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In the first report, I had described the structure theory of semisimple rings
and modules and its applications to matrix groups. As mentioned there, the
structure theory isolates the division rings as basic objects of study from
which semisimple rings are built. Here, I start by studying some aspects
of division algebras. After discussing a number of interesting characteriza-
tions of commutativity due to Herstein, Jacobson and to Wedderburn etc.,
the Cartan-Brauer-Hua theorem and the fundamental Skolem-Noether the-
orem are proved. Following this, the theory of equations over division rings
is studied. Results due to Gordon, Motzkin, Bray, Whaples and Niven are
demonstrated. Finally, Vandermonde matrices over division rings are dis-
cussed culminating in a beautiful result of Lam on their invertibility whose
proof uses the ideas above.
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§ Division rings and commutativity theorems

Recall that a division ring D is a (not necessarily commutative) ring with
unity in which the set D∗ of non-zero elements is a group under the mul-
tiplication of D. Of course, all fields are division rings. The most familiar
example of a division ring which is not a field is that of Hamilton’s real
quaternions

H = {a0 + a1i + a2j + a3k : ai ∈ R}.
Note in this example, H contains R as constant quaternions a0. Thus, H
contains the field R as a subring which is contained in its center; this is
referred to as an R-algebra. In general, if D is a division ring, its center is a
field k, and D is a simple (as a ring) k-algebra. One calls D central simple
over a field K if its center is K. In this section, we start by studying various
properties of division rings which force commutativity. Following that, we
discuss the famous result of Frobenius which classifies all the possible division
rings with center R. Then, we also prove the important Skolem-Noether
theorem.

Examples :

(i) General quaternion algebra.
If a, b ∈ Q∗, the generalized quaternion algebra D(a, b) is defined as follows.
Consider formal symbols i, j, k with i2 = a, j2 = b, ij = k = −ji. One can
consider the Q-algebra generated by i, j; that is,

D(a, b) = {a0 + aii + a2j + a3k}.
The multiplication is dictated by the multiplication of the symbols i, j above.
Note in particular that k2 = −ab. Then D(a, b) is a division algebra if, and
only if, the equation ax2 + by2 = 1 has no solution x, y ∈ Q.

(ii) Cyclic algebras.
Let K/F be a cyclic (Galois) extension. Let G(K/F ) be the Galois group of
K/F and let σ be a generator. Put s = order of σ. Fix a ∈ F ∗ and a symbol
x. We define

D = K.1⊕K.x⊕ · · · ⊕K.xs−1

with multiplication described by

xs = a, x.t = σ(t)x ∀ t ∈ K.
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Then D is an F−algebra of dimension s2 and F ⊆ Z(D). Such an algebra
D is called the cyclic algebra associated with σ and a and it is denoted by
(K/F, σ, a).

H = (C/R, σ,−1), where σ is complex conjugation, the usual Hamilton
quaternion algebra is an example of a cyclic algebra.

Remarks :
Consider the map θ from the division algebra H of real quaternions to the
ring M2(C) of 2× 2 matrices over the complex numbers, defined as follows :

a0 + a1i + a2j + a3k 7→
(

a0 + a1i a2 + a3i
−a2 + a3i a0 − a1i

)
.

This is a ring homomorphism. Note also that every non-zero element of H
maps to an invertible matrix. In this manner, H can be viewed as a subring
of M2(C). Thus, H is a real form of the complex matrix ring and this aspect
has far-reaching generalizations. The theory of Brauer groups of fields (that
is of various forms of simple algebras over the field which become isomorphic
to a matrix algebra over the algebraic closure of the field) is a major subject
of study by itself.

Remarks :
There is no division algebra D which is finite-dimensional as a vector space
over C (or more generally, an algebraically closed field) other than C it-
self. The reason is that each element of D outside C would give a proper
finite extension field of C, an impossibility. The following beautiful result of
Wedderburn shows a similar fact holds over finite fields also.

Wedderburn’s “Little” Theorem
Let D be a finite division ring. Then D is a field. In particular, any finite
subring of a division ring is a field.
Proof.
Consider the center F of D; this is a finite field and has cardinality a power
of a prime, say |F | = q = pd. Let n = dimF D. We need to show that
n = 1. Suppose n > 1; then D∗ is a finite nonabelian group. Look at its
class equation. Firstly, we note that if a ∈ D, then its centralizer CD(a) in
D is an F -vector subspace of D; in fact, it is clearly a division ring itself. If
r(a) = dimF CD(a), then by transitivity of the dimension, we have r(a)|n. In
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other words, since

|F ∗| = q − 1, |D∗| = qn − 1, |CD(a)∗| = qr(a) − 1

the class equation is of the form

qn − 1 = q − 1 +
∑ qn − 1

qr(a)−1

where the sum is over various non-singleton conjugacy classes in D∗. Now,
one knows that for every natural number m, the cyclotomic polynomial

Φm(x) =
∏

(l,m)=1(x − e2iπl/m) is an irreducible integral polynomial and
one has the factorization

xm − 1 =
∏

l|m
Φl(x).

In other words, when l|m, l < m, then Φm(x) divides xm−1
xl−1

. Applying this to
the class equation, we obtain that Φn(q) divides each term of the sum and
hence the term q − 1 also. However,

|Φn(q)| =
∏

(l,n)=1

|q − e2iπl/n| > (q − 1)φ(n) ≥ q − 1

which contradicts the fact that Φn(q) divides q − 1. We have used here the
inequality |q−e2iπl/n| > q−1 which is valid for any (l, n) = 1 as n > 1, q ≥ 2.
This contradiction proves that the class equation cannot have any term in
the sum and hence D must be commutative.

Remark :
It is an easy exercise in group theory to show that any finite subgroup of
K∗ for any field K, is cyclic. This is no longer true if one has a divi-
sion ring instead of a field. For example, note that the quaternion group
{±1,±i,±j,±k} is a non-cyclic subgroup of H∗. Interestingly, such exam-
ples cannot arise if one works with division algebras in positive characteristic,
as seen in the following result.

