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The applications of representation theory to number theory is a subject so
vast that it may be said to include the whole of the Langlands program. We
do not discuss the Langlands program here but only talk briefly about the
following three topics :

(I) The theory of Partitions

(II) Zeta and L-functions over number fields

(III) Kronecker-conjugacy of integer polynomials
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1 Partition function

(Everyone knows that) Ramanujan made outstanding contributions to the
theory of partitions. Ramanujan’s first letter to Hardy mentions an approxi-
mate formula for p(n) and Rademacher published such an exact formula soon
(according to Selberg, if Hardy had been less of an analyst, Ramanujan’s
approximate formula might have been realized to quickly lead to an exact
formula). Hardy and Ramanujan developed the so-called circle method and
published asymptotic formulae like

p(n) ∼ e2
√
nζ(2)

4
√

3n
.

Here, the crucial thing to note is the exponent 2
√
ζ(2) which is approxi-

mately 2.56.

From a point of view of the actual values of p(n), for small n, these values are
much smaller than the asymptotic values. Representation theory especially
of the symmetric group plays a role here to provide easy but close lower
bounds for p(n). Let us discuss this first. Let us start with an elementary
lemma.

Lemma.
Let Inv(G) denote the set of involutions of a finite group G. Then,

∑

χ∈Irr(G)

ν2(χ) dim(χ) = 1 + |Inv(G)|

where ν2(χ) = 0, 1, or −1 according as to whether the character χ is not
real-valued, or, is real-valued and afforded by a real representation or, is
real-valued but not afforded by a real representation. This ν2 is the so-called
Frobenius-Schur indicator function.

In fact, for each n, expressing the class function

θn(g) = |{x : xn = g}|
as θn =

∑
χ irr νn(χ)χ obtains

νn(χ) =< θn, χ >=
1

O(G)

∑
g

χ(gn)

for each irreducible χ. In the special case n = 2, we have

|Inv(G)|+ 1 = θ2(1) =
∑

χ irr

ν2(χ)χ(1)
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The values 0, 1,−1 of ν2(χ) are obtained by decomposing the representation
space of χ into its symmetric and antisymmetric parts.

As ν2(χ) =< θ2, χ >, we have

1 + |Inv(G)| =
∑

χ irr

ν2(χ)χ(1) =< θ2, χreg >

Therefore, from the Cauchy-Schwarz inequality we have

|Inv(G)| <
√
r(G)

√
O(G)

where r(G) is the number of irreducible characters afforded by real represen-
tations. In particular, since r(G) ≤ k(G), the number of conjugacy classes
of G, we have

O(G)
O(CG(g))2

< k(G)

where g is any involution.

Corollary.
e2
√
n

cn < p(n) for some constant c.
Proof. Apply the lemma to Sn. Now f(n, t) = n!

2tt!(n−2t)! is the number of
involutions of Sn which are products of t disjoint transpositions. The lemma
gives

p(n) = k(Sn) >
|Inv(Sn)|2

n!
=

(
∑[n/2]
t=1 f(n, t))2

n!
>

[n/2]∑

t=1

f(n, t)2

n!
.

We can easily see from f(n,t)
f(n,t+1) = 2(t+1)

(n−2t)(n−2t−1) that f(n, t) ≤ f(n, t + 1)
if and only if (n − 2t)2 ≥ n + 2. Therefore, the largest value of f(n, t) for
t ≤ n/2 is when t = [(n + 2 − √n+ 2)/2]. Using Stirling’s formula we get
the assertion of the corollary. A more careful argument on the above lines
shows that one can take c = e3

√
2π3.

Remarks.
(i) The above proof can be combinatorially viewed via the Robinson-Schensted
algorithm. This algorithm provides a bijection between Sn and pairs of stan-
dard tableaux of the same shape. In particular, it gives n! =

∑
λ`n a2

λ where
aλ is the number of tableaux of shape λ ` n. Under this correspondence,
elements of order ≤ 2 are in correspondence with pairs of tableaux with
identical entries. Hence

∑
λ`n aλ = 1 + |Inv(Sn)|. The arithmetic mean -
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quadratic mean inequality for the aλ’s gives the result now.
(ii) This estimate is close to the general size of p(n) because most irreducible
character degrees of Sn are nearly equal.

As the irreducible (complex) representations of Sn are parametrized by par-
titions, let χλ denote the character corresponding to a partition λ of n.
Using the theory of blocks - especially using the recent generalization (In-
ventiones Mathematicae 151 (2003)) of Nakayama’s conjecture connecting
combinatorial blocks to the blocks of modular representation theory - one
can prove the following result on partitions. We do not go into its proof
here.

