References

  • [Addario-Berry 2015] Addario-Berry L. "Partition functions of discrete coalescents: from Cayley’s formula to Frieze’s ζ(3) limit theorem." In XI Symposium on Probability and Stochastic Processes. (2015) (pp. 1-45). Birkhäuser, Cham.
  • [Aigner et al. 2010] Aigner, M., Ziegler, G. M., Hofmann, K. H., & Erdos, P. (2010). Proofs from the Book (Vol. 274). Berlin: Springer.
  • [Alon and Spencer 2004] Alon, N., and Spencer, J. H. (2004). The probabilistic method. John Wiley and Sons.
  • [Babai 2020] Babai, László, and Péter Frankl. Linear algebra methods in combinatorics. University of Chicago.
  • [Baker 2015] Baker, M. (2015). Hodge theory in combinatorics. Hodgetheoryincombinatorics.
  • [Baker 2018] Baker, M. (2018). Hodge theory in combinatorics. Bulletin of the American Mathematical Society, 55(1), 57-80.
  • [Bapat 2010] Bapat, R. B. (2010). Graphs and matrices (Vol. 27). London: Springer.
  • [Bauerschmidt et al. 2012] Bauerschmidt, Roland, Hugo Duminil-Copin, Jesse Goodman, and Gordon Slade. "Lectures on self-avoiding walks." Probability and Statistical Physics in Two and More Dimensions (D. Ellwood, CM Newman, V. Sidoravicius, and W. Werner, eds.), Clay Mathematics Institute Proceedings 15 (2012): 395-476.
  • [Bertsimas 1990] Bertsimas, Dimitris J., and Garrett Van Ryzin. "An asymptotic determination of the minimum spanning tree and minimum matching constants in geometrical probability." Operations Research Letters 9, no. 4 (1990): 223-231.
  • [Bollobas 2013] B. Bollobás, Modern graph theory, volume 184, (2013), Springer Science & Business Media.
  • [Bond and Levine 2013] B. Bond and L. Levine. (2013) Abelian Networks : Foundations and Examples, arXiv:1309.3445v1.
  • [Clay and Margalit 2017] Clay, Matt, and Dan Margalit, eds. Office Hours with a Geometric Group Theorist. Princeton University Press, 2017.
  • [Choudum 1986] Choudum, S. A. "A simple proof of the Erdos-Gallai theorem on graph sequences." Bulletin of the Australian Mathematical Society 33, no. 1 (1986): 67-70.
  • [Corry and Perkinson 2018] S. Corry and D. Perkinson. Divisors and Sandpiles: An Introduction to Chip-Firing, Volume 114, (2018), American Mathematical Soc.
  • [Diestel 2000] R. Diestel, Graph theory, (2000), Springer-Verlag Berlin and Heidelberg GmbH.
  • [Duminil-Copin and Smirnov 2012] Duminil-Copin, H., & Smirnov, S. "The connective constant of the honeycomb lattice equals 2+2." Annals of Mathematics. (2012). 1653-1665.
  • [Edelsbrunner 2010] Edelsbrunner, H., & Harer, J. (2010). Computational topology: an introduction. American Mathematical Soc..
  • [Flajolet and Sedgewick] Flajolet, Philippe, and Robert Sedgewick, Analytic combinatorics Cambridge University press, 2009.
  • [Frieze 1985] Frieze, Alan M. "On the value of a random minimum spanning tree problem." Discrete Applied Mathematics 10, no. 1 (1985): 47-56.
  • [Frieze and Pegden 2017] Frieze, Alan, and Wesley Pegden. "Separating subadditive Euclidean functionals." Random Structures & Algorithms 51, no. 3 (2017): 375-403.
  • [Gale and Shapley 1962] Gale, David, and Lloyd S. Shapley. "College admissions and the stability of marriage." The American Mathematical Monthly 69, no. 1 (1962): 9-15.
  • [Godsil and Royle 2013] Godsil, C., and Royle, G. F. (2013). Algebraic graph theory (Vol. 207). Springer Science & Business Media.
  • [Grigoryan 2018] Grigoryan, A. (2018). Grigor’yan, A. (2018). Introduction to Analysis on Graphs (Vol. 71). American Mathematical Soc..
