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Abstract: We study the formulas for binomial sums of harmonic numbers of higher
n n i
order Y, H]Er)(’;)(l —q)kgnk = H,(f) -y Dr(n,j)z—?. Recently, Mneimneh proved that
k=0 j=1

D1(n,j) = 1. In this paper, we find several different expressions of D, (n, j) for r > 1.
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1. Introduction
For a positive integer 7, define the n-th harmonic number of order r by

1

7 -

H,Sr) =

o

Il
—

Whenr =1, H, = Hr(,l) is the original harmonic number. In this paper, we study the formula
i n _ - Nl
- H (k) (1-afq*=H -y D(n )L (1)
k=0 j=1 J
In [1], for a positive integer n and 0 < g < 1, it is shown that D;(n, j) = 1. Namely,
n n no
L ()0 = - 1T @
k=0 =17

This relation is derived by the author from an interesting probabilistic analysis. The identity
(2) is a generalization of

Y H (”) o (H y )
k == n AT 7
k=0 k =172

which has been proved in [2] in the field of symbolic computation and in [3] in finite
differences. The identity (2) is a special case of a general result of Boyadzhiev [4]:

+bn>. 3)

n 2
Y (”) a0 *Hy = (a +b)"H, — <b(a +b)" 7+ %(a +b)"

k=1 k

In addition, Boyadzhiev’s main result (3) has been generalized in [5] to multiple harmonic-
like numbers.
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The main aim of this paper is to show several different expressions of Dy (n,j) as no
simple form has been found.

In fact, more different generalizations of (1) or (2) can be considered. For example,
recently, in [6], the so-called hyperharmonic number generalizes the harmonic number of
the order r in the formula. In [7], more generalized sums and their application to multiple
polylogarithms are given. In [8], some expressions of Mneimneh-type binomial sums are
established, involving multiple harmonic-type sums in terms of finite sums of Stirling
numbers, Bell numbers, and some related variables, and a conjecture is proposed. Then,
in [9], this conjecture is resolved and generalized, and the transformation of generalized
Mneimneh-like sums is presented. When we generalize too much, a lot of interesting
and essential properties may be lost. Therefore, we do not consider further generalized
harmonic numbers in this paper.

2. Observation

By using the harmonic numbers to express D, (1, j), for 1 < r < 7, we can manually
obtain the following. Some initial trials for r = 1,2, 3 are given below.

:Dl (n/j) =1 ’
92(7/1/]') — H?’l - an]'/
(2) 2
D3(n,j) = (Hn — Hy_j)?  Hi" —H,
3\, ] 5 5 ’
S 0 L et B M
A\t 6 2 3
» B (Hn o Hn—j)4 (Hn _ an])z(Hy(F) o Hr(IZ)])
5(1,) = 41 4
(Hy = H, ) (HY — =Yy (HP - HP 2?2 =Y - Y,
+ 3 + 8 4 !
 (Hy—H, ) (Hu—H,_Y(HP - HD)
Dg(n,j) = 5 + B
L (= H P -HY) (- He )Y B2
6 8
| (Ha— o) (H — HLY, N (B = B ) (HY - HY)
4 6
HY - HY,
+ 5 ,
Doty = Hicy)® | (o= B (Y — B2
7(n.) = 6! 18
(H, — Hy_)(Hy = H) , (o o) (HyY — HY )2
* 18 16
| (o= Ho P B (Ha— Hy )8 B2 ) 1Y)
8 6
(Hu — Hy ) (H = HY ) (HP B
+ 5 + 48
2 2 4 4 3 3 6 6
) (B — =2 ) (Y~ HY) . (Hy — H )2 . HY —H,
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It is interesting to observe that the number of terms of each of the right-hand sides of
D, (n,j) is equal to the number of partitions of r (1 < r < 7), respectively. In addition, the
same terms of generalized harmonic numbers appear in [10,11]

[e0]
I —
nzl n+1 +2)

= (Ha —Hy
L 2+ D)1 +2)
i (Hy)? — 3H,H? + 21
= 3 (n+1)(n+2)

