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Abstract. In the study of class groups of real quadratic fields, one encoun-

ters norm form equations of the type x2 − dy2 = k. Apart from the usual

approach from algebraic number theory, we discuss also how one uses methods

from continued fractions. We demonstrate the methods through a particular

example. The continued fraction method does not seem to be well-known

apart from the basic theory used for the equations x2 − dy2 = ±1. This

article could be useful to graduate students or researchers in number theory.

Introduction

In a first course on algebraic number theory, a typical homework problem may ask

the student to determine the class group of a quadratic field. One is expected to

determine the Minkowski constant and analyse the behaviour of the small primes

not exceeding it. For instance, for Q(
√

223), the primes up to 13 need to be

considered. In this particular example, it is quite easily seen that 3 splits into

the two prime ideals P := (3, 1 +
√

223) and P ′ := (3, 1 −
√

223), and that the

ideal classes of prime ideals lying above the other primes are either trivial or,

are equivalent to one of the primes P, P ′ dividing 3. Further, it is easy to show

that P 3 is principal. The complete determination of the class group then boils

down to checking whether there are elements of norm ±3 in the ring of integers.

Typically, when a solution is not easily visible, some congruence conditions rule

out the existence of solutions. In the above example too, it is easy to see that

a2 − 223b2 = 3
has no integral solutions by looking at the equation modulo 4. However, it does

not seem equally easy to prove that

a2 − 223b2 = −3

has no integral solutions. In this note, we look at this example and discuss two

proofs. Both proofs have the potential to be applied more generally.

We discuss the first proof just for this example but, while giving the second proof,

we take the opportunity to analyze the power of continued fractions. The em-

ployment of the continued fraction expansion of
√
d (d positive non-square) to
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40 KANNAPPAN SAMPATH AND B. SURY

determine the solutions of x2 − dy2 = ±1 is well-known. We point out that this

amounts to looking for the units (equivalently, elements of norm ±1, the norm

being taken in quadratic field Q(
√
d)) in the ring Z[

√
d]. But more generally, if

we let ξ be an irrational real number satisfying a quadratic equation with coef-

ficients in Q so that Q(ξ) is a real quadratic field (the so-called real quadratic

irrationalities), then, the continued fraction of ξ can often be used to study the

existence (or the lack thereof) of elements of Z[ξ] of “small” norm (as an element of

Q(ξ)) - see Theorem 2.10. It appears to us that these results are due to Lagrange

and have been laid out carefully in Serret’s seminal work on “higher” algebra [7,

Chapitre II, Section I, §35, p.80]. In fact, at the time of writing this article, the

only other text where we could find a discussion of this nature is the book [1]

by Chrystal; here, one finds a thorough discussion of the less general Diophan-

tine equation x2 − dy2 = m for m 6= ±1. Chrystal alludes to the general case in

Exercises XXXII, (52.); however, the formulation as it stands is incomplete and

seems a little misleading. The underlying principle is that the elements of “small”

norm, if there are any, must come from convergents of the continued fraction of

ξ. The key point that is only implicit even in the references mentioned above,

is the estimation of the number of convergents that we must compute before we

can refute the existence of an element of a given “small” norm. Our exposition

aims to make this very transparent (v. Lemma 2.13) while remaining short and

self-contained.

The very general phenomenon outlined above does not seem so well-known;

at any rate, this has not been expounded in most standard texts on algebraic

number theory. After this article was written, we looked through recent texts and

discovered a new book by Trifković ([8]) on algebraic number theory which also

coincidentally discusses the very example above and we recommend this text to

the reader interested in a more detailed study of the subject.

1. Class group of Q(
√

223)

Let us start with a more detailed discussion of the computation of the class group

of the real quadratic field k := Q(
√

223).

As 223 ≡ 3 (mod 4), we have Ok = Z[
√

223] and its discriminant equals 4 × 223.

