References
-
[Addario-Berry 2015]
Addario-Berry L. "Partition functions of discrete coalescents: from Cayley’s formula to Frieze’s limit theorem." In XI Symposium on Probability and Stochastic Processes. (2015) (pp. 1-45). Birkhäuser, Cham.
-
[Aigner et al. 2010]
Aigner, M., Ziegler, G. M., Hofmann, K. H., & Erdos, P. (2010). Proofs from the Book (Vol. 274). Berlin: Springer.
-
[Alon and Spencer 2004]
Alon, N., and Spencer, J. H. (2004). The probabilistic method. John Wiley and Sons.
-
[Babai 2020]
Babai, László, and Péter Frankl. Linear algebra methods in combinatorics. University of Chicago.
-
[Baker 2015]
Baker, M. (2015). Hodge theory in combinatorics. Hodgetheoryincombinatorics.
-
[Baker 2018]
Baker, M. (2018). Hodge theory in combinatorics. Bulletin of the American Mathematical Society, 55(1), 57-80.
-
[Bapat 2010]
Bapat, R. B. (2010). Graphs and matrices (Vol. 27). London: Springer.
-
[Bauerschmidt et al. 2012]
Bauerschmidt, Roland, Hugo Duminil-Copin, Jesse Goodman, and Gordon Slade. "Lectures on self-avoiding walks." Probability and Statistical Physics in Two and More Dimensions (D. Ellwood, CM Newman, V. Sidoravicius, and W. Werner, eds.), Clay Mathematics Institute Proceedings 15 (2012): 395-476.
-
[Bertsimas 1990]
Bertsimas, Dimitris J., and Garrett Van Ryzin. "An asymptotic determination of the minimum spanning tree and minimum matching constants in geometrical probability." Operations Research Letters 9, no. 4 (1990): 223-231.
-
[Bollobas 2013]
B. Bollobás, Modern graph theory, volume 184,
(2013), Springer Science & Business Media.
-
[Bond and Levine 2013]
B. Bond and L. Levine. (2013) Abelian Networks : Foundations and Examples, arXiv:1309.3445v1.
-
[Clay and Margalit 2017]
Clay, Matt, and Dan Margalit, eds. Office Hours with a Geometric Group Theorist. Princeton University Press, 2017.
-
[Choudum 1986]
Choudum, S. A. "A simple proof of the Erdos-Gallai theorem on graph sequences." Bulletin of the Australian Mathematical Society 33, no. 1 (1986): 67-70.
-
[Corry and Perkinson 2018]
S. Corry and D. Perkinson. Divisors and Sandpiles: An Introduction to Chip-Firing, Volume 114,
(2018), American Mathematical Soc.
-
[Diestel 2000]
R. Diestel, Graph theory, (2000), Springer-Verlag Berlin and Heidelberg GmbH.
-
[Duminil-Copin and Smirnov 2012]
Duminil-Copin, H., & Smirnov, S. "The connective constant of the honeycomb lattice equals ." Annals of Mathematics. (2012). 1653-1665.
-
[Edelsbrunner 2010]
Edelsbrunner, H., & Harer, J. (2010). Computational topology: an introduction. American Mathematical Soc..
-
[Flajolet and Sedgewick]
Flajolet, Philippe, and Robert Sedgewick, Analytic combinatorics Cambridge University press, 2009.
-
[Frieze 1985]
Frieze, Alan M. "On the value of a random minimum spanning tree problem." Discrete Applied Mathematics 10, no. 1 (1985): 47-56.
-
[Frieze and Pegden 2017]
Frieze, Alan, and Wesley Pegden. "Separating subadditive Euclidean functionals." Random Structures & Algorithms 51, no. 3 (2017): 375-403.
-
[Gale and Shapley 1962]
Gale, David, and Lloyd S. Shapley. "College admissions and the stability of marriage." The American Mathematical Monthly 69, no. 1 (1962): 9-15.
-
[Godsil and Royle 2013]
Godsil, C., and Royle, G. F. (2013). Algebraic graph theory (Vol. 207). Springer Science & Business Media.
-
[Grigoryan 2018]
Grigoryan, A. (2018). Grigor’yan, A. (2018). Introduction to Analysis on Graphs (Vol. 71). American Mathematical Soc..
