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Throughout, G denotes a connected, reductive algebraic defined over an ar-
bitrary field K. As we go along, we recall the definitions of various objects
which have been studied in earlier lectures. References are sometimes made
to particular sections of Springer’s text.

Introduction

We have already seen the structure and classification of connected, reductive
groups over algebraically closed fields. In a nutshell, here is a quick recall.
There exist Borel subgroups (all of them are conjugate) and maximal tori
(all of them are conjugate). The root system (or more generally, the root
datum) of the group can be abstractly characterized and not only determines
the group but the group itself can be built from an abstract root datum. For
instance, if G is semisimple, T is a maximal torus, then the character group
X of T has a finite generating subset Φ of roots (consisting of those nontrivial
characters α which act on an additive one-parameter subgroup of G via α)
satisfying :
there exists a map α 7→ α∨ from Φ to the Z-dual X∨ such that < α, α∨ >= 2
and the reflection τα : x 7→ x− < x, α∨ > α leaves Φ stable. The semisimple
groups are completely classified by the pair (X, Φ); in particular, the classi-
fication (remarkably) does not depend on the (algebraically closed field) K
one is working over. In between, one had a Bruhat decomposition, a de-
scription of all parabolic subgroups (closed subgroups containing some Borel
subgroup) and a Levi decomposition for each parabolic subgroup. In what
follows, we have a connected, reductive group defined over some arbitrary
field K. The above model generalizes (thanks to Borel-Tits structure the-
ory) to yield the analogous model where Borel subgroups are replaced by
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minimal parabolic subgroups defined over K and maximal tori are replaced
by maximal K-split tori. There are analogous Bruhat and Levi decomposi-
tions. The root datum over K̄ - the algebraic closure of K - gets jacked up to
an ‘indexed’ root datum called the Tits index. That is, one has an action of
the Galois group of the separable algebraic closure of K on the root datum.
Roughly speaking, each orbit of simple roots over K̄ gives one simple K-root
and the classification is akin to that of quadratic forms over an arbitrary
field. There is an ‘anisotropic kernel’ similar to the anisotropic part of a
quadratic form and the classification is done modulo this anisotropic kernel
which can be described in most cases explicitly as a sort of unitary group
of some σ-Hermitian form over a division algebra. Similar to the Dynkin
diagram, one has the Tits index - a diagram from which one can determine
all the corresponding objects like K-root system etc. Roughly speaking, one
starts with the Dynkin diagram (over Ksep), and considers the orbits of the
simple roots under the action of Gal(Ksep/K). Orbits of those simple roots
which restrict nontrivially on a maximal K-split subtorus (that is give a K-
root) are circled. Each such circled orbit gives one simple K-root. Also, the
roots in an orbit are shown close by putting one below the other. Galois
cohomology will have a role to play.
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1 Levi subgroups, Bruhat decomposition over

K

Theorem 1.
(i) Let P, Q be nontrivial parabolic subgroups defined over K. Then, P ∩ Q
is defined over K and contains a maximal K-split torus of G.
(ii) For any parabolic subgroup P defined over K, the unipotent radical Ru(P )
is automatically defined over K and K-split as well. Moreover, P contains
Levi subgroups defined over K and any two Levi subgroups of P defined over
K are conjugate by a unique element of Ru(P )(K).

Look back.
Recall certain subgroups P (µ) defined over K which arise as ‘contracting’ ele-
ments with respect to some cocharacter µ of G defined over K. That is, P (µ)
consists of all those x for which the morphism φ : Gm → G; a 7→ µ(a)xµ(a)−1

extends to a morphism φ̃ on A1. One writes lima→0µ(a)xµ(a)−1 = φ̃(0). For
instance, if G = GLn and µ : a 7→ diag(a, 1, 1, · · · , 1), then P (µ) consists
of all matrices X in GLn with x21 = x31 = · · · = xn1 = 0. We have seen
earlier (while studying reductive groups over algebraically closed fields) that
these are parabolic subgroups. Indeed, P (µ) contains the Borel B which
corresponds to a set of positive roots such which contains all roots α with
< α, µ >> 0. To obtain such a positive system, one chooses some λ close to µ
in the real vector space V generated by the cocharacters such that (α, λ) 6= 0
for any root α - this is possible because there are only finitely many roots
and the subspaces of V orthogonal to the roots cannot make up the whole of
V . Then, one takes R+ = {α : (α, λ) > 0}.

