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No one would have had the imagination to invent them
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This continued fraction appeared in Ramanujan’s first letter to
Hardy written on January 16, 1913. Of this and some other
formulae in that letter, Hardy said in 1937:
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“They defeated me completely. I had never seen anything in the
least like them before. A single look at them is enough to show
that they could only be written down by a mathematician of the
highest class. They must be true because, if they were not true, no
one would have had the imagination to invent them.”

The continued fraction quoted in the beginning can be proved
using the so-called Rogers-Ramanujan identities which are, in turn,
intimately connected to the theory of partitions to which
Ramanujan made fundamental contributions.
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What is the exact number of partitions?

p(n) =
1√
2π

∞∑
q=1

Aq(n)
√

q[
d

dx

sinh((π/q)(2(x−1/24)
3 )1/2)

(x − 1/24)1/2
]x=n

where Aq(n) =
∑
ωp,qe−2npπi/q, the last sum being over p’s prime

to q and less than it, ωp,q is a certain 24q-th root of unity.

What a bizarre expression relating p(n) with 24-th roots of unity!
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Quadratic forms and Fermat’s theorem

Let p be a prime of the form 4k + 1. Then, the set of values
assumed by px2 + 2(p−1

2 )!xy + qy2 at integer values of x , y
coincides with those assumed by x2 + y2 where

((
p − 1

2
)!)2 + 1 = pq

In particular, p is a sum of two squares.
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eπ
√

163 is ‘almost’ an integer

This inriguing title has the more precise formulation

eπ
√

163 − integer = 196884 e−π
√

163 + 21493760 e−2π
√

163 . . . ≈ 0!
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Sums of powers of divisors

If σr (n) is the sum of the r -th powers of divisors of n, then we
have relations like:

σ7(n) = σ3(n) + 120
n−1∑
m=1

σ3(m)σ3(n −m)

11σ9(n) = 21σ5(n)− 10σ3(n) + 5040
n−1∑
m=1

σ3(m)σ5(n −m)
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Expressions as sums of squares

If rk(n) is the number of ways a positive integer can be expressed
as x2

1 + · · ·+ x2
k for integral xi ’s, then

r4(n) = 8
∑
{d : d |n, 4 6 |d}

r8(n) = 16
∑
d |n

(−1)n+dd3
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Shortest continued fraction for rationals

Suppose one considers continued fraction expansions of a rational
number permitting negative integers.

For instance, 31
13 = [2; 2, 1, 1, 2] = [2; 3,−3, 2] are two C.F.s where

the second one is obtained by choosing a nearest integer at each
stage.
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Is it true that a continued fraction expansion of a rational number
obtained by choosing the nearest integer at each step, is a shortest
one?

Is it true that a C.F. [b0; b1, · · · , bn] for a rational number is a
shortest one if and only if |bi | ≥ 2 for all i 6= 0 and b1, · · · , bn does
not have substring of the form

2,−3, 3,−3, 3, · · · ,−3, 3,−2?

The answer to both questions turn out to be affirmative.
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Integer programming

There is a polynomial time algorithm to determine whether a
triangle on the plane contains a lattice point or not.

More generally, one can decide in polynomial time (in the length of
A,B) whether an integral solution vector exists or not for the
system of inequalities AX ≤ B where A,B are integer matrices of
sizes m × n and m × 1 respectively, wherein we look for solutions
for n × 1 integer-tuples X .
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The common thread in these rather different statements is the
modular group Γ.

Depending on the situation Γ is the group of 2× 2 integer matrices
of determinant ±1 or the subgroup of matrices with determinant 1
or the quotient of that by the center ±I .

The heroine of our story is Γ and we accompany her in a journey
touching several aspects of elementary number theory including the
above ones.
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What is the number of partitions?

Start with partitions:

p(n) =
1√
2π

∞∑
q=1

Aq(n)
√

q[
d

dx

sinh((π/q)(2(x−1/24)
3 )1/2)

(x − 1/24)1/2
]x=n

where Aq(n) =
∑
ωp,qe−2npπi/q, the last sum being over p’s prime

to q and less than it, ωp,q is a certain 24q-th root of unity.

The exact formula above is due to Rademacher but it comes out of
an asymptotic formula due to Hardy and Ramanujan.
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They show that p(n) is the integer nearest to
1

2
√

2

∑v
q=1

√
qAq(n)ψq(n), where Aq(n) =

∑
ωp,qe−2npπi/q, the

last sum being over p’s prime to q and less than it, ωp,q is a
certain 24q-th root of unity, v is of the order of

√
n, and

ψq(n) =
d

dn
(exp{C

√
n − 1

24
/q} , C = π

√
2/3.