The Minkowski constant of k is
√

223. One looks at the splitting of the primes

2, 3, 5, 7, 11, 13 in Ok. The prime 2 (as well as the prime 223) ramifies as it divides

the discriminant; in fact,

2Z[
√

223] = (2, 1 +
√

223)2

since the minimal polynomial f = X2−223 becomesX2−1 = (X+1)2 mod 2. Also,

f remains irreducible (equivalently, has no root) modulo 5, 7 or 13; so, these primes

remain inert. Further, modulo 3, we have X2 − 223 = X2 − 1 = (X + 1)(X − 1)

which shows
3Z[
√

223] = (3, 1 +
√

223)(3,−1 +
√

223).
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Modulo 11, X2 − 223 = X2 − 3 = (X + 5)(X − 5) so that

11Z[
√

223] = (11, 5 +
√

223)(11,−5 +
√

223).

Now, if (2, 1 +
√

223) is principal, it would be generated by an element of norm

±2 because its square is 2Z[
√

223] which has norm 4. It is easy locate an element

of norm 2; viz., 15 +
√

223. It is then straightforward to check that

(2, 1 +
√

223) = (15 +
√

223).

Further, we can easily locate an element of norm 3× 11 = 33, viz., 16 +
√

223. It

is once again a straightforward task to check that

(3, 1 +
√

223)(11, 5 +
√

223) = (16 +
√

223).

Indeed, 16 +
√

223 = (1 +
√

223)(2(5 +
√

223)− 11)− (3)(11)(13).

Now, let us find the order of P = (3, 1 +
√

223).

As P has norm 3, we look for an element of norm ±9 to ascertain whether P 2 is

principal. Inspection of small values does not produce a solution. The next step

is to look for an element of norm ±33 which would possibly generate P 3. Sure

enough, the easily located element 14 +
√

223 of norm −27 satisfies

P 3 = (14 +
√

223).

What is left is to ascertain whether P itself is principal; if it is not, the class group

is the cyclic group of order 3 generated by the class of P . We shall prove that P

is not principal. If P is principal, say P = (a+ b
√

223), then

a2 − 223b2 = ±3.

Clearly, there is no solution with the positive sign on the right since the left hand

side is 0, 1 or 2 modulo 4. However, the proof of the fact that the equation has no

solution with the negative sign on the right hand side, is not straightforward. We

give two proofs. The first one is due to Peter Stevenhagen (personal correspon-

dence); our main aim is to discuss the second proof at length. In both proofs, we

do not need to separate the cases 3 and −3.

The fundamental unit of Q(
√

223) is η = 224 + 15
√

223. This can be found simply

by hand but while discussing the second proof, we give the details.

1.1. First proof. Let, if possible, (3, 1 +
√

223) = (x) for some x ∈ Z[
√

223]. As

P 3 = (x3) = (14− sqrt223), we have

14−
√

223 = ux3

for some unit u. Now, the fundamental unit

η = 224 + 15
√

223 ≡ −1 mod 5 Z[
√

223].

In particular, η becomes a cube in the finite field F := Z[
√

223]/5 Z[
√

223] which

has 52 elements. In particular, every unit (being a power of η) is a cube in this

field. Hence, the image of 14−
√

223 is a cube. An element in the cyclic group F ∗

of order 52 − 1 = 24 is a cube if, and only if, its 8-th power is 1. Let us compute

the image of (14−
√

223)8 in the field F :



Auth
or'

s c
op

y 

42 KANNAPPAN SAMPATH AND B. SURY

(14−
√

223)8 = (−1−
√

223)8 = (1 + 223 + 2
√

223)4 = (−1 + 2
√

223)4

= (1 + 892− 4
√

223)2 = (−2− 4
√

223)2 = 4(1 + 2
√

223)2

= 4(1 + 892 + 4
√

223) ≡ 4(−2−
√

223) = 2 +
√

223.