Further, any parabolic subgroup of G (over the algebraic closure of K) arises
as above by means of some cocharacter µ of G. In fact, such a parabolic
containing the above B, must be of the form PI where I is the set of all
simple roots orthogonal to µ; that is, PI = P (µ). It was also proved (§ 13.4)
that when µ is defined over K, then so are P (µ) and its reductive subgroup
Z(µ) := centralizer of Im(µ) (note that centralizers of tori in reductive groups
are reductive). The definability over K mentioned above was checked directly
for GLn first and deduced for general G by computing the Lie algebra and
using the fact that the intersection of two K-groups is defined over K if the
Lie algebra of the intersection is the intersection of the Lie algebras. The
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fact that parabolic subgroups defined over K are precisely the K-groups P (µ)
arising from cocharacters µ defined over K was proved in earlier lectures - this
used the fact over the algebraic closure along with the action of the Galois
group on the character and cocharacter groups of a maximal torus in P
defined over K. He also proved in the same lemma 15.1.2 that the unipotent
radical Ru(P ) of a parabolic subgroup P defined over K is a connected K-
group which is K-split. Note that if P = P (µ), then Ru(P ) consists of all
those elements x ∈ P for which the map a 7→ µ(a)x for a ∈ Gm and 0 7→ 1 is
a morphism from A1 to G. The result (theorem 13.4.2) quoted above shows
that the product map Z(µ)×Ru(P ) → P (µ) is a K-isomorphism of varieties.

Proof of theorem 1.
First, we observe that each minimal parabolic subgroup P0 defined over K
contains a maximal K-split torus of G. Indeed, due to the above identification
of P0 with a P (µ), it follows that for some maximal K-split torus S of G
and a system of positive roots in the K-root system corresponding to S, the
minimal parabolic P (µ) is generated by Z(S) and all U(a) with a, a positive
K-root. Now, if P,Q are parabolic subgroups defined over K, then we may
deduce that the intersection P ∩ Q is again defined over K provided we
can check that dim L(P ∩Q) = dim L(P ) ∩ L(Q)). But, as P ∩Q certainly
contains a maximal torus of G, the above dimensions match (exercise 8.1.12).
Thus, P ∩Q is defined over K. Now, we have observed above that Ru(P ) is
also defined over K. So, R := (P ∩Q)Ru(P ) is a parabolic subgroup which
is also defined over K (as Ru(P ) and P ∩Q are). By what we proved above,
this R must contain a maximal K-split torus; hence, so does the quotient
group R/Ru(P ). This proves (i) of the theorem.
To prove (ii), note that we have already recalled above for any parabolic
subgroup P defined over K that Ru(P ) is automatically defined over K
and K-split. Also, identifying P with P (µ), the reductive group Z(µ) is
defined over K as well and the product map Z(µ) × Ru(P (µ)) → P (µ) is
a K-isomorphism. Thus, Z(µ) is a Levi subgroup of P by definition (and
is defined over K). If L is any other Levi subgroup of P defined over K,
consider any maximal torus T of G defined over K which is contained in
L (this always exists as seen by looking at the subgroup generated by the
centralizers of semisimple elements in the Lie algebra - see 13.3.6).

Now, the key point is that T determines the Levi subgroup of P ; that is, it
does not depend on the Borel subgroup containing T that it contains. This
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is because any two Borels containing T are conjugate by W (T ). From this,
it follows that L must also be of the form Z(λ) for some cocharacter λ of
T . Now, Z(L)0 is a torus contained in the maximal torus T of L. As any
torus splits over Ksep, the separable closure of K, both the K-torus T and
the Ksep-torus Z(L)0 are split over Ksep. The latter is defined over K too
because Z(L)0(Ksep) is invariant under the Galois group of Ksep over K. Now,
by definition, L = Z(λ) = CG(Imλ) which is, therefore, a fortiori, equal to
CG(Z(L)0). Using conjugacy of maximal tori in P = P (µ) and the uniqueness
of the Levi subgroup containing a maximal torus, we have x ∈ Ru(P ) with
Z(λ) = L = xZ(µ)x−1. If u ∈ Ru(P ) normalizes Z(µ), it centralizes it
because the product map Z(µ)×Ru(P ) → P (µ) is an isomorphism of varieties
as we saw. In other words, the above element x ∈ Ru(P ) is unique. As
transporters between K-subgroups are defined over K, the element x must
be in G(K). The proof is complete.

Bruhat decomposition for G(K)
Assume that G contains a proper parabolic subgroup defined over K (equiv-
alently, G contains a noncentral K-split torus; that is, G is K-isotropic as
defined in the next section). Let P be a minimal parabolic subgroup defined
over K. Let S ⊂ P be a maximal K-split torus. Consider the K-Weyl group
WK = NG(S)/CG(S) - its elements w can be represented by elements w̄ of
NG(S)(K) (this essentially follows from the Borel fixed point theorem). Then
G(K) is the disjoint union of P (K)w̄P (K) as w varies over WK.
Proof. Let us first show that G(K) can be expressed as such a union of dou-
ble cosets; let g ∈ G(K). Let T ⊂ P ∩ gPg−1 be a maximal K-split torus;
then T = x−1Sx for some x ∈ P (K). So, g−1x−1Sxg = g−1Tg ⊂ P . Again,
by the P (K)-conjugacy of the maximal K-split tori S and g−1x−1Sxg, we
have y ∈ P (K) such that y−1g−1x−1Sxgy = S; that is, xgy ∈ NG(S)(K). In
other words, g = x−1(xgy)y−1 = x−1 ¯xgyy−1 ∈ P (K) ¯xgyP (K).
To prove uniqueness of the WK-component, assume

P (K)w̄P (K) = P (K)z̄P (K).

