Normal Weights on W*-Algebras

Uffe Haagerup

Institute of Mathematics, University of Copenhagen, 2100 Copenhagen Ø, Denmark

Communicated by the Editors

Received August 5, 1974

Let φ be a weight on a W^* -algebra. If φ is normal, in the sense that it respects monotone increasing limits, then φ is the sum of positive normal functionals. This provides the complete solution to a problem raised by J. Dixmier.

Introduction

A weight on a C^* -algebra A is a function $\varphi: A_+ \to [0, \infty]$ with the properties:

- (i) $\varphi(x+y) = \varphi(x) + \varphi(y), x, y \in A_+$,
- (ii) $\varphi(\lambda x) = \lambda \varphi(x), x \in A_+, \lambda \geqslant 0$,

using the convention $0 \cdot \infty = 0$.

Let φ be a weight on a W*-algebra M. We say that

- (1) φ is completely additive if $\varphi(\sum x_i) = \sum \varphi(x_i)$ for any set $\{x_i\}$ of positive elements for which $\sum x_i$ is defined;
- (2) φ is normal if $\varphi(\text{l.u.b. } x_i) = \text{l.u.b. } \varphi(x_i)$ for any uniformly bounded increasing set $\{x_i\}$ of positive elements.

The main result in this paper is that, for any weight φ on a W^* -algebra M, the following conditions are equivalent.

- (1) φ is completely additive;
- (2) φ is normal;
- (3) φ is σ -weakly lower semicontinuous;
- (4) $\varphi(x) = \sup_{\omega \in F} \omega(x)$, $\forall x \in M_+$, where F is a set of positive normal functionals;
- (5) $\varphi(x) = \sum_{i \in I} \varphi_i(x)$, $x \in M_+$, where $\{\varphi_i\}$ is a set of positive normal functionals.

The implications $(5) \Rightarrow (4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$ are trivial. In [1] Combes has made a partial solution to $(3) \Rightarrow (4)$. He proved that if φ is a σ -weakly, lower semicontinuous weight, then there exists a set F of positive normal functionals, such that $\varphi(x) = \sup_{\omega \in F} \omega(x)$ whenever $\varphi(x) < \infty$. The implication $(4) \Rightarrow (5)$ has been proved by Pedersen and Takesaki [5] by use of left Hilbert algebra theory. The reader should be aware that Takesaki has introduced condition (4) as a definition of normality.

This paper consists of two sections. In Section 1 the equivalence of (1), (2), and (3) are shown. In Section 2 we prove the implication (3) \Rightarrow (4) in a slightly more general situation, namely for a "subadditive weight" i.e. a function $\varphi \colon M_+ \to [0, \infty]$ with the properties

- (i) $x \leqslant y \Rightarrow \varphi(x) \leqslant \varphi(y), x, y \in M_+$,
- (ii) $\varphi(x+y) \leqslant \varphi(x) + \varphi(y), x, y \in M_+$,
- (iii) $\varphi(\lambda x) = \lambda \varphi(x), x \in M_+, \lambda \geqslant 0.$

The equivalence of (2) and (5) gives the complete solution to a problem posed by Dixmier [2, Chap. I, Sect. 4, p. 52].

1

We will first recall the construction of the representation induced by a weight (cf. [1, Sect. 2]). Let φ be a weight on a C^* -algebra A. Put

$$\begin{split} n_{\varphi} &= \{x \in A \mid \varphi(x^*x) < \infty\}, \\ m_{\varphi} &= n_{\varphi}^* n_{\varphi} = \operatorname{span}\{y^*x \mid x, y \in n_{\varphi}\}, \\ N_{\varphi} &= \{x \in A \mid \varphi(x^*x) = 0\}. \end{split}$$

Let H denote the completion of the pre-Hilbert space n_{σ}/N_{σ} with inner product $(\alpha(x) \mid \alpha(y)) = \varphi(y^*x)$, where α is the quotient map $n_{\sigma} \to n_{\sigma}/N_{\sigma}$. It is easily seen that there is a unique *-homomorphism $\pi \colon A \to B(H)$ so that

$$\pi(a) \alpha(x) = \alpha(ax), \quad a \in A, \quad x \in n_{\varphi}.$$

 (π, H) is called the representation induced by φ .

LEMMA 1.1. Let φ be a weight on a W*-algebra M and let (π, H) be

the representation induced by φ . There is a unique linear map β of m_{φ} into the predual of $\pi(M)'$ satisfying

$$\beta(y^*x)(a') = (a'\alpha(x) \mid \alpha(y)), \quad a' \in \pi(M)', \quad x, y \in n_m.$$

Proof. The uniqueness of β follows from $m_{\varphi} = \text{span}\{y^*x \mid x, y \in n_{\varphi}\}$. Let $x, y \in n_{\varphi}$, and assume that $x^*x = y^*y$. There is a partial isometry $u \in M$ so that x = uy and $y = u^*x$. Thus $\forall a' \in \pi(M)'$:

$$(a'\alpha(x)\mid\alpha(x))=(a'\alpha(x)\mid\pi(u)\;\alpha(y))=(a'\pi(u^*)\;\alpha(x)\mid\alpha(y))=(a'\alpha(y)\mid\alpha(y)).$$

Therefore the map

$$\beta_0: x^*x \to \omega'_{\alpha(x)}$$

is a well-defined map of m_{ω}^+ into $\pi(M)'_*$. Obviously $\beta_0(\lambda x) = \lambda \beta_0(x)$ $\forall \lambda \geqslant 0$. We will show that β_0 is additive:

Let $x, y \in m_{\varphi}^+$ and put z = x + y. There exist operators $s, t \in M$ so that $x^{1/2} = sz^{1/2}$, $y^{1/2} = tz^{1/2}$ and s*s + t*t is the support projection of z. Hence $\forall a' \in \pi(M)'$:

$$\begin{aligned} (a'\alpha(z^{1/2}) \mid \alpha(z^{1/2})) &= (a'\pi(s^*s + t^*t) \alpha(z^{1/2}) \mid \alpha(z^{1/2})) \\ &= (a'\pi(s) \alpha(z^{1/2}) \mid \pi(s) \alpha(z^{1/2})) + (a'\pi(t) \alpha(z^{1/2}) \mid \pi(t) \alpha(z^{1/2})) \\ &= (a'\alpha(x^{1/2}) \mid \alpha(x^{1/2})) + (a'\alpha(x^{1/2}) \mid \alpha(x^{1/2})). \end{aligned}$$

Thus $\beta_0(x + y) = \beta_0(x) + \beta_0(y)$.