We may take v = 4 when n = 100. For n = 200, we may take
v = 5.

While reviewing the collected works of Ramanujan in the
Mathematical Gazette, Littlewood says of this latter paper:
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“The reader does not need to be told that this is a very
astonishing theorem, and he will readily believe that the methods
by which it was established involve a new and important principle,
which has been found very fruitful in other fields. The story of the
theorem is a romantic one.

To do it justice I must infringe a little the rules about
collaboration. I therefore add that Prof. Hardy confirms and
permits my statements of bare fact.
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One of Ramanujan’s Indian conjectures was that the first term of
the sum was a very good approximation to p(n); this was
established without great difficulty. From this point the real attack
begins. The next step in development was to treat the above sum
as an ”asymptotic” series, of which a fixed number of terms were
to be taken, the error being of the order of the next term. But
from now to the very end Ramanujan always insisted that much
more was true than had been established: ”there must be a
formula with error O(1).”

This was his most important contribution; it was both absolutely
essential and most extraordinary.”
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The exact formula for p(n) written down by Rademacher
essentially follows from the fact that the so-called Dedekind eta
function is a modular form.

A modular form f is roughly a function defined on the upper
half-plane such that f ((az + b)/(cz + d)) is of the form

(cz + d)k f (z) for

(
a b
c d

)
in the modular group.

We mention in passing that Rademacher used what are known as
Ford circles which are related to Farey fractions which also have
connections with the modular group as we shall see!)
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∞∑
n=0

p(n)qn =
∞∏

n=1

(1− qn)−1

The eta function defined on the upper half-plane by

η(z) = e2iπz/24
∞∏

n=1

(1− e2iπnz)

is related to it by

η(z) = e2iπz/24/
∑
n≥0

p(n)e2iπnz .

The eta function satisfies

η(−1/z) =

√
z

i
η(z).

Here, the square-root is the branch having nonnegative real part.
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Using the transformation above and one for η(z + 1), one gets a

transformation formula for η((az + b)/(cz + d)) for any

(
a b
c d

)
in SL(2,Z) easily since this group can be generated by the two nice

matrices

(
0 1
−1 0

)
and

(
1 1
0 1

)
.

The transformation for c > 0 is:

log η((az + b)/(cz + d)) = log η(z)− iπ

4

+
1

2
log(cz + d)− iπs(d , c) +

iπ(a + d)

12c

where s(d , c) is a so-called Dedekind sum.

This expression quite easily gives the explicit expression for p(n).
We won’t talk more about this but refer the interested reader to
the book ‘Theory of Partitions’, by George Andrews.

B.Sury The Ubiquitous modular group



Using the transformation above and one for η(z + 1), one gets a

transformation formula for η((az + b)/(cz + d)) for any

(
a b
c d

)
in SL(2,Z) easily since this group can be generated by the two nice

matrices

(
0 1
−1 0

)
and

(
1 1
0 1

)
.

The transformation for c > 0 is:

log η((az + b)/(cz + d)) = log η(z)− iπ

4

+
1

2
log(cz + d)− iπs(d , c) +

iπ(a + d)

12c

where s(d , c) is a so-called Dedekind sum.

This expression quite easily gives the explicit expression for p(n).
We won’t talk more about this but refer the interested reader to
the book ‘Theory of Partitions’, by George Andrews.

B.Sury The Ubiquitous modular group



Using the transformation above and one for η(z + 1), one gets a

transformation formula for η((az + b)/(cz + d)) for any

(
a b
c d

)
in SL(2,Z) easily since this group can be generated by the two nice

matrices

(
0 1
−1 0

)
and

(
1 1
0 1

)
.

The transformation for c > 0 is:

log η((az + b)/(cz + d)) = log η(z)− iπ

4

+
1

2
log(cz + d)− iπs(d , c) +

iπ(a + d)

12c

where s(d , c) is a so-called Dedekind sum.

This expression quite easily gives the explicit expression for p(n).
We won’t talk more about this but refer the interested reader to
the book ‘Theory of Partitions’, by George Andrews.

B.Sury The Ubiquitous modular group



Continued fractions and geodesics in hyperbolic geometry

The modular group and hyperbolic geometry have intimate
connections with continued fractions.

31
13 = [2; 2, 1, 1, 2] = [2; 3,−3, 2] are two continued fractions of
which the second, which is shorter, is obtained by choosing the
nearest integer at each stage.

Associated to a continued fraction, it turns out that one has a
path in the so-called Farey graph and, this is a geodesic on the
Poincaré hyperbolic upper half-plane if the C.F. is a shortest one.
Facts about continued fractions can often be proven using the
geometry of the hyperbolic plane aided by the modular group.
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Consider for any (positive or negative) integer a the transformation
Sa : z 7→ az+1

z on the upper half-plane. One also considers the
action on 0 and at i∞, the ‘point at infinity’ where the definition is

Sa(0) =∞,Sa(∞) = a.