Now, if T is a maximal torus in P which is defined over K and contains
S, then WK can be considered as a subgroup of W = NG(T )/CG(T ) - it is
generated by the simple reflections with respect to the roots in the K-root
system (that is those roots which are nontrivial characters on S). Moreover,
in this manner, the elements of WK normalize the elements of the Weyl
group WL of the Levi subgroup L = CG(S) of P . Thus, by the Bruhat
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decomposition of G, we obtain z ∈ WLwWL = wWL which gives z−1w ∈
WL ∩WK . Since S ⊂ Z(L), we get z−1w = 1 in WK .

2 Indexed root data

Definitions
G is K-split if it contains a maximal torus which is K-split. If G contains
a noncentral K-split torus, it is said to be K-isotropic; otherwise, it is K-
anisotropic. G is said to be quasi-split over K if there exist a maximal K-split
torus S and a maximal torus T defined over K and containing S such that
nontrivial roots of T restrict nontrivially on S; this happens iff CG(S) = T
as follows from the fact that global and local centralizers correspond (5.4.7).
Clearly, K-split groups are quasi-split over K. These definitions come from
the theory of quadratic forms - for G = SO(f) for a nondegenerate quadratic
form over K, this means that G is K-isotropic iff f represents zero over K,
and G is K-split iff f is a totally isotropic (that is, an orthogonal sum of
hyperbolic planes).

Look back.
As we saw, the parabolic subgroups defined over K of a connected reductive
group defined over K are the groups P (λ) where λ is a cocharacter of G
defined over K. Note that P = P (λ) = G iff Ru(P ) = {1} and so Z(λ) = G.
Thus, Im(λ) ≤ Z(G) which means that noncentral K-split tori exist, if
there are proper parabolic subgroups defined over K. The converse is also
true because if there are noncentral K-split tori, there exists λ defined over
K such that Z(λ) 6= G and so, P (λ) 6= G as seen by looking at its Lie algebra
(13.4.2 (ii) ).

Proposition.
G is quasi-split over K iff it contains a Borel subgroup defined over K.
Proof.
If G is quasi-split over K, then there is a maximal K-split torus S whose
centralizer T = CG(S) is a maximal torus of G and is defined over K. Choose
a cocharacter λ of S such that T = CG(S) = Z(λ). Thus, P (λ) (being
isomorphic to T ×Ru(P ) under the product map) is a solvable group defined
over K; that is, it is a Borel subgroup.
Conversely, if G contains a Borel subgroup B defined over K, this subgroup
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must be of the form B = P (λ) for some cocharacter λ of G defined over K.
Also, Z(λ) being a Levi part of P (λ) which happens to be solvable, we have
that Z(λ) is a torus defined over K. Now, Im(λ) is a K-split torus. If S is
a maximal K-split torus containing Im(λ), then CG(S) = Z(λ), which is, on
the one hand, a torus defined over K and, on the other hand a Levi subgroup
of P (λ) containing a maximal torus of G defined over K. This means Z(λ)
is a maximal torus of G and thus G is quasi-split over K.

Prelude.
From the root datum of G (which is an object over Ksep), we would like to
obtain an object over K which keeps track of the action of the Galois group
Gal(Ksep/K) on the various ingredients of the former. After defining such
an object, we will show that it breaks up into the corresponding objects for
semisimple groups and tori. In the next sections, we will show that these
objects can be characterized abstractly just as we did for abstract root data.

Look back.
Let G,S, T be as above. Let (X, Φ, X∨, Φ∨) be the root datum of G cor-
responding to T . Fix a simple system ∆ of Φ. Let ∆0 ⊂ ∆ be the subset
of those simple roots which restrict to the trivial map on S. We consider a
certain action τ of Γ = Gal(Ksep/K) on the set ∆ which gives a diagram
automorphism as follows. Looking at the map π : Φ → ΦK given by restric-
tion to S, it can be seen (15.5.1(ii)) that for any fixed system Φ+

k of positive
K-roots in ΦK , there is a system Φ+ of positive roots in Φ such that π maps
exactly the positives to the positives. Fix such a system Φ+. If γ ∈ Γ,
then γ.Φ+ is also a system of positive roots in Φ. Therefore, there exists an
element wγ in W such that wγ(γ.Φ+) = Φ+.