  • [Grochow 2019] Grochow, Joshua. "New applications of the polynomial method: The cap set conjecture and beyond." Bulletin of the American Mathematical Society 56, no. 1 (2019): 29-64.
  • [Guth 2016] Guth, Larry. Polynomial methods in combinatorics. Vol. 64. American Mathematical Soc., 2016.
  • [Helfgott 2022] H. A. Helfgott. Expansion, divisibility and parity: an explanation. arXiv:2201.00799. 2022.
  • [Jukna 2011] Jukna, Stasys. Extremal combinatorics: with applications in computer science. Springer Science & Business Media, 2011.
  • [Koperberg 2022] Koperberg, T. "Couplings and Matchings: Combinatorial notes on Strassen’s theorem”, arXiv:2202.02092, 2022.
  • [Krishnapur 2019] Krishnapur, M. Topics in Analysis : Lecture Notes. http://math.iisc.ac.in/~manju/TA2019/Topicsinanalysis2019.pdf, 2019.
  • [Lalley Notes] S. P. Lalley. Hall’s Matching Theorem. Course Notes. http://galton.uchicago.edu/~lalley/Courses/388/Matching.pdf, 2002.
  • [Lovasz 2011] Lovász, László. "Graph Theory Over 45 Years." In An Invitation to Mathematics, pp. 85-95. Springer, Berlin, Heidelberg, 2011.
  • [Pemantle and Wilson 2023] Pemantle, Robin, and Mark C. Wilson. Analytic combinatorics in several variables. AMC 10 (2023): 12.
  • [Pitman 1999] Pitman, Jim. "Coalescent random forests." Journal of Combinatorial Theory, Series A 85, no. 2 (1999): 165-193.
  • [Melczer 2021] Melczer, Stephen. An Invitation to Analytic Combinatorics. Springer International Publishing AG, 2021.
  • [Munkres 2018] Munkres, J. R. (2018). Elements of algebraic topology. CRC Press.
  • [Perkinson 2011] D. Perkinson, J. Perelman and John Wilmes. Primer for the Algebraic Geometry of Sandpiles, arXiv:1112.6163.
  • [Rhee 1992] Rhee, Wansoo T. "On the travelling salesperson problem in many dimensions." Random Structures & Algorithms 3, no. 3 (1992): 227-233.
  • [Romik 2015] Romik, D. (2015). The surprising mathematics of longest increasing subsequences (No. 4). Cambridge University Press.
  • [Smirnov 2011] Smirnov, Stanislav. "How do research problems compare with IMO problems?." In An Invitation to Mathematics, pp. 71-83. Springer, Berlin, Heidelberg, 2011.
  • [Spencer 1994] Spencer, J. (1994). Ten lectures on the probabilistic method (Vol. 64). SIAM.
  • [Stanley 2013] Stanley, Richard P. "Algebraic combinatorics." Springer 20 (2013): 22.
  • [Steele 1997] Steele, J Michael. "Probability theory and combinatorial optimization." vol. 69, (1997) : SIAM.
  • [Sudakov 2019] B. Sudakov. Graph Theory. AMS Open Lecture Notes. https://www.ams.org/open-math-notes/omn-view-listing?listingId=110795
  • [Terras 2010] Terras, A. (2010). Zeta functions of graphs: a stroll through the garden (Vol. 128). Cambridge University Press.
  • [Tripathi 2010] Tripathi, Amitabha, Sushmita Venugopalan, and Douglas B. West. "A short constructive proof of the Erdős–Gallai characterization of graphic lists." Discrete Mathematics 310, no. 4 (2010): 843-844.
  • [Van Lint and Wilson] van Lint, Jacobus Hendricus and Wilson, Richard Michael A course in combinatorics, 2001, Cambridge university press.
  • [Vinzing Theorem] Wikipedia contributors. (2021, July 6). Vizing’s theorem. In Wikipedia, The Free Encyclopedia. Retrieved 09:14, April 5, 2022, from https://en.wikipedia.org/w/index.php?title=Vizings_theorem&oldid=1032276902
  • [West 2001] D. B. West, Introduction to graph theory, Volume 2 (2001), Prentice hall Upper Saddle River.
  • [Wilf 2005] Wilf, Herbert S. generatingfunctionology, (2005), CRC press.