)
ij B

(7)
ij (n)U (2)

ij

)
1≤i<j≤N

)
(65)

continues to be an independent family of matrix-valued random variables,
V

(1)
j A

(7)
j (n)V (2)

j has the same distribution as A(7)
j and U

(1)
ij B

(7)
ij (n)U (2)

ij has

the same distribution as B(7)
ij (n). Therefore, the family (65) has the same

joint ∗-moments as the family (64). Taking into account also Theorem 5.1
and Lemma 5.3 (as in the proof of Theorem 5.4), we see that the conditions
of Theorem 4.6 are fulfilled, allowing us to conclude that the family (64) is
asymptotically ∗-free as n → ∞. Moreover (by Theorem 5.4), each A(7)

j (n)
converges in ∗-moments to a circular free Poisson element of parameter
(c− 1)N + j, while B(7)

ij (n) converges in ∗-moments to a circular element.
Therefore, the entries of the matrix S(7)(n), as n → ∞, model the entries
of the matrix x in the statement of the theorem. As S(7)(n) converges in
∗-moments to a circular free Poisson element of parameter c, the theorem
is proved. ✷

6 Invariant Subspaces of a Circular Free Poisson Element

In this section, we will apply Theorem 5.10 and the general results of §2 to
exhibit invariant subspaces for a circular free Poisson element. We will rely
on the result of Haagerup and Larsen [HL, Example 5.2] that the spectrum
of a circular free Poisson element of parameter c is {z∈C|

√
c−1 ≤ |z| ≤

√
c}.

Theorem 6.1. Let (M, ψ) be a W∗-noncommutative probability space
with ψ faithful, let c ≥ 1 and let y ∈ M be a circular free Poisson element
of parameter c. Given r ≥ 0, let pr(y) ∈ M be the projection onto the
invariant subspace of y as in Definition 2.4. Then

ψ(pr(y)) =


0 if r ≤

√
c− 1

r2 − (c− 1) if
√
c− 1 ≤ r ≤

√
c

1 if r ≥
√
c .

(66)
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Proof. We may without loss of generality assume that M = {y}′′, which
implies M ∼= L(F2) and ψ is a trace. Let N ∈ N and let

x =
1√
N



a1 b12 b13 · · · b1,N−1 b1N
0 a2 b23 · · · b2,N−1 b2N

0 0 a3
. . .

... b3N
...

...
. . . . . . . . .

...
0 0 · · · 0 aN−1 bN−1,N

0 0 · · · 0 0 aN


∈ MN (A)

be the circular free Poisson element of parameter c as in Theorem 5.10,
where we take (A,φ) to be a W∗-noncommutative probability space. Thus
aj is a circular free Poisson element of parameter (c − 1)N + j, each bij
is a circular element and the collection of all aj and bij is ∗-free. For
k ∈ {1, . . . , N}, let

ek = diag( 1, . . . , 1︸ ︷︷ ︸
k times

, 0, . . . , 0) ∈ Mn(C1) ⊆ Mn(A) .

Another application of Theorem 5.10 shows that in theW∗-noncommutative
probability space(

ekMN (A)ek,
√

N
k φN�ekMN (A)ek

) ∼= (Mk(A), φk) ,

the element
√

N
k ekxek is a circular free Poisson element of parameter

N
k (c− 1) + 1. Hence by [HL, Example 5.2], ekxek has spectrum{

z ∈ C
∣∣∣ √c− 1 ≤ |z| ≤

√
(c− 1) + k

N

}
.

Similarly, if k < N then denoting by 1N the identity element of MN (A),
we find that in the W∗-noncommutative probability space ,(

(1N − ek)MN (A)(1N − ek),
√

N
N−kΦN�(1N−ek)MN (A)(1N−ek)

)
∼= (MN−k(A), φN−k) ,

the element
√

N
N−k (1N − ek)x(1N − ek) is a circular free Poisson element of

parameter N
N−kc. Hence (1N − ek)x(1N − ek) has spectrum{

z ∈ C
∣∣∣ √(c− 1) + k

N ≤ |z| ≤
√
c
}
.

Therefore, by Proposition 2.2, if k ≤ N − 2 and if√
(c− 1) + k

N ≤ r <
√
(c− 1) + k+1

N
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then ek ≤ pr(x) ≤ ek+1 and consequently k
N ≤ ψ(pr(y)) ≤ k+1

N . Letting N
grow without bound and choosing k appropriately implies (66). ✷

Some further facts concerning these projections pr(y) are collected below
in Theorem 6.3, for the proof of which we will use the following lemma.
Lemma 6.2. For every c ≥ 1 let (Ac, φc) be a W∗-noncommutative
probability space and let yc ∈ A be a circular free Poisson element of
parameter c. Given c0 ≥ 1 and a sequence (cn)∞1 in [1,∞) converging to
c0, we have that ycn converges in ∗-moments to yc0 as n → ∞.