Now, Sa = T aS where Tz = z + 1,Sz = 1/z .

Sa0 ◦ Sa1 ◦ · · · ◦ San(∞) = [a0; a1, · · · , an]

Sa’s generate GL(2,Z).
Thus, we have a bijective correspondence between finite continued
fractions of integers and words in T ,S .
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The Farey graph is formed with vertices as rational numbers and
a/b and c/d joined by a semicircle if ad − bc = ±1.

The geodesics on the upper half-plane for the hyperbolic metric are
vertical lines and semicircles perpendicular to the X -axis.

We have a bijection between finite continued fractions of integers
and finite paths from ∞ in the Farey graph.
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Thus, the question whether the ‘nearest-integer’ continued fraction
of a rational number is a shortest one is equivalent to the question
as to whether the corresponding path in the Farey graph is a
geodesic. This interpretation helps in answering the question
affirmatively.

Not only that; the recognition of paths which are geodesics leads
to the statement on continued fractions made earlier; viz.

A C.F. [b0; b1, · · · , bn] for a rational number is a shortest one if
and only if |bi | ≥ 2 for all i 6= 0 and b1, · · · , bn does not have a
substring of the form

2,−3, 3,−3, 3, · · · ,−3, 3,−2.

B.Sury The Ubiquitous modular group



Thus, the question whether the ‘nearest-integer’ continued fraction
of a rational number is a shortest one is equivalent to the question
as to whether the corresponding path in the Farey graph is a
geodesic. This interpretation helps in answering the question
affirmatively.

Not only that; the recognition of paths which are geodesics leads
to the statement on continued fractions made earlier; viz.

A C.F. [b0; b1, · · · , bn] for a rational number is a shortest one if
and only if |bi | ≥ 2 for all i 6= 0 and b1, · · · , bn does not have a
substring of the form

2,−3, 3,−3, 3, · · · ,−3, 3,−2.

B.Sury The Ubiquitous modular group



Thus, the question whether the ‘nearest-integer’ continued fraction
of a rational number is a shortest one is equivalent to the question
as to whether the corresponding path in the Farey graph is a
geodesic. This interpretation helps in answering the question
affirmatively.

Not only that; the recognition of paths which are geodesics leads
to the statement on continued fractions made earlier; viz.

A C.F. [b0; b1, · · · , bn] for a rational number is a shortest one if
and only if |bi | ≥ 2 for all i 6= 0 and b1, · · · , bn does not have a
substring of the form

2,−3, 3,−3, 3, · · · ,−3, 3,−2.

B.Sury The Ubiquitous modular group



Zaremba’s conjecture

Lest someone think that continued fractions is old hat, here is an
open problem !

Zaremba’s conjecture:
There exists an N > 0 such that every f > 0 arises as the
denominator of a rational number a

f = [a0, · · · , an] with
1 ≤ ai ≤ N.
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What is in a question? - a Farey tale

Given two rationals a
b <

c
d ∈ [0, 1], let us make the mistake that a

child might make while learning the addition of fractions. Think of
the sum of these two fractions as a+c

b+d . This mistake turns out to
be a fruitful one!

Call a+c
b+d the mediant of the two fractions a

b and c
d .

Starting with the extremes 0
1 ,

1
1 , we have the mediant 1

2 which lies
in between; that is,

0

1
<

1

2
<

1

1
.

At the next stage, the mediant of 0
1 and 1

2 is 1
3 and that of 1

2 and
1
1 is 2

3 .
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We can place the mediants in between their respective progenitors
and get

0

1
,

1

3
,

1

2
,

2

3
,

1

1

In this manner, we can iterate and get strings of fractions. This
produces a tree - known as the Farey tree which looks as follows.
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Neighbouring fractions at any level of the tree have the property:
a
b <

c
d are neighbours, then bc − ad = 1!

If this property holds for the above neighbours, then go to the next
level below on the tree and show that the property holds for the
neighbours

a

b
<

a + c

b + d
<

c

d

This is clear!

The matrix

(
c a
d b

)
∈ SL(2,Z).

The unimodularity also shows easily the inequalities

a

b
<

a + c

b + d
<

c

d
.

So, each row in the Farey tree is in increasing order and the tree is
in bijective correspondence with the set of rationals in [0, 1].
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Just like the Farey tree, one has another binary tree of the same
shape, known as the dyadic tree. In this tree, the top level has 0

1
and 1

1 .