Since m_{ω} is spanned by m_{ω}^+ , β_0 has a linear extension β to m_{ω} . Using the identity $y^*x = \sum_{k=0}^{3} i^{-k}(x+i^ky)^*(x+i^ky)$ we find that

$$\beta(y^*x)(a') = (a'\alpha(x) \mid \alpha(y)), \qquad a' \in \pi(M)', \quad x, y \in n_{\varphi}.$$

In the following, α and β denote the maps in Lemma 1.1.

LEMMA 1.2. For any self-adjoint element x in m_{φ} we have

$$\|\beta(x)\| = \inf\{\varphi(a) + \varphi(b) \mid x = a - b, a, b \in m_{\varphi}^+\}.$$

Proof. The function ρ on $(m_{\varphi})_{s.a.}$ defined by

$$\rho(x) = \inf\{\varphi(a) + \varphi(b) \mid x = a - b, a, b \in m_{\varphi}^+\}$$

is a seminorm on $(m_{\varphi})_{s.a.}$. It is easily seen that $\rho(x) = \varphi(x)$, $\forall x \in m_{\varphi}^+$. If x = a - b, $a, b \in m_{\varphi}^+$, then

$$||\beta(x)|| \leq ||\beta(a)|| + ||\beta(b)|| = \varphi(a) + \varphi(b).$$

Hence $||\beta(x)|| \leq \rho(x), x \in (m_{\varphi})_{s.a.}$.

To show the converse inequality let $x_0 \in (m_{\varphi})_{\mathrm{s.a.}}$. By the Hahn–Banach theorem we can find a functional μ on $(m_{\varphi})_{\mathrm{s.a.}}$ so that $\mu(x_0) = \rho(x_0)$ and $|\mu(x)| \leqslant \rho(x)$, $\forall x \in (m_{\varphi})_{\mathrm{s.a.}}$. μ can be extended to a self-adjoint functional on m_{φ} . The extension will also be denoted μ . Since

$$-\varphi(x^*x) \leqslant \mu(x^*x) \leqslant \varphi(x^*x), \qquad x \in n_{\varphi},$$

we get

$$\begin{aligned} |\ \mu(y^*x)| &\leqslant \frac{1}{2}[|(\varphi + \mu)(y^*x)| + |(\varphi - \mu)(y^*x)|] \\ &\leqslant \frac{1}{2}[(\varphi + \mu)(x^*x)^{1/2}(\varphi + \mu)(y^*y)^{1/2} \\ &+ (\varphi - \mu)(x^*x)^{1/2}(\varphi - \mu)(y^*y)^{1/2}] \\ &\leqslant \frac{1}{2}[(\varphi + \mu)(x^*x) + (\varphi - \mu)(x^*x)]^{1/2} \\ &\times [(\varphi + \mu)(y^*y) + (\varphi - \mu)(y^*y)]^{1/2} \\ &= \varphi(x^*x)^{1/2}\varphi(y^*y)^{1/2}, \qquad x, y \in n_{\varphi}. \end{aligned}$$

Hence there exists a bounded operator T in B(H) so that $||T|| \leq 1$ and $\mu(y^*x) = (T\alpha(x) | \alpha(y)), x, y \in n_{\varphi}$. Furthermore $\forall a \in M, \forall x, y \in n_{\varphi}$:

$$(T\pi(a) \alpha(x) \mid \alpha(y)) = (T\alpha(ax) \mid \alpha(y)) = \mu(y^*ax)$$
$$= (T\alpha(x) \mid \alpha(a^*y)) = (\pi(a) T\alpha(x) \mid \alpha(y)).$$

Thus $T \in \pi(M)'$. Hence $\mu(z) = \beta(z)(T)$ for any $z \in m_{\sigma}$, and therefore $\rho(x_0) = |\mu(x_0)| \leqslant ||\beta(x_0)|| ||T|| \leqslant ||\beta(x_0)||$.

This completes the proof.

LEMMA 1.3. Let φ be a normal weight on a W*-algebra M and let x_n be a bounded sequence of elements in m_{φ}^+ .

- (1) If $x_n \rightarrow^{\sigma-s} x \in M$ and if $\beta(x_n)$ is convergent, then $x \in m_{\sigma}^+$.
- (2) If $x_n \to^{\sigma-s} 0$ and if $\beta(x_n)$ is convergent, then $\beta(x_n) \to 0$. ($\sigma-s$ denotes the σ -strong topology. On $\pi(M)'_*$ we use the norm topology.)
- *Proof.* (1) Let ϵ be a positive number. Put $\psi = \lim \beta(x_n)$. We can choose a subsequence y_n of x_n so that $\|\beta(y_n) \psi\| \le \epsilon \cdot 2^{-n}$, $n \in \hat{N}$. Thus $\|\beta(y_{n+1} y_n)\| \le (3/2)\epsilon \cdot 2^{-n}$.

By Lemma 1.2 there exists a_n , $b_n \in m_{\varphi}^+$ so that

$$y_{n+1} - y_n = a_n - b_n$$
 and $\varphi(a_n) + \varphi(b_n) \leqslant 2\epsilon \cdot 2^{-n}$.

Thus

$$y_{n+1} \leqslant y_1 + \sum_{k=1}^n a_n.$$

Put $f_{\nu}(t) = t(1 + \nu t)^{-1}$, $\nu > 0$. f_{ν} is operator monotone in the sense that $-(1/\nu) < x \le y$ implies that $f_{\nu}(x) \le f_{\nu}(y)$. Hence $f_{\nu}(y_{n+1}) \le f_{\nu}(y_1 + \sum_{k=1}^n a_k)$. $f_{\nu}(y_1 + \sum_{k=1}^n a_k)$ is a bounded increasing sequence and therefore has a least upper bound.

