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A Ring-theoretic Approach to Bound the Totient Function

Let A be a possibly noncommutative ring with unity and let A∗ denote its group of
units. We show the following.

Proposition. (i) If A is infinite, and not a division ring, then A \ A∗ is infinite.
(ii) If A is finite, and not a division ring, then |A| ≤ (|A| − |A|∗)2.
In particular, for n > 1, φ(n) ≤ n − √

n if and only if n is not a prime.

Proof. To prove (i), assume A is infinite, and A \ A∗ is finite. Then any left ideal
I �= A satisfies I ∩ A∗ = ∅; so, I is finite. Consider any a ∈ A \ A∗ such that a �= 0.
Since A is not a division ring, either 1 �∈ Aa or 1 �∈ aA. If Aa �= A, then the left
ideals Aa and Ia := {b ∈ A : ba = 0} are proper left ideals. This means both
are finite. But, A/Ia is in bijection with Aa which means A is finite, which is a
contradiction of our assumption. Therefore, (i) is proved if Aa �= A. Similarly, if
aA �= A, one may work with the right ideals aA and {b ∈ A : ab = 0} and arrive at
a contradiction.

To prove (ii) when A is finite, consider any left ideal I �= A. As I ∩ A∗ = ∅,
we have |I | ≤ |A| − |A∗| as before. Let a ∈ A \ A∗ be such that a �= 0. Since A is
not a division ring, either Aa �= A or aA �= A. If Aa �= A, the left ideals Aa and
Ia = {b ∈ A : ba = 0} are proper; hence |Aa| and |Ia| are both at most |A| − |A∗|.
But, A/Ia is in bijection with Aa and so, |A| ≤ (|A| − |A∗|)2. In the case aA �= A,
the proof is similar. Note that if A = Z/nZ for some n > 1, then we know that A

is a division ring if and only if it is a field, which happens if and only if n is prime.
Thus, for n > 1 composite, we have n ≤ (n − φ(n))2; hence, φ(n) ≤ n − √

n.
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