Theoerem. For all d ≤ n, we have p(n) ≥ p([n/d2])d.

If d = [
√
n/2], this gives p(n) ≥ 2[

√
n/2] but one can derive the stronger

consequence :

Corollary. p(n) > e2
√
n

14 .
The proof for n < 190 can be checked by a computer. For slightly bigger
values 190 ≤ n < 760 also, it can be easily checked that p(n) > e2

√
n+0.5.

For n ≥ 760, the above theorem along with induction, gives

p(n) > p([[n/2]/2])2 > e4
√

[[n/2]/2]+1 > e2
√
n+0.5.

We end by quoting the sharper lower bound p(n) > e2.5
√
n

13n which can be
deduced from the following consequence of the theory of blocks for Sn - see
Integers, Electronic Journal of Combinatorial Number Theory, Vol.3 (2003)
#A10.

Theorem. p(n) =
∑n
t=0

∑
4w+t(t+1)=2n

∑w
l=0 p(l)p(w − l).
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2 Zeta functions on number fields

The Dedekind zeta function of an algebraic number field is an invariant
which plays an important role in density theorems for ramification of primes
like the Frobenius density theorem and the Chebotarev density theorem.
Thus, it may be natural to expect the Dedekind zeta function to determine
the number field and it comes as a surprise that it does not ! In fact, a simple
result from the representation theory of finite groups provides a method to
construct non-isomorphic number fields with the same zeta function. These
simple methods also provide a footing to discuss and prove special cases
of Dedekind’s conjecture asserting that for number fields K ⊂ L, the ratio
ζL(s)/ζK(s) is an entire function of s. We discuss this method here.

Dedekind zeta function and Gassmann equivalence
The main aim of this section is to discuss a method to produce two non-
isomorphic number fields with the same Dedekind zeta function. Let N/Q
denote a finite Galois extension and write G = Gal(N/Q). If K and K ′

are intermediate fields, our goal is to express the equality ζK(s) = ζ ′K(s) in
terms of the groups G,H := Gal(N/K) and H ′ := Gal(N/K ′).

The Dedekind zeta function of an algebraic number field K is the function
of the complex variable s defined in the region Re(s) > 1 by the series ζK(s)
=
∑
I 1/N(I)s where I varies over non-zero integral ideals of K and N(I)

denotes the absolute norm (the cardinality of OK/I). The Dedekind zeta
function has a meromorphic continuation to Re(s) > 1 − 1/[K : Q] and
has only a simple pole at the point s = 1. The residue at s = 1 contains
information about K like the class number, regulator etc. :

lim
s→1+

(s− 1)ζK(s) =
2r1(2π)r2h(K)Reg(K)
|µ(K)|√|disc(K)| .

For Re(s) > 1, there is an Euler product expansion

ζK(s) =
∏

06=P prime

(1−N(P )−s)−1.

Here, the product is over non-zero prime ideals in the ring of integers. Let
G1(s) = (π)−s/2Γ(s/2), G2(s) = (2π)1−sΓ(s) and let r1, r2 denote, respec-
tively, the numbers of real and complex places of K. Then, the completed
zeta function ZK(s) = G1(s)r1G2(s)r2ζK(s) is analytic in the whole plane
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except for simple poles at s = 0, 1 and satisfies the functional equation

ZK(s) = |DK |
1
2
−sZK(1− s)

where DK denotes the discriminant of K over Q.

Splitting of Primes
For a prime p, we will define the splitting type of p in a number field E as
follows. Let pOE = P e11 · · ·P egg be the decomposition of a prime p into prime
ideals in OE and fi = [OE/Pi : Z/pZ] be the inertial degree of Pi over p.
We number the fi’s in such a way that fi ≤ fi+1 and call (f1, f2, · · · , fg) the
splitting type of p in E. For every such tuple A, we have a set
PE(A) := {p ∈ Z : p has splitting type A in E}.
As

∑g
i=1 eifi = [E : Q], PE(A) is empty except for finitely many A.

We write PE(A) .= PE′(A) if the two sets differ by at most a finite number
of elements. In particular, we can exclude ramified primes as there are only
finitely many of those in a number field.
Let us look at a Galois extension N and let K,K ′ be intermediate fields.
Consider p ∈ Z which is unramified in N . Let C be a decomposition group in
G = Gal(N/Q) over p in G i.e., C = GP for some prime P of N lying above
p. Note C is cyclic (generated by a so-called Frobenius automorphism) as p
is unramified in N .