(Ho)* — 6(H,)*Hy” + 8H,HY +3(H)? — 6HY
A +1)(n+2)

=1,

n

=1,

ngk:

=1,

3
Il
-

1
51(n+1)(n + 2)

agk

<(Hn)5 —10(H,)*HP +20(H,)*HY

n=1
+15H, (H\?))? — 30H, Hy? — 20H,; )H,§3)+24H,§5>)—1,

o)

LV - iy 31503)
nzzl 6!(n+1)(n+2) <(Hn> 15(H,)*H{?) + 40(H,)*H{

+45(H,)2(HP)? — 90(H, )2HY — 1201, HP HY) + 1448, HY

—15(HY)? + 90H Y HY + 40(H) )2 — 120H,§5)> —1.

Some Initial Trials

For observation, we calculate the expressions of D, (#, j) for small r, one by one, using
the method in [12]. Here, we mention the cases forr = 1,2, 3.

When r = 1, we find the following relation. Thus, by Theorem 1 in the next section,
we can obtain D1 (n,j) = 1.

jé(—nf—l‘l(”nl_j 1) (7) =1 ¥

When r = 2, we find the following relation. Here, (n); = n(n —1)---(n—j+1)
(j > 1) is the falling factorial with (1) = 1, and [} ] denotes the (unsigned) Stirling number
of the first kind, arising from the relation (x), = Z}_o(—1)"F[7]xk.

Lemma 1.

Lemma 2.
- —1(n—=1=1\(n\ 1
e =
(s [ PR
1 I j
= — 1]1/1 1 v
Or M (R I T
Note that

(n;l_;l)c;)nl_z 7 ln)j{liﬂ"l'

Hence, we have the following formula.
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Corollary 1.
L@ (n konk_ @ v ¢/
ZHk k (1—(1)(1 = Hy _E(Hn_Hn—j)*-
k=0 j=1 J
- . ,
T R O B = v\ 9
=H, Z<(n)j2( 1) w+D| | ©6)

Proof of Lemma 1. Put

=0 n—j
B ) = 1 1)]'-1(”") ()
’ 1=0 n—j)\I
Since
. n+1 . (n+1)n )
B 1j)=—75Bnj) = , ~B(n—1,
(n+1)) = =378 = =iy B~ )
m+1)n---(j+1),,. .
== . B(j,
(n—j+1)! 2}
L) b
_(n—j+1)!j!l§0( 1 I
- (”ﬂ)a—l)f:o,
J
we have
A(n,j+1) — A(n,j) = B(n,j) =0.
Hence, we obtain
) ) ofn—1
Alnj)=A(nj-1) == A1) = (-1° (1) (F) =1.
O
Proof of Lemma 2. The Formula (5) is yielded from the definition of the Stirling numbers
of the first kind:
j .
_ i—k | ]|k
(0= LU
-1

(_1)j7V*1 |:V _]‘— 1:| xl/+1 (lf] 2 1) .
0

V=

Differentiatingboth sides with respect to x gives

j—1 j-1 ' .
(x); Y, ! —2(—1)J‘V‘1(v+1)[1/] ]x’“.




Mathematics 2025, 13, 321 50f12

Put the left-hand side of (5) as

Clm ) = (-1 500

Then,

Now,

_ (1_ 1>j2F1(—f+1/”—j+1;n—j+2;x)
X (x=1)(n—j+1)
T(Hf(n—j+2) _ (—D!(n—))

(m—j+1)T(n+1) n! !
where »F; (4, b; c; z) is the Gauss hypergeometric function. Hence,

) . 1
C(l’l,]) - C(Tl,] - 1) == m .