Definitions.
Define, for γ ∈ Γ, the permutation τ(γ) on ∆ given by α 7→ wγ(γ.α). This
is a continuous action. One calls (∆, ∆0, τ) the Tits index of G relative to
K, S, T . It turns out (see 15.5.5) that the index does not depend on the
choices of S, T . The tuple (X, Φ, X∨, Φ∨, D0, τ) is called the indexed root
datum of G over K.
We now define an abstract indexed root system. Firstly, let (X,R,X∨, R∨)
be an abstract root datum. If D is a basis of R, R+ is the corresponding
positive system, and D∨ is a basis of R∨ corresponding to (R+)∨, one calls
(X, D, X∨, D∨) a based root datum. An abstract indexed root datum is a 6-
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tuple (X, D, X∨, D∨, D0, τ) where (X, D, X∨, D∨) is a based root datum, D0

is a subset of D and τ is a continuous homomorphism from Γ = Gal(Ksep/K)
to Aut(X) stabilizing the subsets D,D0.

Look back.
Recall that an isogeny θ from G to G1 is a surjective homomorphism with
finite kernel. If T is a maximal torus of G, T1 = θ(T ) and Ψ = (X,R,X∨, R∨)
and Ψ1 = (X1, R1, X

∨
1 , R∨

1 ) are root data of G and G1 corresponding to T
and T1, then the induced homomorphism f(θ) : X1 → X is an isomorphism
onto a subgroup of finite index. Let (uα)α∈R, (uα1)α1∈R1 be realizations of
R, R1 in G,G1 respectively. Now, there is a bijection b : R → R1 such that
θ(Uα) = Ub(α). Writing, for each fixed α ∈ R, θ(uα(x)) = ub(α)(h(x)) for all
x ∈ Ksep where h is a polynomial such that h(α(t)x) = b(α(θ(t)))h(x) for all
x - hence h is homogeneous. As h is also evidently additive, there exists a
power q(α) of the characteristic exponent of K such that h is the polynomial
T q(α) upto a constant multiple. Therefore, we have

f(b(α)) = q(α)α , f∨(α∨) = q(α)(b(α))∨.

Definitions.
With θ : G → G1 an isogeny and the notations as above, one calls θ a central
isogeny if q(α) = 1 for all α. This is always the case if K has characteristic
0. If θ is also defined over K, it is called a central K-isogeny. Let S be a
maximal K-split torus of G and S1 = θ(S); then S1 is a maximal K-split
torus of G1. If we view X1 as a subgroup of X by means of the homomorphism
f (which is viewed as the inclusion map). Then R1 = R, b = identity. Look
at the indexed root datum of G where we change notation and write it as
(X, D, X∨, D∨, D0, τ). Then, the corresponding indexed root datum of G1 is
(X1, D, X∨

1 , D∨, D0, τ). The Galois group Γ which acts continuously on X,
stabilizes the subgroup X1.

Lemma.
Let G, T,X be as before and let X1 be any subgroup of finite index in X which
is stabilized by Γ. Then, there exists a connected reductive group G1, and a
central K-isogeny θ : G → G1 such that X1 arises as above for G1.
Proof.
Now there is a K-torus T1 with X(T1) = X1 and a K-isogeny φ : T → T1

such that θ induces the inclusion of X1 in X. If we prove the lemma in the

8



case when X/X1 is an elementary abelian p-group for an arbitrary prime p,
then the general case follows by induction. When p is not the characteristic
of K, Ker(φ) is a finite subgroup A of T (Ksep) and A ∼= X/X1. As A =
Ker (φ), it is Γ-stable, and hence defined over K (being closed). Being a
finite normal subgroup of G, it is central. Then G1 = G/A with the natural
map, works. If p equals the characteristic of K, the Lie algebra a =Ker
(dφ) is a p-subalgebra of the p-Lie algebra Lie(T ). As it is defined over K
and centralized by Ad (G), there exists a quotient G/a and a corresponding
quotient homomorphism (see 12.2.4). Taking G1 to be this quotient, we are
done.

Corollary.
The based root data of connected reductive K-groups G can be determined
from the corresponding data for tori and for semisimple groups.
Proof. [G,G] is a connected semisimple K-group and the radical R(G) is a
K-torus. The product map [G,G]×R(G) → G is a central K-isogeny.

Behaviour of root data under field extensions

Our groups G over K will split over certain finite extensions L; so, it is useful
to have a way of passing from a group over L to one over K. Let L/K be
a finite extension. If G1 is a connected, reductive L-group, one can apply
Weil’s restriction of scalars (this was done by Weil for the separable case and
by Oesterle in general) to get a reductive group over K. This is denoted
by RL/KG1. There exists a surjective L-homomorphism π : RL/KG1 → G1

with the universal property that for any K-group H and a L-homomorphism
φ : G1 → H, there is a unique K-homomorphism ψ : H → RL/KG1 such
that φ = π ◦ ψ. More than the definition or the proof of the existence using
a universal property, it is useful to know this group through its important
property : (RL/KG1)(A) = G1(L ⊗K A) for each K-algebra A. If Γ1 =
Gal(Ksep/L), then Γ/Γ1 can be identified with the set Σ of K-embeddings
of L in Ksep. In fact, G := RL/KG1 is isomorphic to the product GΣ

1 and
is, therefore, a connected, reductive K-group. Note also that dim G = [L :
K]dim G1. If S1 is a maximal L-split torus, and T1 is a maximal torus of G1

defined over L, then T = RL/KT1 is a maximal torus of G defined over K
and contains a K-split torus S := the maximal K-split subtorus of RL/KS1.