Corollary to Wedderburn’s little theorem :
Let D be a division algebra of prime characteristic p (that is, D contains Fp

as a subring of its center. If G is a finite subgroup of D∗, then G is cyclic.
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Proof :
Consider the subring

K = {
∑

αigi : αi ∈ Fp, gi ∈ G}.

As K is a finite subring of D, it is a field. Since G ⊆ K∗, is a finite subgroup.
G is cyclic.

A proposition for membership in center :
Let D be a division Ring. If y ∈ D commutes with all ab− ba∀a, b ∈ D (set
of all additive commutators), then y ∈ Z(D). In particular, if all additive
commutators are central, then D is a field.
Proof :
Note that a(ab − ba) is again an additive commutator, namely, a.ab − ab.a.
Since y commutes with additive commutators

x.(xy − yx).y = xy(xy − yx) = yx.(xy − yx).

Thus (xy − yx)2 = 0 ⇒ xy = yx∀x ∈ D.

Proposition :
If D is a division ring, then the division ring R generated by Z(D) and all
additive commutators is the whole of D.
Proof :
Let x ∈ Z(D). Then ∃y ∈ D, such that xy 6= yx.Therefore x(xy − yx) ∈ R∗

and xy − yx ∈ R∗.Thus x ∈ R∗.

Definition :
Let D be any ring. Then an additive subgroup of D is said to be a Lie Ideal
if it is invariant under all inner derivations of D.

Cartan-Brauer-Hua theorem (additive version) :
Let K ⊂ D be a subring such that K is a Lie ideal in D. Let charK 6= 2.
Then K ⊆ Z(D).
Proof :
Let d ∈ D\K, a ∈ K. Then da − ad ∈ K(an Lie Ideal). Therefore d(da −
ad)− (da− ad)d ∈ K. ⇒ d2a− 2dad + ad2 ∈ K. Also d2a− ad2 ∈ K. Thus,
by adding we get 2d(da− ad) ∈ K. Thus da = ad. For if not, then we would
have d ∈ K, a contradiction.
Now let a, b ∈ K∗ and d ∈ D∗\K.Then db ∈ D\K. Thus db commutes with
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a. that is dba = adb. But, da = ad. Therefore, d(ba − ab) = 0. This implies
ba = ba. Hence K ⊆ Z(D).

Herstein’s Lemma :
Let D be a division ring of characteristic p > 0, a ∈ D, be any noncentral
torsion element, which is algebraic over Fp. Then, there exists an element
(even a commutator) y ∈ D∗, such that yay−1 = ai 6= a.
Proof :
Let K = Fp[a], a finite field. Therefore apn

= a for some n > 0. Consider the
inner derivation ad (a) 6= 0, as a /∈ D. Also ad (a) acts K−linearly on D.
Claim : ad (a) has a nonzero eigen-vector.
Now ad (a) = La−Ra and La, Ra commute. Therefore, ad (a)pn

(x) = (Lpn

a −
Rpn

a ) (x) = apn
x − xapn

= ax − xa = (ad (a))(x). Thus ad(a)pn
= ad(a) in

EndK(D). Since

tp
n

= t
∏

b∈K∗
(t− b),

we get

0 = ad(a)pn − ad(a) = ad(a)
∏

b∈K∗
(ad(a)− b).

As ad is not identically zero, some ad(a)−b is not 1-1; let us say, ad(a0)−b0 for
some b0 ∈ K∗. Therefore, there exists x ∈ D∗ such that (ad(a)− b0)(x) = 0.
So ax − xa = b0x; that is, xax−1 = a − b0(6= a) ∈ Fp[a]∗ = K∗, which is a
cyclic group. Therefore xax−1 = ai 6= a. Let y = ax− xa(= b0x 6= 0). Then
yay−1 = ai.

Jacobson’s commutativity theorem :
Let D be a division ring. For all a, b ∈ D, Suppose there exists a n(a, b) > 1
such that (ab− ba)n(a,b) = ab− ba. Then D is a field.
Proof :
Suppose not. Therefore ab− ba /∈ Z(D).Then ab− ba has finite order. Con-
sider z ∈ Z(D); then z(ab− ba) = azb− zba also has finite order. Therefore
(ab − ba)r = (z(ab − ba))r = 1 for some r. This implies zr = 1 that is char
D > 0. Observe that ab − ba is algebraic over Fp. (the polynomial being
tn(a,b) − t = 0 for a,b).
By Herstein’s lemma, there exists an additive commutator y such that

y(ab− ba)y−1 = (ab− ba)i 6= ab− ba · · · · · · (i)
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Since < y > normalizes < ab− ba > and both are finite groups, so is < y ><
ab− ba > . But then it has to be cyclic, a contradiction of (i).

Frobenius’s theorem on real division algebras :
Let D be a algebraic division algebra over R. Then, it is either R, C ,or H.
Proof :
Assume without loss of generality that dimRD ≥ 2. Then for any α ∈ D\R,
we have R[α] ∼= C as it is a finite nontrivial extension of R. Fix any such
copy of C inside D and view D as a left C-vector space. Also, let D+, D−

denote the eigensubspaces of D for multiplication by i. That is,

D± = {d ∈ D : di = ±id}.

Then D+ and D− are subspaces and D = D+ ⊕ D−. If d+ ∈ D+, then d+

commutes with C and so C[d+] ∼= C, the copy we started with; therefore
D+ = C. If D− = {0}, then D ∼= C.
If z ∈ D−\{0}, then x → xz is a C-linear isomorphism from D+ to D−;
therefore, dimRD = 4. As z is algebraic over R, the field R[z] has degree 2
over R. Note that zi = −iz implies that z2 commutes with i which means
that z2 ∈ D+ = C, the copy we started with. So

z2 ∈ (R + Rz) ∩C = R.

Writing z2 = ±r2 with r ∈ R, we must have the minus sign since z 6∈ R.
Thus z2 = −r2. Putting j = z

r
, we have j2 = −1, ij = −ji since j ∈ D−.