But,
√

223 + 2 is not 1 in the cyclic group (Z[
√

223]/5 Z[
√

223])∗. Otherwise,

223 = 1 mod 5Z[
√

223] which is absurd as 222 is co-prime to 5. This completes

the proof that P cannot be principal S

We deduce:

The ideal class group of Q(
√

223) is cyclic, of order 3, generated by the class of

(3, 1 +
√

223). Further, the equation a2 − 223b2 = −3 has no integer solutions.

1.2. A non-square. Before embarking on the discussion on continued fractions

required for the second proof, we make an interesting remark.

Rewriting the above equation as a2 + 3 = 223b2, one may argue within the field

Q(
√
−3) generated by the cube roots of unity. Its ring of integers is Z[ω], a

unique factorization domain where ω = −1+
√
−3

2 . If a is odd and b is even then

a2 + 3 = 223b2 becomes equivalent to an equation

A2 −A+ 1 = 223B2.

That is, (A+ ω)(A+ ω2) = 223B2.

Writing the element 223 is a product of two irreducible elements:

223 = (17 + 11ω)(17 + 11ω2),

one has A+ ω = (17 + 11ω)(u+ vω) or A+ ω = (17 + 11ω2)(u+ vω). Comparing

the imaginary parts, one may deduce that there exists a number of the form

223s2 + 79s+ 7 which is a perfect square. Therefore, we deduce:

Observation. For an integer s, the number 223s2 + 79s + 7 cannot be a perfect

square.

In fact, write 223s2 + 79s+ 7 = t2. Then,

(446s+ 79)2 + 3 = 223(2t)2.

This contradicts the fact that a2 − 223b2 = −3 has no solution.

It will be interesting to give a direct proof of the above observation.

2. Continued fractions and Small norms

2.1. Continued fractions. We recall the basic terminology of simple continued

fractions relevant to our application to real quadratic fields. For a more elaborate

discussion, we recommend the classical works [7, 2, 1, 3] and the recent text [8].

A simple continued fraction (S.C.F.) is an expression of the form

lim
n→∞

(
a0 +

1

a1+

1

a2+
· · · 1

an

)
where a0 ∈ Z and {an}n>0 is a sequence of positive integers. In other words, an

S.C.F. is the limit of the sequence whose nth term is
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`n := a0 +
1

a1 +
1

a2 +
1

a3 +
... +

1

an

. (1)

One also writes the limit above as a0 + 1
a1+

1
a2+

1
a3+
· · · or as [a0; a1, a2, · · · ]

symbolically. Truncating this process at finite stages, the successive quotients

p0
q0

:=
a0
1
,
p1
q1

:= a0 +
1

a1
=
a0a1 + 1

a1
, · · ·

are called the convergents to the continued fraction. It can be proven by a straight-

forward induction that(
a0 1

1 0

)(
a1 1

1 0

)
· · ·

(
an 1

1 0

)
=

(
pn pn−1

qn qn−1

)
.

Immediately, a consideration of determinants gives:

pnqn−1 − pn−1qn = (−1)n−1

pnqn−2 − pn−2qn = (−1)nan
The most important fact about continued fractions that we need is the following

observation due to Legendre [3]:

Theorem 2.1. If α is a real number which is irrational, and satisfies∣∣∣α− r

s

∣∣∣ < 1

2s2

where s > 0, then r/s is a convergent to the continued fraction of α.

In algorithm 2.4 below, we study the algorithm for the S.C.F. for quadratic ir-

rational to work out the small norms in the ring of integers of a real quadratic

field. As a precursor to the general discussion, let us recall the classical facts about

S.C.F. for
√
N for positive square-free integers N .

2.2. The S.C.F. of
√
N . Let N be a square-free positive integer. The S.C.F.√

N = b0 + 1
b1+

1
b2+
· · · is determined as

b0 = a1 = [
√
N ], r1 = N − a21

b1 =

[√
N + a1
r1

]
, etc.

