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In the theory of prime numbers, there are several hypotheses but the Rie-
mann Hypothesis still stands out. When we trace our path through classical
prime number theory, and try to see how the subject has evolved, we find
ourselves led inevitably to the so-called Langlands Program, a sort of ‘grand
unification’ theory in mathematics. The Riemann Hypothesis and ideas as-
sociated with it seem to light up the path of this discovery.
In 1748, Leonhard Euler wrote down the fundamental theorem of arithmetic
as an analytic statement. The so-called Euler product

∞∑

n=1

1

ns
=

∏

p prime

(1− p−s)−1

valid for all real r > 1 is just a rephrasing on the fundamental theorem
that every natural number > 1 is a unique product of prime powers. This
proves the infinitude of primes in an analytic and quantitative manner since
the series on the left diverges at s = 1. Needless to say the distribution
of prime numbers, being a fundamental problem, fascinated the top mathe-
maticians of each generation. The great Carl Friedrich Gauss - conjectured
the so-called ‘Prime Number Theorem’ in 1794, at the ripe old age of 17 (!)
Roughly speaking, this is the assertion that the function π(x) measuring the
number of primes upto a given x behaves like the function Li(x) :=

∫ x
1

dt
log t

.

More precisely, π(x)log x
x

→ 1 as x →∞. Equivalently, the n-th prime pn sat-
isfies pn

n log(n)
→ 1 as n →∞. It is amusing to compare Gauss’s interest with

‘FLT’ (Fermat’s last theorem) - he is said to have remarked that the prob-
lem doesn’t interest him as he can come up with many similar questions on
Diophantine equations which cannot be answered and that there was nothing
particularly special about FLT ! Although the infinitude of primes was known
from Euclid’s time, the infinitude of primes in every arithmetic progression
of the form an+ b with (a, b) = 1 was proved only in 1837 by Lejeune Dirich-
let. Unlike Euclid’s proof which is a variation of the fundamental theorem
of arithmetic and can be (and is being) taught in schools, Dirichlet’s proof
requires much more sophisticated, analytic techniques. One might say that
Euler’s basic, but deep, observation on Euler product expansion was the key
behind Dirichlet’s perspective. Dirichlet would need to consider (approxi-
mately a) more series similar to Euler’s series

∑∞
n=1

1
ns . During 1848-50, the

Russian mathematician Chebychev proved the beautiful fact that there are
certain constants a, b > 0 such that

a
x

log x
≤ π(x) ≤ b

x

log x
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for large x. However, it is Bernhard Riemann’s 1859 memoir which turned
around prime number theory, introducing novel techniques and giving a
‘never-before’ impetus to the subject of analytic number theory. Riemann
lived less than 40 years (September 17, 1826 - July 20, 1866) and wrote, but
one, paper on number theory ! Earlier, when Riemann was submitted a Doc-
toral Dissertation in 1851, Gauss remarked that Riemann had ‘Gloriously
fertile originality’. Riemann developed what is now known as Riemannian
geometry and was the indispensable theory and language used by Einstein
for formulating his theory of relativity. Coming back to Riemann’s paper
in number theory, the key difference between earlier workers and Riemann’s
paper was the he considered the series

∑∞
n=1

1
ns as a function of a complex (!)

variable s which varies over the right half-plane Re(s) > 1. This is now called
the Riemann zeta function. Riemann proved two basic properties (meromor-
phic continuation and functional equation to be recalled below). The key
point of viewing the zeta function as a function of a complex variable s al-
lowed Riemann to prove an ‘explicit formula’ connecting the complex zeroes
of the zeta function and the set of prime numbers ! Riemann also made 5
conjectures, 4 of which were solved in the next 40 years. The one-unproved
conjecture is the so-called Riemann Hypothesis, a ‘Problem of the Millen-
nium’ for which there is a million-dollar prize now.

Riemann’s memoir

The Riemann zeta function ζ(s) :=
∑∞

n=1
1
ns for Re(s) > 1 satisfies :

(I) Meromorphic continuation :
ζ(s) can be defined for all s ∈ C as a holomorphic function except for the
single point s = 1 where it has a simple pole with residue 1;
The key function Riemann uses for this is Jacobi’s theta function θ(x) =∑∞

n=−∞ e−n2πx which has the transformation property θ(1/x) =
√

xθ(x) which
is also a harbinger of the connection of ζ(s) with modular forms to be dis-
cussed later.
(II) Functional equation :
The continued function (again denoted ζ(s)) satisfies

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1− s)/2)ζ(1− s).

Here Γ(s) is the Gamma function defined by

Γ(s) =
∫ ∞

0
xs−1e−xdx
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for x > 0.
It ought to be mentioned that the appearance of the Gamma function here
was not properly understood until the appearance of John Tate’s thesis as
late as 1950. From Tate’s work, it becomes clear that the Gamma factor is
the correct term corresponding to the the archimedean place (or ‘the infinite
prime’) of Q.

The functional equation tells us that the values of zeta at s and at 1 − s
are related. As the Gamma function has poles at all negative integers, the
zeta function has zeroes at all −2n for natural numbers n. Also, from the
simple pole of ζ(s) at s = 1 and of Γ(s/2) at s = 0, we obtain ζ(0) = −1/2.
Sometimes, this is stated in fancy language (by abusing notation) as

1 + 1 + 1 + · · · · · · = −1

2
!

Similarly, the value ζ(−1) = − 1
12

gives :

1 + 2 + 3 + · · · · · · = − 1

12
!

As a matter of fact, one has

ζ(−n) = (−1)n Bn+1

n + 1

where Br are the Bernoulli numbers ! Note that Bodd>1 = 0 which is related
to ζ(−even < 0) = 0.
Looking at the symmetry in the functional equation, it may be tempting to
muse whether all the zeroes of ζ(s) are on the line of symmetry Re(s) = 1/2
but this, in itself may be too simplistic, as there are series with similar
symmetry whose zeroes are not on the line of symmetry; so this symmetry
by itself is not sufficient reason to conjecture the Riemann hypothesis (to be
discussed below). However, these other series do not possess Euler products;
so, this still does not rule out the possibility that the symmetry may be the
property which prompted Riemann to formulate the Riemann hypothesis.

Riemann’s five conjectures in his 8-page paper were :
(i) ζ(s) has infinitely many zeroes in 0 ≤ Re(s) ≤ 1.
(ii) The number of zeroes of ζ(s) in a rectangle of the form 0 ≤ Re(s) ≤ 1,
0 ≤ Im(s) ≤ T equals T

2π
log T

2π
− T

2π
+O(log T ) as T →∞, where the notation

4



f(T ) = O(g(T )) means f(T )
g(T )

is bounded by a constant independent of T .