Since $y_n \to^{\sigma-s} x$ we get $f_{\nu}(y_n) \to^{\sigma-s} f_{\nu}(x)$ (cf. [4]). Thus

$$f_{\nu}(x) \leqslant \text{l.u.b.} f_{\nu}\left(y_1 + \sum_{k=1}^{n} a_k\right)$$

and

$$\varphi(f_{\nu}(x)) \leqslant \text{l.u.b. } \varphi\left(f_{\nu}\left(y_{1} + \sum_{k=1}^{n} a_{k}\right)\right) \leqslant \text{l.u.b. } \varphi\left(y_{1} + \sum_{k=1}^{n} a_{k}\right)$$

$$\leqslant \varphi(y_{1}) + \sum_{k=1}^{\infty} (2\epsilon)2^{-k} = \varphi(y_{1}) + 2\epsilon.$$

Since $f_{\nu}(x) \nearrow x$ for $\nu \to 0$ we get that $\varphi(x) \leqslant \varphi(y_1) + 2\epsilon < \infty$. This proves (1).

(2) Let ϵ , ψ , a_n , b_n be as in (1). We then have

$$y_1-y_{n+1}\leqslant \sum_{k=1}^n b_k.$$

Put $K = \sup ||x_n||$. Then $y_1 - y_{n+1} \ge -K$, $\forall n$. For any $\nu < 1/K$ we get

$$f_{\nu}(y_1-y_{n+1})\leqslant \text{l.u.b.}\,f_{\nu}\left(\sum_{k=1}^n\,b_k\right).$$

By the assumptions $y_n \to^{\sigma-s} 0$ for $n \to \infty$. Therefore

$$f_{\nu}(y_1-y_{n+1}) \xrightarrow{\sigma-s} f_{\nu}(y_1).$$

Hence

$$f_{\nu}(y_1) \leqslant \text{l.u.b.} f_{\nu}\left(\sum_{k=1}^{n} b_k\right).$$

Thus

$$egin{aligned} arphi(f_{
u}(y_1)) &\leqslant ext{l.u.b. } arphi\left(\int_{
u=1}^n b_k
ight) \end{aligned} \leqslant egin{aligned} ext{l.u.b. } arphi\left(\sum_{k=1}^n b_k
ight) &\leqslant \sum_{k=1}^\infty 2\epsilon \cdot 2^{-k} = 2\epsilon. \end{aligned}$$

Using $f_{\nu}(y_1) \nearrow y_1$ for $\nu \to 0$ we get $\varphi(y_1) \leqslant 2\epsilon$. Hence $\|\psi\| \leqslant \|\psi - \beta(y_1)\| + \|\beta(y_1)\| \leqslant (1/2)\epsilon + 2\epsilon = (5/2)\epsilon$. This is valid for any $\epsilon > 0$. Thus $\psi = \lim \beta(x_n) = 0$.

If A is a Banach space, we let A_r denote the set $\{x \in A \mid ||x|| \le r\}$.

LEMMA 1.4. Let φ be a normal weight on a σ -finite W*-algebra M and let $G(\alpha) = \{(x, \alpha(x)) \mid x \in n_{\sigma}\}$ be the graph of α . Then $G(\alpha) \cap (M_r \times H_t)$ is $\sigma(M \times H, M_* \times H^*)$ -compact for any r, t > 0.

Proof. Since H is a reflexive Banach space and $M=(M_*)^*$, $M\times H$ is the dual of the Banach space $M_*\times H^*$ with norm $\|(\varphi,\xi^*)\|=\|\varphi\|+\|\xi^*\|$. The dual norm on $M\times H$ is $\|(x,\xi)\|=\max\{\|x\|,\|\xi\|\}$. Since $G(\alpha)\cap (M_r\times H_t)$ is convex it is $\sigma(M\times H,M_*\times H^*)$ -closed iff it is closed in any topology compatible with the duality between $M\times H$ and $M_*\times H^*$. Hence it is enough to show that $G(\alpha)\cap (M_r\times H_t)$ is closed in the product of σ -strong* topology on M and norm topology on H.

Let (x, ξ) be in the $(\sigma\text{-strong}^*) \times \text{norm}$ closure of $G(\alpha) \cap (M_r \times H_t)$. Since M is σ -finite, M_r is metrisable in the $\sigma - s^*$ -topology. Hence there exists a sequence $\{x_n\} \subseteq M_r$ so that $x_n \to^{\sigma-s^*} x$ and $\alpha(x_n) \to \xi$, $\|\alpha(x_n)\| \le t$. Thus $x_n^* x_n \to^{\sigma-s} x^* x$ and $\beta(x_n^* x_n) = \omega'_{\alpha(x_n)} \to \omega'_{\xi}$. By Lemma 1.3(1), $x^* x \in m_{\sigma}^+$. Thus $x \in n_{\sigma}^-$. Hence $(x_n - x)^*(x_n - x) \to^{\sigma-s} 0$ and $\beta((x_n - x)^*(x_n - x)) = \omega'_{\alpha(x_n)-\alpha(x)} \to \omega'_{\xi-\alpha(x)}$. By Lemma 1.3(2), $\omega'_{\xi-\alpha(x)} = 0$ and therefore $\xi = \alpha(x)$. Hence $(x, \xi) \in G(\alpha)$. This completes the proof.

LEMMA 1.5. Let φ be a weight on a σ -finite W*-algebra. The following conditions are equivalent.

- (1) φ is completely additive,
- (2) φ is normal,
- (3) φ is σ -weakly lower semicontinuous.

Proof. (3) \Rightarrow (1): trivial. (1) \Rightarrow (2): Let x_i be a bounded increasing set of operators in M_+ with $x_i \nearrow x$. Since bounded subsets of M is

metrisable in the σ -strong topology, we can find a sequence $\{y_n\} \subseteq \{x_i\}$ so that $y_n \nearrow x$ and l.u.b. $\varphi(x_i) = \text{l.u.b. } \varphi(y_n)$.

Put $z_n = y_{n+1} - y_n$. Then $x = y_1 + \sum_{n=1}^{\infty} z_n$. Thus

$$\varphi(x) = \varphi(y_1) + \sum_{n=1}^{\infty} \varphi(z_n) = \lim_{n \to \infty} \varphi\left(y_1 + \sum_{k=1}^{n} z_k\right) = \text{l.u.b. } \varphi(y_n).$$

Hence φ is normal.