Also, note that

D = D+ ⊕D+z = C⊕Cj = R⊕Ri⊕Rj ⊕Rij.

So D is a copy of H, the real quaternions.

A beautiful result on division algebras is the Cartan-Brauer-Hua theorem.
The following result which is of independent interest, is also useful in proving
the Cartan-Brauer-Hua theorem as well as in proving that D∗ cannot be
nilpotent unless it is abelian.

Lemma :
Let D be a division Ring. If a ∈ D commutes with all the commutators
xyx−1y−1, then a ∈ Z(D).
Proof :
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Suppose a /∈ Z(D). Then there exists an element b such that ab 6= ba. Then
b 6= 0,−1 and so b−1, (b + 1)−1 exist and we have

1− aba−1b−1 = 1 + aba−1 − aba−1 − aba−1b−1

= a(b + 1)a−1 − aba−1b−1(b + 1)

= (a(b + 1)a−1(b + 1)−1 − aba−1b−1)(b + 1).

Now as a commutes with all commutators, and thus, it commutes with the
left hand side as well as with the two terms within the first bracket on the
right hand side. Therefore a commutes with b + 1, and hence with b itself,
which is a contradiction.

Cartan-Brauer-Hua theorem (multiplicative version) :
Let A ⊆ D be a division subring stable under all inner conjugations of D.
Then A = D or A ⊆ Z(D).
Proof :
Assume A 6= D. Let a ∈ A∗, b ∈ D\A. Using the identity in the lemma we
have a−1 − ba−1b−1 = ((b + 1)a−1(b + 1)−1 − ba−1b−1)(b + 1). Since the left
hand side is in A and (b+1)a−1(b+1)−1− ba−1b−1 ∈ A, and since b+1 6∈ A,
we have that the left hand side must be 0. Thus ab = ba. Let now a′ ∈ A.
Then a′b ∈ D\A.
So a.a′b = a′b.a = a′.ba = a′.ab; that is, aa′ = a′a. Therefore A ⊆ Z(D).

Corollary :
(i) Let D be a division ring and assume d ∈ D\Z(D). Then D is generated
by the conjugates of d.
(ii)If D is a noncommutative division ring, then it is generated as a division
ring by all xyx−1y−1.

Theorem (nilpotence implies abelian) :
Let D be a division ring and

{1} ⊆ G1 ⊆ G2 ⊆ · · ·

be the upper central series of D∗; that is,

G1 = Z(D∗), Gi+1/Gi = Z(D∗/Gi), · · ·

Then
G1 = G2 = · · · · · ·
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Hence D∗ is nilpotent if and only if D is a field.
Proof :
We shall use the Carter-Brauer-Hua theorem. Let a ∈ G2\G1. So axa−1x−1 ∈
G1∀x ∈ D∗. So a /∈ G1 = Z(D). Therefore there exists b ∈ D∗ such that
ab 6= ba. From the identity

1− aba−1b−1 = {a(b + 1)a−1(b + 1)−1 − aba−1b−1}(b + 1)

we have
(a(b + 1)a−1(b + 1)−1 − aba−1b−1)(b + 1) ∈ Z(D).

Since Z(D) is a field, we have b + 1 ∈ Z(D), which is a contradiction.

Remarks and definitions :
Let F = Z(D) be the center of a division ring D. If f(t) ∈ F [t], and
if a ∈ D is a root of f, then so is any conjugate of a. Also note that if
a ∈ D is algebraic over F (that is, it satisfies a nonzero polynomial over F ),
then so are all its conjugates and they have the same minimum polynomial
over F , which is called the minimum polynomial of the conjugacy class. In
fact, if D is algebraic over F , and a ∈ D, then any other root of the minimal
polynomial of a must be conjugate to a in D ! This follows from the following
very important and widely used result :

Skolem-Noether theorem :
Let A be a central simple algebra over K. Let B be a simple K algebra. Let
σ, τ : B → A be two algebra homomorphisms. Then there exists an inner
automorphism Int(a) of A such that τ = Int(a) ◦ σ.
Proof :
Consider the case A = End(V ) for a K vector space V. Then V is also
a A−module. Via σ and τ we can view V as a B module in two ways.
Call them Vσ and Vτ . Since all B simple modules have to be isomorphic by
Schur’s lemma, there exists a B-isomorphism f : Vτ → Vσ that is ∀b ∈ B, x ∈
V, f(τ(b)x) = σ(b)(f(x)). Hence τ(b) = f−1σ(b)f. Since f ∈ A, we have the
result in this case.
In the general case we consider B⊗K Ao for B and A⊗K Aop for A where Aop

denotes the opposite algebra of A. Consider σ⊗ id, τ ⊗ id from B ⊗K Aop →
A⊗K Aop ∼= EndK(A).
The last isomorphism is seen as follows. For a ∈ A, b ∈ Aop, the map φ :
A → A given by φ(x) = axb is an endomorphism of the K vector space A.
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Now the map a⊗ b → φ is the required isomorphism.
By the first case there exists an α ∈ A⊗K Aop such that

(σ ⊗ id)(x) = α(τ ⊗ id)(x)α−1∀x ∈ B ⊗ Aop · · · (i)

Hence α ∈ CA⊗Aop(1⊗ Aop) = A⊗ 1.
Writing α = a⊗1 and applying (i) to x = c⊗1, we get σ(c) = aτ(c)a−1. Note
that the first case applies because B ⊗ Ao is simple for the general reason
that whenever X is a central simple algebra and Y is simple over K, then
X ⊗K Y is simple.
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§ Polynomials over division algebras

Over a field K, a non-zero polynomial f can have at the most deg f roots;
this is easy to see using the remainder theorem. However, already over H,
we see that i, j, k etc. are all roots of the polynomial t2 + 1. Moreover,
our familiar intuitions from equations over fields often fails in many other
ways. For example, over a field, a polynomial with a factor of the form t− a
evidently vanishes when evaluated at a. However, look at the polynomial
(t − i)(t − j) = t2 − (i + j)t + ij over the Hamilton quaternion division
algebra H. The value at i is

i2 − (i + j)i + ij = ij − ji 6= 0!

