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On SU(1,D)/[U(1,D),U(1,D)] for a quaternion division algebra D
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Abstract. Let D be a quaternion division algebra with an involution of the
second kind. We show that the quotient group SU(1,D)/[U(1,D),U(1,D)] is
nontrivial in general. For global fields, we completely determine this group.
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Introduction. Let k be a field of characteristic �= 2 and let K be a quadratic
extension. Let the non-trivial Galois automorphism be denoted by σ. Let D be a
quaternion division algebra with center K such that σ extends to an involution of
D. It is known that there exist such D for global fields K, k but that an analogous
triple does not exist with k a local field. If N denotes the reduced norm map from
D to K, one has the group

SL(1, D) := {d ∈ D : N(d) = 1}
which is the group of K-rational points of a simple, anisotropic, algebraic group
of type 1A1 defined over K. In the case of global fields, it is a well-known classical
theorem of Wang that

SL(1, D) = [D∗, D∗]
where D∗ = D\{0}. Given σ as above, the unitary group U(1, D) is defined as

U(1, D) := {d ∈ D : ddσ = 1}.

On intersecting U(1, D) with the group SL(1, D), one gets the group SU(1, D).
This is the group of k-rational points of an anisotropic algebraic group of type 2A1
defined over k. It is obvious that [U(1, D), U(1, D)] ≤ SU(1, D) and the first basic
question here is the analogue of Wang’s theorem (see [3, p. 536]) :

Question. Is SU(1, D) = [U(1, D), U(1, D)]?
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Here, we first show that the answer to this question is in the negative for general
quaternion division algebras and determine how far it is from being true. We shall
prove some results for general k and later specialize to global fields to get more
complete results applying a theorem of Margulis [2]. In contrast with the case of
global fields, it was proved in [7] that, if K is a function field in one variable over
a number field, and if D is an algebra with center K and with an involution of
the second kind, the group SU(1, D)/[U(1, D), U(1, D)] can be infinite in general;
we gave an infinite class of such examples. We believe that the results of this note
would be known to experts but it has not been set down in print.

1. Case of a general field. In this section, we let K be an arbitrary field of charac-
teristic not equal to 2. We assume that there exists a division algebra D of degree 2
over K with an involution σ of the second kind on D. This means that σ does not
fix K element-wise; let k be the field fixed under (the restriction to K of) σ. Then
SU(1, D) corresponds to the k-rational points of a group of type 2A1 over k.

Lemma 1.1. There is a quaternion division algebra A over k such that D = A⊗kK
and σ is induced by the canonical involution on A, and the non-trivial Galois
automorphism σ on K.

Proof. See [5, Theorem 11.2 (ii)]. �

Remark 1.2. Note that the canonical involution of D is induced by the canonical
involution of A and the trivial automorphism of K.

We will denote by N0, the reduced norm of A and by x̄, the canonical involution
of A i.e. N0(x) = xx̄ for all x ∈ A.

Proposition 1.3.

SU(1, D)
[U(1, D), U(1, D)]

∼= SL(1, A)
[G, G]

where G := {x ∈ A∗ : N0(x) ∈ NK/kK∗}, with NK/k, the norm map for the field
extension K/k.

Proof. Now, we may write K = k + αk with ασ = −α. Let us write α2 = −t ∈ k
(so, t = NK/kα). Therefore, any element of D can be written in the form z =
(x ⊗ 1) + (y ⊗ α) with x, y ∈ A. If z ∈ U(1, D), then

1 = zzσ = (x ⊗ 1 + y ⊗ α)(x̄ ⊗ 1 − ȳ ⊗ α) = (xx̄ + tyȳ) ⊗ 1 + (yx̄ − xȳ) ⊗ α

Since {1 ⊗ 1, 1 ⊗ α} is a basis of D over A and since 1 ⊗ 1 = 1D, we have

xx̄ + tyȳ = 1
yx̄ − xȳ = 0
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But, then yx̄, being an element of A fixed by its canonical involution, has to be in
its center k. So, we may write y = ax with a ∈ k if x �= 0 and, similarly, we may
write x = by with b ∈ k if y �= 0. Thus,

z = x ⊗ 1 + y ⊗ α = x ⊗ (1 + aα) if x �= 0;

z = y ⊗ (b + α)) if y �= 0.