(2) \Rightarrow (3): By Lemma 1.4, $G(\alpha) \cap (M_r \times H_t)$ is $\sigma(M \times H, M_* \times H^*)$ -compact. $\{x \in M_r \mid \varphi(x^*x) \leqslant t^2\}$ is the range of $G(\alpha) \cap (M_r \times H_t)$ by the projection $(x, \xi) \to x$. Hence $\{x \in M_r \mid \varphi(x^*x) \leqslant t^2\}$ is σ -weakly compact. Thus by [2, Chap. 1, Sect. 3, Theorem 1(iv)], $\{x \in M \mid \varphi(x^*x) \leqslant t^2\}$ is σ -weakly closed. Now let x be in the σ -weak closure of $\{a \in M_+ \mid \varphi(a) \leqslant t^2\}$. Since the set is convex, there exists a net $\{x_i\} \subseteq M_+$, $\varphi(x_i) \leqslant t^2$ so that $x_i \to \sigma^{-s} x$. Then $x_i^{1/2} \to \sigma^{-s} x^{1/2}$ (cf. [4]). Thus $\varphi(x) = \varphi(x^{1/2}x^{1/2}) \leqslant t^2$. This completes the proof.

DEFINITION 1.6. Let A be a partially ordered vector space. A subset E of $A_+ = \{x \in A \mid x \geqslant 0\}$ is called hereditary if $x \in E$ and $0 \leqslant y \leqslant x$ implies that $y \in E$.

LEMMA 1.7. Let M be a W^* -algebra. Put $M_0 = \bigcup_{p \in \Sigma} pMp$ where Σ is the set of σ -finite projections in M. Let E be a convex, hereditary subset of M_0^+ . Then E is σ -weakly closed relative to M_0 iff $E \cap pMp$ is σ -weakly closed for any $p \in \Sigma$.

Proof. It is easily seen that if E is σ -weakly closed relative to M_0 then $E \cap pMp$ is σ -weakly closed for any $p \in \Sigma$. To show the opposite note first that if $p \in \Sigma$, then the unit ball in the left ideal Mp is metrisable in the σ -strong topology. Namely, let μ be a positive normal functional with support p, then the seminorm $x \to \mu(x^*x)^{1/2}$ induce the σ -strong topology on $(Mp)_1$. Let E be a convex hereditary subset of M_0 so that $M \cap pMp$ is σ -weakly closed for any $p \in \Sigma$.

Put $F = \{x \in M \mid x^*x \in E\}$. F is a convex subset of M. Let namely $x, y \in F$ and $\lambda \in [0, 1]$, then

$$(\lambda x + (1 - \lambda)y)^*(\lambda x + (1 - \lambda)y)$$

$$= \lambda^2 x^* x + (1 - \lambda)^2 y^* y + \lambda (1 - \lambda)(x^* y + y^* x)$$

$$\leq \lambda^2 x^* x + (1 - \lambda)^2 y^* y + \lambda (1 - \lambda)(x^* x + y^* y)$$

$$= \lambda x^* x + (1 - \lambda) y^* y.$$

Hence $\lambda x + (1 - \lambda) y \in F$. Furthermore, if $s \in M$, $||s|| \le 1$, then $sF \subseteq F$ because $(sx)^* sx = x^*s^*sx \le x^*x$.

We will show that pF is σ -weakly closed for any $p \in \Sigma$, or equivalently that F^*p is σ -weakly closed. Using [2, Chap. 1, Sect. 3, Theorem 1(iv)], it is enough to show that $F^*p \cap M_r$ is σ -strongly closed for any r > 0.

Choose x so that x^* belongs to the σ -strong closure of $F^*p \cap M_r$. Since $Mp \cap M_r$ is metrisable in σ -strong topology, we can find a sequence $\{x_n\} \subseteq pF$, $||x_n|| \leqslant r$ so that $x_n^* \to \sigma^{-s} x^*$. Since the support and range projections of x_n are σ -finite, and since the least upper bound of a countable set of σ -finite projections again is a σ -finite projection there exists $q \in \Sigma$ so that $x_n \in qMq$, $\forall n \in N$. We have

$$x_n \in F \cap qMq = \{x \in qMq \mid x * x \in E \cap qMq\}.$$

Since $E \cap qMq$ is σ -weakly closed $F \cap qMq$ is σ -strongly closed and thus σ -weakly closed. Hence $x \in F \cap qMq$. Obviously px = x. Hence $x \in pF$. This shows that pF is σ -weakly closed for any $p \in \Sigma$.

Now let $y \in \overline{E}^{\sigma-w} \cap M_0$. Then there exists a net $\{y_i\} \subseteq E$ so that $y_i \to^{\sigma-s} y$. Let p be the support projection of y. We have $py_i^{1/2} \to^{\sigma-s} py^{1/2} = y^{1/2}$. Since p is σ -finite pF is closed. Thus $y^{1/2} \in pF \subseteq F$ and therefore $y \in E$. Hence E is σ -weakly closed relative to M_0 .

Theorem 1.8. Let φ be a weight on a W*-algebra M. The following three conditions are equivalent.

- (1) φ is completely additive,
- (2) φ is normal,
- (3) φ is σ -weakly lower semicontinuous.

Proof. It is easily seen that (3) ⇒ (2) ⇒ (1). (1) ⇒ (3): Put $E = \{x \in M_+ \mid \varphi(x) \leq 1\}$. By Lemma 1.5, $E \cap pMp$ is σ-weakly closed for any σ-finite projection p. Thus by Lemma 1.7, $E \cap M_0$ is σ-weakly closed relative to M_0 . Let $(p_i)_{i \in I}$ be a maximal set of orthogonal σ-finite projections. Then $\sum_{i \in I} p_i = 1$. For any finite subset J of I let p_J denote the projection $\sum_{i \in J} p_i$. Obviously $p_J \not = 1$. Now let $x \in E^{\sigma - w}$. Then there exists a net $\{x_\alpha\} \subseteq E$ so that $x_\alpha \to \sigma^{-s} x$. Thus $x^{1/2} \to \sigma^{-s} x^{1/2}$ and $x_\alpha^{1/2} p_J x_\alpha^{1/2} \to \sigma^{-w} x^{1/2} p_J x_1^{1/2}$ for any finite subset J of I. Since M_0 is a two-sided ideal in M we have $x_\alpha^{1/2} p_J x_\alpha^{1/2} \in M_0$ and $x^{1/2} p_J x_\alpha^{1/2} \in M_0$. Since $x_\alpha^{1/2} p_J x_\alpha^{1/2} \in E \cap M_0$ we get $x^{1/2} p_J x^{1/2} \in E \cap M_0$, ∀ $J \subseteq I$, J finite. Using $x = \sum_{i \in I} x^{1/2} p_i x^{1/2}$ we get

$$\varphi(x) = \sum_{i \in I} \varphi(x^{1/2} p_i x^{1/2}) = \lim \varphi(x^{1/2} p_J x^{1/2}).$$

This shows that $\varphi(x) \leq 1$. Hence E is σ -weakly closed.