In general, at the n-th level, the fractions are

1

2n−1
,

3

2n−1
,

5

2n−1
, · · · , 2n−1 − 1

2n−1
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Minkowski’s question mark function

Minkowski defined a function ?(x) from the Farey tree to the
dyadic tree matching the labels.

For instance, ?(1/3) = 1/4. Due to the recursive definitions:

?(
a + c

b + d
) =

?( a
b + c

d )

2

As the rational numbers in [0, 1] as well as the dyadics in this
interval are both dense subsets of [0, 1], the question mark
function extends to a continuous function.

?(x) is a monotonically increasing function as the fractions were
ordered. It is continuous everywhere but has zero derivative almost
everywhere.
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Using continued fractions, the question mark function can be
defined more explicitly on any real number in [0, 1] as follows.
Look at a continued fraction expansion:

x = [a1, a2, · · · ] :=
1

a1+

1

a2+

1

a3+
· · ·

?(x) =
N∑

k=1

(−1)k−121−(a1+a2+···+ak )

where N is the length of the continued fraction (this is infinite if x
is irrational).

The definition can be visualized in terms of the binary expansion of
?(x) as

?(x) = 0. 0 · · · 0︸ ︷︷ ︸
a1−1

1 · · · 1︸ ︷︷ ︸
a2

0 · · · 0︸ ︷︷ ︸
a3

1 · · · 1︸ ︷︷ ︸
a4

· · ·

When N is finite, the expansion after the string of aN zeroes (if N
is odd) or aN ones (if N is even) is a string of all ones
(respectively, all zeroes).
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Γ to answer questions

?(1− x) = 1−?(x).

From the explicit definition above, we also have

?(
x

1 + x
) =

?(x)

2
.

This is because the continued fraction expansion of x
1+x is

[a1 + 1, a2, · · · ].

Note that x 7→ 1− x and x 7→ x
1+x are fractional linear

transformations and that Γ is the group of all fractional linear
transformations.
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The Γ generation

Let us show that the matrices S =

(
0 1
−1 0

)
and T =

(
1 1
0 1

)
generate the whole of Γ.

Look at the elements

(
a b
c d

)
of Γ as fractional linear

transformations z 7→ az+b
cz+d .

Notice that T acts as the translation z 7→ z + 1 and S acts as
z 7→ −1/z (note that the minus sign ensures that we land again
inside the upper half-plane).
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For γ =

(
a b
c d

)
∈ Γ,

observe that Im γz = Im z
|cz+d |2 .

Fix any point z in the upper half-plane.

As c , d vary, there is a disc around the origin which contains no
non-zero lattice point. Thus there is some γ in the subgroup of Γ
generated by S ,T such that Im γz is maximal.
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If necessary, we may replace γ by T jγ for some j , and assume that
−1/2 ≤ Re γz ≤ 1/2.

Im Sγz =
Im γz

|γz |2
> Im γz if |γz | < 1.

This contradicts the choice of γ. Hence we have

|γz | ≥ 1.
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Thus for each z ∈ H, we have a γ ∈< S ,T > so that

1

2
≤ Re γz ≤ 1

2
and |γz | ≥ 1.

This leads us to consider the closed region

F =

{
z ∈ H :

1

2
≤ Re z ≤ 1

2
and |z | ≥ 1

}
. (1)

Every point z ∈ H get transformed into an equivalent point
g(z) ∈ F for some g ∈< S ,T >. If z0 is an interior point of F
and γ ∈ Γ, then get g ∈< S ,T > with g−1γ(z0) ∈ F . This shows
g = γ (so Γ =< S ,T >) by the argument below.
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We prove that if z1, z2 ∈ F are Γ-equivalent then they are on the
boundary. We shall prove more.

Let Im z2 ≥ Im z1. Let A =

(
a b
c d

)
∈ Γ be such that z2 = Az1.

Then 1 ≥ |cz1 + d | ≥ c2 + d2 − cd which gives either
c = ±1, d = 0 or d = 1, c = 0 or d = c = ±1.

This forces not only z1 to be on the boundary but also that
A = T ,S ,TS or ST .
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Hence, we see that F is a closed region in H satisfying:
(i) Each z ∈ H is Γ-equivalent to a point in F .
(ii) No two interior (distinct) points are Γ-equivalent.

Such a set is called a fundamental domain. Since the matrices S
and T generate SL2(Z), we have thus constructed a fundamental
domain for SL2(Z) in H.
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The finding of a fundamental domain goes under the name of
reduction theory for SL(2,Z). What we have done amounts to
finding a complement to SL(2,Z) in SL(2,R).
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Group structure from fundamental domain

Fundamental domains can be very useful in many ways; for
example, they give even a presentation for the group.