More generally, we have

bn =

[√
N + an
rn

]
where an = bn−1rn−1 − an−1 and rn−1rn = N − a2n. One shows easily that

an+1, rn+1 > 0. Further, if we know that some rk (say rn+1) equals 1, then
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(−1)n−1 = p2n −Nq2n.
This is indeed the case (see [2]) and the key facts are summarized as:

Lemma 2.2.

(i) The bn’s recur.

(ii) The S.C.F. of
√
N looks like [b0; b1, b2, · · · , bn−1, 2b0].

(iii) The penultimate convergent pn−1/qn−1 before the recurring period gives a

solution of x2 −Ny2 = (−1)n.

Hence, the penultimate convergent of the S.C.F. of
√
N gives a solution of x2 −

Ny2 = ±1 where the sign is positive or negative according as to whether the period

is even or odd.

2.3. The S.C.F. of real quadratic irrationalities. Let us discuss how the

above facts carry over from
√
N to any element of a real quadratic field, which we

christen a real quadratic irrationality.

Definition 2.3. A number ξ ∈ C \Q is said to be a real quadratic irrationality if

it satisfies an equation of the form ξ2 +pξ+q = 0 for uniquely determined rational

numbers p and q satisfying p2 − 4q2 > 0.

Let ξ′ denote the Galois conjugate of ξ (equal to −p − ξ under the above

notation). We have the following algorithm to produce the S.C.F. of a general real

quadratic irrationality.

Algorithm 2.4. Let ξ = P0+
√
D

Q0
be a real quadratic irrationality where D,P0, Q0

are positive integers. We assume, without loss of generality, that Q0 divides P 2
0−D

(otherwise, we may multiply P0, Q0 by Q0 and D by Q2
0).

Then, define the sequences {an}n>0, {ξn}n>0, {Pn}n>1 and {Qn}n>1 of num-

bers by the following rule:

a0 = [ξ0] and ξ1 =
1

ξ0 − a0
=
P1 +

√
D

Q1

a1 = [ξ1] and ξ2 =
1

ξ1 − a1
=
P2 +

√
D

Q2

In general,

am−1 = [ξm−1] and ξm =
1

ξm−1 − am−1
=
Pm +

√
D

Qm
.

Then, ξ = [a0; a1, a2, · · · ] is the S.C.F. of ξ.

The following observations on this algorithm are the most useful ones:

Lemma 2.5. Let {pn/qn} be the sequence of convergents of a quadratic irrational

ξ. With notations as above, all Pi, Qi are integers and, the following equations

hold:
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ξ = (a0; a1, . . . , an−1, ξn) , n > 1; (2)

Pn+1 = anQn − Pn, n > 0 (3)

P 2
n+1 +QnQn+1 = D, n > 0 (4)

Qn+1 = Qn−1 +Qn(Pn − Pn+1) (5)

(−1)nQn/Q0 = (pn−1 − ξqn−1)(pn−1 − ξ′qn−1) (6)

It is the last equation that is the protagonist of this story: it tells us that

pn−1 − qn−1ξ solves the norm-form equation N(z) = (−1)nQn/Q0 where N(·)
stands for the norm on the quadratic field Q(ξ). We shall soon discover that with

appropriate bound on H, a primitive solution (if it exists at all) to the norm form

equation N(z) = H with z ∈ Z[ξ] must arise from convergents (see Theorem 2.10).

Proof. We prove the equalities asserted in the lemma, from which it follows induc-

tively that the Pi’s and the Qi’s are integers. The first equality holds by definition.

The next two equalities are consequences of the identity:

Pn+1 +
√
D

Qn+1
=

1
Pn+

√
D

Qn
− an

.

Indeed, multiply out and equate rational and irrational parts.

To prove the penultimate equality, note that

QnQn+1 = D − P 2
n+1 = D − (anQn − Pn)2 = P 2

n +Qn−1Qn − (anQn − Pn)2

which gives Qn+1 = Qn−1 + an(Pn − Pn+1).

Finally, we prove that the last equality follows from certain properties of conver-

gents as follows. We know that the complete quotients ξn give us

P0 +
√
D

Q0
=
pn−1ξn + pn−2
qn−1ξn + qn−2

.