In either case, z = u ⊗ s with u ∈ A, s ∈ K. Now, the condition z ∈ U(1, D) gives
1 = zzσ; that is, 1 ⊗ 1 = uū ⊗ ssσ = N0(u)NK/k(s)(1 ⊗ 1). Therefore,

U(1, D) = {x ⊗ s : x ∈ A∗, s ∈ K∗, N0(x) = NK/k(s)−1} . . . (♠)

Now, SU(1, D) = U(1, D) ∩ SL(1, D) = {g ∈ U(1, D) : ggθ = 1}, where θ denotes
the canonical involution of D. Since (x ⊗ s)θ = x̄ ⊗ s, we have

x ⊗ s ∈ U(1, D) ⇔ N0(x)NK/k(s) = 1

and

x ⊗ s ∈ SL(1, D) ⇔ 1 = N0(x)s2.

Therefore,

x ⊗ s ∈ SU(1, D) ⇔ s ∈ k , xs ∈ SL(1, A).

This gives SU(1, D) = {x ⊗ 1 : x ∈ SL(1, A)}.

Consider the subgroup G := {x ∈ A∗ : N0(x) ∈ NK/kK∗} of A∗.

Using the description of U(1, D) in equation (♠), we have the homomorphism

π : SU(1, D) → SL(1, A)
[G, G]

; x ⊗ 1 
→ x[G, G]

which is surjective. If x ⊗ 1 is in Ker π, then we have

x = [x1, y1] · · · [xn, yn]

for some xi, yi ∈ G. Writing N0(xi) = NK/k(si), N0(yi) = NK/k(ti), we have
ui := xi ⊗ s−1

i , vi := yi ⊗ t−1
i ∈ U(1, D) and

x ⊗ 1 = [u1, v1] · · · [un, vn] ⊗ 1

in U(1, D). Thus x ∈ [U(1, D), U(1, D)]; so Ker π ≤ U(1, D), U(1, D)].

Conversely, for any x ⊗ s, y ⊗ t ∈ U(1, D), the element

[x ⊗ s, y ⊗ t] = [x, y] ⊗ 1

of SU(1, D) maps under π to [x, y][G, G] = [G, G] since x, y ∈ G. This proves the
proposition. �
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2. Case of a global field. Let k, K as above be global fields and let the other nota-
tions D, A, σ, N0 etc. be as before. In this section, we use a theorem of Margulis to
compute the group SU(1, D)/[U(1, D), U(1, D)]. Let us write kv for the completion
of k with respect to a place v of k; let T denote the (finite) set of non-archimedean
places of k where A is ramified i.e. such that A⊗k kv is a division algebra over kv.

For v ∈ T , let Av denote the division algebra A ⊗k kv, and let Pv denote the
unique maximal two-sided ideal of the valuation ring of Av.

Let π : A → ∏
v∈T Av be the diagonal embedding. The groups SL(1, Av) are

profinite, and the group SL(1, A) gets a topology (the T -adic topology) via the
map π. We use the convention that when T is empty (this can happen when k is
a number field) the T -adic topology is indiscrete (that is, the only two open sets
are ∅ and the whole of SL(1, A)). We recall an old theorem of Margulis :

Theorem 2.0 (Margulis [2]). Any noncentral normal subgroup N of SL(1, A) is
T -adically open; that is, N = π−1(W ) where W is the closure of π(N) in∏

v∈T SL(1, Av).

In our situation, we apply Margulis’s theorem to derive :

Lemma 2.1. Let K, D, σ, k, A, N0, T be as above. Let G = {x ∈ A∗ : N0(x) ∈
NK/kK∗}. For each v ∈ T , let Gv denote the closure of G in A∗

v. Then,

SU(1, D)
[U(1, D), U(1, D)]

∼=
∏
v∈T

SL(1, Av)
[Gv, Gv]

.

Proof. Now, each Gv is closed as well as open in A∗
v and therefore,

∏
v∈T [Gv, Gv]

is open in
∏

v∈T SL(1, Av) since [A∗
v, A∗

v] = SL(1, Av) (see [3, p. 31]). On the
other hand, By the weak approximation theorem, the image under the diagonal
embedding π of SL(1, A) in

∏
v∈T SL(1, Av) is dense. This implies that

π(SL(1, A))
∏
v∈T

[Gv, Gv] =
∏
v∈T

SL(1, Av).

By Margulis’s Theorem 2.0 applied to [G, G] ⊆ SL(1, A), we get

[G, G] = π−1

(∏
v∈T

[Gv, Gv]

)
.

That is,
π([G, G]) = π(SL(1, A)) ∩

∏
v∈T

[Gv, Gv].