Indeed, the above fundamental domain gives the presentation
< x , y |x2, y3 > for the group PSL(2,Z) = SL(2,Z)/{±I}; that is,
PSL(2,Z) is a free product of cyclic groups of orders 2 and 3.
The modular group SL(2,Z) itself is thus an amalgamated free
product of cyclic groups of orders 4 and 6 amalgamated along a
subgroup of order 2.
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A fundamental domain is written in terms of the so-called Iwasawa
decomposition of SL(2,R). The latter is simply a statement from
linear algebra - the Gram-Schmidt process.

For any g ∈ GL(2,R), the canonical basis vectors e1, e2 for R2 are
carried to another basis {ge1, ge2}. The Gram-Schmidt process
reduces to a basis ke1, ke2 of orthonormal vectors. As the process
amounts to multiplying by an invertible upper triangular matrix
(which can be written as a product of a diagonal one and a matrix

of the form

(
1 x
0 1

)
), we have a unique decomposition of

g ∈ GL(2,R) as a product kan where k is an orthogonal matrix.
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One has SL(2,R) = KAN in the same way where K is the ‘special

orthogonal group’ of rotation matrices

(
cos θ sin θ
− sin θ cos θ

)
,

A = {diag(a, a−1) : a ∈ R∗}, N = {
(

1 x
0 1

)
: x ∈ R}.

The reduction theory for SL(2,Z) says
SL(2,R) = KA 2√

3

N 1
2
SL(2,Z).

Here At = {diag(a1, a2) ∈ SL(2,R) : ai > 0 and a1
a2
≤ t} and

Nu = {
(

1 x
0 1

)
∈ N : |x | ≤ u}.
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Modular group and quadratic forms

Consider a positive definite, binary quadratic form
f (x , y) = ax2 + bxy + cy2 with a, b, c ∈ Z; it takes only positive
values except when x = y = 0.

Two forms f and g are said to be equivalent if

∃ A =

(
p q
r s

)
∈ SL(2,Z) such that f (x , y) = g(px + qy , rx + sy).

Obviously, equivalent forms represent the same values. Indeed, this
is the reason for the definition of equivalence.
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One defines the discriminant of f to be disc(f ) = b2 − 4ac.
Note that if f is positive-definite, the discriminant D must be < 0
because 4a(ax2 + bxy + cy2) = (2ax + by)2 − Dy2 represents
positive as well as negative numbers if D > 0.

Further, f is said to be primitive if (a, b, c) = 1.
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A primitive, positive definite, binary quadratic form
f (x , y) = ax2 + bxy + cy2 is said to be reduced if |b| ≤ a ≤ c and
b ≥ 0 if either a = c or |b| = a.
These clearly imply

0 < a ≤
√
|D|
3
.

For example, the only reduced form of discriminant D = −4 is
x2 + y2.
The only two reduced forms of discriminant D = −20 are x2 + 5y2

and 2x2 + 2xy + 3y2.
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GL(2,R) acts on the space S of +ve-definite, binary quadratic
forms as follows:
Each P ∈ S can be represented by a +ve-definite, symmetric
matrix; the corresponding form is p11x2 + 2p12xy + p22y2.

The action of g ∈ GL(2,R) takes P to tgPg ∈ S .
This action is transitive and the isotropy at I ∈ S is O(2). In other
words, S can be identified with GL(2,R)/O(2) i.e.
S = {tgg : g ∈ GL(2,R)}.

In general, this works for +ve-definite quadratic forms in n
variables.
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The reduction theory for SL(2,Z) shows that each +ve definite,
binary quadratic form is equivalent to a unique reduced form.

Indeed, writing f = tgg and g = kanγ, tgg = tγtna2nγ with
u ∈ U1/2 and a2 ∈ A4/3.
So tua2u is a reduced form equivalent to f .

u =

(
1 n
0 1

)
with |n| ≤ 1/2 and a = diag(a1, a2) with

a1/a1 ≤ 2/
√

3, we have:

tua2u =

(
a2
1 a2

1n
a2
1n a2

1n + a2
2

)
.

So, the corresponding form is a2
1x2 + 2a2

1nxy + (a2
1n + a2

2)y2.
This is reduced because, if 0 < n ≤ 1/2 (the only non-obvious
case)

2a2
1n ≤ a2

1 ≤ a2
1n + a2

2

the last inequality following as a2
1/a2

2 ≤ 1/(1− n2) ≤ 4/3.
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To see an application, let us prove a beautiful discovery of Fermat,
viz., that any prime number p ≡ 1 mod 4 is expressible as a sum of
two squares.

Since (p − 1)! ≡ −1 mod p and since (p − 1)/2 is even, it follows
that (p−1

2 !)2 ≡ −1 mod p i.e.,

((
p − 1

2
)!)2 + 1 = pq

for some natural number q.