Lemma.
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With the above notations, S is a maximal K-split torus of G and dim S =
dim S1. Moreover, if (X1, D1, X

∨
1 , D∨

1 , (D1)0, τ1) is an indexed root datum of
G1, then the corresponding indexed root datum of G satisfies X = XΣ

1 , X∨ =
(X∨

1 )Σ etc.

Proof.
As S1 is a L-split torus Gn

m, the maximal K-split subtorus S of RL/KS1 =
RL/KGn

m is n (see 13.1.5); that is, dim S = dim S1. Also, π(S) = S1 where
π is the canonical L-homomorphism from G = RL/KG1 to G1. If S ′ is a K-
split torus in G containing S, then π(S ′) is an L-split torus of G1 containing
S1 and, thus, equals it. If S ′ 6= S, then Ker π would contain a nontrivial
subtorus of S ′ defined over K (as Γ acts trivially). But the universal property
implies (see 12.4.3) that Ker π cannot contain any nontrivial, closed normal
K-subgroups. Thus, S = S ′; that is, S is maximal K-split torus of G. The
last assertions follow from generalities (see 11.4.22) on restriction of scalars.

3 Existence and uniqueness of root data for

split groups

Recall that corresponding to any K-root α, we defined a K-split unipotent
group U(a) whose Lie algebra is the sum of all weight spaces in Lie (G) whose
weights are positive integral multiples of α (the latter are either just α or
{α, 2α}). If G is K-split, then U(α) = Uα for all roots α ∈ R and these
are defined over K. One can choose a maximal torus T which is K-split
and one can choose realizations (uα)α∈R of R in G such that the morphisms
uα are all defined over K. If R+, D are fixed and B is the corresponding
Borel subgroup, it is defined over K as well. The indexed root datum is
of the form (X,D,X∨, D∨, ∅, id) and is, thus, determined by the based root
datum (X, D, X∨, D∨) and in turn, by B and T . One usually denotes this by
Ψ(G,B, T,K). If G1 is another K-split connected, reductive group, , then a
K-isomorphism θ from G onto G1 maps the based root datum Ψ(G,B, T,K)
isomorphically to the based root datum Ψ(G1, θ(B), θ(T ), K) - isomorphism
of based root data can be naturally defined. The following result shows that
the converse is true (that is, this is a version of the uniqueness theorem over
K).

Uniqueness theorem for K-split groups.
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Let G,G1 be K-split connected, reductive groups and Ψ = Ψ(G,B, T, K),
Ψ1 = Ψ(G1, B1, T1, K) be their based root data. Let f : Ψ1 → Ψ be an
isomorphism of based root data. Then, there exists a K-isomorphism θ :
G → G1 with θ(T ) = T1, θ(B) = B1 such that f is induced by θ. Moreover,
the K-isomorphism θ with these properties is unique up to conjugation by
an(y) element t of T with α(t) ∈ K for all α ∈ D.
Proof.
The existence of such a θ has been proved over Ksep. That is, if (uα)α∈R and
(uα1)α1∈R1 are realizations defined over K, then there exists θ : G → G1 such
that θ ◦ uα = uf−1(α) for all α ∈ R. We shall prove that θ is actually defined
over K. Now, since uα’s are defined over K, the Weyl group (of (G, T ))
elements

nα := uα(1)u−α(1)−1uα(1) ∈ G(K).

Thus, W := W (G, T ) has representatives in NG(T ) ∩ G(K). Let w =
sα1sα2 · · · sαr ∈ W be a reduced expression. Then, the element w̄ := nα1 · · ·nαr ∈
G(K) is uniquely determined by w (property of the root system as proved
in 9.3.2). Now θ(w̄) ∈ G1(K). So, the translates w̄Bw0B of the big cell are
also defined over K for various w in W . As these cover G, and θ restricted
to Bw0B is defined over K, it follows that θ itself is defined over K. To
prove the extent of uniqueness of θ, consider any other θ′ and get t ∈ T with
θ′(g) = θ(tgt−1) for all g ∈ G. As Int (t) is defined over K, and as it acts
on the K-group Uα by α(t), it follows that α(t) ∈ K for all α. Of course, t
could be arbitrary with α(t) ∈ K for all α ∈ R because, in this case, Int (t)
restricted to translates w̄Bw0B of the big cell, is defined over K and, hence
it is defined over K as a map on the whole of G.

