
Some exercises for tutorials
AIS on Representation theory

ISI Bangalore, June 2010
B.Sury

The first 5 problems are on elementary representation theory.
The problems 6 to 18 are on semisimple rings and group algebras.
The problems 19 and 20 are on linear groups and Burnside lemma.

The problems 21 (repeating number 3) to 28 are on character theory.

1. If t 6= 0 is a real number, show that
(

1 t
0 1

)
is conjugate to

(
1 −t
0 1

)

in GL2(R) but not in SL2(R).

2. Show that the only abstract homomorphism from SL2(R) to U(n) is
the trivial one.

3. Let G ≤ GLn(C) be a finite group. If
∑

g∈G trace(g) = 0, prove that∑
g∈G g is the zero matrix.

4. Prove that the map

B : Mn(C)×Mn(C) → C; (X, Y ) 7→ trace(XY )

is a nondegenerate bilinear form.
‘Nondegenerate’ means that if B(X, Y ) = 0 for all Y , then X = 0.
This is used in the proof of Burnside’s lemma.

5. Consider the 4-dimensional real representation of the quaternion group
G = {±1,±i,±j,±k} on the real vector space H := {a+ bi+ cj + dk :
a, b, c, d ∈ R} given by left multiplication. Prove that it is irreducible.

6. Let α, β : M → N be A-module homomorphisms for a commutative
ring A. Assume N is semisimple and that kerα ⊆ kerβ. Then, prove
that there exists an A-module homomorphism θ : N → N such that
β = θ ◦ α.

7. (a) Is Z a semisimple ring? Is Q a semisimple ring?
(b) What are all the semisimple Z-modules? What are all the semisim-
ple A-modules for a PID A?
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8. Prove that the ring A = C([0, 1],R) of continuous real-valued functions
on [0, 1] is not a semisimple ring by showing that the ideal I = {f ∈
A : f(0) = 0} is not a direct summand.

9. (a) Show that the center of a left simple ring is a field.
(b) Prove that a ring A is the direct sum of left ideals I1, · · · , Ir if,
and only if, there are ‘idempotents’ ei ∈ Ii (that is, elements satisfying
e2
i = ei) such that 1 = e1 + · · ·+ er and eiej = 0 for i 6= j.

10. Let A = Q[X] and let M = Q2 be the A-module where any polynomial
f acts on a vector (x, y) as

f(
(

0 1
0 0

)
)
(

x
y

)
.

Is M a semisimple A-module?

11. Let G be any group and H, a subgroup of finite index. Let K be a field
whose characteristic does not divide the index [G : H]. Modify the
proof of Maschke’s theorem to show that any left K[G]-module which
is semisimple as a K[H]-module is also semisimple as a K[G]-module.

12. Prove that for any finite group G and any ring A, the group ring A[G]
contains zero divisors.

13. Prove that for any infinite group G and any ring A, the group ring
A[G] is never semisimple.

14. For any two groups G1 and G2, show that there is a ring A such that
A[G1] ∼= A[G2].
Hint : Get a group G0 such that G0 ×G1

∼= G0 ×G2.

15. Find m 6= n and rings A 6∼= B such that Mm(A) ∼= Mn(B).

16. Show that the group algebra C[R>0] of the group R>0 is not a semisim-
ple ring.
Hint : Consider C2 as a module where t ∈ R>0 acts by sending (z, w)
to (z + (logt)w, w).

17. (a) If G is the cyclic group of order n and K is any field, prove that
the group algebra K[G] ∼= K[X]/(Xn − 1).
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(b) If G =< g > is cyclic of order n, consider the ‘left regular repre-
sentation’

ρ : G → GL(C[G]); g 7→ (
∑
x

αxx 7→
∑
x

αxgx).

Find the matrix of ρ(gi) with respect to the ordered basis {1, g, · · · , gn−1}
of C[G].
(c) If G =< g > is the group or order 5, show that 1 − g − g4 and
1− g2 − g3 are units in the group ring Z[G].

18. (a) For any finite group G and any field K, prove that

I = {α
∑

g∈G

g : α ∈ K}

is a two-sided ideal in K[G].
(b) If the characteristic of K divides O(G), prove that I above is not
a direct summand of K[G].
(c) If characteristic of K divides O(G), show that there exists an ele-
ment α ∈ K[G] such that α2 = 0.

19. Let G ≤ GLn(C) be a finite group. If G has noncyclic center, prove
that the underlying action of G on Cn is reducible.

20. Let ρ : G → GLn(C) be a representation of a (not necessarily finite)
group G. Suppose there exists a natural number N so that ρ(g)N = Id
for all g ∈ G. Prove that the image of ρ is finite.

21. Let G ≤ GLn(C) be a finite group. If
∑

g∈G trace(g) = 0, prove that∑
g∈G g is the zero matrix.

22. Consider the following character table of a finite group G:

w x y z
χρ1 1 1 1 1
χρ2 1 e2πi/3 e4πi/3 1
χρ3 1 e4πi/3 e2πi/3 1
χρ4 3 0 0 -1

Find: (a) O(G), (b) which one of w, x, y, z is central, (c) cardinalities
of the conjugacy classes and (d) Dimensions of the irreducible repre-
sentations.
Can you also determine G up to isomorphism in this case?
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23. Let G be a finite abelian group and Ĝ denote the group Hom(G,C∗).
(a) Prove that {∑

g
χ(g)g : χ ∈ Ĝ} is a basis of C[G].

(b) For any element α =
∑
g

ag · g in C[G], compute the matrix of α

with respect to the two bases {g : g ∈ G} and {∑
g

χ(g)g : χ ∈ Ĝ} and

conclude that
det(agh−1) =

∏

χ∈Ĝ

∑

g∈G

χ(g)ag.

24. Deduce from Burnside’s pαqβ-theorem the following generalization(!)
due to Philip Hall :
If O(G) = pα1

1 · · · pαr
r and G contains subgroups of orders O(G)/pαi

i

for each i ≤ r, then G must be solvable.

25. (i) Let C1, · · · , Cs denote the conjugacy classes of a finite group G.
Prove that the number of solutions of the equation x1x2 · · ·xs = 1 in
G is given by the sum

|C1| · · · |Cs|
|G|

∑

χ irred

χ(x1) · · ·χ(xs)
χ(1)s−2

.

(ii) Deduce that an element g ∈ G is a commutator xyx−1y−1 if, and
only if,

∑
χ irr

χ(g)
χ(1) = 0 where the sum is over all irreducible complex

characters.
Hint : Write Ci =

∑
g∈Ci

g and to find a1 in C1 · · · Cs =
∑

i aiCi, apply
various irreducible characters and use Schur’s second orthogonality
relations.

26. Let G be a finite group and let C denote the ‘Casimir element’ in C[G]
defined as

∑
x,y∈G xyx−1y−1. (a) Prove, for each g ∈ G,

∑
x,y xygx−1y−1 =

gC.
(b) For each g ∈ G, if Nn(g) denotes the number of solutions (x1, · · · , xn)
with xi ∈ G such that x1x2 · · ·xnx−1

1 x−1
2 · · ·x−1

n = g, then show in
C[G] that ∑

g∈G

N2k(g)g = Ck

and ∑

g∈G

N2k+1(g)g = Ck|G|.
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27. Prove Burnside’s result that every nontrivial irreducible complex char-
acter χ of a finite group G satisfies χ(g) = 0 for some g ∈ G.

28. Let G be a finite group and f, g : G → C be class functions. Prove

Plancherel’s formula: < f, g >=
s∑

i=1
< f, χi >< χi, g > where

χ1, . . . , χs are the irreducible characters of G.
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