
Factorization in domains and
zero-sum problems

B.Sury
Indian Statistical Institute Bangalore

National Mathematics Initiative
Conference on zero and related topics in number theory

IISc, July 26, 2016

B.Sury Factorization in domains and zero-sum problems



Factorization problems in integral domains form an important
aspect in commutative algebra.

An important class of domains more general than Dedekind
domains is that of Krull domains; these are:

Domains R = ∩ht(P)=1RP where the localizations RP at height
1 prime ideals are DVRs and each a 6= 0 in R belongs to at
most a finite number of height one prime ideals.

For Noetherian domains, this class coincides with the
integrally closed ones.

In particular, Dedekind domains are Krull domains.

B.Sury Factorization in domains and zero-sum problems



Factorization problems in integral domains form an important
aspect in commutative algebra.

An important class of domains more general than Dedekind
domains is that of Krull domains; these are:

Domains R = ∩ht(P)=1RP where the localizations RP at height
1 prime ideals are DVRs and each a 6= 0 in R belongs to at
most a finite number of height one prime ideals.

For Noetherian domains, this class coincides with the
integrally closed ones.

In particular, Dedekind domains are Krull domains.

B.Sury Factorization in domains and zero-sum problems



Factorization problems in integral domains form an important
aspect in commutative algebra.

An important class of domains more general than Dedekind
domains is that of Krull domains; these are:

Domains R = ∩ht(P)=1RP where the localizations RP at height
1 prime ideals are DVRs and each a 6= 0 in R belongs to at
most a finite number of height one prime ideals.

For Noetherian domains, this class coincides with the
integrally closed ones.

In particular, Dedekind domains are Krull domains.

B.Sury Factorization in domains and zero-sum problems



Factorization problems in integral domains form an important
aspect in commutative algebra.

An important class of domains more general than Dedekind
domains is that of Krull domains; these are:

Domains R = ∩ht(P)=1RP where the localizations RP at height
1 prime ideals are DVRs and each a 6= 0 in R belongs to at
most a finite number of height one prime ideals.

For Noetherian domains, this class coincides with the
integrally closed ones.

In particular, Dedekind domains are Krull domains.

B.Sury Factorization in domains and zero-sum problems



Factorization problems in integral domains form an important
aspect in commutative algebra.

An important class of domains more general than Dedekind
domains is that of Krull domains; these are:

Domains R = ∩ht(P)=1RP where the localizations RP at height
1 prime ideals are DVRs and each a 6= 0 in R belongs to at
most a finite number of height one prime ideals.

For Noetherian domains, this class coincides with the
integrally closed ones.

In particular, Dedekind domains are Krull domains.

B.Sury Factorization in domains and zero-sum problems



The starting point of this topic of factorization is the following
beautiful result of Carlitz from 1960.

Theorem (Carlitz).
Let R be the ring of integers in an algebraic number field K .
Then, K has class number ≤ 2 if, and only if, any two
irreducible factorizations

p1p2 · · · pr = q1q2 · · · qs

in R have the same length (r = s).

The integral domains with the above unique length property
are now called half-factorial domains (HFDs).
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Proof of Carlitz’s theorem.
Suppose K has class number 2.

Consider two irreducible factorizations

p1p2 · · · pr = q1q2 · · · qs .

We may assume that none of the pi ’s and qj ’s are primes.
Now, each (pi) and each (qj) is a product of two nonprincipal
prime ideals; so, 2r = 2s and we have r = s.

B.Sury Factorization in domains and zero-sum problems



Proof of Carlitz’s theorem.
Suppose K has class number 2.
Consider two irreducible factorizations

p1p2 · · · pr = q1q2 · · · qs .

We may assume that none of the pi ’s and qj ’s are primes.
Now, each (pi) and each (qj) is a product of two nonprincipal
prime ideals; so, 2r = 2s and we have r = s.

B.Sury Factorization in domains and zero-sum problems



Proof of Carlitz’s theorem.
Suppose K has class number 2.
Consider two irreducible factorizations

p1p2 · · · pr = q1q2 · · · qs .

We may assume that none of the pi ’s and qj ’s are primes.

Now, each (pi) and each (qj) is a product of two nonprincipal
prime ideals; so, 2r = 2s and we have r = s.

B.Sury Factorization in domains and zero-sum problems



Proof of Carlitz’s theorem.
Suppose K has class number 2.
Consider two irreducible factorizations

p1p2 · · · pr = q1q2 · · · qs .

We may assume that none of the pi ’s and qj ’s are primes.
Now, each (pi) and each (qj) is a product of two nonprincipal
prime ideals; so, 2r = 2s and we have r = s.