Note however that the value at j is 0. A careful look at this aspect reveals
the following. In the above, we are writing polynomials in the form c0 +
c1t + c2t

2 + · · · + cntn with the constants ci on the left and the powers of
the variable t on the right. When we specialize a value of t, obviously the
value depends on whether the variable has appeared to the left or to the
right. As we shall see, if we write polynomials in the above familiar form
with the coefficients to the left, various facts like remainder theorem hold
good when we look at ‘right’ remainders. If we consider a polynomial of
the form g(t)(t − a) (with the same convention of writing coefficients on
the left), it will turn out that the polynomial vanishes when evaluated at
a. Similarly, if we were to write polynomials with the coefficients on the
right, we would have a ‘left’ remainder theorem etc. In this section, we
study polynomial equations over noncommutative division rings and describe
the various points of departure from equations over fields. The results are
surprising and interesting. Without further ado, let us discuss these aspects
now.

Firstly, here is a curious characterization of division rings using linear equa-
tions. Note that a general linear equation over a noncommutative ring is
of the form

∑r
i=1 aixbi = c. The equation which has been studied is the

equation of the form ax− xb = c. The following result characterizes division
rings in terms of solutions of this type of equations.

Let R be a ring with unity. Assume that the equation ax−xb = c is solvable in
x whenever a 6= b. Then R is a division ring. Further, if each such equation
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has a unique solution, then R is a field.
Proof :
For the first statement, consider a ∈ R, a 6= 0, b = 0 and c = 1. Then the
equation reads ax = 1. Let x = a1 be a solution Then aa1 = 1. Note that
a1 6= 0 and so we also have a2 such that a1a2 = 1. Thus a = a(a1a2) =
(aa1)a2 = a2. Thus each a ∈ R is invertible and hence R is a division ring.
For the second statement, let us suppose R to be a noncommutative ring
which admits a solution for each equation of the form ax − xb = c with
a 6= b. If ab 6= ba for some a, b, then the equation abx − xba = 0 has two
different solutions 0 and a. So the above type of equations over R can have
unique solutions only if R is commutative.

Open question :
Is there a division ring which is not a field and admits solutions for every
equation of the form ax− xb = c with a 6= b ?

Let R be any ring and D be a division ring contained in R. If f(t) =
∑

ait
i ∈

R[t], we define the value f(r) :=
∑

air
i. We call r ∈ R a right root of

f(t) =
∑

ait
i, if f(r) = 0.

Note that
∑

i air
i may not be equal to

∑
i r

iai.
In particular, if f(t) = g(t)h(t), then we may not have f(r) = g(r)h(r); that
is, the ‘evaluation map’ may not be a homomorphism. However, sticking to
this ‘evaluation’ map, an easy observation is the right factor theorem stated
next. Following that is a key lemma which tells us what one can say about
a root of g(t)h(t) which is not a root of h(t).

Right factor theorem :
Let R be any ring and r ∈ R is a root of f(t) if and only if t − r is a right
divisor of f(t) in R[t]. The set of polynomials having r as a root is the left
ideal R[t](t− r).

Lemma :
Let f(t) = g(t)h(t) ∈ D[t]. If d ∈ D is such that h(d) = a 6= 0, then
f(d) = g(ada−1)h(d). Consequently, if d is a root of f but not a root of h,
then ada−1 is a root of g.
Proof:
Let g(t) =

∑m
i=1 bit

i. Then f(t) =
∑m

i=1 bih(t)ti. So

f(d) =
m∑

i=1

bih(d)di =
m∑

i=1

biadi =
m∑

i=1

biadia−1a =
m∑

i=1

bi(ada−1)ia = g(ada−1)h(d).
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Corollary :
If f(t) = (t − a1)(t − a2) · · · (t − an) where ai ∈ D. Then every root of f is
conjugate to one of the ai’s.

As we observed earlier, x2 + 1 = 0 has infinite roots over the division ring H
(division ring of real quaternions). The following result is a generalisation of
the familiar result that over a field, a polynomial has at the most its degree
number of roots :

Theorem (Gordon-Motzkin) :
Let D be a division ring. If f(t) ∈ D[t], then all its roots lie in at most n
conjugacy classes where deg f = n.
Proof:
We proceed by induction on n. For n = 1 it is obvious. Suppose n ≥ 2 and
let r be a root of f.Then by the proposition above f(t) = g(t)(t−r) for some
g(t) ∈ D[t] of degree n− 1. If s 6= r is another root of f , then by the lemma,
s is conjugate to a root of g which in turn lies in one of the n− 1 conjugacy
classes by the induction hypothesis. Thus by induction, we have the result.

Lemma :
Let A be an algebraic conjugacy class in D(over F ) with minimum polynomial
f(t) ∈ F [t]. If a polynomial h(t) ∈ D[t]\{0} vanishes identically on A, then
deg h ≥ deg f.
Proof :
Suppose not. Pick a polynomial h(t) = tm+a1t

m−1+· · ·+am such that h(A) =
0 and m < deg f. Since h(t) 6∈ F [t], some ai 6∈ F. Therefore there exists an
element b ∈ D∗ so that bai 6= aib. Clearly now am + a1a

m−1 + · · · + am = 0
∀a ∈ A. Conjugating by b, we have

(bab−1)m + (ba1b
−1)(bab−1)m−1 + · · ·+ (bamb−1) = 0 ∀a ∈ A · · · (I)

But since bab−1 ∈ A,

(bab−1)m + a1(bab−1)m−1 + · · ·+ am = 0 ∀a ∈ A · · · (II)

From (I) and (II), we get that
∑

(baib
−1 − ai)t

m−i vanishes on A; this con-
tradicts the choice of m and proves the lemma.