Using the expression ξn = Pn+
√
D

Qn
, we have

P0 +
√
D

Q0
=
pn−1Pn + pn−2Qn + pn−1

√
D

qn−1Pn + qn−2Qn + qn−1
√
D
.

A comparison of rational and irrational parts gives us:

qn−1Pn + qn−2Qn = Q0pn−1 − P0qn−1;

pn−1Pn + pn−2Qn = P0pn−1 +

(
D − P 2

0

Q0

)
qn−1.

Using pn−1qn−2 − pn−2qn−1 = (−1)n, we obtain

(−1)nPn = P0(pn−1qn−2 + pn−2qn−1) +

(
D − P 2

0

Q0

)
qn−1qn−2 −Q0pn−1pn−2;

(−1)nQn = −2pn−1qn−1P0 +

(
P 2
0 −D
Q0

)
q2n−1 +Q0p

2
n−1.

As ξ + ξ′ = 2P0

Q0
, ξξ′ =

P 2
0−D
Q2

0
, we obtain N(pn−1 − ξqn−1) = (−1)nQn/Q0. �
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The key periodicity feature of this algorithm is given in the following theorem (see

Chrystal, Chapter XXXIII, §4):

Theorem 2.6 (Euler-Lagrange). The sequence (an)n>0 in the continued fraction

of the quadratic irrationality ξ is eventually periodic; that is, there are positive

integers t and h such that an+h = an for all n > t and h is the least positive

integer such that an+h = an for all sufficiently large n and t is the least positive

integer such that at+h = at.

It is evident that the integers h and t with properties in Theorem 2.6 are

uniquely determined. The word a0 . . . at−1 is called the preperiod and, the number

t is called the length of the preperiod of the sequence (an)n. The number h is called

the length of the period of (an)n and is denoted by `(ξ). A convenient shorthand

for this situation is the following notation:

(an)n := (a0, . . . , at−1, at, . . . , at+h−1).

For our purposes, it is necessary to be able to compute the length of the

preperiod of quadratic irrationals. The proof we present is the one of the key

parts of the proof of the periodicity theorem above and consequently the theorem

itself is known but is seldom formulated this way:

Theorem 2.7. The following are equal for a quadratic irrational ξ:

(1) The length of the preperiod of ξ.

(2) The least index t such that ξt > 1 and −1 < ξ′t < 0.

(3) The least index t such that 0 < Pt <
√
D and 0 < Qt < Pt +

√
D.

Proof. It is clear that the numbers defined in (2) and (3) are equal. Let k be

the preperiod of ξ. Then, it follows from the uniqueness theorem that ξk =

(ak, . . . , ak+h−1). Therefore, we have

ξk = (ak, . . . , ak+h−1, ξk). (7)

Notice that ξk > ak = ak+h > 1. Moreover, (7) gives us a quadratic equation

satisfied by ξk (and hence ξ′k):

F (ξk) = qk+h−1ξ
2
k + (qk+h−2 − pk+h−1)ξk − pk+h−2 = 0.

Note now that F (0) = −pk+h−2 < 0 and F (−1) = qk+h−1 + pk+h−1 − qk+h−2 −
pk+h−2 > 0 since the numerator and denominator of a convergent form a (strictly)

increasing sequence. Therefore F has a root in (−1, 0) which proves that −1 <

−ξ′k < 0. Thus, we have that k > t.

If k > t, we shall conclude that ak−1 = ak+h−1 which will contradict the definition

of preperiod. We use the following lemma which easily follows by induction.

Lemma 2.8. If ξt satisfies the conditions ξt > 1 and −1 < ξ′t < 0, then, so does

ξn for all n > t.
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The theorem follows from above as an = [−1/ξ′n+1] for all n > t and, in particular,

we have that ak−1 = ak+h−1 taking n = k − 1. �

Now we have the following corollary.