B.Sury Factorization in domains and zero-sum problems



For the converse, suppose R has class number > 2.

If there exists an element [P] of order d > 2, then writing [P ′]
for the inverse class, with P ′ prime, we get

Pd = (x),P ′d = (y),PP ′ = (z)

So (xy) = (PP ′)d = (zd) which gives xy = uzd for some unit
u. This expression shows R is not a HFD.
In case the class group is made of copies of Z2, look at
elements [P] 6= [Q].
Then, P2 = (x),Q2 = (y).
If [R]−1 = [P][Q] in the class group, write PQR = (w).
Now, if R2 = (z), we obtain (w 2) = (xyz) which gives
w = uxyz for some unit u, again showing R is not a HFD.
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It is important to note that the proof depends on the property
that each nontrivial ideal class contains a prime ideal. This is
NOT true for general Dedekind domains.

HFDs need not be integrally closed; for example Z[
√
−3] is a

HFD. In fact, we have the amazing:
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The ring Z[
√
−3] is the unique, non- (integrally closed) order

in an imaginary quadratic field which is a HFD.

Stark also proved an analogue of this class number one
theorem:

The only imaginary quadratic fields whose rings of integers are
HFDs are those with discriminants equal to:

−15,−20,−24,−35,−40,−51,−52,−88,−91,−115,

−123,−148,−187,−232,−235,−267,−403,−467.

As mentioned earlier, if we include orders, we need to add only
the ring Z[

√
−3].
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One has the following implication:

If an order R in an algebraic number field is a HFD, then so is
its integral closure.

Later, we will give examples to show that this does not
generalize to other domains.

Also, analogous to Gauss’s conjecture, one has:

Conjecture. There exist infinitely many real quadratic fields
whose rings of integers are HFDs.
In fact, one expects that there are infinitely many HFDs
contained in Z[

√
2].
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Claborn proved that every abelian group appears as the divisor
class group of a Dedekind domain.

Zaks (who was the first to coin the phrase HFD) showed that
the analogue of Carlitz’s theorem is false in Dedekind domains
in general.

He showed in 1976:
Every finite abelian group occurs as the class group of a
Dedekind HFD.
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One may look at other types of extensions like polynomial
rings over domains.

A natural question is whether the property that R is an HFD
imply that R[X ] is an HFD; this turns out to be a subtle
question.

Coykendall proved the beautiful result:
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Let R be any domain such that R[X ] is an HFD. Then, R
must be integrally closed.

In the same work, he also showed:
Let R be a Noetherian domnain. Then,
R is a Krull domain with class number ≤ 2 if, and only if,
R[X ] is an HFD if, and only if,
R[X1, · · · ,Xn] is an HFD for all n ≥ 1.

In fact, Zaks’s early work already shows the first statement
implies the second because, if R is a Krull domain, then
R[X1, · · · ,Xn] is also a Krull domain whose class group is the
same.
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Note that Z[
√
−3][X ] is not a HFD by Coykendall’s theorem.

In fact,

(2X + 1 +
√
−3)(2X + 1−

√
−3) = (2)(2)(X 2 + X + 1).

Question. If R is a domain such that R[X1] is a HFD, is
R[X1,X] also a HFD?
The answer is yes if R is Noetherian.
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The next natural question is if R is a domain such that R[[X ]]
is a HFD, is it true that R is integrally closed?

This turns put to be false for R = Z[
√
−3]. Thus, R is a

HFD, R[X ] is not while R[[X ]] is!

We mentioned that if an order in a number field is a HFD,
then so is its integral closure - this uses strongly that
irreducibles in the integral closure can be thought of as
irreducibles in the order, up to units.

Question. If a domain R is a HFD and its integral closure S
is atomic, is S a HFD?
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Just to recall, for a Krull domain R , the divisor class group is
defined as follows.

On non-zero fractional ideals, one defines the v -operation as
Iv = (I−1)−1.
Consider the set div(R) of divisorial ideals (that is, non-zero
fractional ideals I such that I = Iv .
The product of two divisorial ideals I , J may not be divisorial,
but (IJ)v is divisorial; so, one defines the product of two
elements I , J in div(R) as (IJ)v .
The divisor class group is the quotient div(R)/Prin(R) where
Prin(R) is the subgroup of all principal fractional ideals.
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The most crucial property of Krull domains is the property
that to every non-zero, non-unit a ∈ R , there are uniquely
determined height one prime ideals P1, · · · ,Pn such that

aR = (P1 · · ·Pn)v .