Look at one of K,K ′ (say K) and let us see how a splitting type in K
reflects group-theoretically in terms of G and its subgroups H = Gal(N/K)
and C = GP .
If A = (f1, f2, · · · , fg) is the splitting of a prime number p in K, then we
claim that there is a bijection between the set H\G/C of double cosets of
G mod H,C and the set of prime ideals of K above p. Indeed, this is given
by

HσC 7→ σP ∩K.

So A is the coset type of G mod H,C. By this, we mean that the following
holds good.
Writing G =

⋃h
i=1HtiC, we have h = g and |HtiC| = |H|fi.

This is so because HtiC corresponds to tiP ∩K (say Pi) and

|HtiC| = |HtiCt−1
i | =

|H||tiCt−1
i |

|H ∩ tiCt−1
i |

=
|H||C|

|H ∩ tiCt−1
i |
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while |C| = f ′ifi where f ′i , fi are, respectively, inertial degrees of tiP over Pi
and Pi over p and
|H ∩ tiCt−1

i | = |decomposition group of tiP over K| = f ′i .

So, we conclude that p has the same splitting type in K as well as in K ′ if
and only if the coset type of G mod H,C = coset type of G mod H ′, C.
By the Frobenius density theorem, every cyclic subgroup C of G occurs as
a decomposition group for infinitely many primes. Hence, we have :
PK(A) .= PK′(A) for all A⇔
coset type of G mod H,C = coset type of G mod H ′, C for all C.

Two subgroups of a finite group are said to be Gassmann equivalent if the
permutation representations of the big group on the two coset spaces are
equivalent. Note that by looking at the corresponding characters, this is
equivalent to the statement that each conjugacy class in the big group in-
tersects both subgroups in the same number of elements. This property was
first studied by F.Gassmann (Bemerkungen zu der vorstehenden Arbeit von
Hurwitz, Math. Z. 25(1926), pp.124-143).

The relation of this notion to double coset type is given by the:
Lemma.
Two subgroups H and H ′ of a finite group G are Gassmann equivalent if,
and only if, the coset type of G mod H,C = coset type of G mod H ′, C for
all cyclic subgroups C of G.

Proof. Note that each of the conditions implies |H| = |H ′|.
Let C =< c >; c ∈ G. Then

|HgC| = |HgCg−1| = |H||C|
|H ∩ gCg−1| .

Look at the cardinalities li of the sets {g ∈ G : |HgC| = |H|i}.
Then, we have∑
d|i ld = |{g ∈ G : |HgC| divides |H|i}|

= |{g ∈ G : H∩ < gcg−1 >⊇< gcig−1 >}|
= |{g ∈ G : gcig−1 ∈ H}|.
Call the last quantity ki.

Then, by the Möbius inversion formula li =
∑
d|i kdµ(i/d). So, the ki’s and

li’s determine one another. As the same holds for k′i and l′i when H is re-
placed by H ′, it follows that the double cosets have the same decomposition
types for all cyclic subgroups of G if and only if li = l′i ⇔ ki = k′i. Lo and
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behold, this happens for every cyclic subgroup C if and only if the subgroups
H and H ′ of G are Gassmann-equivalent.

T.Sunada constructed isospectral manifolds which are not isometric, using
this property of Gassmann equivalence. This is sometimes expressed in
the colourful language “one cannot hear the shape of a drum.” The main
theorem in our number-theoretic context here is:

Theorem.
Let K,K ′ be number fields contained in a Galois extension N over Q. When
G = Gal(N/Q), H = Gal(N/K) and H ′ = Gal(N/K ′), the following are
equivalent :
(a) ζK = ζK′.
(b) PK(A) = PK′(A)∀ tuples A.
(c) PK(A) .= PK′(A)∀ tuples A.
(d) H = Gal(N/K) and H ′ = Gal(N/K ′) are Gassmann-equivalent.
Moreover, if the above conditions hold, then the degree and the discriminants
over Q and the numbers of real and complex places of K and K ′ coincide.
Also, the two fields determine the same normal closures, the same normal
cores (largest normal subextensions) and, the unit groups of K,K ′ are iso-
morphic as well.

Note that the equivalence of (c) and (d) is what we established above.

Proof of (a) implies (b).
Let A(n), A′(n) denote the numbers of integral ideals of norm n in the rings
of integers of K,K ′ respectively. Then

ζK(s) =
∞∑

n=1

A(n)/ns , for Re(s) > 1

ζK′(s) =
∞∑

n=1

A′(n)/ns , for Re(s) > 1.

Letting s → ∞, we get A(1) = A′(1). Cancel this term from both zeta
functions, multiply by 2s and let s → ∞; we get A(2) = A′(2). Repeating
this argument, we have A(n) = A′(n) for all n by induction.