(iii) The function
ξ(s) = s(s− 1)π−s/2Γ(s/2)ζ(s)

has an infinite product expansion of the form eA+Bs ∏
ρ(1 − s

ρ
es/ρ) for some

constants A,B where the product runs over the zeroes of ζ(s) in the infinite
strip 0 ≤ Re(s) ≤ 1.
(iv) If Λ(n) is the von Mangoldt arithmetical function defined to be log p if n
is a power of a single prime p and zero otherwise, and if ψ(x) =

∑
n≤x Λ(n),

then

ψ(x) = x−∑
ρ

xρ

ρ
− ζ ′

ζ
(0)− log(1− x−2)

2
.

The value ζ′
ζ
(0) can be seen to be log(2π) on using the functional equation.

Note that the sum over the zeroes is to be interpreted as limT→∞
∑
|ρ|≤T

xρ

ρ

and is not absolutely convergent.
(v) (Riemann hypothesis) All the zeroes of ζ(s) in the so-called critical
strip 0 ≤ Re(s) ≤ 1 lie on the vertical line Re(s) = 1

2
.

The conjectures (i),(ii), and (iv) were proved in 1895 by von Mangoldt and
(iii) was proved by Hadamard in 1893. Until date, (v) is open. Notice that
(iv) gives an explicit relation between prime numbers and zeroes of ζ(s) ! In
fact, in 1893, Hadamard and de la vallé Poussin independently proved that

ζ(s) 6= 0 ∀ Re(s) = 1.

This non-vanishing on the vertical line implies immediately that the ratio
ψ(x)

x
→ 1 as x → ∞. This is just another rephrasing of the Prime number

theorem - ! Indeed, looking at (iv), we see that |xρ| = xRe(ρ) and, there-
fore, the prime number theorem (ψ(x) ∼ x) is equivalent to the assertion
Re(ρ) < 1.
One might say in jest that the prime number theorem is an ‘one-line proof’
viz., that the Riemann zeta function does not vanish on the one line Re(s) = 1
!
Incidentally, the key to the proof of the non-vanishing of the Riemann zeta
function on the line Re(s) = 1 is the elementary fact 3+4Cos(θ)+Cos(2θ) ≥
0.
Another rephrasing is the assertion θ(x)

x
→ 1 as x → ∞, where the Cheby-

chev function θ(x) =
∑

p≤x log p. The above statements are quite easy to
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see using a very simple elementary idea known as Abel’s partial summation
formula which states :
For any arithmetic function a(n), consider the partial sums A(x) =

∑
n≤x a(n)

(and A(x) = 0 if x < 1). For any C1-function f on (y, x) where 0 < y, one
has ∑

y<n≤x

a(n)f(n) = A(x)f(x)− A(y)f(y)−
∫ x

y
A(t)f ′(t)dt.

For instance, taking f(x) = log x in the partial summation formula, one can
deduce

θ(x) = π(x)log x−
∫ x

2

π(t)

t
dt.

One can also use 0 ≤ ψ(x) =
∑

m≤log2x θ(x1/m) to obtain

ψ(x)

x
− θ(x)

x
→ 0

as x →∞.
It is not difficult to see that the RH itself is equivalent to the assertion :

π(x) =
∫ x

2

dt

log t
+ O(x1/2log x)

where π(x) counts the number of primes upto x.
An important technique used in analytic number theory to estimate the sum∑

n≤x an for a given f(s) =
∑

n
an

ns is the Perron formula (for any c > 0) :
1

2πi

∫
Re(s)=c

xs

s
ds = 0, 1/2 or 1, according as to whether 0 < x < 1, x = 1 or

x > 1.
Then, for a suitably chosen c > 0, we would have

1

2πi

∫

Re(s)=c
f(s)xs/sds =

∑

n≤x

an.

This is used for the logarithmic derivative of ζ(s) to obtain the prime number

theorem in the form ψ(x) ∼ x. Note ζ′(s)
ζ(s)

= −∑
n

Λ(n)
ns from the Euler product

formula.
Actually, The fact that ζ(s) 6= 0 for Re(s) > 1 (which is not obvious from
the series expression but becomes clear from the absolute convergence of
the Euler product expression) is said to be the key analytical information
used in Deligne’s first proof of the analogue of the Riemann Hypothesis for
varieties over finite fields (mentioned below). We will discuss the place of the
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RH in contemporary mathematics as well as point out results which provide
evidence for it to be true. On the way, we will encounter many classes
of so-called L-functions of which the Riemann zeta function is a prototype
and also mention other hypotheses which imply or are implied by RH. Before
proceeding towards that, we just mention that a rather simple aspect already
makes the RH as the main open problem in prime number theory - if RH were
to fail, it would create havoc in the distribution of prime numbers. David
Hilbert had some interesting views on the RH. Comparing the problem of
transcendence of eπ, Fermat’s last theorem and the Riemann Hypothesis,
Hilbert felt that RH would be proved in a few years, Fermat would take
quite a few years but that the transcendence result would not be proved for
several hundred years. The opposite situation seems to have prevailed ! In
fact, Hilbert seems to have expressed conflicting views on RH. Once he said
that if he were to wake up after a sleep of a thousand years, the first question
he would ask is whether the RH has been solved ! G.H.Hardy grew to be very
fond of the RH. Once, while beginning a risky journey, he wrote to Harald
Bohr that he had solved the RH although he had not done so !
It is not difficult to show that the RH gives

Li(x)− π(x)√
xlog(x)

' 1 + 2
∑
γ

Sin(γlog(x)

γ

where the sum is over all positive real γ such that 1
2

+ iγ is a zero of ζ(s).
Therefore, as the right side is a sum of periodic functions, sometimes people
express the RH as saying that ‘the primes have music in them’ !

Lindelöf hypothesis and Mertens conjecture
A consequence of the RH is the Lindelöf hypothesis :

ζ(
1

2
+ it) = O(tε)

as t →∞. This is still open.
Let µ(n) denote the Mobius function defined for n > 1 as (−1)r if n is a
square-free product of r prime numbers, and 0 if n is not square-free. One
takes µ(1) = 1. Note that formally, one has

ζ(s)
∞∑

n=1

µ(n)

ns
= 1.
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Landau proved that the prime number theorem is equivalent to the assertion
1
x

∑
n≤x µ(n) → 0 as x →∞. It is also easy to show that the RH is equivalent

to the assertion : ∑

n≤x

µ(n) = O(x1/2+ε).