Therefore, .

n—j+1
1 n 1
n—j+2 n—j+1

Cn,j) =C(n,j—1)+

=C(n,j—2)+

1 1 1
C(n')+n— + +11—]'—1—2+n—j+1

1

~.
|

1
n—1° @

0

O

When r = 3, we have the following.
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Lemma 3.
Ji(—l)j_l_l n—I1—-1\ (n 1
= n—j 1) (n—1)2
(2) (2)
_ (Hp — Hn—j)z i Hy” — Hn—j
2 2
Therefore, we have the following formula.
Corollary 2.
n n B
i (k) (1—a)fq"*
k=0
(2) (2)
—yg® _ i (Hyp — Hyj)? n He' = Hy 7
e 2 2 i
j=1
Proof of Lemma 3. Put
_! i n—1—-1\ /n 1
D =Y (—1)~1
()= L (=) 50O e
Then,
DOn )~ D1y = () Sy (171 ®)
] - & I ) m—12
Weshall prove that
D(n,j) = D(n,j—1) = m(Hn—Hn—j)- )

By (9), we obtain

D(njy = (o g N He o Hhoin
S T R S | n—j+2 n—j+2
4t Hn _Hn72 + Hn_Hn—l

n—1 n-—1 n n

—H LIRS SRS SR
M\ n—j+1  n—j+2 n—1 n

Hn—j Hn—j+1 Hy—p  Hy
_<n—j+1+n—j+2+”'+n—1+ n )
(2)
HZ_H(Z) H2_.—H7‘
:HH(H}’[_HI’!])_< = 2 ? - n]z )
(2) (2)
_ (Hn*anj)z_i_H” _anj.

2 2

In order to prove (9), we put

E(n,j) = (n—j+1)(D(n,j) = D(n,j—1)).
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Then, by (8) and Lemma 1 (4), we have

E(n,j) - (anl)

_ - 111 n—l—1><n> 1 < n )
n*]Jr IZ(:) < n—j l +nfj+1 j—1

_ ]Zl ]1—1 n—I1—1\(n _ 1
n—]—l—lz n—j l n—j+1°

Hence, by D(n,1) = 1/n?, we obtain

. . _ E(n,j)
D(n,j) =D(n,j—1) = 41
1 1 1 1
- b —— 4 E(n1
n—j+1(n—j+1+n—j+2+ T (. )>
1

which is the right-hand side of (9). O

3. Expressions (Main Results)

Let n, j, r be positive integers.

Theorem 1.

pin - B (1) (e

Theorem 2. Forr > 1,

I 1
P = 58 e R

h=1j= Jr *1

Dy(n,j) (r > 2) can be expressed in terms of the determinant [13] ([Ch. I S2]). See
also [14,15].

Theorem 3.
Dr+1 (7’1, ])

H, — H,_; -1 0 0

HY _ anjj Hy — Hy_j -2 0

— 1 : .

= :

YV —H Y B Y m Y - —r+1
I H, —H,_

Remark 1. By using the inversion formula (see, e.g., ([Lemma 1] [16]), ([13] (p. 28)) regarding
(12) below, we also have
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n—j
Dy (n,}) 1 0 e 0
2D3(7l,j) Dz(n,j) 1 e 0
(7’ - 1)Dr(nrj) ’Drfl(n/j) Dr—Z(n/j e
rDyia(n,j)  Dr(n,j)  Dra(nj) - Daln,j)

Dy (n,j) (r > 2) can be expressed by a combinatorial sum ([Proposition 1 (17)] [11]):

Theorem 4.

Dy 11(n,§)

. i i
b ey (o (e’
B i1+2ip+3i3+---=r 11'12'13' T 1 2 3

Remember that the (complete exponential) Bell polynomial Y, (x1,x2, ..., xy) is de-
fined by

o tm o tn
exp( Z xmm!> =1+ Z Yn(xl,xz,...,xn)m
m=1 n=1
(see, e.g., ([Ch.3.3] [17])). That is,
Y (x1,%0,..., %)
() (@) ()
B =k T TR MERTR T 2! (n—k+1)!
with Yo = 1. Here, the second sum satisfies the following conditions:
i1+2ip4+3i3+--+(m—k+1)iy py1=n i1+ir+iz+---=k.
Theorem 5. Forr > 1, we have

1
Dyaa(n,f) = =Yy (Hu = Hyj, u(HP - ), 200D - HY), ).

4. Proof
Proof of Theorem 1. We shall show that

u NRL n—
) H )(k> (1—q)fq"*
k=0

- -E () (g (3 et &

We have
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g (oo )
_ léqnl (';) kil(_l)kz (: :lzc) 0
L (g ()