Now, clearly the splitting type of p in K is determined by the number B(pf )
of prime ideals of K of norm pf . On the other hand,

B(pf ) = A(pf )−
∑

A(pa1)A(pa2) · · ·A(pat)
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where the sum is over t ≥ 2, a1 + · · · + at = f. Thus the splitting types
coincide for p in K and in K ′. Hence, (a) implies (b).

(b) implies (c) is a tautology.
(d) implies (a):
Let C be decomposition group of the real place of Q. Since it has order 1
or 2, it is cyclic. So, the numbers r1, r2 of real and complex places of K are
equal to the number of double cosets HtiC of cardinality |H| and of 2|H|
respectively. Thus, (d) implies that the numbers r1, r2 are the same for K
and K ′.

From the completed zeta function ZK(s) = G1(s)r1G2(s)r2ζK(s) and its
functional equation

ZK(s) = |DK |
1
2
−sZK(1− s)

we see that
ζK(s)
ζK′(s)

= |DK/DK′ |
1
2
−s ζK(1− s)
ζK′(1− s)

.

But, the equivalence of (c) and (d) and the definition of the Dedekind zeta
function as an Euler product when Re(s) > 1 implies that the left hand side
above is a finite product. That is, using (c) we have

ζK(s)
ζK′(s)

=
∏m
j=1(1− d−sj )

∏n
j=1(1− c−sj )

.

By analytic continuation above is valid for all complex s. So the conclu-
sion would follows from the following easily proved fact asserting that finite
products can not satisfy a general kind of functional equation :

Let τ(s) = τ1(s)
τ2(s) where τ1(s) =

∏m
j=1(1 − c−sj ) and τ2(s) =

∏n
j=1(1 − d−sj )

with cj , dj real and > 1. Note that τ1(s), τ2(s) have no poles. Let f(s) be
a meromorphic function whose zeroes and poles do not lie among the zeroes
of either τ1(s) or τ2(s). If τ(s) = f(s)τ(1 − s) for all s,then τ1(s) = τ2(s)
and f(s) = 1 for all s.
Hence we have shown that the four statements are equivalent.

Let us now assume they are true and deduce the rest of the assertions. If
any of the above conditions holds then |H| = |H ′| which implies [K : Q] =
[K ′ : Q]. Also, while proving the equivalence of (d) and (a), we have shown
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already that the numbers of real and complex places match for K,K ′. Also,
near the end of that proof, we observed that

ζK(s)
ζK′(s)

= |DK/DK′ |
1
2
−s ζK(1− s)
ζK′(1− s)

.

Applying the above assertion on non-existence of a general functional equa-
tion for finite products, in the case of the function f(s) = |DK/DK′ |

1
2
−s.

We have f(s) to be identically equal to 1 and so |DK | = |DK′ |. But the sign
of the discriminant is given by the number of complex places and, therefore,
the discriminants themselves are equal.
Now, the normal closure of K over Q is the fixed field of

⋂
σ∈G σHσ−1.

So, h ∈ ⋂σ∈G σHσ−1 implies |{ghg−1 : g ∈ G}| = |{ghg−1 : g ∈ G} ∩
H| = |{ghg−1 : g ∈ G} ∩ H ′| so that h ∈ ⋂σ∈G σH ′σ−1. In other words,⋂
σ∈G σHσ−1 ⊆ ⋂

σ∈G σH ′σ−1. By symmetry, the two intersections are
equal and thus the normal closures of K,K ′ over Q are the same.

We will show now that the normal cores are the same as well. Note that the
normal core of K over Q is the fixed field of the subgroup generated by all
the conjugates of H in G. But, if h ∈ H, then the number of its conjugates
in H ′ equals the number in H (which is thus non-zero). In other words,
some conjugate of h is in H ′. This gives that the subgroups generated by
the conjugates of H and of H ′ are the same. Thus, the normal cores are
equal.

Finally, the unit group O∗K is the direct product of a free group of finite rank
r1 + r2− 1 and the finite cyclic group generated by the largest root of unity
in K. The free parts are isomorphic as r1, r2 are equal. Now, we observe
that K and K ′ have the same roots of unity. This is because we can adjoin
largest root of unity in K to Q to produce a normal extension of Q in K ′

as the normal cores are the same. Thus, the unit groups are isomorphic as
well. Hence the theorem is proved.