Proof. The positive part hc of yc has the same moments as the measure ρc
on R+ whose density with respect to Lebesgue measure is

dρc
dt

=

√
(d21 − t2)(t2 − d20)

πt
1[d0,d1](t) ,

with d0 = 1 −
√
c and d1 = 1 +

√
c. Since yc has the polar decomposition

yc = uchc where uc is a Haar unitary and where uc and hc are ∗-free, the
∗-moments of yc can be expressed as certain polynomials in the moments
of ρc. Clearly, the kth moment of ρcn converges to the kth moment of ρc0
as n → ∞. ✷

Theorem 6.3. Let y be a circular free Poisson element of parameter c in
some W∗-noncommutative probability space (M, ψ), with ψ faithful. Then

(i) ps(y) converges to pr(y) in the strong∗ topology as s → r.

(ii) If
√
c− 1 < r <

√
c then in the W ∗-noncommutative probability

space (
pr(y)Mpr(y), 1

ψ(pr(y))
ψ�pr(y)Mpr(y)

)
, (67)

ψ(pr(y))−1/2ypr(y) is a circular free Poisson element of parameter
1 + (c − 1)/ψ(pr(y)). Hence the spectrum of ypr(y) relative to
pr(y)Mpr(y) is

σ(ypr(y)) =
{
z ∈ C

∣∣ √c− 1 ≤ |z| ≤
√
r
}
.

(iii) If
√
c− 1 < r <

√
c, then in the W ∗-noncommutative probability

space((
1− pr(y)

)
M
(
1− pr(y)

)
, 1
1−ψ(pr(y))

ψ�(1−pr(y))M(1−pr(y))

)
,

(1−ψ(pr(y)))−1/2(1−pr(y))y is a circular free Poisson element of pa-
rameter c/(1−ψ(pr(y))). Hence the spectrum of (1−pr(y))y relative
to (1− pr(y))M(1− pr(y)) is

σ((1− pr(y))y) = {z ∈ C |
√
r ≤ |z| ≤

√
c}.
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(iv) If x is the upper triangular N × N matrix given in Theorem 5.10,
that is a circular free Poisson element of parameter c, then for every
k ∈ {0, 1, , . . . , N} and letting r =

√
(c− 1) + k/N , we have pr(x) =

diag( 1, . . . , 1︸ ︷︷ ︸
k times

, 0, . . . , 0).

Proof. We know from general principles that pr′(y) ≤ pr(y) if r′ < r, and
from Theorem 6.1 we have that lims→r ψ(ps(y)) = ψ(pr(y)); as ψ is faithful
we conclude (i).

Let us now prove (iv). Arguing as in the proof of Theorem 6.1, we
have ek ≤ pr(x) whenever r >

√
(c− 1) + k/N . We may take the W∗-

noncommutative probability space (A,φ) so that φ is a faithful trace, in
which case, since inf{ψ(pr(x)) | r >

√
(c− 1) + k/N} = k/N , it follows

that

ek =
∧{

pr(x)
∣∣∣ r >√(c− 1) + k/N

}
.

Thus ek is the limit in strong∗ topology of pr(x) as r tends to
√
(c− 1) + k/N

from above. Using (i), it follows that ek = p√
(c−1)+k/N

(x).

For (ii), let us show that ψ(pr(y))−1/2ypr(y) is circular free Poisson of
the desired parameter, first in the case when ψ(pr(y)) = k/N is rational.
We may take (M, ψ) to be (MN (A), φN ) and y to be equal to the N ×N
matrix x as in Theorem 5.10. By (iv), the noncommutative probability
space (67) is (Mk(A), φk) and

1√
ψ(pr(y))

ypr(y) =
1√
k



a1 b12 b13 · · · b1,k−1 b1k
0 a2 b23 · · · b2,k−1 b2k

0 0 a3
. . .

... b3k
...

...
. . . . . . . . .