As a special case of Theorem 1.8 we get the following well-known theorem (cf. [2, Chap. 1, Sect. 4, Theorem 1; and 3]).

COROLLARY 1.9. Let φ be a positive functional on a W*-algebra M. The following conditions are equivalent.

- (1) φ is completely additive,
- (2) φ is normal,
- (3) φ is σ -weakly continuous.

Proof. It is only left to show that if φ is σ -weakly lower semi-continuous on M_+ , then φ is σ -weakly continuous on M. Let $(x_i)_{i\in I}$ be a net on $M_{s,a}$, so that $||x_i|| \leq 1$ and $x_i \to^{\sigma-w} x$. Then

$$\lim \inf \varphi(x_i) = \lim \inf \varphi(1+x_i) - \varphi(1) \geqslant \varphi(1+x) - \varphi(1) = \varphi(x),$$

$$\lim \sup \varphi(x_i) = \varphi(1) - \lim \inf \varphi(1-x_i) \leqslant \varphi(1) - \varphi(1-x) = \varphi(x).$$

Hence the restriction of φ to $(M_1)_{s.a.}$ is σ -weakly continuous. Using [2, Chap. 1, Sect. 3, Theorem 1(ii)] we get the required result.

Problem 1.10. Let M be a W^* -algebra and φ a function $M_+ \to [0, \infty]$ with the properties

- (i) $x \leqslant y \Rightarrow \varphi(x) \leqslant \varphi(y), x, y \in M_+;$
- (ii) $\varphi(x+y) \leqslant \varphi(x) + \varphi(y), x, y \in M_+;$
- (iii) $\varphi(\lambda x) = \lambda \varphi(x), x \in M_+, \lambda \geqslant 0.$
- (iv) $\varphi(l.u.b. x_i) = l.u.b. \varphi(x_i)$ for any uniformly bounded increasing set $\{x_i\}$ of positive elements.

Is φ σ -weakly lower semicontinuous?

PROBLEM 1.11. Let φ be a weight on a W^* -algebra M, and assume that the restriction of φ to any commutative σ -weakly closed subalgebra is normal.

Is φ normal?

Remark 1.12. J. Dixmier has shown that if φ is a positive functional on a W^* -algebra M with the property that $\varphi(\sum p_i) = \sum \varphi(p_i)$ for any set $\{p_i\}$ of mutually orthogonal projections in M, then φ is normal (cf. [3]). This cannot be generalized to weights. Consider the W^* -algebra $L^{\infty}(\tilde{N})$ of all bounded sequences. The weight defined by

$$\varphi((a_n)_{n\in N}) = \begin{cases} \sum a_n, & \text{if } (a_n)_{n\in N} \text{ has finite support,} \\ \infty, & \text{otherwise,} \end{cases}$$

is completely additive on the projections, but φ is not normal.

2

Consider a locally convex Hausdorff vector space A over the scalar field R, which has a partial ordering defined by a closed convex cone A_+ , satisfying $A_+ \cap (-A_+) = \{0\}$ and $(A_+ - A_+)^- = A$. Let A' be the topological dual space of A. The dual cone of A_+ :

$$A_+' = \{ \varphi \in A' \mid \varphi(x) \geqslant 0, \forall x \in A_+ \}$$

defines a partial ordering of A'.

We recall that a subset E of A_+ is called hereditary if $x \in E$ and $0 \le y \le x$ implies that $y \in E$.

For $E \subseteq A$ we put $E^0 = \{ \varphi \in A' \mid \varphi(x) \geqslant -1, \forall x \in E \}$. For $E \subseteq A_+$ we put $E^{\wedge} = \{ \varphi \in A_+' \mid \varphi(x) \leqslant 1, \forall x \in E \}$. If $F \subseteq A'$ (resp. A_+') F^0 and F^{\wedge} is defined symmetrically.

PROPOSITION 2.1. In the above situation the following three conditions are equivalent.

- (1) For any convex, closed, hereditary subset E of A_+ is $E=(E-A_+)^-\cap A_+$.
 - (2) For any convex, closed, hereditary subset E of A_+ is $E = E^{-}$.
 - (3) Any lower semicontinuous function $\varphi: A_+ \to [0, \infty]$ satisfying
 - (i) $x \leqslant y \Rightarrow \varphi(x) \leqslant \varphi(y), x, y \in A_+$,
 - (ii) $\varphi(x+y) \leqslant \varphi(x) + \varphi(y)$, $x, y \in A_+$,
 - (iii) $\varphi(\lambda x) = \lambda \varphi(x), x \in A_+, \lambda \geqslant 0$,

has the form

$$\varphi(x) = \sup\{\omega(x) \mid \omega \in F\},\,$$

where $F = \{ \omega \in A_+' \mid \omega(x) \leqslant \varphi(x), \forall x \in A_+ \}.$

Proof. (1) \Rightarrow (2): Put $F = E^{\wedge}$. We will first show that $F' = \{\omega \in A' \mid \omega(x) \leqslant 1, \forall x \in E - A_{+}\}$ is equal to F. Obviously $F \subseteq F'$. Let $w \in F'$. Then $\forall x \in A_{+}$, $\forall \lambda \geqslant 0$: $\omega(-\lambda x) \leqslant 1$. Thus $\forall x \in A_{+}$: $\omega(x) \geqslant 0$. Therefore $\omega \geqslant 0$. Hence

$$F' \subseteq \{\omega \in A_+' \mid \omega(x) \leqslant 1, \forall x \in E - A_+\} \subseteq F.$$

Now using the bipolar theorem we get

$$(E - A_{+})^{-} = (E - A_{+})^{00} = (-F)^{0} = \{x \in A \mid \omega(x) \leqslant 1, \forall \omega \in F\}.$$

Thus by (1):

$$E = (E - A_{+})^{-} \cap A_{+} = \{x \in A_{+} \mid \omega(x) \leq 1, \forall \omega \in F\} = E^{-}$$

(2) \Rightarrow (3): Let φ be a lower semicontinuous function on A_+ satisfying the conditions of (3), then $E = \{x \in A_+ \mid \varphi(x) \leqslant 1\}$ is a convex, closed, hereditary subset of A_+ .