A class of examples.
Here is an infinite family of examples of fields which are arithmetically equiv-
alent but are not isomorphic.
Let H and H ′ be two non-isomorphic abstract groups having the same num-
ber of elements of each order - let us say then that the pair H,H ′ satisfies
the condition (∗). There are infinitely many such pairs. For example, if H
is an abelian group of type (p, p, p) and H ′ is the semi direct product of an
abelian group < a, b > of type (p, p) and a cyclic group < c > of order p
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with cac−1 = a and cbc−1 = ab for some odd prime p, then H,H ′ satisfies
(∗).
When H,H ′ is a pair satisfying (∗), then both H and H ′ can be embed-
ded in Sn via their left regular representations, where n is their common
order. Note that H is not conjugate to H ′ because they are not isomorphic.
However, let us note that they are Gassmann-equivalent using the following
lemma :

Lemma.
Elements h, h′ ∈ H ⋃

H ′ of the same order are conjugate in Sn.
Proof.
As an element of Sn, each element of H acts by multiplying the elements of
H on the left and is then the product of n/i disjoint cycles of length i where
O(h) = i. The same holds for h′. So, h and h′ have same cycle structure
and are thus necessarily conjugate in Sn.

Now, to show that H,H ′ are Gassmann-equivalent, we need to show that
|{gcg−1 : g ∈ G} ∩ H| = |{gcg−1 : g ∈ G} ∩ H ′|. If both intersections are
empty then equality trivially holds. So, let h ∈ {gcg−1 : g ∈ G} ∩ H. By
condition (∗), there is some h′ ∈ H ′ of the same order as that of h; so h and
h′ are conjugate in Sn and so h′ ∈ {gcg−1 : g ∈ G} ∩H ′. Thus,

{gcg−1 : g ∈ G} ∩H = {h ∈ H : O(h) = O(c)}

and
{gcg−1 : g ∈ G} ∩H ′ = {h′ ∈ H ′ : O(h′) = O(c)}

which gives by condition (∗) that H,H ′ are Gassmann-equivalent.
Finally, (by Hilbert’s irreducibility theorem for instance), there exists a Ga-
lois extension N of Q such that Gal(N/Q) = Sn. Hence, the fixed fields K
and K ′ of H and H ′ are non-isomorphic but have the same zeta function.

An interesting group-theoretic result of De Smit & H.W.Lenstra Jr. from
2000 implies the following beautiful number-theoretic theorem:
Call a natural number n special if pqr|n for (not necessarily distinct) primes
p, q, r such that p|q(q − 1). Let K be a number field of degree n which is
solvable by radicals. Suppose n is not special. Then, K is determined up to
isomorphism by its Dedekind zeta function.
Conversely, for each special n, there are two solvable, non-isomorphic num-
ber fields of degree n which have the same Dedekind zeta function.
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A key result used in the above theorem is:
Let (n, φ(n)) = 1 and let X is a set of size n on which a finite, solvable group
G acts transitively. Suppose G also acts on another finite set Y such that
|Xg| = |Y g| for all g ∈ G whose order is divisible only by primes dividing n.
Then, X and Y are isomorphic as G-sets.
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3 Value Sets of Integer Polynomials

We briefly discuss the relation of permutation representations with value
sets of integer polynomials. It turns out that the concrete number-theoretic
problem of deciding when two integer polynomials take the same values
modulo almost all primes, is equivalent to a group-theoretic problem. Let
us start with a related problem.

Can we have irreducible integer polynomials which are reducible modulo
every positive integer?
More precisely, what is the relation between Galois groups of integer poly-
nomials and the reducibility modulo primes of the polynomials?
If K is the splitting field of a monic irreducible polynomial f of degree n
over Z, then look at any prime p which does not divide the disrciminant of f .
If f is irreducible modulo p, then the corresponding Gal(K/Q) contains an
element of order n (a decomposition group is of order n). In other words, if
Gal(K/Q) does not contain an element of order n, then f must be reducible
modulo p.

In prime degrees, one cannot have monic irreducible integer polynomials
which are reducible modulo all but finitely many primes. This is seen by an
application of the Chebotarev (or even the) Frobenius density theorem in
the following sense :
A cyclic subgroup of Gal(K/Q) can be realized as a decomposition group
over infinitely many primes.
Therefore, if f is monic irreducible of prime degree q over integers, there
are infinitely many primes p so that f mod p has splitting field with Galois
group cyclic of degree q. In other words, f mod p is irreducible for infinitely
many primes.