The form px2 + 2(p−1
2 )!xy + qy2 is +ve definite and has

discriminant −4 and must be equivalent to the reduced form
x2 + y2.
As the former form has p as the value at (1, 0), the latter also
takes the value p for some integers x , y .
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In fact, reduction theory can also be used to show :
For any D < 0, there are only finitely many classes of primitive,
positive-definite forms of discriminant D.
The number of classes alluded to is the class number h(D) of the
field Q(

√
D); an isomorphism is obtained by sending f (x , y) to the

ideal aZ + −b+
√

D
2 Z.
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Modular forms generate arithmetic functions

When we study some number-theoretic sequence (the same thing
as an arithmetic function), it is often useful to look at the
generating function which encodes the sequence. From the
analytic or algebraic properties of the generating function, one can
often draw number-theoretic conclusions.

The functions σr (n) :=
∑

d |n d r and rk(n) = number of ways of
writing n as a sum of k squares, have nice generating functions
which are studied very conveniently with the help of our Γ.
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The theta function is defined as
θ(z) =

∑
n∈Z e iπn2z for <(z) > 0.

So, θ(z)k =
∑

n rk(n)e iπnz .

The theta function has nice transformation properties with respect

to the changes z 7→ az+b
cz+d for

(
a b
c d

)
∈ Γ.

This leads to beautiful expressions such as:

r4(n) = 8
∑
{d : d |n, 4 6 |d}

r8(n) = 16
∑
d |n

(−1)n+dd3

We shall return to this later.
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Sum of divisors via Eisenstein

Let Gk(z) =
∑′

c,d(cz + d)−2k where the sum is over integer pairs
(c , d) 6= (0, 0) and k ≥ 2 is an integer.
It is easy to show that the series

∑′
c,d(cz + d)−α converges when

α > 2.

We prove now that

Gk(z) = 2ζ(2k) +
2(−2π)k

(2k − 1)!

∑
d≥1

σ2k−1(d)e2idπz

where ζ(l) =
∑

n≥1
1
nl for l > 1.
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We have π cotπz = limm→∞
∑m

n=−m
1

z+n .

One may deduce that

d r−1

dz r−1
(π cotπz) = (−1)r−1(r − 1)!

∑
n∈Z

1

(z + n)r
.

π cotπz = −iπ
1 + e2iπz

1− e2iπz
= −iπ(1 + 2

∑
d≥1

e2idπz)

can be differentiated term by term to give

d r−1

dz r−1
(π cotπz = (−2iπ)r

∑
d≥1

d r−1e2idπz .
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Comparing the two expressions we have:∑
n∈Z

1

(z + n)r
=

(−2iπ)r

(r − 1)!

∑
d≥1

d r−1e2idπz .

We break up the double series
∑′

c,d(cz + d)−2k for Gk into the
three sums corresponding to c = 0, c > 0, c < 0.

The first sum gives 2ζ(2k) and the other two are equal as seen by
putting −c ,−d in place of c , d .

Gk(z) =
′∑

c,d

(cz + d)−2k = 2ζ(2k) + 2
∑
c≥1

∑
d∈Z

(cz + d)−2k .
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Using the expression (proved earlier)∑
n∈Z

1

(z + n)r
=

(−2iπ)r

(r − 1)!

∑
d≥1

d r−1e2idπz

Gk(z) = 2ζ(2k) +
2(−1)k(2π)2k

(2k − 1)!

∑
c≥1

∑
n≥1

n2k−1e2iπncz

= 2ζ(2k) +
2(−1)k(2π)2k

(2k − 1)!

∑
n

σ2k−1(n)e2inπz
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One can also expand z cot z as a series 1 +
∑

n≥1
B2n(2z)2n

(2n)! where
Bk are the so-called Bernoulli numbers. One has

ζ(2n) =
B2n(2π)2n

2(2n)!

We have the ‘normalized Eisenstein series’

Ek(z) :=
1

ζ(2k)
Gk(z) = 1 +

(−1)k4k

B2k

∑
n≥1

σ2k−1(n)e2inπz .

This normalized series has the property that it has the value 1 at
‘infinity’.

The Eisenstein series above are examples of modular forms. A
word about why it is natural to study modular forms.
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The fractional linear transformation z 7→ az+b
cz+d is invertible which

means that its Jacobian (the amount by which the transformation
distorts volumes) is non-zero everywhere.
A simple calculation shows that the Jacobian is (cz + d)−2.

A function f for which f ((az + b)/(cz + d)) = (cz + d)t f (z) (in
particular, a modular form) has the property that the functions
z 7→ f (z) and z 7→ f ((az + b)/(cz + d)) have the same zeroes and
poles.