Corollary :
If h(t) ∈ D[t] vanishes on A if and only if h(t) ∈ D[t]f(t).
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Proof :
If f(a) = 0∀a ∈ A, then f(t) ∈ D[t](t− a). If h(t) ∈ D[t]f(t), clearly h(t) ∈
D[t](t−a) and therefore h(A) = 0. Conversely, if h(A) = 0, h(t) 6= 0, then by
division algorithm, h(t) = g(t)f(t)+r(t), with deg r(t) < deg f(t), where f(t)
is the minimum polynomial of the conjugacy class A. Since h(A) = f(A) = 0,
we have r(t) = 0. Thus, from the lemma above we have deg h > deg f. Thus
h(t) = g(t)f(t) ⇒ h(t) ∈ D[t]f(t).

Corollary :
Let D be an infinite division ring. Then if h(t) ∈ D[t] is such that h(d) =
0∀d ∈ D, then h(t) = 0, the zero polynomial.
Proof :
Suppose not. Pick a monic polynomial h of least degree such that h(d) = 0
∀d ∈ D. Let h(t) = tm + a1t

m−1 + · · · + am. We get that all ai ∈ Z(D) = F
(similar to the argument used in the lemma). Therefore, h(t) ∈ F [t]. Since
h(F ) = 0, F is finite. Now h(D) = 0 ⇒ D is algebraic over F , and so D is
commutative. This is a contradiction.

Theorem(Dickson) :
Let a, b ∈ D be algebraic over F. Then a is conjugate to b in D if and only if
they have the same minimum polynomial.
Proof :
Clearly, if a, b are conjugates, then they have the same minimum polynomial.
Conversely, suppose f is the common minimum polynomial for a and b.
Regarding f as an element of F (a)[t], f(t) = g(t)(t− a) = (t− a)g(t) by the
remainder theorem over fields. Since deg g < deg f and f is the minimum
polynomial of b, by the lemma there exists some conjugate xbx−1 of b in D
such that g(xbx−1) 6= 0. But f(t) ∈ F [t] is the minimum polynomial of b, and
so f(aba−1) = 0 since f(xbx−1) = 0, g(xbx−1) 6= 0, therefore some conjugate
of xbx−1 is a zero of t−a by the lemma prior to the Gordon-Motzkin theorem.
Thus a is conjugate to b.

Theorem (Wedderburn) :
Let A be a conjugacy class which is algebraic over F. Let f denote its mini-
mum polynomial over F and suppose n = deg f. Then there exist a1, a2, · · · , an ∈
A such that f(t) = (t− an) · · · (t− a1). Moreover a1 ∈ A can be chosen arbi-
trarily. Further the decomposition of f can be cyclically permuted.
Proof :
Let a1 ∈ A be arbitrary. Since f(a1) = 0,Therefore f(t) = g(t)(t − a1)
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for some g(t). If A = {a1}, then a1 ∈ F and therefore f(t) = (t − a1).
If A 6= {a1}, there exists a conjugate a′2 of a1 such that a′2 6= a1. Since
f(a′2) = 0. Therefore g vanishes at some conjugate a2 of a′2. Therefore we
can write g(t) = g2(t)(t − a2). that is f(t) = g2(t)(t − a2)(t − a1). Pro-
ceeding this way, we get f(t) = gr(t)(t − ar) · · · (t − a1) with r maximum
possible. This implies by the above discussion that {a1, · · · , ar} = A. Since
h(t) := (t−ar) · · · (t−a1) vanishes identically on A, we have h(t) ∈ D[t]f(t).
That is, deg h ≥ deg f. But f(t) = gr(t)h(t). Therefore f(t) = h(t). Finally,
cyclic permutations are possible because a factorization of a polynomial in
F [t] into two factors in D[t] is necessarily commutative; that is, if α ∈ F [t],
α = β1(t)β2(t), βi ∈ D[t], then β1(t)β2(t) = β2(t)β1(t)).

Corollary :
With the same notations as above, if f(t) = tn +d1t

n−1 + · · ·+dn ∈ F [t], then
d1 is a sum of the elements of A and (−1)ndn is the product of the elements
of A.

Remarks :
From the above theorem we note that there are infinitely many factorizations.
This is because, from the above theorem, we saw that a1 was arbitrary.
We know that A is infinite unless A = {a1}, a1 ∈ F. The next theorem
deals further on the above theme for polynomial equations; it shows that
polynomials with at least 2 conjugate zeroes has infinitely many.

Theorem (Gordon-Motzkin) :
Let D be a division ring and f(t) =

∑n
i=0 ait

i ∈ D[t]. Let A be a conjugacy
class in D. Assume that f has atleast two zeroes in A. Then f has infinitely
many zeroes in A. In particular, for f = 0, this means that |A| ≥ 2 ⇒ |A| is
infinite.
Proof :
Fix any a ∈ A. If some dad−1 is a zero of f, then

∑
aidai = 0. So, we must

look for d ∈ D∗ such that
∑

aidai = 0. Define Φ : D → D; such that Φ(d) =∑
aidai. Then Φ(dz) = Φ(d)z∀z ∈ CD(a). Therefore the centralizer CD(a) of

a acts on ker Φ on the right. We have a map θ : D∗∩ker Φ → zeroes of f in A.
θ(d) = dad−1. Note θ(d) = θ(d′) if and only if d ∈ d′.CD(a). Thus the set of
zeroes of f in A is in bijection with ker Φ\{0}/CD(a), the projective space of
the right CD(a) vector space ker Φ. We are given that ker Φ has dim ≥ 2 over
CD(a). Thus, the corresponding projective space ker Φ\{0}/CD(a) is infinite,
since CD(a) is infinite (because D is not commutative since |A| ≥ 2).
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Corollary :
If f(t) ∈ D[t] has degree n and Γ be the set of roots in D, then either |Γ| ≤ n
or Γ is infinite.
Proof :
Suppose |Γ| > n and let a1, · · · , an+1 ∈ Γ be distinct. Since the zero of f lie
in at most n conjugacy classes, atleast two of the ai’s are conjugate. By the
above theorem, the corresponding conjugacy class intersects Γ in an infinite
set.

