10.4 Product Structures

Let M be a combinatorial structure of interest, say permutations, derangements, number of fixed points et al. Let M(x) be the EGF for sequence mk which is the number of combinatorial structures M in set [k]. For example, if M=Π, permutations then Π(x)=n=1xn=(1x)1. For M=S, the number of ways to divide the set into singletons, trivially sk=1 and S(x)=ex. Say P denotes partition into pairs, then p(n)=0 for n odd. For n=2k, choose a pair x1 for 1 and then pair the remaining 2k2 points. So p(2k)=(2k1)p(2k2) and hence p(2k)=(2k1)(2k3)1=:(2k1)!!. So

P(x)=k=0(2k1)!!x2k(2k)!=k=0(x2/2)kk!=ex2/2.

If a structure M can be uniquely split into a structure A and structure B then we say M=A.B. In this case

M(x)=n=0(k=0n(nk)akbnk)xnn!.=A(x)B(x).
Example 10.9.

Consider Π. Every permutation is uniquely decomposed into a fixed points (i.e., singletons) and a derangement. So,

(1x)1=Π(x)=D(x)S(x)=D(x)ex

and hence D(x)=ex(1x)1.

Example 10.10.

Let M denote partition into pairs and singletons. Then M(x)=P(x).S(x)=ex+x2/2.