Interestingly, it turns out that for every composite degree n one may find
monic irreducible integer polynomials of degree n which are reducible mod-
ulo any natural number.
However, we shall return now to the other aspect of integer polynomials
which we started the section with. This is also analyzed using similar ideas.
Towards that, we state the following lemma which can be proved using the
Frobenius density theorem:

Lemma (Frobenius).
Let h ∈ Z[X] be monic, and assume that h(X) ≡ 0 mod p, has a solution in
Z for almost all non-zero primes p. Then every element of the Galois group
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of h(X) over Q fixes at least one root of h.
Conversely, let h be monic and assume that every element of the Galois
group of h(X) over Q fixes at least one root of h. Then h(X) ≡ 0 (mod p)
has a solution in Z for every non-zero prime p.

To prove this lemma, let us recall the following weaker version of the Frobe-
nius density theorem:
The set of primes p modulo which a monic integral, irreducible polyno-
mial f has a given decomposition type n1, n2, · · · , nr, has density equal to
N/O(Gal(f)) where N = |{σ ∈ Gal(f) : σ has a cycle pattern n1, n2, · · · , nr}|.
Look at the first part. Assume that h is irreducible of degree > 1, if possible.
The Frobenius Density Theorem shows that every σ has a cycle pattern of
the form 1, n2, · · · This means that every element of Gal(h) fixes a root, say
β. Since h is irreducible, the group Gal(h) acts transitively on the roots of
h. Thus, this group would be the union of the conjugates of its subgroup H
consisting of those elements which fix the root β. But a finite group cannot
be the union of conjugates of a proper subgroup; this implies H is the whole
group. Hence Gal(h) fixes each root of h and is therefore trivial. So we get
h to be a linear polynomial, a contradiction.

The converse is proved as follows.
Let L be a splitting field of h(X) over Q. Let OL be the ring of integers in
L, and let P be a prime ideal of OL lying over p. The roots of h lie in OL
by the assumption about h. Let D and I be the decomposition and inertia
group of P respectively. Then D/I is cyclic, and maps isomorphically to
the Galois group of the extension of residue fields. Let d ∈ D such that the
coset dI generates D/I. By the assumption, d fixes a root z of h. Thus dI
fixes the image of z in OL/P . As dI generates the full Galois group of the
residue field extensions, there is an integer b which is congruent to z modulo
P . This gives h(b) ∈ P ∩ Z = pZ, and the assertion follows.

Kronecker-conjugacy:
For f ∈ Z[X] and, p prime, consider the value set

V alp(f) = {f(a) mod p ; a ∈ Z}.
Call f, g ∈ Z[X] to be Kronecker-conjugate if V alp(f) = V alp(g) for all
but finitely many primes p. In order to state a group-theoretic criterion for
Kronecker-conjugacy, we need to fix some notations.

Given f, g ∈ Z[X] which are non-constant, consider a Galois extension K
of the field Q(t) of rational functions in a variable t such that K contains a
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root x of f(x) = t and a root y of g(y) = t. Let G denote Gal(K/Q(t)) and
let U, V denote the stabilizers of x, y respectively.

Fried’s Theorem.
Given f, g ∈ Z[X] which are non-constant, consider t,K,G, x, y, U, V as
above. Then, f, g are Kronecker-conjugate if and only if

⋃

g∈G
gUg−1 =

⋃

g∈G
gV g−1.

Idea of Proof.
Suppose that f, g are Kronecker-conjugate. Write f = uXn+· · · be of degree
n. As Kronecker-conjugacy is preserved when we replace f(X) and g(X) by
un−1f(X/u) and un−1g(X) respectively, we may assume that f is monic.
Now, for any integer a, the hypothesis gives that f(X) ≡ g(a) (mod p) has
a root for almost all non-zero primes p. Hilbert’s irreducibility theorem tells
us that the Galois groups Gal(f(X)− g(y) over K(y) and Gal(f(X)− g(a))
over K are isomorphic as permutation groups for infinitely many a. Recall
that g(y) = t. Thus every element of the Galois group Gal(f(X) − t) over
K(y) fixes at least one root. This Galois group is just the induced action of V
on the roots of f(X)−t (but V need not act faithfully). Hence every element
in V fixes a root. But these roots are the conjugates of x whose stabilizer
is U. So every element of V lies in some conjugate of U. By symmetry, the
result follows.

Conjecture.
Over a field of characteristic 0, two polynomials f and g are Kronecker-
conjugate if and only if, U and V are Gassmann equivalent; that is, the
permutation representations IndGU1 and IndGV 1 are equivalent.