Indeed, clearly the RH implies this assertion. Conversely, assuming this
assertion, partial summation gives us that

∑
n

µ(n)
ns converges for all s for

which Re(s) > 1/2. Thus, 1
ζ(s)

=
∑

n
µ(n)
ns has no poles in this half-plane; this

is the RH.
It is conceivable that it may be easier to work with the function on the left
hand side above by some combinatorial method rather than working with
π(x). Actually, most random sequences of +1’s and −1’s give a sum upto
x which is bounded by x1/2+ε and the Möbius function appears to be fairly
random; thus, this is some probabilistic evidence for the RH to hold.
Mertens conjectured the stronger :

| ∑

n≤x

µ(n)| ≤ √
x

for x > 1. This was proved to be false by Odlyzko & te Riele in 1985.
It is unknown (although expected to be false) whether the assertion

∑

n≤x

µ(n) = O(x1/2)

which is stronger than the RH holds.

Turan’s theorem
Paul Turan showed the interesting result that if, for every N , the finite sum∑N

n=1
1
ns is non-zero for all Re(s) > 1, then the RH follows.

However, this approach towards solving the RH was doomed to failure as
well : Montgomery proved that Turan’s hypothesis does not hold; indeed, for
each large N , the finite series

∑N
n=1

1
ns has a zero in Re(s) > 1 ! A somewhat

careful analysis of Turan’s proof reveals that positivity of a certain function
was used. In the following discussion, such a positivity condition makes it
possible to obtain an equivalent rephrasing of the RH.

Weil’s explicit formula and the RH
Let ρ = 1

2
+ iγ vary over the zeroes of ζ(s); here γ is complex, and the RH
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implies that γ is real. Consider any analytic function h(z) on |Im(z)| ≤ 1
2
+δ

satisfying
h(−z) = h(z), |h(z)| ≤ A(1 + |z|)−2−δ

for some A, δ > 0.
Suppose g is the Fourier transform of h; that is, g(u) = 1

2π

∫
R h(z)e−izudz.

André Weil proved the so-called explicit formula

∑
γ

h(γ) =
1

2π

∫ ∞

−∞
h(z)

Γ′

Γ
(
1

4
+

iz

2
)dz+2h(

i

2
)−g(0)log π−2

∞∑

n=1

Λ(n)√
n

g(log n).

In other words, the set of prime numbers and the nontrivial zeroes of ζ(s) are
in duality ! As Weil observed, the Riemann Hypothesis is true if and only if∑

γ h(γ) > 0 for all h of the form h(z) = h0(z)h0(z̄).

Other equivalent hypotheses to RH

(i) Hardy & Littlewood proved for the first time in 1918 that infinitely many
zeroes of ζ(s) lie on the critical line Re(s) = 1/2. They also showed that the

RH holds good if and only if
∑∞

n=1
(−1)nxn

n!ζ(2n+1)
= O(x−1/4).

(ii) In 1977, Redheffer showed that the truth of the RH is equivalent to
the assertion that for each ε > 0, there exists c(ε) > 0 so that |detAn| <
c(ε)n1/2+ε, where An is the n × n matrix whose (i, j)-th entry is 1 if either
j = 1 or i|j and zero otherwise.
(iii) Recently, in 2002, Jeffrey Lagarias proves that RH is equivalent to the
assertion

σ(n) ≤ Hn + eHnlog(Hn)

where σ(n) =
∑

d|n d,Hn =
∑n

i=1
1
i
.

(iv) Functional-analytic approaches seem quite promising in view of Weil’s
positivity condition. Nyman, and later Baez-Duarte have versions of the RH.
The latter’s results were rephrased by Bhaskar Bagchi to yield the following
avataar of the RH.
Look at the inner product space H consisting of all sequences a := {an} of

complex numbers which satisfy
∑∞

n=1
|an|2

n(n+1)
< ∞. Here, we take

< a, b >=
∞∑

n=1

anbn

n(n + 1)
.
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All bounded sequences are in H. For k = 1, 2, 3 · · · consider the special
elements a(k) ∈ H given by a(k)n = {n

k
}, the fractional part of n

k
. Then, the

RH is equivalent to either of the following statements :
(a) The constant sequence 1, 1, 1, · · · is in the closure of the space spanned by
the a(k)’s; k = 1, 2, · · ·.
(b) The set of finite linear combinations of the a(k)’s is dense in H.

Evidence towards RH - zeta functions of curves over finite fields

There may be said to be three types of evidence to believe in the possible
truth of RH. One is, of course, deep analytic methods which show that at
least 40 per cent of the zeroes of the nontrivial zeroes lie on the critical
line. The other is indirect evidence by virtue of statements which are non-
trivial consequences of the RH and are either believable for other reasons
or have been shown to be true by other means. The Generalized Riemann
Hypothesis (which we will mention later) implies things like : (i) Miller’s
primality test, (ii) Artin’s primitive roots conjecture, (iii) knowledge of rate
of equidistribution in case of geodesic motion on an arithmetic hyperbolic
surface (this is a central topic in quantum chaos). The third, and perhaps
the most compelling sort of evidence comes from the proof of RH (yes proof!)
for analogues of the Riemann zeta function. Let us talk about this third type
of evidence. Just as the Riemann zeta function is an Euler product involving
all the prime numbers, there is an analogous zeta function for finite fields
which involves its irreducible monic polynomials. In fact, a definition of the
zeta function of an algebraic curve over a finite field was given by Emil Artin
in his 1924 thesis. He also proved the analogue of the RH for some 40 curves.
In 1934, Helmut Hasse established that the analogue of RH holds for the
class of zeta functions associated to elliptic curves (nonsingular cubic curves
y2 = f(x)) over finite fields. Andre Weil proved the RH for all nonsingular
curves over finite fields in 1948 by deep methods from algebraic geometry. A
simpler proof by Andrei Stepanov in 1969 was further simplified by Enrico
Bombieri in 1972 using the Riemann-Roch theorem to a 5-page proof ! As
a matter of fact, Weil can be thought of as the creator of the subject now
known as arithmetic geometry. In 1949, Weil defined a zeta function for any
algebraic variety over a finite field and made several conjectures (which came
to be known as the Weil conjectures). One of these conjectures is an ana-
logue of the RH. Actually, Weil proved all these conjectures (not just the RH
analogue) in the special case of nonsingular algebraic curves. It is perhaps
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amazing that the prototype already occurs in the work of Gauss ! The Last
entry in his famous mathematical diary is a special case of Weil’s RH :
Let p ≡ 1 mod 4 be a prime. Then, the number of solutions of the congruence
x2 + y2 + x2y2 ≡ 1 mod p equals p− 1− 2a, where p = a2 + b2 and a + ib ≡ 1
mod 2(1 + i).
It required tremendous progress in algebraic geometry before Pierre Deligne
proved the Weil conjectures in general in 1973. Deligne’s journey takes him
through the theory of modular forms and a beautiful conjecture due to Ra-
manujan turns out to be the analogue of the RH ! Before that, in 1950, Atle
Selberg defined another kind of analogue of the zeta function which counts
the lengths of closed geodesics in Riemannian manifolds. In a remarkable
tour-de-force, Selberg developed a so-called trace formula involving eigenval-
ues of Laplacian and deduced the analogue of the RH for his zeta function
! The trace formula resembles Weil’s explicit formula above. Selberg had
received a Fields medal for his elementary (that is not involving complex
analysis) proof of the prime number theorem. His work on the trace formula
was perhaps worthy of another Fields medal !