-
[Grochow 2019]
Grochow, Joshua. "New applications of the polynomial method: The cap set conjecture and beyond." Bulletin of the American Mathematical Society 56, no. 1 (2019): 29-64.
-
[Guth 2016]
Guth, Larry. Polynomial methods in combinatorics. Vol. 64. American Mathematical Soc., 2016.
-
[Helfgott 2022]
H. A. Helfgott. Expansion, divisibility and parity: an explanation. arXiv:2201.00799. 2022.
-
[Jukna 2011]
Jukna, Stasys. Extremal combinatorics: with applications in computer science. Springer Science & Business Media, 2011.
-
[Koperberg 2022]
Koperberg, T. "Couplings and Matchings: Combinatorial notes on Strassen’s theorem”, arXiv:2202.02092, 2022.
-
[Krishnapur 2019]
Krishnapur, M. Topics in Analysis : Lecture Notes. http://math.iisc.ac.in/~manju/TA2019/Topicsinanalysis2019.pdf, 2019.
-
[Lalley Notes]
S. P. Lalley. Hall’s Matching Theorem. Course Notes. http://galton.uchicago.edu/~lalley/Courses/388/Matching.pdf, 2002.
-
[Lovasz 2011]
Lovász, László. "Graph Theory Over 45 Years." In An Invitation to Mathematics, pp. 85-95. Springer, Berlin, Heidelberg, 2011.
-
[Pemantle and Wilson 2023]
Pemantle, Robin, and Mark C. Wilson. Analytic combinatorics in several variables. AMC 10 (2023): 12.
-
[Pitman 1999]
Pitman, Jim. "Coalescent random forests." Journal of Combinatorial Theory, Series A 85, no. 2 (1999): 165-193.
-
[Melczer 2021]
Melczer, Stephen. An Invitation to Analytic Combinatorics. Springer International Publishing AG, 2021.
-
[Munkres 2018]
Munkres, J. R. (2018). Elements of algebraic topology. CRC Press.
-
[Perkinson 2011]
D. Perkinson, J. Perelman and John Wilmes. Primer for the Algebraic Geometry of Sandpiles, arXiv:1112.6163.
-
[Rhee 1992]
Rhee, Wansoo T. "On the travelling salesperson problem in many dimensions." Random Structures & Algorithms 3, no. 3 (1992): 227-233.
-
[Romik 2015]
Romik, D. (2015). The surprising mathematics of longest increasing subsequences (No. 4). Cambridge University Press.
-
[Smirnov 2011]
Smirnov, Stanislav. "How do research problems compare with IMO problems?." In An Invitation to Mathematics, pp. 71-83. Springer, Berlin, Heidelberg, 2011.
-
[Spencer 1994]
Spencer, J. (1994). Ten lectures on the probabilistic method (Vol. 64). SIAM.
-
[Stanley 2013]
Stanley, Richard P. "Algebraic combinatorics." Springer 20 (2013): 22.
-
[Steele 1997]
Steele, J Michael. "Probability theory and combinatorial optimization." vol. 69,
(1997) : SIAM.
-
[Sudakov 2019]
B. Sudakov. Graph Theory. AMS Open Lecture Notes. https://www.ams.org/open-math-notes/omn-view-listing?listingId=110795
-
[Terras 2010]
Terras, A. (2010). Zeta functions of graphs: a stroll through the garden (Vol. 128). Cambridge University Press.
-
[Tripathi 2010]
Tripathi, Amitabha, Sushmita Venugopalan, and Douglas B. West. "A short constructive proof of the Erdős–Gallai characterization of graphic lists." Discrete Mathematics 310, no. 4 (2010): 843-844.
-
[Van Lint and Wilson]
van Lint, Jacobus Hendricus and Wilson, Richard Michael A course in combinatorics, 2001, Cambridge university press.
-
[Vinzing Theorem]
Wikipedia contributors. (2021, July 6). Vizing’s theorem. In Wikipedia, The Free Encyclopedia. Retrieved 09:14, April 5, 2022, from https://en.wikipedia.org/w/index.php?title=Vizings_theorem&oldid=1032276902
-
[West 2001]
D. B. West, Introduction to graph theory, Volume 2
(2001), Prentice hall Upper Saddle River.
-
[Wilf 2005]
Wilf, Herbert S. generatingfunctionology,
(2005), CRC press.