Put $F = E^{\hat{}} = \{ \omega \in A_+' \mid \omega(x) \leqslant 1, \forall x \in E \}$. Note that if $\omega \in A_+'$, then

$$\omega \leqslant \varphi \Leftrightarrow \{y \in A_+ \mid \varphi(y) \leqslant 1\} \subseteq \{y \in A_+ \mid \omega(y) \leqslant 1\}.$$

Hence $F = \{ \omega \in A_+' \mid \omega \leqslant \varphi \}.$

Put $\psi(x) = \sup_{\omega \in F} \omega(x)$, $x \in A_+$. Obviously $\psi \leqslant \varphi$. Assume now that there exists $x_0 \in A_+$ so that $\psi(x_0) < \varphi(x_0)$. By multiplying x_0 with a suitable scalar we can assume that $\psi(x_0) < 1 < \varphi(x_0)$ ($\varphi(x_0)$ might be $+\infty$). By the definition of E we have $x_0 \notin E$. By (2):

$$E = \{x \in A_+ \mid \omega(x) \leqslant 1, \forall \omega \in F\}$$
$$= \{x \in A_+ \mid \psi(x) \leqslant 1\}.$$

Hence $x_0 \in E$, which gives a contradiction.

(3) \Rightarrow (1): Let E be a convex, closed, hereditary subset of A_+ . Put

$$\varphi(x) = \inf\{\lambda > 0 \mid x \in \lambda E\}, \quad x \in A_+.$$

In particular $\varphi(x) = +\infty$ iff $x \notin \bigcup_{\lambda>0} (\lambda E)$. It is easy to check that φ satisfies (i), (ii), and (iii). Furthermore,

$$\lambda E := \{x \in A_+ \mid \varphi(x) \leqslant \lambda\}.$$

Hence φ is lower semicontinuous. Thus by (3),

$$\varphi(x) = \sup_{\omega \in F} \omega(x)$$
 where $F = \{\omega \in A_{+}' \mid \omega \leqslant \varphi\}$.

Therefore $E - A_+ \subseteq \{x \in A \mid \omega(x) \le 1, \forall \omega \in F\}$. Since the latter is closed we get

$$(E-A_+)^- \cap A_+ \subseteq \{x \in A_+ \mid \omega(x) \leqslant 1, \forall \omega \in F\} \subseteq E.$$

Hence
$$E = (E - A_+)^- \cap A_+$$
.

Theorem 2.2. The self-adjoint part $M_{\rm s.a.}$ of a W*-algebra M equipped with σ -weak topology satisfies the conditions of Proposition 2.1.

Proof. We will prove (1) in Proposition 2.1. We shall use some properties of the functions

$$f_{\alpha}$$
: $]-1/\alpha$, $\infty[\to]-\infty$, $1/\alpha[$, $\alpha>0$,

defined by $f_{\alpha}(t) = t(1 + \alpha t)^{-1}$, namely:

- (a) $\alpha \leqslant \beta \Rightarrow f_{\alpha}(t) \geqslant f_{\beta}(t), t \in]-1/\beta, \infty[$;
- (b) $f_{\alpha}(t) \nearrow t$ when $\alpha \rightarrow 0$ and $-1/\alpha < t$;
- (c) $f_{\alpha+\beta}(t) = f_{\alpha}(f_{\beta}(t)), t > -1/(\alpha+\beta);$
- (d) f_{α} is operator monotone in the sense that

$$-1/\alpha < x \leqslant y \Rightarrow f_{\alpha}(x) \leqslant f_{\alpha}(y), \quad x, y \in M_{\text{s.a.}}.$$

For $x \in M_{s.a.}$ we put $\alpha_x = \sup\{\alpha > 0 \mid -1/\alpha \le x\}$. Let E be a convex σ -weakly closed hereditary subset of M_+ . Put

$$G = \{x \in M_{8,3} \mid f_{\alpha}(x) \in E - M_{+}, \forall \alpha \in [0, \alpha_{x}]\}.$$

We will show that

- (1) $G \cap M_r$ is σ -strongly closed,
- (2) $G \cap M_r$ is convex.

(1): Let $x \in (G \cap M_r)^{-\sigma-s}$. Then there exists a net $(x_i)_{i \in I}$ so that $x_i \in G$, $||x_i|| \leq r$, and $x_i \to^{\sigma-s} x$. For any $\alpha \in]0, 1/2r[$ we have $f_{\alpha}(x_i) \in E - M_+$. Hence we can for each $i \in I$ find $y_i \in E$ so that $f_{\alpha}(x_i) \leq y_i$. Now using that f_{α} is operator monotone we get

$$f_{2\alpha}(x_i) = f_{\alpha}(f_{\alpha}(x_i)) \leqslant f_{\alpha}(y_i).$$

Since $f_{2\alpha}$ is continuous on [-r,r], $\alpha \in]0, 1/2r[$ we get $f_{2\alpha}(x_i) \to^{\sigma-s} f_{2\alpha}(x)$. Since $0 \leqslant f_{\alpha}(y_i) \leqslant 1/\alpha$ there exists a subnet $f_{\alpha}(y_{i_k})$ so that $f_{\alpha}(y_{i_k}) \to y_{\alpha}'$ σ -weakly. $f_{\alpha}(y_i) \in E$ because $0 \leqslant f_{\alpha}(y_i) \leqslant y_i$. Then using that E is σ -weakly closed we find $y_{\alpha}' \in E$. Furthermore:

$$y_{\alpha'} - f_{2\alpha}(x) = \lim_{\alpha \to \infty} (f_{\alpha}(y_{i_k}) - f_{2\alpha}(x_{i_k})) \geqslant 0.$$

Hence $f_{2\alpha}(x) \in E - M_+$, $\forall \alpha \in]0, 1/2r[$ or equivalently $f_{\alpha}(x) \in E - M_+$, $\forall \alpha \in]0, 1/r[$. Using that $\beta \geqslant \alpha \Rightarrow f_{\beta} \leqslant f_{\alpha}$ we find that $f_{\beta}(x) \in (E - M_+) - M_+ = E - M_+$, $\forall \beta \in [1/r, \alpha_x[$. Hence $x \in G$.