This condition is not as strong a condition as asking that f be
invariant; that is, asking that f ((az + b)/(cz + d)) = f (z) and,
hence it is more likely that one has several modular forms even if
there were no invariant functions.
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Fortunately, the modular forms of a given weight and the subspace
of cusp forms (those which ‘vanish at cusps’) are form a
finite-dimensional vector spaces. In fact, in some weights, there are
no non-zero cusp forms.

This gives relationships involving different Eisenstein series.
For instance, the equalities E 2

2 = E4, E2E3 = E5 follow from the
fact that there are no cusp forms of weights 4, 10.
They imply:

σ7(n) = σ3(n) + 120
n−1∑
m=1

σ3(m)σ3(n −m)

11σ9(n) = 21σ5(n)− 10σ3(n) + 5040
n−1∑
m=1

σ3(m)σ5(n −m)
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Sums of squares via generalized Eisenstein

The Eisenstein series above are not quite enough to study the ‘sum
of squares’ function as this requires a generalized form which are
modular forms not for the whole of Γ but for a slightly smaller
group.

For a natural number q, look at the group Γ(q) of those elements
of Γ which look like the identity matrix when their entries are
considered modulo q. This is known as the principal congruence
subgroup of level q.

Define the general Eisenstein series
Gk(z : c , d , q) :=

∑
(mz + n)−2k where the sum is over

(m, n) 6= (0, 0) such that (m, n) ≡ (c , d) mod q.
Define the restricted Eisenstein series
G ∗k (z : c , d , q) :=

∑
(mz + n)−2k where the sum is over

GCD(m, n) = 1 such that (m, n) ≡ (c , d) mod q.
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These series are related as follows.

Gk(z : c , d , q) =
∑

(a,q)=1

∑
(m,n)≡(c,d);GCD(m,n)=a

(mz + n)−2k

=
∑

(a,q)=1

1

a2k
G ∗k (z : a−1c , a−1d , q)

=
∑

(a,q)=1,a≤q

(
∑

na≡1(q)

1

n2k
)G ∗k (z : ac, ad , q).

Using Mobius inversion, we get

G ∗k (z : c , d , q) =
∑

(a,q)=1

µ(a)

a2k
Gk(z : a−1c , a−1d , q)

=
∑

(a,q)=1,a≤q

(
∑

na≡1(q)

µ(n)

n2k
)G ∗k (z : ac, ad , q).
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Similar to the way we obtained the Fourier expansion of Eisenstein
series, we get

Gk(z : c , d , q) =
∑

n≡c(q)

1

n2k
+

(−2π)k

q2k(2k − 1)!

∑
r

σ2k−1(r , c , d)e2irπz/q

where the first term is not there if q does not divide c and
σl(r , c , d) =

∑
u|r ,r/u≡c(q) ul cos(2iπud/q).
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Now, we just say a final word about the sums of squares function.
The function r4k(n) is obtained from θ(z)4k which is a modular
form for Γ(2) of weight k .

Determining the values of G ∗k (z ; 0, 1, 2) and G ∗k (z ; 1, 0, 2) at the
cusps of Γ(2), one obtains the fact that

θ(z)4k − G ∗k (z ; 0, 1, 2)− (−1)kG ∗k (z ; 1, 0, 2)

vanishes at all the cusps.

For k = 2, one knows that there are no such non-zero functions
which means that we have an equality

θ(z)8 = G ∗2 (z ; 0, 1, 2)− G ∗2 (z ; 1, 0, 2)

From this, one obtains r8(n) = 16
∑

d |n(−1)n+dd3.
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For general k, the above argument gives r4k(n)

=
4k

(22k − 1)B2k
(

∑
d |n,n/d=1(2)

d2k−1+(−1)k
∑

d |n,n/d=0(2)

(−1)dd2k−1)+an

where an = O(nk) is the n-th Fourier coefficient of a cusp form
and B2k is the Bernoulli number.
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The modular function

G2(τ) = 60
′∑

m,n

1

(m + nτ)4

(
=

(2π)4

12

(
1 +

∞∑
n=1

σ3(n)e2πinτ

))

G3(τ) = 140
′∑

m,n

1

(m + nτ)6

(
=

(2π)6

12

(
1 +

∞∑
n=1

σ5(n)e2πinτ

))
.

p′(z)2 = 4p(z)3 − G2(τ)p(z)− G3(τ) where the Weierstrass
p-function on Z + Zτ is the doubly periodic meromorphic function
given by p(z) = 1

z2 +
∑
w

( 1
(z−w)2

− 1
w2 ).
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It can be shown that ∆(τ)
d
= G2(τ)3 − 27G3(τ)2 6= 0 for any τ on

the upper half-plane.