Remarks :
Over fields, we know that given n distinct points c1, · · · , cn, there exists a
unique polynomial of degree ≤ n vanishing at c1, · · · , cn; namely, the poly-
nomial (t − c1) · · · (t − cn). The analogue for division rings is the following
theorem.

Theorem(Bray-Whaples) :
Let D be a division ring and let c1, · · · , cn be pairwise nonconjugate elements
of D. Then there exists a unique polynomial f(t) ∈ D[t] such that f(ci) = 0∀i.
Further, this polynomial necessarily satisfies :
(a) c1, · · · , cn are its only zeroes,
(b) if h(t) ∈ D[t] vanishes at all the ci ’s, then h(t) ∈ D[t]f(t).
Proof :
The uniqueness is clear. This is because the difference of two such polyno-
mials would be a polynomial vanishing at n points in n distinct conjugacy
classes while having degree ≤ n − 1, which is a contradiction. To see the
existence, we proceed by induction on n.
For n = 1, f(t) = t− c1 clearly. For n = 2, choose d2 so that (t− d2)(t− c1)
vanishes at c2 (this clearly means d2 = (c2− c1)c2(c2− c1)

−1). Proceeding in
this way, we can get clearly f(t)in the form (t− dn) · · · (t− d2)(t− c1) where
di is the conjugate of ci. This proves the existence of f also.
To prove (b), we divide h by f and write h(t) = q(t)f(t) + r(t). Since
h(ci) = 0, and (q(t)f(t))(ci) = 0, r(ci) = 0. And deg r < n and r van-
ishes at points from n distinct conjugacy classes. Thus r(t) ≡ 0.
To prove (a), we again proceed by induction on n. For n = 1, it is clear.
Assume the result for all m < n. Write fn(t) = (t − d)fm(t). where fn(t) is
the unique polynomial vanishing at c1, · · · , cn and fm(t) is the one vanishing
at c1, · · · , cn−1. Observe that d is the conjugate of cn. Suppose fn(c) = 0 for
some c ∈ D. If fm(c) = 0, then c must be one among c1, · · · , cn−1 by induc-
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tion hypothesis. Therefore, assume fm(c) 6= 0. Then c is a conjugate of d
and therefore of cn.
We claim that d = cn. Suppose not. Consider the polynomial g(t) =
(t − e)(t − cn) where e is chosen so that g(c) = 0 where e is chosen so
that g(c) = 0. Indeed e = (c − cn)e(c − cn)−1. Divide fn by g and write
fn(t) = q(t)g(t) + r(t), where deg r < deg g = 2. Since fn vanishes at c
and cn and since (q(t)g(t)) vanishes at c and cn, therefore r(t) vanishes at
c and cn. But deg r ≤ 1. Thus, the only possibility is r ≡ 0 (as c 6= cn).
Therefore fn(t) = q(t)g(t). Therefore deg q ≤ n−2. But g does not vanish at
c1, · · · , cn−1, as any zero of g is conjugate of cn. Now q vanishes at conjugates
of c1, · · · , cn−1, which is a contradiction since deg q ≤ n− 2. Thus c = cn.

Analogous to fields being algebraically closed, there is a notion of a division
ring being right-algebraically-closed. D is defined to be so if every nonconstant
polynomial f in one variable over D has a right root in D. A theorem of Baer
says that the only noncommutative division ring which is right algebraically
closed is necessarily the ring of quaternions over a real closed field. Recall
that a field is said to be real closed if (like in R) −1 is not a sum of squares
in it.

Lemma :
Let D be any division ring with center F, and A be a conjugacy class of D
which has a quadratic minimum polynomial λ(t). If f(t) ∈ D[t] has two roots
in A, then f(t) ∈ D[t]λ(t) and f(A) = 0.

Proposition(Niven) :
Take R to be a real closed field, and D = R ⊕ Ri ⊕ Rj ⊕ Rk be the ring of
quaternions over R. For 0 6= f(t) ∈ D[t], the following are equivalent:
(i)f(t) has infinitely many roots in D.
(ii) There exist a, b ∈ R with b 6= 0 such that f(a + ib) = 0 = f(a− ib).
(iii) f has a right factor λ(t) which is an irreducible quadratic in R[t].
If these three equivalent conditions hold for f then f vanishes on the conju-
gacy class of a + bi.
Proof :
Assume (i) holds. Then f(t) has two roots in certain conjugacy class A. The
minimum polynomial λ(t) of A over R is an irreducible quadratic over R.
By the above lemma, we have f(t) ∈ D[t]λ(t). Thus, being quadratic its two
roots are of the form a + bi and a− bi. This proves (ii) holds.
Now, assume (iii). Let c be the root of λ(t) in R(i). c has infinitely many
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conjugates in D. All these are roots of λ(t) and hence of f(t). This proves
(iii) from (i).
Now (ii) ⇒ (iii) is easily deduced from the remainder theorem.

Here is a beautiful result on polynomials over division rings over real closed
fields.

Proposition :
Let D,R be as above, and let f(t) =

∑n
i=0 ait

i, where a0 ∈ D\R, and
a1, · · · , an ∈ R. Then f has at most n roots in D.
Proof :
Let α be any root of f. Then α commute with

∑
aiα

i = −a0. Therefore
α ∈ CD(R(α0)). But in this case R(α0) is a maximal subfield of D and there-
fore CD(R(α0)) = R(α0). Thus α ∈ R(α0). Thus every root is in the field
R(α0). Since f has at most n roots in a field, the proposition is proved.

Corollary (Niven) :
For a ∈ D \ R, the equation tn = a has exactly n solutions in D and all of
them lie in R(α0).
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Vandermonde matrices
In the 18th century, the mathematician Vandermonde isolated the theory
of determinants as a subject for independent study. The following type of
matrix is usually known as a Vandermonde matrix :

V (a1, · · · , an) =




1 1 · · · 1
a1 a2 · · · an
...