Existence theorem for the K-split case
Let Ψ = (X, D, X∨, D∨) be a based root datum. Then, there exists a con-
nected, reductive K-split group G and a Borel B over K and a maximal torus
T ⊂ B which is K-split, such that Ψ = Ψ(G,B, T, K).
Proof. The proof is exactly that of the existence theorem over Ksep.

The adjoint group of a K-split group
Let G,B, T be as above; that is, G is K-split by assumption. Look at the
subgroup Q =< D >≤ X. Then the dual Q∨ can be identified with X∨/Q⊥

where Q⊥ is the annihilator of Q in X∨ under the pairing between X and
X∨. Now, G/Z(G)0 is a semisimple K-group whose character group is the
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rational closure Q̃ := {x ∈ X : Zx ∩Q 6= {0}} of Q in X (see 8.1.8). Recall
also that the rational closure is “double perp” i.e., Q̃ = (Q⊥)⊥. Let us see
what its based root datum is. We approach this using the existence theorem
above. Now, the subtorus of T generated by the images of α∨ is maximal in

[G, G], has character group ∼= X/(Q∨)⊥ and cocharacter group Q̃∨), one may
identify D∨ with its image in Q∨. By the existence theorem above, there is a
K-split connected, semisimple group with based root datum (Q, D,Q∨, D∨)
- this group is denoted by Gad and is called the adjoint group of G. Note
that semisimplicity of Gad is a consequence of the fact that Q =< D >. Let
us observe the relationship of the adjoint group with G/Z(G)0 is that there
is a K-isogeny G/Z(G)0 → Gad. Put π : G → G/Z(G)0 → Gad; this is a
K-homomorphism. Then, π(T ) is a maximal torus in Gad defined over K
and π ◦ uα = ũα is a realization of R in Gad where (uα)α∈R is a realization of
R in G defined over K.

Lemma.
(i) T̃ := {t ∈ T (K̄) : α(t) ∈ K ∀ α ∈ D} normalizes the group G(K).
(ii) π(T )(K) = π(T̃ ).
(iii) Gad(K) is generated by π(G)(K) and π(T̃ ).
Proof. The first statement follows because T (K) as well as all Uα(K) are
clearly normalized by T̃ . The second statement is a consequence of the fact
that π is a surjective homomorphism from T and Q is the character group of
π(T ). Finally, the last assertion follows from applying Bruhat decomposition
for Gad.

Lemma.
If (Int G)(K) is the group of inner automorphisms of G which are defined
over K, then there is an isomorphism Ψ(K) : (Int G)(K) → Gad(K).
Proof.
Fix a Borel B of G and a maximal torus T ⊂ B both defined over K. Let
σ ∈(Int G)(K); then σ(B) = gBg−1. As any two maximal tori over K are
conjugate in G(K), we may assume that σ(T ) = gTg−1. By the normalizer
theorem for Borels and the fact that normalizers of tori in connected solvable
groups are centralizers, it follows that σ =Int (gt) for some t ∈ T . As σ,Int g
are both defined over K, so is Int t. Looking at its action on the various Uα’s,
we get t ∈ T̃ . Further, σ determines the pair (g, t) up to the transformations
(g, t) 7→ (gt−1

1 , t1t) for t1 ∈ T (K). Therefore, by (ii) above, Ψ(σ) := π(gt)
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is well-defined and lies in Gad(K). If σ′ =Int (g′t′) is another element, then
σσ′ =Int (gtg′t′) = Int(g(tg′t−1)tt′) means

Ψ(σσ′) = π(g(tg′t−1)tt′) = π(gt)π(g′t′) = Ψ(σ)Ψ(g′t′)

since tg′t−1 ∈ G(K) by (i) above. If σ =Int gt ∈ Ker(Ψ), then gt ∈ T . So,
g ∈ T and thus we may take g = e. So α(t) = 1 for each root α means
t ∈ Z(G). Hence σ =Int t =id. Finally, (iii) above shows surjectivity of Ψ.

Diagram automorphisms as automorphisms of

G

Let G be a connected reductive K-split group as above. Let T be a maximal
torus which is K-split and let B be a Borel subgroup containing T . Also,
R, D as before, are the corresponding roots and simple roots respectively.
Consider the Dynkin diagram D defined by D and the corresponding (finite)
group A of its automorphisms. This finite group has a subgroup A0 which
consists of those elements which leave B, T invariant and fix R(G) = Z(G)0

pointwise. If G is an adjoint group, then since D is a basis of X, we have
A = A0. If G is semisimple and simply-connected, then also one has A0 = A
but, in general, they can be different. For instance, when G is semisimple of
type D2n with n ≥ 2, one can choose X such that A0 6= A.

Lemma.
Assume that G is semisimple (in addition to being K-split as before). We
have the following :
(i) Corresponding to any σ ∈ A0, there is a unique K-automorphism σ̃ of G
satisfying

σ̃(uα(x)) = uσ(α)(x) ∀ α ∈ D, x ∈ K.