Thus,
π(SL(1, A))
π([G, G])

∼= π(SL(1, A))
π(SL(1, A)) ∩∏v∈T [Gv, Gv]

∼=
∏
v∈T

SL(1, Av)
[Gv, Gv]

.
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As SU(1,D)
[U(1,D),U(1,D)] is isomorphic to the above left hand side by proposition 1.3, the

lemma follows. �

Remarks and notations 2.2. We need to compute for each v ∈ T , the closure Gv of
G and its commutator subgroup [Gv, Gv]. Since the definition of G involves K, we
need to look at K ⊗k kv for v ∈ T ; this is either a quadratic extension field of kv

or isomorphic to kv ⊕ kv. Now, for v ∈ T , it is well known ([6, p. 194]; [1, p. 159])
any quadratic extension Ev of kv can be embedded isomorphically in Av and splits
it; in particular, the norm map NEv/kv

coincides with the reduced norm map of
Av. By local class field theory, the quadratic extensions of kv are characterized
uniquely by their images under their norm maps to kv. If v ∈ T and K ⊗k kv is a
field, we denote by Lv a subfield of Av whose norm subgroup is the same as that
of K ⊗k kv; that is,

NLv/kv
Lv = NK⊗kkv/kv

(K ⊗k kv).

We shall recall and use some results of C. Riehm ([4]) on local division algebras
which are also recalled in [3]. Let B be a quaternion division algebra over a local
field l and let Nred denote its reduced norm. The valuation v of l extends to one on
B as ṽ(x) = v(Nred(x)

2 (see [3, p. 28]). Let OB denote the valuation ring of B and
PB denote its unique maximal two-sided ideal. Let UB denote the group of units
of OB . Then UB ⊃ SL(1, B) := Ker(Nred). Also, B contains an isomorphic copy of
each quadratic extension of l. Let W denote an unramified quadratic extension of l
contained in B. One may choose a uniformizing parameter (generator) π for PB

such that p := π2 is a uniformizer for W (as well as l) and so that the conjugation
by π produces the nontrivial Galois automorphism a 
→ ā of W over l (see [4,
p. 502]). Further, any uniformizing parameter for PB is of the form uπ for some
u ∈ UB (see [3, p. 29]).

One may write each element of OB = OW +OW π, where OW is the valuation
ring of W . Let F = OW /pOW and f = Ol/pOl denote the residue fields of W
and l respectively. Then, we have (see [3, p. 32–34]) :

(a) [B, B] = SL(1, B).

(b) The map ρ0 : α0 + α1π 
→ α0 mod pOW from UB to F induces an
isomorphism from UB/(1 + PB) onto F ∗.

(c) [SL(1, B), SL(1, B)] = SL(1, B) ∩ (1 + PB).

(d) [SL(1, B), SL(1, B) ∩ (1 + PB)] = SL(1, B) ∩ (1 + PB).

(e) ρ0 gives an isomorphism of SL(1, B)/[SL(1, B), SL(1, B)] onto

F (1) := {x ∈ F ∗ : NF/f (x) = 1}.

Hence [UB , UB ] ⊆ SL(1, B) ∩ (1 + PB) = [SL(1, B), SL(1, B)] since UB/(1 + PB)
is abelian by above and since clearly [UB , UB ] ⊆ Ker(Nred) = SL(1, B).

In particular,

[UB , UB ] = [SL(1, B), SL(1, B)] · · · · · · · · · · · · · · · ♦
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For each v ∈ T , we shall be applying these results to the division algebra B = Av

over l = kv. The notations W, L, F, f etc. will be replaced by Wv, Lv, Fv, fv. We
shall also use x 
→ x̄ for the canonical involution on Av.

Lemma 2.3. For any v ∈ T , denote the closure of G in A∗
v as G. If K ⊗k kv is a

field for some v ∈ T , denote by Lv a subfield of Av with NLv/kv
Lv = NK⊗kkv/kv

(K ⊗k kv). Then

(i) Gv = A∗
v if K ⊗k kv

∼= kv ⊕ kv;

(ii) Gv = L∗
vSL(1, Av) if K ⊗k kv is a field.