Let C be a nonsingular projective curve over a finite field Fq where q = pe

and p is a prime. One considers the formal finite sums of the form D =
∑

aiPi

where ai are integers (of any sign) and the points Pi in C are defined over
some finite extensions of Fq where Frobq(D) = D. This is called the group
Div(C) of divisors of C. One calls a divisor D =

∑
aiPi effective (and

writes D > 0) if ai ≥ 0 for all i. The prime divisors are those which are
not expressible as a sum of effective divisors. Denoting the homomorphism∑

aiPi → ∑
ai by ‘deg’, Artin-Hasse-Schmidt’s definition of the zeta function

of C is :
ζ(C, s) :=

∑

D>0

(qdeg(D))−s =
∏

P

(1− qdeg(P ))−s.

This satisfies the functional equation

q(g−1)sζ(C, s) = q(g−1)(1−s)ζ(C, 1− s)

where g is the genus of C.
The Riemann-Roch theorem implies that ζ(C, s) is a rational function of q−s;
write ζ(C, s) = Z(C, t) where t = q−s and Z is a rational function of t.
The RH is the statement that all zeroes of ζ(C, s) lie on Re(s) = 1

2
; this is

equivalent to the assertion that the numerator polynomial of Z has all zeroes
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of absolute value q−1/2. This is easy to verify for g = 0. For g = 1, one has
the case of elliptic curves and it is Hasse’s theorem.
In the Weil conjectures for general algebraic varieties X, the RH corresponds
to the statement that the zeroes and poles of the corresponding rational
function have absolute values q±d/2 for some integer d. In fact, the roots
(even in Hasse’s theorem for elliptic curves) are viewed as eigenvalues of the
Frobenius automorphism of Fq acting on the cohomology of the variety X.

Dedekind zeta functions

For an algebraic number field K (example K = {a + ib : a, b ∈ Q}), with
its ring of integers O (in the above example, it is the ring Z[i] of Gaussian
integers), the ‘fundamental theorem of arithmetic’ in Z generalizes to an
analogue which asserts that ideals in O are uniquely products of prime ideals.
Moreover, every non-zero ideal I has finite index in O, which is denoted by
N(I). Thus, one has the Dedekind zeta function

ζK(s) =
∑

I 6=0

N(I)−s =
∏

P

(1−N(P )−s)−1.

The series and the product are absolutely convergent for Re(s) > 1. Note
that ζQ = ζ and the Dedekind zeta function of K carries the same informa-
tion on distribution of prime ideals in O as does the Riemann zeta function
about prime numbers.
The residue of the Riemann zeta function at s = 1 is 1 and does not contain
any information. However, the corresponding residue for ζK(s) carries subtle
information on K like its class number etc. In fact, we have :
Analytic continuation of ζK(s) :
ζK(s) admits a meromorphic continuation to Re(s) > 1 − 1/d and is holo-
morphic except for a simple pole at s = 1 with residue given by ‘the analytic
class number formula’ :

lims→1+(s− 1)ζK(s) =
2r1(2π)r2h(K)Reg(K)

|µ(K)|
√
|disc(K)|

.

There is also a functional equation of the form Λ(s) = Λ(1−s) which gives in
particular the location of the ‘trivial zeroes’ of ζK(s). For example, it turns
out that ζK(−n) = 0 for all non-negative integers n if K 6⊂ R. Finally, there
is the :
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Extended Riemann hypothesis :
All the ‘nontrivial’ zeroes of ζK(s) lie on Re(s) = 1

2
.

Dirichlet L-functions

The Riemann zeta function can be thought of as one of a class of the Dirichlet
L-functions. Dirichlet proved the infinitude of primes in progressions several
years before Riemann’s work and, so, he looked at all his series in terms
of convergence etc. but not in terms of analytic continuation. Suppose we
wish to investigate the prime distribution in residue classes modulo q for
some natural number q. Dirichlet considered the finite, abelian group Z∗q
of invertible residue classes mod q and the dual (in the sense of harmonic
analysis) group of homomorphisms from this group to C∗. Defining any such
homomorphism to be zero on non-invertible residue classes and extending it
to the whole of Z so as to be periodic mod q, one has the notion of Dirichlet
characters mod q. For any such Dirichlet character χ mod q, one has a
Dirichlet L-function

L(s, χ) =
∞∑

n=1

χ(n)

ns
=

∏

p prime

(1− χ(p)

ps
)−1.

The Euler product expression is valid from the complete multiplicativity
property of χ. For example, if q = 4, the group has two elements and the
nontrivial character is the map which takes the value (−1

p
) - the Legendre

symbol - at any odd prime p. Note that ζ(s) is essentially L(s, χ) for the
trivial character χ ≡ 1. Look at any a ≥ 1 which is relatively prime to q.
Using the Schur’s orthogonality property for characters shows :

∑{1

p
: p ≤ x, p ≡ a mod q} =

1

φ(q)

∑

p≤x

1

p
+

1

φ(q)

∑

χ 6=1

χ̄(a)
∑

p≤x

χ(p)

p
.

Therefore, the assertion that

L(1, χ) 6= 0 ∀ χ 6= 1

is equivalent to Dirichlet’s theorem that :

∑{1

p
: p ≤ x, p ≡ a mod q} =

1

φ(q)
log log x + O(1).
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Here, we have used the relation proved easily by Euler :

∑

p≤x

1

p
= log log x + O(1).

Note that in the case of q = 4, the nontrivial character χ satisfies

L(1, χ) = 1− 1

3
+

1

5
− · · · = π

4
.