As a consequence, σ 7→ σ̃ is a homomorphism from A0 to Aut(G)(K).
(ii) Each K-automorphism a of G fixing the center is of the form a′ ◦ σ̃ for
a unique a′ ∈ Int(G)(K) and σ ∈ A0.
Proof.
By the uniqueness theorem in the split case, we have that each σ ∈ A0

gives rise to constants cα’s in K∗ such that uα(x) 7→ uσ(α)(cαx) is a K-

automorphism. We may choose a suitable t ∈ T̃ := {t ∈ T (K̄) : α(t) ∈
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K ∀ α ∈ D} so that when we conjugate the above automorphism by t, the
new cα’s are all 1; call this σ̃. The uniqueness of σ̃ with the property

σ̃(uα(x)) = uσ(α)(x) ∀ α ∈ D, x ∈ K

follows from the fact that Uα’s generate G and each σ̃ ◦ uα is uniquely de-
termined in Uα (corresponding to any nontrivial element u ∈ Uα, there is a
unique nontrivial element u′ ∈ U−α such that uu′u ∈ NG(T ) as we saw in
8.1.4). This proves (i).
To prove (ii), let B be a fixed Borel containing T and defined over K.
Call D to be the basis of R determined by B. Exactly as in the proof of
the previous lemma, we see that there exists g ∈ G(K) with Int(g) ◦ a is
an automorphism fixing both B and T ; call this a′. Thus, again there is
t ∈ T̃ := {t ∈ T (K̄) : α(t) ∈ K ∀ α ∈ D} so that Int(t) ◦ a′ = σ̃ for some
σ ∈ A0.

Remarks.
Let G be semisimple, K-split as in the last lemma. The lemma gives us
(when applied for the adjoint group of G) that A0 acts on Gad as a group
of K-automorphisms. Denoting by Aut(G) to be the corresponding semidi-
rect product A0 ∝ Gad, it is clear that Aut(G) is a K-algebraic group with
(Aut(G))0 = Gad. The part (ii) of the lemma shows that Aut(G)(K) is ex-
actly the group of K-automorphisms of G. We write Int(G) for Gad from
now onwards and call it the group of algebraic inner K-automorphisms of G.
It should be noted that for K-tori of dimension bigger than 1, the group of
automorphims cannot have the structure of an algebraic group.

4 Uniqueness theorem in general

We saw that the based root datum for a connected, reductive group G with
B ≥ T as before, can be determined from those for the semisimple group
[G, G] and the torus R(G) by means of the central isogeny [G,G]×R(G) → G
given by the product map. Let us recall some finer details here. The radical
R(G) is a K-subtorus of T . As it is the intersection of Ker α for all the various
roots α, it follows that its character group is isomorphic to X/tildeQ where
Q̃/Q is the torsion subgroup of X/Q. Here, of course, Q is the subgroup
of X spanned by R. Thus, R(G) is generated by the various Im y, as y
varies in its cocharacter group Q⊥ = {y ∈ X∨ :< Q, y >= 0}. The subgroup
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T1 of T generated by Im α∨ as α varies in R, is a maximal torus of [G,G]
and X∗(T1) ∼= X/(Q∨)⊥ and X∗(T1) ∼= Q̃∨ (see 8.1.8). The root datum
(X∗(T1), R, X∗(T1), R

∨) of [G,G] is therefore (X/(Q∨)⊥, R, Q̃∨, R∨). Thus,
the root datum of the product [G,G] × R(G) with respect to the maximal
torus T1 ×R(G) is

(X/(Q∨)⊥ ⊕X/Q̃, (R, {0}), Q̃∨ ⊕Q⊥, (R∨, {0})).
The product map to G induces the homomorphism of character groups X →
X/(Q∨)⊥ ⊕X/Q̃ whose image consists of pairs of cosets (y + (Q∨)⊥, z + Q̃)
with y − z ∈ (Q∨)⊥ ⊕ Q̃.
Now, in recalling these, we have not used the fact that G is defined over
K. Using this, we have that the above maximal torus T1 of [G,G] obtained
from T which was a fixed maximal torus of G defined over K is also defined
over K. The maximal K-split subtorus S1 of T1 must be then a subtorus
of S. Thus, S1 is a maximal K-split torus of [G,G] as seen by going over
to G/R(G). Now, as we saw with S, T for G, we see that S1, T1 determine
an indexed root datum of [G,G], viz., (X/(Q∨)⊥, D, Q̃∨, D∨, D0, τ) (the sets
R, D as well as D0 are the same as for G). The centralizer H = C[G,G](S1) is
generated by T1 and all those Uα’s for which α runs through the root system
RD0 with basis D0. Note that H is K-anisotropic; it is called the anisotropic
kernel of G over K. Now T = T1R(G) and the character groups X, X1, Y of
these three tori T, T1, R(G) are Γ-modules and X is of finite index in X1⊕Y .
Our aim now is to abstractly characterize these properties and that would
help in formulating and proving the uniqueness theorem.
Now, we know as recalled from 8.1.8, that X1 = X/(Q∨)⊥. Also, the in-
dexed root datum of H is (X1, D0, X