Proof. Recall that G = {x ∈ A∗ : N0(x) ∈ NK/kK∗}. Thus, for v ∈ T as in case
(i), G is dense in A∗

v. Suppose v ∈ T and that we are in case (ii). Denote by Nv,
the reduced norm on Av. Then x ∈ Gv if, and only if, Nv(x) ∈ NLv/kv

L∗
v. As Lv

is a maximal subfield of Av, we have NLv/kv
= Nv on Lv. Thus x ∈ Gv if and

only if Nv(y−1x) = 1 for some y ∈ L∗
v. That is, y−1x ∈ SL(1, Av) which means

x ∈ L∗
vSL(1, Av). The proof is complete. �

Finally, we introduce some notations to be used in the next theorem. Denote by
qv the order of the residue field of kv for any nonarchimedean place v of k and, let
nv be the natural number defined as follows :

nv = qv + 1 if K ⊗k kv is an unramified field extension of kv;

nv = 2 if K⊗kkv is a ramified quadratic extension and the residue characteristic
of kv is not 2;

nv = 1 if K⊗kkv is a ramified quadratic extension and the residue characteristic
of kv is 2;

nv = 1 if K ⊗k kv is not a field.

We start with a description of Gv’s before computing their commutators :

Theorem 2.4. Let v ∈ T . Then SL(1,Av)
[Gv,Gv ] can be identified with the following group:

(i) {1} if K ⊗k kv
∼= kv ⊕ kv;

(ii) F
(1)
v if K ⊗k kv is an unramified quadratic extension;

(iii) F
(1)
v /(F (1)

v )2 if K ⊗k kv is a ramified quadratic extension.

In particular, for v ∈ T , the order of SL(1,Av)
[Gv,Gv ] equals nv.

Proof. Let P = PAv , F = Fv = OAv/P, U = UAv , and S = SL(1, Av). For u ∈ U ,
let ũ = ρ0(u) ∈ F , the image of u in the residue field of the valuation on Av.
Similarly, for any T ⊆ U , let T̃ = ρ0(T ) ⊆ F . Let f be the residue field of kv, and
let φ : F → F be the nontrivial f -automorphism of F ; so φ2 = idF . As F is a
field, every uniformizer π of Av satisfies the property

π̃uπ−1 = φ(ũ) ∀ u ∈ U.
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Fix a uniformizer π. Take arbitrary non-zero elements of Av, which we can write
as aπi, bπj with a, b ∈ U ; i, j ∈ Z. Then observe :

[aπi, bπj ] = a(πibπ−i)(πja−1π−j)b−1 ∈ U.

Hence, for the image in F , as F is commutative, one has

˜[aπi, bπj ] = ã ˜(πibπ−i) ˜(πja−1π−j)b̃−1 = (ãφj(ã)−1)(φi(b̃)b̃−1)(2.1)

This makes it clear that S̃ = ˜[A∗
v, A∗

v] = {φ(c)c−1 : c ∈ F ∗} = F (1). Now, using
(c) and (a) of Remark 2.2 we have,

(1 + P ) ∩ S = [S, S] ⊆ [Gv, Gv] ⊆ [A∗
v, A∗

v] = S.

Hence,

S/[Gv, Gv] ∼= S̃/ ˜[Gv, Gv](2.2)

Therefore, case (i) of the theorem follows from case (i) of Lemma 2.3 and (a) of
Remark 2.2. To prove case (ii), we assume that K ⊗k kv is an unramified quadratic
extension of kv; so Lv is unramified over kv. So, as S ⊆ U and every element
of L∗

v has the form aπ2i with a ∈ U , every element of Gv = L∗
vS also has this

form. Hence, equation (2.1) shows that ˜[Gv, Gv] = {1}, so formula (2.2) shows
S/[Gv, Gv] ∼= S̃ = F (1) which proves case (ii). In case (iii), Lv is ramified over kv,
so the residue field of OLv

is f , and we can assume that π ∈ Lv. So elements of
L∗

v have the form uπi with u ∈ U, ũ ranging over f , and i ranging over Z. Since
S ⊆ U and S̃ = F (1), elements of Gv = L∗

vS have the form uπi with u ∈ U where ũ
ranges over fF (1), and i ranges over Z. Hence, as φ(c) = c−1 for c ∈ F (1), formula
(2.1) shows that ˜[Gv, Gv] = (F (1))2; so (2.2) yields S/[Gv, Gv] ∼= F (1)/(F (1))2.
This completes the proof. �

Corollary 2.5. ∣∣SU(1, D)/[U(1, D), U(1, D)]
∣∣ = ∏

v∈T

nv.

In particular, if A ⊗k kv
∼= M(2, kv) for all finite places where K ⊗k kv is a field,

then
SU(1, D) = [U(1, D), U(1, D)].

Proof. By lemma 2.1, we have

SU(1, D)
[U(1, D), U(1, D)]

∼=
∏
v∈T

SL(1, Av)
[Gv, Gv]

.

By theorem 2.4, for v ∈ T , the cardinality |SL(1,Av)
[Gv,Gv ] | = nv as in the statement. �
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