Thus, asympotically, half the number of primes upto x are in each of the two
classes 1 mod 4 and 3 mod 4.

Generalized Riemann hypothesis :
All the ‘nontrivial’ zeroes of L(s, χ) lie on Re(s) = 1

2
for any Dirichlet char-

acter χ.

In some very interesting works, an explicit connection of the RH with the
so-called Gauss class number problem was uncovered by Deuring, Hecke and
Heilbronn. The number h(d) of equivalence classes of binary quadratic forms
of discriminant d < 0 is also the class number of the imaginary quadratic
field Q(

√
d). Gauss conjectured that h(d) → ∞ as −d → ∞. If χd is the

Dirichlet character p 7→ (d
p
) on primes, then Dirichlet’s class number formula

gives (for d < −4),

h(d) =

√−dL(1, χd)

π
.

Hecke showed that the analogue of the RH for L(s, χd) implies h(d) → ∞.
Deuring proved that if the usual RH were false, then one would have h(d) > 1
for large −d. This was generalized by Heilbronn who showed that if the RH
were to be false for any Dirichlet L-function L(s, χ), then h(d) →∞. In this
manner, Gauss’s conjecture was proved !
To indicate a relationship of ζK(s) with Dirichlet L-functions, consider a
nontrivial primitive Dirichlet character χ and look at the quadratic field
K = Q(

√±q) where the sign is the value χ(−1). Then, one has :

ζK(s) = ζ(s)L(s, χ).

At least, some readers may be surprised to know that this statement contains
in it the quadratic reciprocity law of Gauss ! A point to be noted is that
the right hand side is defined essentially in terms of Q. As a matter of
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fact, whenever K is a Galois extension of Q whose Galois group is abelian,
the famous theorem of Kronecker-Weber asserting that K is contained in a
field of the form Q(e2iπ/m) is equivalent to writing ζK(s) as a product of
L(s, χ) for certain Dirichlet characters χ’s and of ζ(s). Whenever we have
a decomposition of some Dedekind zeta function ζK(s) as a product of terms
like the above involving only information from Q, this gives a description of
‘the primes which split in K’. This is valid when L is an abelian extension
field of an algebraic number field K (with the RHS involving data from K)
and is known as an ‘Artin’s reciprocity law’ or ‘abelian class field theory’. A
conjectural form of this idea started with Emil Artin and led to the famous
conjectures of Langlands.
It should be mentioned that there are several concrete applications of this
point of view (of viewing the distribution of ideals in O of norm less than
some x in terms of ζK(s)). For example, one has :

|{I : N(I) ≤ x}| = (Ress=1ζK(s))x + O(x1−1/d)

as x → ∞, where d is the degree of K over Q. As a concrete instance, the
analytic properties of ζK(s) for K = Q(i) implies :

∑

n≤x

r2(n) = πx + O(
√

x)

as x → ∞, where r2(n) is the number of ways of writing n as a sum of two
squares of integers.
We end this section by merely mentioning two interesting things. The first
is that analogous to (and generalizing) Dirichlet characters, there are - as-
sociated to a number field K - the so-called Hecke characters defined on the
ray class groups of K.
The second is that there is a conjecture of Dedekind (which is still open) as-

serting that when L ⊃ K are number fields, then the quotient ζL(s)
ζK(s)

extends
to an entire function of s.

L-function of elliptic curves

Let E be an elliptic curve defined over Q; this means that it is defined by
an equation of the form y2 = x3 + ax + b with a, b ∈ Z, such that the roots
of the cubic x3 + ax + b are distinct. There is a group law on the points
of E which can be described explicitly. For any odd prime number p which
does not divide 4a3 + 27b2 (the discriminant of the cubic here), the equation
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reduces mod p to give an elliptic curve over the finite field Fp. The number
ap = p + 1− |E(Fp)| measures the deficiency in the number of points of the
curve from the projective line. The famous thesis of Hasse in 1934 where he
proves the Weil conjectures for elliptic curves, proves in particular the bound

|ap| ≤ 2
√

p.

This was conjectured by Emil Artin and is the RH here ! To indicate how,
let us consider the Frobenius map Frobp at p. Then, the points of E(Fp) are
those of E fixed by Frobp. Therefore,

|E(Fp)| = |Ker(Frobp − 1)| = 1− (λ + λ′) + p

where λ, λ′ are the roots of the characteristic polynomial.
Even when the prime p is one of the finitely many of bad reduction - those for
which the equation defining E does not reduce mod p to give a nonsingular
curve (that is, does not have distinct roots) - the nonsingular points form a
group and one defines ap = p + 1 − |Ens(Fp)|. These numbers are encoded
in the L-function of E which is defined as

L(s, E) =
∏

p|NE

(1− ap

ps
)−1

∏

p6|NE

(1− ap

ps
+

1

p2s−1
)−1

where NE, the conductor of E which we do not define precisely here, is
divisible by only the bad primes. One can similarly define the L-function of
an elliptic curve defined over a number field K. The analogue of the Hasse
inequality is

|av| ≤ 2
√

N(v)

where N(v) is the norm of the prime ideal v. Writing av = 2
√

N(v)Cos(θv),
there is a conjecture due to Sato & Tate which predicts how the angles θv are
distributed as v varies. When E has CM (complex multiplication) - which
means that there are group endomorphisms of E other than ‘raising to an
integral power’ - Hecke already showed that uniform distribution theorem of
Hermann Weyl holds good for the angles in the interval [0, π]. On the other
hand, when E does not have CM, such a uniform distribution theorem does
not hold good for the angles with respect to the usual Lebesgue measure
but Sato-Tate conjecture predicts that it does hold good with respect to the
measure 2

π
Sin2(θ)dθ. A strengthened form of the Sato-Tate conjecture due
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to Akiyama & Tanigawa predicts :
the number of prime ideals v with norms at the most x and θv ∈ (α, β)
is asymptotic (as x → ∞) to ( 2

π

∫ β
α Sin2(θ)dθ)πK(x) with an error term

O(x1/2+ε).
This conjecture implies the truth of RH for all the L-functions :

Ln(s) =
∏

p6|NE

n∏

j=0

(1− ei(n−2j)θp

ps
)−1.

These latter L-functions come from modular forms which we discuss now.