Decomposition of a non-zero, nonunit a into irreducibles
corresponds to grouping the v -product of height one prime
ideals into sub-v -products which do not admit any proper
subproducts which are principal.

That is, if aR = (P1 · · ·Pn)v and (P1 · · ·Pr )v = bR for some
r < n, then there exists c ∈ R such that cR = (Pr+1 · · ·Pn)v
and a = bcu for some unit u.
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For a Krull domain R , look at its class group Cl(R) (written
additively) and the subset S of non-zero classes which contain
height one prime ideals.

We define a pair (G , S) with G an abelian group and S a
subset of non-zero elements to be realizable, if there is a Krull
domain R which realizes this pair as above.

(G , S) is realizable as above if, and only if, S generates G as a
monoid.
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In fact, we have the following refined version:

Given a countably generated abelian group G and a nonempty
subset S , there exists a Dedekind domain R with class group
isomorphic to G with the additional property that the classes
containing maximal ideals to constitute S if, and only if, S
generates G as monoid.

In particular, looking at G = Zk1 × Zk2 × · · ·Zkn × Zr and
S = {e1, · · · , en, en+1, · · · , en+r ,−en+1, · · · ,−en+r}, Zaks
showed that there exists a Dedekind domain which is also a
HFD such that its class group is isomorphic to any finitely
generated abelian group.

It is known (due to Grams) that a pair (G , S) (where G is a
finite abelian group G ) is realizable if, and only if, S generates
G as a group.
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For a Krull domain R (which is not a UFD) and an irreducible,
nonprime element a ∈ R , there exist unique height one prime
ideals P1, · · · ,Pr whose v -product is the principal ideal (a);
so,
∑r

i=1[Pi ] = 0 in Cl(R). As a is irreducible, no proper
subsum is 0 in Cl(R).

This prompted Davenport to come up with the following
notion (now known as Davenport’s constant):

Let G be a finite abelian group and g1, · · · , gr a sequence of
elements whose sum is 0 and no proper subsum is 0. The
Davenport constant of G is defined to be the largest such r
(that is, largest r such that there is a sequence of length r
with no proper subsequence summing to 0).
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Given G , one may form a monoid B(G ) whose elements are
”blocks” or sequences which sum to 0.

This is atomic if one looks at blocks which are irreducible
(which means no proper subsum is 0).
Given a subset S of nonzero elements in G , the monoid B(G )
has an atomic submonoid B(S) whose elements are blocks
built out of elements in S .
Let R be Krull monoid with divisor class group G , and let S
consist of those classes contain height one prime ideals. The
map f which sends a nonzero element a in R to the block
[P1], [P2], · · · , [Pr ] where P1 · · ·Pr = aR , is a
length-preserving monoid homomorphism.
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The Davenport constant of the class group plays a key role in
the factorization theory of Krull domains but it is very hard to
compute.

Olson was the first to study this in detail and determine the
Davenport constants for some classes of groups.

If G = Zn1 × · · · × Znr where n1|n2| · · · |nr , then one defines
the number

M(G ) = 1 +
r∑

i=1

(ni − 1).

It is easy to see that D(G ) ≥ M(G ).
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It turns out that for groups of rank at most 2 (that is, r = 1
and r = 2), D(G ) = M(G ).

This was conjectured to be always true - first conjectured for
Zp ×Zp by Erdős - but counter-examples were found later; the
smallest counter-example is:

Example. Z2 × Z2 × Z2 × Z2 × Z6 has M(G ) = 10 and
D(G ) > 10.
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The conjecture D(G ) = M(G ) is still open for groups of rank
3 and rank 4 - equality has been proved in some cases.

Olson proved the equality D(G ) = M(G ) for any p-group.

However, the general problem of determining D(G ) remains
open and also determining which groups have D(G ) = M(G )
is an interesting open question.
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A natural method of evaluation of D(G ) is by employing
group algebras - we shall use this to outline Olson’s proof for
p-groups.
Before that, let us define another interested notion.

Given an atomic domain R , and any nonzero nonunit a, look
at the supremum ρR(a) of m/n where
a = p1p2 · · · pm = q1q2 · · · qn with pi , qj irreducible.

One defines the elasticity ρ(R) of R to be the supremum of
ρR(a) as a varies over nonzero nonunits.
HFDs have elasticity 1.
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Narkiewicz proved for an algebraic number field K with
nontrivial class group that ρ(OK ) = D(Cl(K ))/2.

The proof works for any Dedekind domain with finite class
group such that every ideal class contains a prime ideal.
In fact, the result generalizes to Krull domains with nontrivial
class group in which every nontrivial ideal class contains a
height one prime ideal.
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Apart from rings of integers which have finite elasticity by the
above theorem, we also saw that the order Z[

√
−3] has

elasticity 1.