...
0 0 · · · 0 ak−1 bk−1,k

0 0 · · · 0 0 ak


,

where aj is circular free Poisson of parameter (c−1)N + j. Applying again
Theorem 5.10, we obtain that ψ(pr(y))−1/2ypr(y) is circular free Poisson of
parameter 1+ (c− 1)/ψ(pr(y)). When r is such that ψ(pr(y)) is irrational,
then using (i) we have that ypr(y) is the strong∗ limit of yps(y) as s tends
to r through rational numbers. Hence by Lemma 6.2 and the continuity in
r of ψ(pr(y)) implied by Theorem 5.10, it follows that ψ(pr(y))−1/2ypr(y)
is circular free Poisson of parameter 1 + (c − 1)/ψ(pr(y)). The statement
about the spectrum follows from the result of Haagerup and Larsen [HL]
that we’ve been using repeatedly.
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Part (iii) is proved similarly. When ψ(pr(y)) = k/N is rational then we
get

1√
1− ψ(pr(y))

(1− pr(y))y

=
1√

N − k



ak+1 bk+1,k+2 bk+1,k+3 · · · bk+1,N−1 bk+1,N

0 ak+2 bk+2,k+3 · · · bk+2,N−1 bk+2,N

0 0 ak+3
. . .

... bk+3,N
...

...
. . . . . . . . .

...
0 0 · · · 0 aN−1 bN−1,N

0 0 · · · 0 0 aN


,

where ak+j is circular free Poisson of parameter (c − 1)N + k + j. The
remaining part of the argument is like for (ii) above. ✷

The following proposition shows that pr(y) is characterized by the spec-
tral conditions in (ii) and (iii) of Theorem 6.3.
Proposition 6.4. Let Y be a circular free Poisson element of parameter
c ≥ 1 in a W∗-probability space (M, ψ), with ψ faithful, and let

√
c− 1 <

r <
√
c. Suppose p ∈ M is a projection such that

(i) yp = pyp
(ii) σpMp(yp) ⊆ {z ∈ C |

√
c− 1 ≤ |z| ≤ r}

(iii) σ(1−p)M(1−p)((1− p)y) ⊆ {z ∈ C | r ≤ |z| ≤
√
c}.

Then p = pr(y).

Proof. Note that (i) implies (1− p)y = (1− p)y(1− p). Let M be normally
and faithfully represented on a Hilbert space H. For ξ ∈ pH we have

lim sup
n→∞

‖ynξ‖1/n ≤ lim sup
n→∞

‖(pyp)n‖1/n ≤ r ,

where the last inequality is because the spectral radius of pyp is ≤ r. Hence
p ≤ pr(y).

In order to prove the reverse inequality, it will suffice to show p ≥ ps(y)
for all 0 ≤ s < r, because s �→ ps(y) is strong∗-continuous by Theo-
rem 6.3(i). Let 0 ≤ s < r, ξ ∈ (1− p)H and let η ∈ Es(y), i.e.

lim sup
n→∞

‖ynη‖1/n ≤ s . (68)

Set ξn = ((1−p)y∗(1−p))−nξ. Then ξn ∈ (1−p)H and, because the spectral
radius of ((1− p)y∗(1− p))−1 is ≤ 1/r, we have lim supn→∞ ‖ξn‖1/n ≤ 1/r.
Since (1− p)H is an invariant subspace for y∗, we have ξ = ((1− p)y∗(1−
p))nξn = (y∗)nξn. Therefore 〈ξ, η〉 = 〈(y∗)nξn, η〉 = 〈ξn, ynη〉, so using (68)
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and Schwarz’s inequality we have lim supn→∞ |〈ξ, η〉|1/n ≤ s/r < 1, which
shows that 〈ξ, η〉 = 0. Hence (1 − p)H ⊥ Es(y) = ps(y)H and therefore
ps(y) ≤ p. ✷

Remark 6.5. The proof above shows that the subspace

Er(y) =
{
ξ ∈ H

∣∣ lim sup
k→∞

‖ykξ‖1/k ≤ r
}

is closed; thus we have pr(y)H = Er(y), without taking the closure.

The next example, however, shows that the sort of spectral decompo-
sition found in Theorem 6.3 and closedness of the subspace Er(y) do not
always hold.

Example 6.6. Let H =
⊕∞

k=2 Hk, where Hk is k-dimensional Hilbert
space with orthonormal basis e(k)1 , . . . , e

(k)
k and let T =

⊕∞
k=2 Tk, where

Tk ∈ B(Hk) is the nilpotent operator

Tke
(k)
j =

{
0 j = 1
e
(k)
j−1 2 ≤ j ≤ k .

It is well known that the spectrum of T is the closed unit disk D — see
for example Brown [Br, Example 4.10]. However, if r > 0 then Er(T ) is
dense in H, so pr(T ) = 1 and the spectrum of Tpr(T ) is D. Moreover,
if 0 < r < 1 then the vector

∑∞
k=2

1
ke

(k)
k is not an element of Er(T ); this

shows that Er(T ) is not closed. Note that T ∈
⊕∞

k=2B(Hk), which is a
finite von Neumann algebra.
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