L-functions of modular forms

Consider a positive integer N and a Dirichlet character χ mod N . We look
at the vector space Sk(Γ0(N), χ) of cusp forms of type (k, χ). Any element
f here satisfies the transformation formula

f(
az + b

cz + d
) = χ(d)(cz + d)kf(z)

for all
(

a b
c d

)
∈ Γ0(N), and is a holomorphic function on the upper half-

plane as well as on all the cusps. In particular, any such f satisfies f(z+1) =
f(z) and thus, at i∞, it has a Fourier expansion f(z) =

∑∞
n=1 anq

n where
q = e2iπz. One defines the L-function of f as

L(s, f) =
∞∑

n=1

an

ns
.

Using the theory of the so-called Hecke operators, Hecke proved that for any
f ∈ Sk(Γ0(N)), the L-function L(s, f) extends to an entire function and
satisfies a functional equation with a symmetry s ↔ k − s. He also proved
that the L-function has an Euler product

L(s, f) =
∏

p|N
(1− ap

ps
)−1

∏

p6|N
(1− ap

ps
+

χ(p)

p2s+1−k
)−1

which converges for Re(s) > (k + 2)/2, if and only if, f is a (normalized)
common eigenform for all the Hecke operators.

Ramanujan-Petersson and Selberg conjectures
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In its simplest form, this is the conjecture that the Fourier coefficients an(f) of

a normalized Hecke eigenform of weight k for SL2(Z) satisfies |ap(f)| ≤ 2p
k−1
2

for every prime p. Hecke’s work shows that the Fourier coefficients an(f) are
just the eigenvalues for the Hecke operators Tn. This conjecture is there-
fore an analogue of the RH, and was proved by Deligne in the work on Weil
conjectures alluded to earlier. The analogue of the Ramanujan-Petersson
conjecture for Maass forms (that is, forms where the holomorphy assump-
tion is dropped) is the assertion that an(f) = O(nε) for each ε > 0. This is
still open. Later, we will mention a much more general version of the conjec-
ture. In a seemingly unrelated work, Selberg made a conjecture. If a Maass
form f(z) for Γ0(N) - viewed as a function of two real variables x, y - is an
eigenfunction for the non-Euclidean Laplacian ∆ = −y2( ∂2

∂x2 + ∂2

∂y2 ), Selberg

conjectured that the corresponding non-zero eigenvalues λ (λ = 0 corre-
sponds to a holomorphic form) satisfy λ > 1

4
. Selberg proved this for SL2(Z)

and, in the case of general N , he proved the weaker lower bound 3
16

. The gen-
eral conjecture is still open. The adelic formalism of Satake shows that the
Ramanujan-Petersson conjecture and the Selberg conjecture are two sides of
the same coin - the latter may be thought of as an archimedean analogue of
the former. Both conjectures could be unified as an adelic formulation of the
Ramanujan-Petersson conjecture which will be discussed below.

Eichler-Shimura correspondence and Taniyama-Shimura-Weil con-
jecture

If f ∈ S2(Γ0(N)), it is clear that the differential form f(z)dz is invariant
under Γ0(N). Then, for any fixed point z0 on the upper half-plane, the
integral

∫ z
z0

f(z)dz is independent of the path joining z0 to z. Thus, for any
γ ∈ Γ0(N), there is a well-defined function

γ 7→ Φf (γ) =
∫ γ(z0)

z0

f(z)dz.

It is also easy to see that this function does not depend on the choice of z0.
Theorem (Eichler-Shimura) :
When f is a normalized newform with integer coefficients, the set {Φf (γ)} as
γ varies, forms a lattice Λf in C. There is an elliptic curve Ef defined over
Q which becomes isomorphic to the complex torus C/Λf over C. Moreover
L(s, Ef ) = L(s, f).
The converse result that every elliptic curve E over Q comes from a modular
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form of weight 2 for Γ0(NE) as above was conjectured by Taniyama-Shimura-
Weil and is now a famous theorem of Taylor and Wiles for square-free N and
of Breuil, Conrad, Diamond & Taylor for other N .

Weil’s converse theorem

This is the basic method used to prove any of the theorems that underlies
the Langlands philosophy. The latter roughly is the idea that all sorts of
L-functions arising ‘geometrically’ are L-functions of certain modular forms.
The results of Weil we are talking about is :
Weil’s converse theorem :
Let {an} be a sequence of complex numbers such that an = O(nc) for some
constant c > 0. Fix a natural number N , an even natural number k and a
sign ε. Assume :
(i) Λ(s) = N s/2(2π)−sΓ(s)

∑
n

an

ns is an entire function which is bounded in
vertical strips,
(ii) Λ(s) = ε(−1)k/2Λ(k − s),
(iii) for each (m,N) = 1, and every primitive character χ,

Λχ(s) = (m2N)s/2(2π)−sΓ(s)
∑
n

anχ(n)

ns

is entire and bounded in vertical strips,
(iv) Λχ(s) = ε(−1)k/2χ(−N)T (χ)

T (χ̄)
Λχ̄(k − s),

where T (χ) =
∑

l(mod m) χ(l)e2iπl/m and
(v)

∑ an

ns converges absolutely at s = k − δ for some δ > 0.

Then, f(z) =
∑

ane2iπnz is a cusp form in Sk(Γ0(N)).

Artin L-functions

Now, we introduce one of the most interesting L-functions. Let L/K be a
Galois extension of number fields with Gal (L/K) = G, say. For a prime
ideal P of OK , write

POL = (P1P2 · · ·Pg)
e

with Pi prime ideals. Consider the decomposition groups

DPi
= {σ ∈ G : σ(Pi) = Pi}.

19



They are all conjugate. Also, there is a surjective natural homomorphism to
the Galois group of the residue field extension

DPi
→ Gal(

OL/Pi

OK/P
)

whose kernel is the inertia group IPi
. The inertia groups are trivial if P is

unramified in L (that is, if e = 1) - something which happens for all but
finitely many prime ideals P . As the Galois group of an extension of finite
fields is cyclic with a distinguished generator, the Frobenius automorphism,
there is a conjugacy class σP in G corresponding to any unramified prime
ideal P . This is also called the Frobenius conjugacy class or the Artin symbol
of P .
Whenever one has a finite-dimensional complex representation of G, say,
ρ : G → GL(V ), Artin attached an L-function defined by

L(s, ρ; L/K) =
∏

P

det(1− ρ(σP )N(P )−s|V IP )−1

where V IP , the subspace fixed by IP is acted on by the conjugacy class
σP . Artin showed that these L-functions have nice properties like invariance
under the induction of representations. He also posed :
Artin’s Conjecture :
L(s, ρ; L/K) extends to an entire function when the character of ρ does not
contain the trivial character.
Thus, essentially the pole of a Dedekind zeta function ought to come from
that of the Riemann zeta function. Artin’s conjecture is still open although
it has been proved in a few cases. A consequence of Artin’s reciprocity law is
the statement (weaker than Artin’s conjecture) that these L-functions extend
to meromorphic functions for any s.