Corollary 2.9. Let D > 0 be a square-free integer. The length of the preperiod

of
√
D and that of −1+

√
D

2 are both 1.

Proof. Let a0 = [ξ] where ξ is one of the quadratic irrationalities in the statement.

Then

P1 =

a0, if ξ =
√
D

2a0 + 1, if ξ = −1+
√
D

2

and Q1 =

D − a20, if ξ =
√
D

D−(2a0+1)2

2 , if ξ = −1+
√
D

2

It is now easily verified that the least index for which inequalities in (3) of the

above theorem hold in each case is t = 1. �

2.4. Small norms. The existence of elements of norm H (where H is an integer)

in Z[ξ] is equivalent to the existence of an integral solution to the equation

(X + ξY )(X + ξ′Y ) = H. (8)

Note first that if x, y ∈ Z are integers satisfying (x + ξy)(x + ξ′y) = H, we may

replace H by H/(x, y)2, and obtain a new solution X = x/(x, y), Y = y/(x, y) to

(8), which are relatively prime. An integral solution to (8) with (x, y) = 1 is said

to be primitive.

The key result which is relevant to our original problem is the following obser-

vation that primitive solutions come from convergents of ξ when ξ generates the

ring of integers in a real quadratic field K:

Theorem 2.10. Let ξ be a real, quadratic irrational written in the form

ξ =
P +

√
D

Q
.

Suppose that ξ > 0 > ξ′ (equivalently Q > 0 and −
√
D < P <

√
D). If x, y are

relatively prime integers such that (x+ ξy)(x+ ξ′y) = H with |H| < ξ−ξ′
2 =

√
D
Q ,

then x/y is a convergent to −ξ′.
Moreover, we need to look at only the first lcm (2, `(ξ)) + 1 convergents.

Proof. Suppose first that H > 0. Thus x+ ξ′y > 0 and so x+ ξy > (ξ − ξ′)y. So,

we have

0 < x+ ξ′y <
H

(ξ − ξ′)y
<

1

2y

from which it follows that x/y is a convergent to −ξ′.
Now, if H < 0, we then have that x+ yξ′ < 0 so that we have

0 < y +
x

ξ′
=

H

ξ′(x+ yξ)
=

−H
−ξ′(x+ yξ)

<
ξ − ξ′

2(−ξ′)(x+ yξ)
<

1

2x

where the last inequality amounts to checking that

x(ξ − ξ′) < (−ξ′)(x+ yξ)
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which holds since ξ > 0 and x + yξ′ < 0. This shows that y/x is a convergent

of −ξ′−1. But we note that if x has the S.C.F. [a0; a1, a2, . . . ], then, x−1 has the

S.C.F. [0; a0, a1, . . . ] if a0 > 0 and [a1; a2 . . . ] if a0 = 0. Therefore, every non-zero

convergent of x is also a convergent of x−1. Thus, we have that x/y is a convergent

of −ξ′. We defer the proof of the last assertion to Lemma 2.13. �

The above theorem immediately yields the following corollary.

Corollary 2.11. Let D be a square-free positive integer, let K denote the qua-

dratic field Q(
√
D), let dK be its discriminant:

dK =

4D, if D ≡ 2, 3 mod 4

D, if D ≡ 1 mod 4
(9)

Let ωD denote the quadratic irrationality

ωD =


√
D, D ≡ 2, 3 mod 4

−1+
√
D

2 , D ≡ 1 mod 4
(10)

so that OK = Z[ωD]. Suppose that |H| <
√
dK
2 . The primitive elements of norm

H in K come from convergents of ωD.

Here, it is important that we view OK as Z-module with respect to the basis

{1,−ω′D} as is customary.

Remark 2.12. Note that the bound on H is reminiscent of Gauss’s bound; that

is, in any ideal class in a quadratic field K, there is an integral ideal whose norm

is atmost
√
dK
2 .

To make this principle practical, one needs a bound on the number of convergents

one has to compute. This is given in the following lemma.