It should be noted that such a result is not purely group-theoretic because
there are examples of abstract finite groups G and subgroups U, V such that⋃
g∈G gUg−1 =

⋃
g∈G gV g−1 but U, V are not Gassmann equivalent.
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4 Dedekind’s entirety conjecture

Dedekind conjectured that for number fields K ⊂ L, the ratio ζL(s)/ζK(s)
is an entire function of s. The Dedekind conjecture remains open in general.
Actually, there is a more general conjecture due to Artin which we describe
first. The background number-theoretic material can be found in the book
of Neukirch. The Brauer-Aramata theorem for which we mention here a
proof of Foote and Kumar Murty also appears in the classical text of J-P
Serre.

Let L/K be a Galois extension of number fields and let G denote the Galois
group. For any prime ideal P of OK , look at the factorization POL =
P e11 · · ·P egg . Now, the decomposition groups DPi = {σ ∈ G : σ(Pi) = Pi}
are mutually conjugate and the inertia subgroups IPi = {σ ∈ G : σ(x) ≡
x mod Pi ∀ x ∈ OL} are the kernels of the natural surjections from DPi to
Gal ((OL/Pi)/OK/P )).
One also denotes by FrP , the Frobenius at P - this is a conjugacy class in
G.
Artin associated to any finite-dimensional representation ρ : G → GL(V ),
an L-function defined as

L(s, ρ;L/K) =
∏

P

det(1− ρ(FrP )NK/Q(P )−s|V IPi )−1.

Here V IPi is the subspace fixed by IPi for any i and the definition makes
sense as FrP is a conjugacy class.

This Artin L-function has the following properties.

Properties :
(I) L(s, ρ;L/K) depends only on the character χρ and one often writes
L(s, χ;L/K) for characters χ.
(II) If χ1 ⊕ χ2 = χ, then L(s, χ;L/K) = L(s, χ1;L/K)L(s, χ2;L/K).
(III) If H is a subgroup of G, then L(s, IndGH(χ);L/K) = L(s, χ;L/LH).
(IV) L(s,1;L/K) = ζK(s).
(V) L(s, χreg;L/K) = ζL(s).
(VI) (Artin-Takagi factorization) ζL(s) =

∏
χ∈Ĝ L(s, χ;L/K)χ(1).

Artin’s Conjecture :
L(s, χ;L/K) extends to an entire function for any irreducible nontrivial
character χ of G.
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What Artin’s reciprocity law means:
Artin’s reciprocity law implies that Artin’s conjecture holds for one-dimensional
characters. More precisely :
If L/K is a Galois extension of number fields, and if χ is a monomial char-
acter of Gal(L/K) (that is, is induced from a one-dimensional character of
some subgroup) and does not contain the trivial character, then L(s, χ;L/K)
extends to an entire function of s.

Artin’s conjecture implies Dedekind’s entirety conjecture for ζL(s)/ζK(s) in
the case of Galois extensions L/K. However, without using Artin’s conjec-
ture, one can prove the above case of Dedekind conjecture - this is due to
Brauer & Aramata.

Theorem (Brauer).
Let G be any finite group and χ an irreducible character of it. Then, there
exist nilpotent subgroups H1, · · · ,Hr and one-dimensional characters ψi on
Hi and integers ni such that χ =

∑r
i=1 niInd

G
Hi

(ψi).
In fact, combined with Artin’s reciprocity law, this theorem immediately
implies the following one :
Theorem (Brauer) : Let L/K be a Galois extension of number fields. Let
G denote the Galois group and let χ be an irreducible character of G. Then
L(s, χ;L/K) admits a meromorphic continuation to the whole plane.
Indeed, one need only observe that

L(s, χ;L/K) =
r∏

i=1

L(s, IndGHi(ψi);L/K)ni =
r∏

i=1

L(s, ψi;L/LHi)ni .

Heilbronn character
The behaviour of an Artin L-function at any point s0 can be studied through
the so-called Heilbronn character, a certain virtual character ofG = Gal(L/K).
If n(G,χ) := Ords=s0L(s, χ;L/K), is the order of (zero/pole of) L(s, χ;L/K)
at s0 the Heilbronn character is :

ΘG(g) =
∑
χ

n(G,χ)χ(g).

The sum is over all irreducible characters of G. Notice that if Artin’s con-
jecture is true, then this is an actual character when s0 = 1. The following
result was proved by Heilbronn :

Lemma.
For a subgroup H, the restriction of ΘG to H is the Heilbronn character ΘH
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of Gal(L/LH).
Proof.
By the orthogonality of characters,

ΘG|H =
∑

χ∈Ĝ
n(G,χ)(

∑

ψ∈Ĥ
< χ|H,ψ >H ψ)

=
∑

ψ∈Ĥ
(
∑

χ∈Ĝ
n(G,χ) < χ, IndGHψ >G)ψ

where the second equality follows from the Frobenius reciprocity theorem.
Using the basic properties of the Artin L-function, we have

n(H,ψ) = Ords=s0L(s, ψ;L/LH) = Ords=s0L(s, IndGHψ;L/K) =

Ords=s0
∏
χ

L(s, χ;L/K)<χ,Ind
G
Hψ> =

∑
χ

n(G,χ) < χ, IndGHψ >G

which proves the lemma.