In contrast, in Z[
√
−7], for each k ≥ 2, there is an element

which is a product of 2k , 2k + 1, · · · , 3k irreducible elements
at the same time!

Indeed, since 8 = (2)(2)(2) = (1−
√
−7)(1 +

√
−7), we may

raise them to the k-th power and keep replacing
(1−

√
−7)(1 +

√
−7) by (2)(2)(2).
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Using norm maps, Coykendall has shown (and this is easy):

If L/K is a Galois extension of algebraic number fields, and S
is the monoid of integral norms from OL to OK , then
ρ(OL) ≥ ρ(S).
Further, if the norm of every irreducible element of OL is
irreducible in S , then ρ(OL) = ρ(S).
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If L = Q(
√
−14), one has ρ(OL) = 2 because

(3)(3)(3)(3) = (5 + 2
√
−14)(5− 2

√
−14).

Note that ρ(OL) ≤ D(Cl(OL))/2 = 2 from Narkiewicz’s result
also.

However, for the normset S with K = Q, it can be shown that
ρ(S) = 3/2 - note that 81 has elasticity 2 as an element but
elasticity 1 as a norm.
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Also, the above assertion ρ(OL) ≥ ρ(S) is false in general for
non-Galois extensions.

For instance, if L = Q(α) with min(α,Q) = X 5 − X 3 + 1, it is
known that OL is a UFD (so ρ(OL) = 1).

However,

3 = (α2 − α− 1)(α4 − α3 − α2 − 1) = uv say

gives N(u) = 32,N(v) = 33 and hence (33)2 = (32)3 gives
elasticity > 1 for S .
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D.D.Anderson, D.F.Anderson and W.W.Smith have proved:

Any Krull domain R with finite, nontrivial divisor class group
has rational elasticity m/n and there is an element admitting
two irreducible factorizations of m, n.

For an infinite field K , the domain K [X 2,X 3] has infinite
elasticity. If K is finite, then ρ(K [X 2,X 3]) = 1 + D(K+)/2.
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Other notions like cross number, and sets of lengths of
elements have been studied with a view to characterizing the
class group up to isomorphism. Further, the whole theory has
widened in scope to include all Krull monoids.

The cross number of a finite, abelian group G is defined to be

K (G ) = exp(G )max{
k∑

i=1

1

|gi |
}

where g1, · · · , gk runs over minimal zero sum sequences.

Then, Krause showed:

The class group C of an algebraic number field is a cyclic
group of prime power order if, and only if, the cross number
K (C ) = exp(C ).
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Now, we outline a proof of Olson’s theorem that for
G = Zpe1 × · · · × Zpen we have D(G ) = 1 +

∑n
i=1(pei − 1).

Call the RHS M(G ).

Let us first observe D(G ) ≥ M(G ).

To see this, let {b1, · · · , bn} be a basis for G where bi has
order pei .

Consider the sequence where each bi occurs pei − 1 times; we
can easily see that it is zero-sum free which gives us
D(G ) ≥ M(G ).
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The proof of D(G ) ≤ M(G ) uses the following observation:

Let G = Zpe1 × · · · × Zpen and let g1, · · · , gk be a sequence of

elements in G such that k ≥ M(G ). Then,
∏k

i=1(1− gi) = 0
in the group ring Rp := Zp[G ].
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Let {b1, b2, · · · , bn} be a basis of G where order of bi is pei .

Since each gj can be written as a product of the elements bi ,
we can express (1− gj) as a linear combination of the
elements 1− bi with coefficients in Rp.
Thus,

(1− g1)(1− g2) · · · (1− gk)

is a linear combination of the elements of the form∏n
i=1(1− bi)

ai where
∑n

i=1 ai = k >
∑n

i=1(pei − 1).
Hence, there is at least one i such that ai ≥ pei .
In Rp, we therefore have (1− bi)

pei = 1− bp
ei

i = 0.
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Using this observation, the proof is completed as follows.
Let g1, · · · , gk be an arbitrary sequence in G with k ≥ M(G ).

We show that g1, · · · , gk has a subsequence which sums to 0;
this will show D(G ) ≤ M(G ) and hence we have equality.
Now,

(1− g1) · · · (1− gk) ≡ 0 mod p · · · · · · · · · (♥)

We interpret this combinatorially.
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For any g ∈ G , consider all subsequences of g1, · · · , gk which
sum to g .