I=0

1

Proof of Theorem 2. By Theorem 1,

Dr(n,j) = Dr(n,j—1)
i—1

j—1

“=r s (05 ) 0

_ Dr—l(n/j)
n—j+1"°

Hence, by D,(n,0) = 0, we have

(5 GG

1
D)

I

Iy

r—2

1

e ()

Since
Vi%(l)v (i) - (1)l(jll) (proved by induction on /(> 0))

and Vi,{)(_l)v(l];) =(1-1) =0,
we have

éf‘”” By

_Z;(;(—w({/)) T g(g(—n

_j_:(‘”l(jf) )
By (10),

o =1} (j_:(‘”j” U )as )
1
-z (N O e
O

-1
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Dy(n,j)

n—j+1

Dinj=1) , Diln))
n—j+2 n—j+1

Dria(n,j) = Drya(n,j—1) +

= Dr+1(n/j - 2) +

j Dr(”/jl)
N Z m

1=1

1 A D, 1(n,jp)

>

-1 P n—j+1

—

j1=1
j 1 j1 1 2 Dr72(n/].3)
B R ) Dy 1 D
=1t =1 J2 ja=1 /3
B i 1 121 1 1 Dy(n, )
ottt =n—p+l ==+l

] 1 J1 1 jrfl 1
:171—]'1—0—1].2:1;1—]'24—1 j,:ln_jr_"l'

O

In order to prove Theorem 4 and Theorem 3, we need the following relations.

Lemma 4. For the sequences {py }n>1 and {hy },>1, we have

b 1 0 - 0

: 1
nhy  hy_q hy
P1 -1 0 0
pp 1 2
<~ nlh, = 3 P2 0
: : —n—+1
Pn Pn-1 - P2 P1
_ _mt P\ (P22 (Pn\"
B ,.ﬁzl.;_mn ilipl- - - y! ( 1 ) ( 2 ) ( n ) '
i1, >0

Proof. The last identity is a simple modification of Trudi’s formula (([18] (Volume 3, p. 214)), [19]):
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ay ag 0
as ay
ap—1 Ap—2 -+ a1 4o
an  Ap—1 -+ 42 M
(i1 +- - +in)! N—iqm iy i1 i i
= Z »—'(7510) ! nallazz"'ann‘

[
142t nty=n 10T

Notice that the expansion of the second determinant is equivalent to the following relation:
n
nhy =Y pihy1 with hyg=1. (11)
i=1

Byapplying the inversion formula (see, e.g., ((Lemma 1] [16])), we can obtain the first
identity. O

Proof of Theorem 3. The determinant in Theorem 3 is equivalent to the recurrence relation:

\:M—\

Z r i+1) H(riiJrl))Di(n,j) . (12)

Dr+l n ] n—j
i=1

Byapplying the relation (11) in the first identity of the second part of Lemma 4 to (12), we
can obtain the desired determinant identity. The identity of this remark can be given from
the first part of Lemma 4. O

Proof of Theorem 4. The result follows from the second part of Lemma 4 by setting h, =
D,11(n,j) and p; = H,(f) — Hy(lll]., satisfying (12). O

Proof of Theorem 5. Since Bell polynomials satisfy the following recurrence relation:

" r—1
Yr(xl; X2, .- -/xr) = Z (i B 1>xr,-+1Y11(x1,x2,. ..,xi,l)
i=1

(see, e.g., [17]), by setting x, = (¢ — 1)!(H,(f) - Hfﬁj)/ we have

1 2 3 3
Yo (Hy — Hy 1(HD — HP ), 218 — B, )
r .
%Z (r—i+1) Hy(zr__jl+1))
i=1
Y; 1 (Hp — H,_j, 1(H — H,Szjj),z!(H,§3) — Hffj].),. )
X

(i—1)!

Since

Dz(?l,j) = Hn — anj
= Y1 (Hy — H,_j, W(HE — B ) 201 - HY), ),

for r > 1, we can write the form in Theorem 5. [
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