Lemma 2.13. The fundamental primitive solutions of (8), if they exist, are to be

found among the first `′ + 1 convergents where `′ = lcm(2, `(ξ)).

Proof. The key ingredient in the proof is Theorem 2.15 which discusses the induced

periodicity in the sequence ((−1)nQn)n. Let us first reduce this question to the

periodicity of (Qn). This is a consequence of the following simple lemma:

Lemma 2.14. Let (un)n>0 be an eventually periodic sequence with preperiod of

length t and period h; further suppose that un 6= 0 for all n > t. Then, the

sequence (vn := (−1)nun)n>0 is eventually periodic with preperiod of length t and

period of length h′ where h′ is a divisor of lcm(2, h).

Furthermore, if h is odd, then, h′ = 2h.

Now, we may summarize the above discussion in the theorem.

Theorem 2.15. Let ξ be a quadratic irrational. Let (an)n>0 be its continued

fraction expansion. Then

(i) The sequence (an) is eventually periodic.

(ii) The sequence (ξn) is eventually periodic.
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(iii) The sequence (Qn) is eventually periodic.

(iv) The preperiod and period of the above sequences are all equal.

Proof. (i) is precisely Theorem 2.6. (ii) (and hence (iii) and (iv)) follows by noting

that for any integer n > 0, we have ξn = (ak)k>n by Lemma 2.5. �
These observations now complete the proof of our theorem. �

3. Examples

We illustrate the results of the last section by showing that Z[
√

223] has no

elements of norm −3.

Example 3.1. It is straightforward to verify that
√

223 = [14; 1, 13, 1, 28]. Here

is the full computation: we begin by noting that 14 <
√

223 < 15 so
√

223 = 14 +
√

223− 14 = 14 +
1

√
223+14
27

= 14 +
1

1+

1
√
223+13

2

= 14 +
1

1+

1

13+

1
√
223+13
27

= 14 +
1

1+

1

13+

1

1+

1√
223 + 14

= 14 +
1

1+

1

13+

1

1+

1

28+

1
√
223+14
27

= [14; 1, 13, 1, 28].

The convergents are easily computed to be
p0
q0

=
14

1

p1
q1

=
15

1

p2
q2

=
209

14

p3
q3

=
224

15

and we have (cf. Lemma 2.5 (6))

142 − 223 = −27; 152 − 223 = 2;

2092 − 223 · 142 = −27; 2242 − 223 · 152 = 1.

This shows that there are no elements of norm −3 in Z[
√

223]. More precisely, we

see that the set of norms H in Z[
√

223] with |H| 6 14 is {1, 2, 4, 8}.
To illustrate the differences that occur in the case D ≡ 1 mod 4, let us study

the small norms in Q(
√

229).

Example 3.2. Let K = Q(
√

229). From Corollary 2.11 and Lemma 2.13, we must

work out the first few convergents of S.C.F. of ω := ω229 = −1+
√
229

2 to find the

list of all norms H with |H| < 8 in OK . Recall that {1, ξ} where ξ = −ω′ is a

Z-basis for OK .

We compute the S.C. F. of ω:

ω = 7+

√
229− 15

2
= 7+

1
√
229+15

2

= 7+
1

15 +
√
229−15

2

etc., = 7+
1

15+

1

15+

1

15+
· · ·
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By Lemma 2.13, we must work out the first 3 convergents. These are easily

computed to be
p0
q0

=
7

1
,
p1
q1

=
106

15
,
p2
q2

=
1597

226
.

From here, we have the following (cf. Lemma 2.5 (6)):

N(p0 + ξq0) = −1, N(p1 + ξq1) = 1, N(p2 + ξq2) = −1.

Thus, we see that the only norms H with |H| < 8 are {±1,±4}. In particular,

there are no elements of norm ±2,±3,±5,±6,±7.

While ±2 and ±7 are non-squares mod 229, one checks that ±3 and ±5 are

squares mod 229; in particular, there are no obvious local obstructions for the

norm form to represent these primes.
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