Then, the coefficient of g in (♥) equals E (g)− O(g), where
E (g) (resp. O(g)) is the number of subsequences of even
(resp. odd) length summing to g .
Clearly, from

(1− g1) · · · (1− gk) ≡ 0 mod p · · · · · · · · · (♥),

we have
E (0)− O(0) ≡ −1 mod p.

In particular, E (0)− O(0) 6= 0; so, there exists a subsequence
of g1, · · · , gk which has sum 0. The proof is complete.
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It was conjectured by Schinzel (and proved by Zakarczemny)
that:

If G is a finite abelian group, and g1, · · · , gn ∈ G , then the
number of solutions of

∑n
i=1 gixi = 0 in non-negative integers

xi ≤ ci is at least
∏n

i=1(ci+1)

2d(G)−1 .

Zakarczemny’s proof is based on the polynomial identity
(which is therefore valid in Q[G ]):

1 + t + t2 + · · ·+ tn =
n∑

j=0

(1 + t j)(1 + t)n−j

2n+1−j .

Zakarczemny later generalized the above result by showing
that if g ∈ G and

∑n
i=1 gixi = g admits a solution in

non-negative integers xi ≤ ci , then the number of such

solutions is at least
∏n

i=1(ci+1)

3d(G)−1 .
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Minimal lengths of zero-sum sequences with various other
constraints have been widely studied starting form the
Erdős-Ginzburg-Ziv theorem onwards. It is an active area of
contemporary research.

The Erdős-Ginzburg-Ziv theorem asserts that any sequence of
2n− 1 integers admits a subsequence of length n whose sum is
0 mod n.

The EGZ theorem and the Davenport constant problem led
people to introduce invariants that are important in zero-sum
theory.
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If G is a finite abelian group, define η(G ) to be the smallest
integer l , such that every sequence of length at least l
contains a zero-sum subsequence of length at most exp(G );
note η(Zn) = n.

Define s(G ) to be the smallest integer l such that every
sequence of length at least l has a zero-sum subsequence of
length equal to exp(G ); note s(Zn) = 2n − 1.

It is easy to see D(G ) ≤ η(G ) ≤ s(G )− exp(G ) + 1.

Conjecture. η(G ) = s(G )− exp(G ) + 1.

If one defines E (G ) to to be the analogue of s(G ) where
exp(G ) is replaced by |G |, it can be shown that
D(G ) = E (G )− |G |+ 1.
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Finally, we mention that ”weighted” zero-sum problems also
arise naturally and many questions remain unresolved yet.

If G is a finite, abelian group and S ⊂ G − {0}, one may look
at the variants DS(G ),ES(G ) etc.

If G is Zn and S = Z∗n, it can be shown that
ES(G ) = n + ω(n).

For a finite abelian group of order n, and any subset S
consisting of non-zero elements, it is conjectured that
DS(G ) = ES(G )− n + 1 - this is not proved even for cyclic G .
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If G is Zn and S = Z∗n, it can be shown that
ES(G ) = n + ω(n).

For a finite abelian group of order n, and any subset S
consisting of non-zero elements, it is conjectured that
DS(G ) = ES(G )− n + 1 - this is not proved even for cyclic G .
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As for the original Davenport constant, the best bound known

in general is D(G ) ≤ exp(G )

(
1 + log

(
|G |

exp(G)

))
.

This bound has been crucially used in the proof of infinitude of
Carmichael numbers (in fact, to show that the number of
these up to x is asymptotically at least x2/7).
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The proof of D(G ) ≤ exp(G )

(
1 + log

(
|G |

exp(G)

))
goes as

follows.

Let n ≥ exp(G )

(
1 + log

(
|G |

exp(G)

))
and g1, · · · , gn be a

sequence of elements.

We fix a prime p ≡ 1 mod exp(G ) and show in the group
algebra Fp[G ] that for some elements a1, · · · , an ∈ F∗p, the
product

(g1 − a1) · · · (gn − an) = 0.

As (g1 − a1) · · · (gn − an) =
∑

g cgg , if no subsequence of the
gi ’s has trivial product, then c1 =

∏
i(−ai) 6= 0, a

contradiction.
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To show (g1 − a1) · · · (gn − an) = 0, one shows that for each
character χ ∈ Ĝ (extended to the group algebra),

(χ(g1)− a1) · · · (χ(gn)− an) = 0.

One wishes to choose a1, · · · , an 6= 0 such that for each
χ ∈ Ĝ , there is at least one i such that χ(gi) = ai .

This is accomplished by the greedy algorithm - that is, pick a1
so that χ(g1) = a1 for as many χ’s as possible; pick a2 so that
χ(g2) = a2 for as many of the remaining χ’s as possible etc.
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THANK YOU!
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