The elliptic modular function j : H→ C is defined by

j(τ) = 123 · G2(τ)3

∆(τ)
.

The adjective ‘modular’ accompanies the j-function because of the
invariance property:

j(τ) = j(τ ′)⇔ τ ′ ∈ SL(2,Z)(τ)
d
=

{
aτ + b

cτ + d
:

(
a b
c d

)
∈ SL(2,Z)

}
.
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Theorem
(i) j is holomorphic on H.
(ii) j has the invariance property above.
(iii) j : H→ C is onto.

The proof of (iii) needs the fundamental domain of SL(2,Z) we
referred to earlier.

That fact that p satisfies the equation

p′(z)2 = 4p(z)3 − G2(τ)p(z)− G3(τ)

implies, by the theorem, that the j-function, gives an isomorphism
from the coset spaceSL(2,Z)\H to the set all ‘complex elliptic
curves’ C/Z + Zτ .
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In fact, one has bijective correspondences between :
(i) lattices L = Z + Zτ ⊂ C upto scalar multiplication,

(ii) complex elliptic curves C/L upto isomorphism,

(iii) the numbers j(τ), and

(iv) Riemann surfaces of genus 1 upto complex analytic
isomorphism.
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As a matter of fact, SL(2,Z)\H is the so-called (coarse) moduli
space of elliptic curves over C.

In general, various subgroups of SL(2,Z) describe other moduli
problems for elliptic curves. This description has been vastly
exploited in modern number theory.

For instance, complex spaces like Γ0(N)\H have algebraic models
over Q called Shimura varieties.
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The Taniyama-Shimura-Weil conjecture (which implies Fermat’s
Last Theorem) says that any elliptic curve over Q admits a
surjective, algebraic map defined over Q from a projectivised model
of Γ0(N)\H onto it.

The point of this is that functions on Γ0(N)\H or even on
SL(2,Z)\H with nice analytic properties are essentially modular
forms and conjectures like Taniyama-Shimura-Weil say essentially
that ‘nice geometric objects over Q come from modular forms’.
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As j : H→ C is SL(2,Z) - invariant, one has j(τ + 1) = j(τ). So
j(τ) is a holomorphic function in the variable q = e2πiτ , in the
region 0 < |q| < 1.

Thus, j(τ) =
∞∑

n=−∞
cnqn is a Laurent expansion i.e., all but finitely

many cn(n < 0) vanish.

In fact, j(τ) = 1
q + 744 +

∑
n≥1

cnqn with cn ∈ Z ∀ n.

c1 = 196884, c2 = 21493760, c3 = 864299970 etc.
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Complex multiplication

We defined the j-function on H. One can think of j as a function
on lattices Z + Zτ .

In particular, if O is an order in an imaginary quadratic field
Q(
√
−n), it can be viewed as a lattice in C. In fact, any proper,

fractional O-ideal I can be 2-generated i.e, is a free Z-module of
rank 2 i.e., is a lattice in C. Then, it makes sense to talk about
j(I ).

j(I ) is an algebraic number of degree ≤ class number of O.
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The First main theorem of Complex multiplication :
Let O be an order in an imaginary quadratic field K . Let I ⊂ O be
a factional O-ideal. Then, j(I ) is an algebraic integer and K (j(I ))
is the Hilbert (ring) class field of O.

For τ imaginary quadratic, it follows that j(τ) is an algebraic
integer of degree = class number of Q(τ) i.e, ∃ integers
a0, . . . , ah−1 such that j(τ)h + ah−1j(τ)h−1 + . . .+ a0 = 0.
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The largest D such that Q(
√
−D) has class number 1 is 163

(there are only finitely many such D).

The so-called ring of integers is Z + Z(−1+i
√

163
2 ); so

j(−1+i
√

163
2 ) ∈ Z.
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But j(τ) = 1
q + 744 +

∑
n≥1

cnqn with cn ∈ Z and

q = e2πi(−1+i
√

163
2

) = −e−π
√

163.

Thus
−eπ

√
163 + 744− 196884 e−π

√
163 + 21493760 e−2π

√
163 + . . . =

j(τ) ∈ Z.

In other words,

eπ
√

163 − integer = 196884 e−π
√

163 + 21493760 e−2π
√

163 . . . ≈ 0!

A popular myth (with no basis whatsoever!) credits Ramanujan
with the above assertion. Talking of Ramanujan, we may say:
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Ramanujan did mathematics somehow;
we still can’t figure out even now.
He left his mark on “p of n”,
and wrote pi in series quite often.
The theta functions he called ’mock’
are subject-matter of many a talk.
He died very young - yes, he too!
He was only thirty-two!
His name prefixes the function tau.
Truly, that was his last bow!
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