...
...

an−1
1 an−1

2 · · · an−1
n




where a1, · · · , an are arbitrary complex numbers. It can be proved by in-
duction that the determinant of this matrix is

∏
i>j(ai − aj). The Vander-

monde matrices evidently arise while solving polynomial equations. Indeed,
if f(x) = c0 + c1x + · · · + cn−1x

n−1 is a polynomial whose values at the n
points a1, · · · , an are b1 · · · , bn respectively, then we have the matrix equation

( c0 c1 · · · cn−1 ) V (a1, · · · , an) = ( b1 b2 · · · bn ) .

Therefore, once the points ai are distinct, the Vandermonde matrix can be
inverted and the polynomial can be obtained uniquely.
If we work with a division ring D, one has the notion of right (or left) D-
vector spaces of finite dimension (which is a well-defined notion), and any
D-vector space linear transformation can be represented by a matrix whose
entries are from D. The composition of transformations leads to the defi-
nition of matrix multiplication. Thus, it makes sense to say that a matrix
is nonsingular if it has an inverse. Over fields (respectively, general com-
mutative rings with unity), this is also equivalent to the determinant being
nonzero (respectively, a unit). The problem now is how to define the deter-
minant in our noncommutative situation.
The Vandermonde matrix V (a1, · · · , an) over a field is evidently nonsingular
if, and only if, the ai are distinct. The first thing we notice that this is false
over division ring. For example, over H, the division ring of real quaternions,

the Vandermonde matrix V (i, j, k) =




1 1 1
i j k
−1 −1 −1


 is clearly singular

because the rows are dependent. However, notice that all the 3 elements
i, j, k are conjugate.
Thus, if a notion of determinant can be defined over D it would have to
be subtle. Dieudonne defined a notion of determinant which is a map from
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the set of all invertible matrices (of all sizes) over D to the abelian group
D∗/[D∗, D∗]. We do not go into the definition of this subtle notion here but
rather discuss a result of T.Y.Lam which gives a natural sufficient condition
for the invertibility of the Vandermonde matrix whose proof involves the
theory of equations as we discussed above.

Before proceeding, we first recall matrix mutiplication over division rings and
discuss singularity of 3× 3 Vandermonde matrices so as to motivate the gen-
eral result to be proved. Let us start by recalling how matrix multiplication
is defined when the entries are from a division ring. If A, B are n×n matrices
with entries from a division ring D, define AB to be the matrix whose (i, j)-th
entry is

∑n
k=1 aikbkj. We must take care to keep the order of multiplication of

the entries. This definition can be justified as follows. The matrix represents
the D-module endomorphism of the n-dimensional right D-vector space with

the ordered basis the columns




1
0
...
0


,




0
1
...
0


 , · · · ,




0
0
...
1


. The transformation

represented by A is nothing but the map :




d1

d2
...

dn


 7→




a11d1 + · · ·+ a1ndn

a21d1 + · · ·+ a2ndn
... · · · · · · · · · ...

an1d1 + · · ·+ anndn


 .

Then, note that AB represents the transformation A ◦ B. In this set-up,
doing elementary row operations on a matrix involve multiplication of rows
by scalars from the left. Likewise, doing elementary column operations on a
matrix involve multiplication of columns by scalars from the right. It is easy
to see that the left D-vector space generated by rows of a matrix and the
right D-vector space of its columns have the same dimension; this common
dimension is called the rank of the matrix. It may be that the right D-vector
space generated by the rows may not have the same dimension.
Look at a 3× 3 Vandermonde matrix (with a, b, c distinct)

V (a, b, c) =




1 1 1
a b c
a2 b2 c2


 .
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Then, doing two row operations, we have




1 0 0
−a 1 0
0 −a 1


 V (a, b, c) =




1 1 1
0 b− a c− a
0 (b− a)b (c− a)c


 .

Note aleady that ‘taking b−a and c−a common’ would involve premultiplying
the column by a scalar which is not allowed by an elementary transformation.
That is the reason, the noncommutative Vandermonde determinant is more

complicated. Premultiplying the above matrix by




1 0 0
0 (c− a)−1 0
0 0 (c− a)−1


,

we get the matrix 


1 1 1
0 (c− a)−1(b− a) 1
0 (c− a)−1(b− a)b c


 .

Yet another row operation (premultiplying by




1 0 0
0 1 0
0 −c 1


) leads finally

to the matrix



1 1 1
0 (c− a)−1(b− a) 1
0 (c− a)−1(b− a)b− c(c− a)−1(b− a) 0


 .

Therefore, we note that this last matrix is singular (that is, the columns are
D-linearly dependent) if, and only if,

(c− a)−1(b− a)b− c(c− a)−1(b− a) = 0;

that is, if and only if

(b− a)b(b− a)−1 = (c− a)c(c− a)−1.

In fact, this computation is what leads to a definition of the Dieudonne
determinant which we have not gone into. Now, we can state the main final
result.

Theorem (T.Y.Lam)
Let ∆ = {a1, ....an} be a subset of a division ring D. If no three of the ai’s
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lie in a single conjugacy class, then the Vandermonde matrix Vn(a1, ....an) is
invertible.

Remarks and definitions :
Before starting the proof, we remark that this theorem gives a sufficiency
criterion for the Vandermonde matrix to be invertible. We also saw that
when the criterion is not satisfied, the Vandermonde may not be invertible.
However, there are examples of division algebras where this criterion is not
satisfied but the Vandermonde matrix is invertible. Thus, this theorem is
the best one could hope for.
A subset ∆ ⊆ D is said to be algebraic if there exists a nonzero polynomial
f(t) ∈ D[t] which is zero on ∆. The set of polynomials vanishing on ∆ forms
a left ideal in D[t]. It is principal and the monic generator is called the
minimum polynomial of ∆; it is denoted by f∆ and the degree of f∆ will be
the rank of ∆.
An element d ∈ D is said to be P-dependent (or polynomial-dependent) on
∆ if every polynomial in D[t] vanishing on ∆ also vanishes on d. Further
an algebraic set ∆ is P-independent if no element b ∈ ∆ is P-dependent on
∆\{b}.
A subset B ⊆ D, is said to be a P-basis if B is P-independent, and every
d ∈ D is P-dependent on B. With these notations, we can prove the theorem
now.