(2): The convexity will follow if we show that

$$G\cap M_r=((E-M_+)\cap M_t)^{-\mathfrak{o}-s}\cap M_r \quad \text{ for } \ t>r.$$

 \subseteq : Let $x \in G \cap M_r$. Then $f_{\alpha}(x) \in E - M_+$, $\alpha \in]0$, $\alpha_x[$. Since $f_{\alpha}(x) \in M_t$ for sufficiently small α , and since $f_{\alpha}(x) \nearrow x$ we get $G \cap M_r \subseteq ((E - M_+) \cap M_t)^{-\sigma - s}$.

 \supseteq : Since $f_{\alpha}(x) \leqslant x$ for $\alpha \in]0$, $\alpha_x[$ we have $G \supseteq E - M_+$, and thus $G \cap M_t \supseteq (E - M_+) \cap M_t$. Then by (1) $G \cap M_t \supseteq ((E - M_+) \cap M_t)^{-\sigma - s}$. Hence

$$G\cap M_r=(G\cap M_t)\cap M_r\supseteq ((E-M_+)\cap M_t)^{-\sigma-s}\cap M_r\,.$$

Since $G \cap M_r$ is convex for any r > 0, G is also convex. Then using [2, Chap. 1, Sect. 3, Theorem 1(iv)], G is σ -weakly closed. Note that

$$E - M_+ \subseteq G \subseteq (E - M_+)^{-\sigma - w}$$
.

The last inclusion follows from $f_{\alpha}(x) \nearrow x$ for $\alpha \to 0$. Hence $G = (E - M_{+})^{-\sigma - w}$.

Now let $x \in (E-M_+)^{-\sigma-w} \cap M_+ = G \cap M_+$. Then $f_{\alpha}(x) \in E-M_+$, $\forall \alpha > 0$. Since E is hereditary, $f_{\alpha}(x) \in E$. Then using $f_{\alpha}(x) \nearrow x$ we find $x \in E$. Hence $(E-M_+)^{-\sigma-w} \cap E \subseteq E$. The converse inclusion is trivial. This completes the proof.

As an application of Theorem 2.2 we get a new proof of the corresponding result for C^* -algebras (cf. [1, Proposition 1.7, and Remark 1.6]).

COROLLARY 2.3. The self-adjoint part of a C*-algebra A, equipped with norm topology, satisfies the conditions in Proposition 2.1.

Proof. We will prove (1) in Proposition 2.1. We can imbed A in its second dual A^{**} , which is a W^* -algebra (cf. [6]). Let E be a convex, uniformly closed, hereditary subset of A_+ , and put $E' = \overline{E}^{\sigma-w}$ (closure in $\sigma(A^{**}, A^*)$ -topology). Since E is convex and uniformly closed it is also $\sigma(A, A^*)$ -closed. Hence $E = E' \cap A$.

We will now show that E' is a hereditary subset of A_+^{**} . Let $x \in E'$ and $y \in A^{**}$ with $0 \le y \le x$. There exists $s \in A^{**}$, $||s|| \le 1$, so that $y^{1/2} = sx^{1/2}$. By Kaplansky's density theorem there exists $s_j \in A$, $||s_j|| \le 1$ so that $s_j \to^{\sigma-s} s$. Furthermore there exists a net $(x_i)_{i \in I}$, $x_i \in E$, so that $x_i \to^{\sigma-s} x$. This implies that $x_i^{1/2} \to^{\sigma-s} x^{1/2}$. Hence $s_i x_i^{1/2} \to^{\sigma-s} sx^{1/2}$ and then

$$(s_i x_i^{1/2})^* (s_i x_i^{1/2}) \xrightarrow{\sigma - w} (s x^{1/2})^* (s x^{1/2}) = y.$$

Since $0 \leqslant (s_j x_i^{1/2})^* (s_j x_i^{1/2}) \leqslant x_i$ we get that $(s_j x_i^{1/2})^* (s_j x_i^{1/2}) \in E$. Hence $y \in E'$. This shows that E' is hereditary.

By Theorem 2.2 $(E' - A_+^{**})^{-\sigma - w} \cap A_+^{**} = E'$. Hence

$$(E-A_+)^-\cap A_+\subseteq (E'-A_+^{**})^{-\sigma-w}\cap A_+^{**}\cap A=E'\cap A=E.$$

The converse inclusion is trivial.

For the sake of completeness we will show that if M is a W^* -algebra, then the self-adjoint part of the predual M_* satisfies the conditions in Proposition 2.1.

LEMMA 2.4. Let M be a W^* -algebra and μ a positive normal functional on M. Let (π, H) be the representation induced by μ and let ξ_0 be the range of 1 by the quotient map $M \to M/N_{\mu} \subseteq H$ (cf. Sect. 1). Then the linear map $\Phi \colon \pi(M)' \to M_*$ defined by

$$\Phi(a')(x) = (a'\pi(x)\xi_0 \mid \xi_0), \quad a' \in \pi(M)', \quad x \in M,$$

has the following properties.

- (1) Φ is an order isomorphism of $\pi(M)'_{s,a}$ on $\Phi(\pi(M)'_{s,a})$.
- (2) $\Phi(\pi(M)'_{\mathrm{s.a.}}) = \{ \varphi \in (M_*)_{\mathrm{s.a.}} \mid \exists k > 0 : -k\mu \leqslant \varphi \leqslant k\mu \}.$
- (3) Φ is $\sigma(\pi(M)', \pi(M)'_*) \sigma(M_*, M)$ continuous.
- (4) Φ is a homeomorphism of $\{x \in \pi(M)'_{s.a.} \mid -1 \leqslant x \leqslant 1\}$ on $\{\varphi \in (M_*)_{s.a.} \mid -\mu \leqslant \varphi \leqslant \mu\}$ with respect to the topologies in (3).