Automorphic L-functions and Langlands program

The whole point of view ever since Artin defined his L-functions shifted to
viewing everything in the powerful language of representation theory. Clas-
sical modular forms for subgroups of SL2(Z) started to be viewed as repre-
sentations of SL2(R). More generally, representations of adele groups (to be
defined below) surfaced as the principal objects of study. We have already
alluded to the fact that Ramanujan-Petersson conjecture and Selberg conjec-
ture could be unified in the adelic framework. In fact, we also mentioned in
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passing that Tate’s thesis afforded the first understanding of why the Gamma
factors appeared in the functional equation for the Riemann zeta function.
Let us describe the adelic setting briefly now.
A basic understanding now is that to do number theory (to ‘know’ Q) or
any algebraic number field K is to look at all possible notions of distance
on K. For example, the usual notion of distance on Q as a subset of R
keeps the number theory of Q hidden. If p is a prime number, there is a
‘p-adic distance’ defined as |x − y|p = p−ordp(x−y), where ordp(p

ta/b) = t
for any non-zero rational number pta/b where a, b are indivisible by p. One
takes Ordp(0) = ∞ and |0|p = 0. So, a number which is divisible by a high
power of p is close to zero in this distance ! Our usual intuition based on
the geometry of Euclidean spaces takes a beating here - for instance, every
triangle is isoceles, every point inside a disc is its center etc. ! This is be-
cause the p-adic distance has the property that it is nonarchimedean (that
is, |x− y|p ≤ max(|x− z|p, |z − y|p) for any x, y, z); in particular, |nx| = |x|
for all natural numbers n. So, given x, y with |x|p < |y|p, one cannot choose
n such that |nx|p is bigger than |y|p. Ostrowski showed that the possible
distinct notions of distance on Q are the usual archimedean one coming from
R and the p-adic ones for primes p. Also, just as R is constructed from Q by
a process of completion with respect to the usual distance, there are p-adic
completions of Q to which the notion of p-adic distance extends. These are
fields called the p-adic numbers Qp. They are locally compact like R is. But,
they are different (much nicer !) from R in many ways. The nonarchimedean-
ness shows, for example, that a series in Qp converges if and only if the terms
converge to 0. Unlike R, there is a subring of Qp is called the p-adic integers
which form a compact subset. Akin to viewing real numbers as decimals,
one may think of Qp as consisting formally of series of the form

∑∞
n=−r anp

n

where r is an integer and the ‘digits’ an’s are between 0 and p − 1. While
adding and multiplying such numbers, one adds them and multiplies as if
they were formal series but one has to rewrite the expressions so that the
resulting expression has digits between 0 and p − 1. The p-adic integers Zp

can be thought of as those series which have no terms of negative degree.
Note that Qp =

⋃
n≥1 pnZp. The p-adic integers is also the closure of Z in Qp

for the p-adic completion.
More generally, for any number field K (with ring of integers O), one has
the P -adic completion for each prime ideal of O. The point is that every
ideal is uniquely a product of prime ideals even if a similar unique decom-
position does not hold good for elements of O. These P -adic topologies are
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nonarchimedean and are all mutually inequivalent. There are also [K : Q]
archimedean distance functions on K extending the usual one on Q although
some of them may be equivalent. The inequivalent ones are called places of
K. It is in this regard that Tate’s thesis tells us that the Gamma factors
in the functional equation for ζK(s) are ‘Euler factors’ corresponding to the
archimedean places of K. If v is a place of K, the completion Kv is a locally
compact field - it is R or C when v is archimedean and a finite extension field
of Qp when v corresponds to a prime ideal P and P ∩ Z = pZ. The closure
of O in Kv is a compact subring Ov when v is nonarchimedean. The best
way to study K is to introduce the adele ring AK of K which is a certain
locally compact ring. The adele ring of K is defined as the set of all tuples
(xv)v with xv ∈ Kv where all but finitely many of the xv are in Ov. Note that
for any x ∈ K, the ‘diagonal embedding’ (x, x, · · ·) is in AK . To define the
topology on adeles, consider any finite set S of places of K containing all the
archimedean ones. The product ring

∏
v∈S Kv × ∏

v 6∈S Ov is locally compact
as S is finite. As S varies, these products form a basis of neighbourhoods
of zero for a unique topology on AK for which it is locally compact. The
addition and multiplication on AK are continuous functions for the adelic
topology. The diagonal embedding x 7→ (x, x, · · · , ) maps K as a discrete
subgroup of AK .
A natural way to arrive at the adeles is via harmonic analysis. For example,
if the abelian group Q is regarded with discrete topology, then the compact
abelian group which is dual to it (its group of continuous characters) can be
computed from first principles. It turns out to be the quotient group AQ/Q.
Here Q is viewed via its diagonal embedding. The situation is a generaliza-
tion of the duality between Z and R/Z.
More generally, when we have a matrix group like GLn(K) (or more gen-
erally an algebraic subgroup G ⊂ GLn defined over K), one can natu-
rally consider the groups G(Kv) and G(Ov) for all places v of K. The
groups GLn(Kv) are locally compact and although GLn(Ov) is not com-
pact, it is compact modulo the scalar matrices. In particular, one has the
‘adelic group’ G(AK) which has a basis of neighbourhoods of the identity
given by

∏
v∈S G(Kv) × ∏

v 6∈S G(Ov) as S varies over finite sets of places
containing all the archimedean places of K. The diagonal embedding of
G(K) in G(AK) embeds it as a discrete subgroup. Unlike AK/K which
is compact, the quotient space GLn(AK)/GLn(K) (not a group) is not
compact; it does not even have finite ‘measure’ for a Haar measure of the
adele group. However, the finiteness of measure holds modulo the group
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Z = {diag(t, t, · · · , t) ∈ GLn(AK)} of scalar matrices in GLn(AK).

Therefore, for a Grossencharacter ω (a character of the group GL1(AK)/GL1(K)),
it makes sense to consider the following Hilbert space consisting of measur-
able functions on the quotient space GLn(AK)/GLn(K) with certain prop-
erties which remind us of transformation properties of modular forms. This
is the Hilbert space L2(GLn(AK)/GLn(K), ω) of those measurable functions
φ which satisfy :
(i) φ(zg) = ω(z)φ(g), z ∈ Z,
(ii)

∫
GLn(AK)/Z.GLn(K) |φ(g)|2dg < ∞.