Proof of theorem :
To prove that Vn(a1, ....an) is invertible, we have to show that rank of Vn(a1, ....an)
is n. We give the proof in steps as follows.

Step 1 :
We claim that rank Vn(a1, ....an) = rank ∆.
Proof :
Let r and c denote, respectively, the row rank and the column rank of
Vn(a1, ....an). We know already that c = r but the proof here proceeds
literally by showing that r ≤ δ ≤ c where δ = rank ∆.
Note that a polynomial g(t) =

∑n−1
i=1 bit

i vanishes on ∆ if and only if

(bo, .....bn−1)Vn(a1, ....an) = 0.

To show that δ ≤ c it suffices to find a nonzero polynomial g(t) of degree ≤ c
such that g(∆) = 0.
Among the columns C1, ...., Cn of Vn(a1, ....an), there are c of them which
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form a basis of the column space. Assume that these are the first c columns.
Let g(t) =

∑
bit

i be the minimum polynomial of the set {a1, ....ac}. Then
deg g ≤ c ≤ n and (bo, ....bn−1).Cj = 0 for 1 ≤ j ≤ c. Since Cj is a
right linear combination of C1, · · · , Cc, we have (b0, .....bn−1).Cj = 0 and so
(bo, .....bn−1)Vn(a1, ....an) = 0. That is, g(∆) = 0.
Next we show that r ≤ δ . Let f = f∆(t) be the minimal polynomial of ∆.
It suffices to show that each row Ri of Vn(a1, ....an) is a left linear combi-
nation of the first δ rows R1, ...Rδ. By the (left) division algorithm, we can
write ti = q(t)f(t) + (d0 + d1t + .... + dδ−1t

δ−1) since δ = rank ∆ is the de-
gree of f. Evaluating at aj, we have ai

j = d0 + d1aj + .... + dδ−1a
δ−1
j . Thus

Ri = d0R1 + d1R2 + ....+ dδ−1Rδ which means that rank Vn(a1, ....an) = rank
∆.

Step 2 :
Let B, B′ be algebraic subsets of D each of which is P-independent such that
no element of B is conjugate to an element of B′. Then B ∪ B′ is also P-
independent.
If not, let c ∈ B is P-dependent on Ω := Bo ∪ B′, where Bo = B\{c}. Let
C be the conjugacy class of D determined by an element c ∈ D. If c is P-
dependent on a algebraic set Ω, then c is P-dependent on Ω∩C. For, assume
that h is the minimum polynomial of Ω∩C.Then for any d ∈ Ω\C, we have
h(d) 6= 0. Let g(t) be the minimum polynomial of the set Γ := {h(d)dh(d)−1

: d ∈ Ω\C} and let f(t) = g(t)h(t). Thus f vanishes on ∆\C and on ∆∩C.
Thus f vanishes on ∆ and on c. If h(c) 6= 0, then g(t) must vanish on
h(c)ch(c)−1 ∈ C.Since g is the minimum polynomial of Γ, each root of g is
conjugate to some d ∈ Ω\C. This contradiction implies that h(c) = 0. By
hypothesis, Ω∩C is disjoint from B′, so Ω∩C ⊆ Bo. Thus c is P-dependent
on Bo, contradicting the P-independence of B.

Step 3 :
Let ∆, ∆′ be algebraic sets in D such that no element of ∆ is conjugate to
an element of ∆′. Let B, B′ be P-bases for ∆ and ∆′. Then rank(∆ ∪∆′) =
rank∆ + rank∆′.
If a polynomial vanishes on B ∪ B′, then it vanishes on ∆ ∪ ∆′. Therefore
∆ ∪ ∆′ is algebraic and every element of it is P-dependent on B ∪ B′. By
step 2, we have B ∪ B′ is P-dependent, from which it follows that B ∪ B′ is
a P-basis for ∆ ∪∆′. Thus rank(∆ ∪∆′) = rank∆ + rank∆′.

Step 4 :
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Let ∆ be the algebraic set in D. Then rank∆ =
∑

rank(∆ ∩ C), where C
ranges over the finitely many conjugacy classes which intersects ∆. Further
if |∆ ∩C| ≤ 2 for each C then |∆| < ∞ and ∆ is P-independent.
The first statement is proved from step 3 and induction. If there exists only
one conjugacy class which intersects ∆, then the statement immediately fol-
lows. If there are two conjugacy classes which intersect ∆, then the statement
follows from step 3. Let the statement be true for n − 1 conjugacy classes.
Suppose there exists n conjugacy classes which intersects ∆. Let the conju-
gacy classes be Ci for 1 ≤ i ≤ n and let ∆i = ∆ ∩ Ci.Let ∆′ = ∪n−1

i=1 ∆i.
Again, by step 3 we have rank(∆n−1 ∪∆′) = rank∆n−1 + rank∆′.
Thus we have rank∆ =

∑n
i−1 rank(∆i) =

∑n
i−1 rank(∆ ∩Ci).

The second statement of step 4 follows from the first statement and the fact
that no doubleton set is P-independent.

Let us see how the proof follows from these steps. Now since no three ai’s
are in the same conjugacy class, the hypothesis of step 4 is fulfilled and we
have ∆ = {a1, ....an} is P-independent. Inductively we may assume that
rank(∆\{a1}) = n−1. Let f be the minimum polynomial of ∆ and g be the
minimum polynomial of ∆\{a1}. Then f is a left multiple of g but f 6= g.
Hence deg f ≥ 1 + deg g = n.
On the other hand, deg f ≤ |∆| = n, hence rank ∆ = deg f = n.
Since rank ∆ = n, it follows from step 1 that Vn(a1, · · · , an) is invertible.
This completes the proof.
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