The following beautiful inequality was derived by R.Foote and V.Kumar
Murty R.Foote & V.Kumar Murty, Zeroes and poles of Artin L-series, Math.
Proc. Camb. Phil. Soc., 105 (1989) pp.5-11) and, this has several conse-
quences.

Lemma (Foote-Kumar Murty).
∑

χ∈Ĝ
n(G,χ)2 ≤ (Ords=s0ζL(s))2.

Proof.
Now 1

O(G)

∑
g∈G |ΘG(g)|2 =< ΘG,ΘG >G=

∑
χ∈Ĝ n(G,χ)2.

We apply Heilbronn’s lemma to the cyclic subgroups of G. We get

ΘG(g) = Θ<g>(g) =
∑

ψ∈<̂g>
n(< g >,ψ)ψ(g).

As the Artin reciprocity theorem implies that the Artin L-function is en-
tire for one-dimensional characters, each n(< g >,ψ) ≥ 0. So |ΘG(g)| ≤∑
ψ∈<̂g> n(< g >,ψ).

Finally, the Artin-Takagi factorization shows that

Ords=s0ζL(s) =
∑

ψ∈<̂g>
n(< g >,ψ)
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for each element g ∈ G. Hence,

|ΘG(g)|2 ≤ (Ords=s0ζL(s))2 ∀ g ∈ G.

Corollary (Brauer-Aramata theorem).
For any Galois extension L/K of number fields, the function ζL(s)/ζK(s) is
entire.
Proof.
Apply the Foote-Murty lemma and note that ζK(s) = L(s,1;L/K) where 1
is the trivial character of G.

Other variations have been obtained by Ram Murty and collaborators.
One such is :
Let G = Gal(L/K) with L/K, a solvable extension of number fields. Then

∑

1 6=χ∈Ĝ
n(G,χ)2 ≤ (Ords=s0

ζL(s)
ζK(s)

)2

A group-theoretic lemma which they prove in this direction is :
Let G be a nontrivial finite, solvable group and H, a subgroup. Consider the
derived series {G(i)} of G. Then, for all i,

IndGH1H = IndHG(i)1HG(i) +
∑

j

IndGHjθj

where θj’s are 1-dimensional characters of some subgroups Hj which depend
on H and i.

Using this lemma, A.Raghuram and Ram Murty prove :
Let G = Gal(L/K) with L/K, a solvable extension of number fields. Write
Lab denote the fixed field under [G,G] and C denote the set of different
1-dimensional characters of G. Then

∑

1 6=χ∈C
n(G,χ)2 ≤ (Ords=s0

ζL(s)
ζLab(s)

)2

We end with a few smatterings of statements which occur in the Langlands
program. First, we make a small observation to the effect that Artin’s
entirety conjecture needs to be proved only when the base is Q. More
precisely :
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Artin cojecture enough to prove over Q :

Proposition.
If all nontrivial irreducible characters χ of G := Gal(E/Q) are so that
L(s, χ,E/Q) extends to an entire function, then Artin’s conjecture holds
good.
Proof.
Let L/K be a Galois extension of number fields. Let E be the Galois closure
over Q and let G = Gal(E/Q). Then H = Gal(L/K) is a subquotient of
G. Let τ be any irreducible character of H and lift it to a character of
Gal(E/K). Denote by θ the character of G induced from it. By Frobenius
reciprocity law, θ does not contain the trivial character. In this case, by the
property (II) we recalled earlier, L(s, θ, E/Q) is entire. But, the property
(III) shows that L(s, θ, E/Q) = L(s, τ, L/K).

We end with the statement of one of the Langlands conjectures known as :

The Langlands reciprocity conjecture.
Let (V, ρ) be an n-dimensional irreducible representation of a Galois group
Gal(L/K) of number fields. Then, there is a cuspidal automorphic repre-
sentation π of GLn(AK) such that L(s, ρ, L/K) is the L-function attached
to π by Langlands.

We have not defined cuspidal automorphic representations or the corre-
sponding L-function of Langlands but just remark that the latter L-functions
are known to be entire !
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Finally !

After weeks of KG’s, ρ’s and χ’s
and PIMs of every possible size;
the end is at last nigh.
However the audience’s still shy
of claiming my problem prize !

THANK YOU
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