The subspace L2
0(GLn(AK)/GLn(K), ω) of cusp forms is defined by the ad-

ditional conditions corresponding to any parabolic subgroup. The latter are

conjugates in GLn of ‘ladder’ groups of the form Pn1,···,nr = {




g1 · · · · · ·
0 g2 · · ·
...

. . . . . .
...

0 · · · 0 gr



}

where gi is an ni × ni invertible matrix. The standard parabolic Pn1,···,nr is

a semidirect product of its unipotent radical U = {




In1 · · · · · ·
0 In2 · · ·
...

. . . . . .
...

0 · · · 0 Inr



}

and GLn1 × · · · ×GLnr . Any parabolic subgroup P has a similar semidirect
product decomposition P = M ∝ U . The parabolic subgroups are character-
ized by the condition that they are closed subgroups such that GLn(C)/P (C)
is compact. The additional ‘cuspidality’ condition for a parabolic subgroup
P is ∫

UP (AK)/UP (K)
φ(ug)du = 0 ∀ g ∈ GLn(AK).

The adele group acts as unitary operators by right multiplication on the
Hilbert space L2(GLn(AK)/GLn(K), ω). It leaves the space of cusp forms
invariant. By definition, a subquotient of this representation is called an
automorphic representation of GLn(AK). Moreover, a subrepresentation of
the representation on cusp forms is said to be a cuspidal automorphic repre-
sentation. One further notion is that of an admissible representation of the
adele group - this is one which can contain any irreducible representation of
a maximal compact subgroup of the adele group only finitely many times.
It is a theorem of D.Flath which tells us that any irreducible, admissible
representation of the adele group is a ‘restricted’ tensor product of unique
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irreducible representations of GLn(Kv). Further, for an admissible automor-
phic representation π = ⊗vπv, the representation πv belongs to a special
class known as the unramified principal series for all but finitely many v.
An unramified principal series representation πv is one whose restriction to
GLn(Ov) contains the trivial representation; a certain isomorphism theorem
due to Satake shows that corresponding to πv, there is a conjugacy class in
GLn(C) of a diagonal matrix of the form

Av = diag(N(v)−z1 , · · · , N(v)−zn)

for some n-tuple (z1, · · · , zn) ∈ Cn.
Corresponding to an admissible, automorphic representation π = ⊗vπv,
Langlands defined an L-function. If S is the finite set of places outside
of which πv is unramified principal series, define for v 6∈ S,

L(s, πv) = det(1− AvN(v)−s)−1.

If LS(s, π) :=
∏

v 6∈S L(s, πv), then Langlands proved that this product has
a meromorphic extension to the whole complex plane. Defining L(s, πv) for
v ∈ S in a suitable manner, it also follows that L(s, π) =

∏
v L(s, πv) has

meromorphic continuation, and a functional equation. If π is cuspidal also,
then Godement & Jacquet showed that L(s, π) is an entire function unless
n = 1 and π = |.|t for some t ∈ C.
Ramanujan-Petersson conjecture :
If π is cuspidal automorphic, then the eigenvalues of Av have absolute value
1 for all v. Equivalently, for such a π, the matrix coefficients of πv, for each
prime p, belongs to L2+ε(GLn(Qp)/Z(Qp)) for any ε > 0.
Note that Selberg conjecture can be interpreted as asserting that π∞ is a
tempered representation of GLn(R).

Langlands Reciprocity conjecture :
Let L/K be a Galois extension of number fields and let G be the Galois group.
Let (ρ, V ) be an n-dimensional complex representation of G. Then, there is a
cuspidal automorphic representation π of GLn(AK) such that L(s, ρ; L/K) =
L(s, π).

This is just Artin’s reciprocity law (a theorem!) when ρ is 1-dimensional.
There are also other conjectures of Langlands which imply that the auto-
morphic L-functions multiplicatively generate all the L-functions like the
Dedekind zeta functions, Hasse-Weil zeta functions etc. One has :
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Grand Riemann Hypothesis
All the zeroes of L(s, π) for a cuspidal automorphic representation π, lie on
Re(s) = 1/2.
The Grand Riemann Hypothesis has several concrete number-theoretic con-
sequences. For instance, it implies the Artin primitive root conjecture which
asserts that any non-square a 6= −1 is a primitive root for infinitely many
primes.

Selberg’s Program

For what general L-functions can the RH be formulated meaningfully ? The
final section discusses this and it is a program started by Selberg. One defines
the Selberg class S consisting of those complex functions F (s) which satisfy
the following hypotheses :
(i) F (s) = 1 +

∑
n≥2

an

ns for Re(s) > 1.
(ii) F (s) has a meromorphic continuation to the whole complex plane and
there is some m so that (s− 1)mF (s) is holomorphic of finite order.
(iii) There are positive real Q,α and complex ri with Re(ri) > 0 and a
complex number w of absolute value 1 such that the function

Φ(s) := QsF (s)
d∏

i=1

Γ(αis + ri)

satisfies the functional equation

Φ(s) = wΦ(1− s̄).

(iv) F (s) =
∏

p exp(
∑∞

k=1 bpkp−ks) with bpk = O(pkθ) for some θ < 1/2.
(v) (Ramanujan/Riemann Hypothesis ) For any ε > 0, one has an =
O(nε).

It is an expectation that the class of funcions satisfying the first 4 axioms
automatically satisfy the fifth. If this turns out to be true, then we would have
a characterization of all Dirichlet series for which the Riemann Hypothesis
holds good.
All the familiar L-functions studied so far are in the Selberg class or are
conjectured to be so. Any function in the Selberg class can be factorized
into ‘primitive’ functions - this is a theorem due to Selberg, Conrey and
Ghosh. Selberg predicted a certain type of orthonormal system in S; this
has consequences like the uniqueness of the factorization into primitives !
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Selberg’s Conjecture :
For any primitive function F ∈ S, one has

∑

p≤x

|ap(F )|2
p

= log log x + O(1).

For primitive functions F 6= G ∈ S, one has

∑

p≤x

ap(F )ap(G)

p
= O(1).

Artin’s conjecture on the entirety of the Artin L-functions is a consequence
of the Selberg conjectures. There are quite a few results in operator theory
and noncommutative geometry related to the theme of Riemann Hypothesis
that we have not touched upon but that is inevitable as must be with a
fundamental theme as this. In conclusion, one might say that the Riemann
Hypothesis really is not an isolated problem whose solution is an end in itself
but a beacon which shines its light on all of mathematics, generating new
and beautiful byproducts.

26