Proof. Note first that ξ_0 is cyclic for $\pi(M)$ and that

$$\mu(x) = (\pi(x)\xi_0 \mid \xi_0), \qquad x \in M.$$

- (1): Obviously $a' \geqslant 0$ implies $\Phi(a') \geqslant 0$. Assume that $\Phi(a') \geqslant 0$; then $(a'\pi(x)\xi_0 \mid \pi(x)\xi_0) \geqslant 0$, $\forall x \in M$, which implies that $a' \geqslant 0$. Hence Φ is an order isomorphism of $\pi(M)'_{s.a.}$ on $\Phi(\pi(M)'_{s.a.})$. In particular Φ is injective.
- (2): Using that Φ preserves order and that $\Phi(1) = \mu$ we find that $\Phi(\pi(M)'_{s.a.}) \subseteq \{\varphi \in M_* \mid \exists k > 0 : -k\mu \leqslant \varphi \leqslant k\mu\}$. To show the converse inclusion, let $\varphi \in M_*$ and assume that $-k\mu \leqslant \varphi \leqslant k\mu$ for some k > 0. Then

$$|\varphi(x^*x)| \leq k(\pi(x)\xi_0 | \pi(x)\xi_0), \quad x \in M.$$

Hence there exists a bounded self-adjoint operator T in B(H) so that $\varphi(y^*x) = (T\pi(x)\xi_0 \mid \pi(y)\xi_0)$ and $\parallel T \parallel \leqslant k$. As in the proof of Lemma 1.2 we see that $T \in \pi(M)'$. It is easy to check that $\varphi = \Phi(T)$.

(3): Trivial.

(4): This is a consequence of the fact that a continuous, injective map of a compact set into a Hausdorff space is a homeomorphism on its range.

PROPOSITION 2.5. Let M be a W^* -algebra. The self-adjoint part of the predual M_* equipped with norm topology satisfies the conditions in Proposition 2.1.

Proof. We will show (1) in Proposition 2.1. Let E be a convex, hereditary (norm) closed subset of M_*^+ and let $\varphi \in (E - M_*^+)^- \cap M_*^+$. There exists a sequence $\{\varphi_n\} \subseteq E - M_*^+$, so that $\|\varphi_n - \varphi\| \leqslant 2^{-n}$. For each $n \in N$ we can choose a $\psi_n \in E$ so that $\varphi_n \leqslant \psi_n$. Put

$$\mu = \varphi + \sum\limits_{n=1}^{\infty} \mid \varphi_n - \varphi \mid + \sum\limits_{n=1}^{\infty} 2^{-n} \psi_n / \parallel \psi_n \parallel.$$

Since $\sum_{n=1}^{\infty} \| \varphi_n - \varphi \| < \infty$ and $\sum_{n=1}^{\infty} 2^{-n} < \infty$, μ is a well-defined functional in M_* ⁺. Furthermore,

$$-\mu \leqslant \varphi_n \leqslant \mu,$$
 $n \in \dot{N};$ $0 \leqslant \psi_n \leqslant 2^n \|\psi_n\| \mu,$ $n \in \dot{N}.$

Let (π, H) be the representation of M defined by μ and let Φ be the map in Lemma 2.4. Put $E_1 = \Phi^{-1}(E)$. Using Lemma 2.4(1) we see that E_1 is a convex, hereditary subset of $\pi(M)'$. Furthermore, E_1 is σ -weakly closed because Φ is $\sigma(\pi(M)', \pi(M)'_*) - \sigma(M_*, M)$ -continuous. (E is a convex, norm-closed subset of M_* , and therefore closed in any topology compatible with the duality of M_* and $(M_*)^* = M$). By Theorem 2.2, $(E_1 - \pi(M)'_+)^{-\sigma-w} \cap \pi(M)'_+ = E_1$. Put $x_n = \Phi^{-1}(\varphi_n)$, $x = \Phi^{-1}(\varphi)$, and $y_n = \Phi^{-1}(\psi_n)$ (cf. Lemma 2.4(2)). Since $x_n \leqslant y_n$ we have $x_n \in E_1 - \pi(M)'_+$. Using Lemma 2.4(4) we find that $x_n \to^{\sigma-w} x$. Hence $x \in (E_1 - \pi(M)'_+)^{-\sigma-w} \cap \pi(M)'_+ = E_1$. Thus $\varphi = \Phi(x) \in E$. This completes the proof.

Remark 2.6. Let M be a W^* -algebra. Since both $M_{\rm s.a.}$ and $(M_*)_{\rm s.a.}$ satisfy Proposition 2.1(2), the map $E \to E^{\wedge}$ is a bijective map of the σ -weakly closed, convex, hereditary subsets of M_+ onto the norm-closed, convex, hereditary subsets of M_*^+ , and the inverse map is $F \to F^{\wedge}$.

PROBLEM 2.7. Let A be a C^* -algebra, and let A^* be the dual space equipped with $\sigma(A^*, A)$ -topology. Does $A^*_{s.a.}$ satisfy the conditions in Proposition 2.1? (It is not difficult to show that the answer is affirmative, if A is commutative.)

ACKNOWLEDGMENT

I thank Gert K. Pedersen for many fruitful conversations and for his lectures on the use of operator monotone functions in C^* -algebra theory.

REFERENCES

- F. Combes, Poids sur une C*-algèbre, J. Math. Pures Appl. 47 (1968), 57-100.
- J. DIXMIER, "Les Algèbres d'Opérateurs dans l'Espace Hilbertien," Gauthier-Villars, Paris, 1969.
- 3. J. DIXMIER, Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. France 81 (1953), 9-39.
- 4. R. V. Kadison, Strong continuouity of operator functions, *Pacific J. Math.* 28 (1968), 121-129.
- 5. G. K. Pedersen and M. Takesaki, The Radon-Nikodym theorem for von Neumann algebras, *Acta Math.* 130 (1973), 53-87.
- 6. S. SAKAI, C*-Algebras and W*-Algebras, Springer-Verlag, Berlin, 1971.