∨
1 , D∨

0 , D0, τ). In general, let us con-
sider 3-tuples (Ψ, H, C) where Ψ = (X, D,X∨, D∨, D0, τ) is an abstract in-
dexed root datum, H is any connected reductive K-group, and C is a K-
torus. Let us define such a 3-tuple to be admissible if H has an indexed
root datum (X1, D0, X

∨
1 , D∨

0 , D0, τ) such that X is a Γ-stable subgroup of
finite index in X1 ⊕ X(C), so that the projections induce isomorphisms
(X + X(C))/X(C) ∼= X1, (X + X1)/X1

∼= X(C). Note that our discussion
above shows that a connected, reductive K-group G gives rise to admissible
3-tuples relative to choices of S, T, B. If G,G1 are two connected, reductive
K-groups giving rise to admissible 3-tuples (Ψ, H,C) and (Ψ1, H1, C1), then
evidently a K-isomorphism θ from G to G1 (if one exists) which maps S, T,B
isomorphically onto S1, T1, B1 induces an isomorphism of admissible 3-tuples
f(θ) : (Ψ1, H1, C1) → (Ψ, H,C). We have :
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Uniqueness theorem - akin to Witt’s theorem
Let f : (Ψ1, H1, C1) → (Ψ, H, C) be an isomorphism of admissible 3-tuples.
That is, Ψ, Ψ1 are indexed root data of G,G1 (w.r.t. S, T, S1, T1) respec-
tively, H = CG(S), H1 = CG(S1) are their respective anisotropic kernels,
C = Z(G)0, C1 = Z(G1)

0. Then, there is an isomorphism θ : G → G1 map-
ping isomorphically S onto S1, T onto T1 and B onto B1 such that f = f(θ).
Proof.
The proof (indeed such uniqueness proofs are mostly the consequences of
‘book-keeping’. That is, the given representative objects (here admissible
3-tuples) are so representative of the object they represent (here, a reductive
group with given S, T ) that an isomorphism between the former automati-
cally allows one to define an isomorphism between the latter (albeit step-by-
step). Let us see this somewhat more precisely.
Recall first that H = CG(S) is generated by T and the Uα’s with α ∈ RD0 .
As we know how the based root datum for a connected reductive group G
can be described in terms of the semisimple group [G, G] and the central
torus R(G) = Z(G)0 and, as it is easy to prove the theorem for a torus, we
assume that G,G1 are connected semisimple groups. Now, from the split
case considered earlier, one will have a Ksep-defined isomorphism θ : G → G1

with θ(S) = S1, θ(T ) = T1, θ(B) = B1. In fact, that result gives us such an
Ksep-isomorphism which restricts to K-isomorphisms on T and on H.
The idea of the rest of the proof is to show there is some t ∈ T such that
the isomorphism g 7→ θ(tgt−1) is defined over K. The method to do this is
to use the result that K-forms of certain objects are given by elements of the
first cohomology set of the Galois group acting on the automorphisms of that
object.
The given isomorphism f from R1 to R implies that for realizations (uα)α∈R, (u′α1

)α1∈R1

and the corresponding unipotent subgroups Uα, U ′
α1

in G and G1, one has

θ(Uf(α1)) = U ′
α1

∀ α1 ∈ R1.

Recall that the element wγ in the Weyl group W0 of H with respect to T
(corresponding to any γ ∈ Γ) satisfies w−1

γ (D0) = γD0. In fact, we saw that
w−1

γ (τ(γ)(α)) = γα for every root α ∈ R (see 15.5.3). One has analogous
elements in the Weyl group (W0)1 of (H1, T1). Under the given isomorphism
f , these Weyl groups are isomorphic and these two elements correspond for
each γ. Now, to choose an appropriate “K-form” for θ, consider

c(γ) = θ−1 ◦ γ ◦ θ ◦ γ−1
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for each γ ∈ Γ. Of course, this is a Ksep-automorphism of G. By the
observations above, we know that it fixes all elements of T and leaves stable
each Uα. By the uniqueness (up to a torus element) of the isomorphism of the
uniqueness theorem for split groups (in this case Gad over Ksep), it follows
that there is some tγ ∈ π(T )(Ksep) with c(γ) = Int(tγ). Here, π : G →
Gad = Int(G) is the natural map and takes T to the maximal torus π(T ) of
Gad defined over K, as before. Now, X∗(π(T )) = Q :=< R >. As θ gives a
K-isomorphism on the anisotropic kernel H of G, its action on the Uα’s with
α ∈ RD0 respects the Γ-action (this is a general fact - a Ksep-isomorphism
respecting the Γ-actions is defined over K). Since any t acts on uα(x) ∈ Uα

by taking it to uα(α(t)x), it follows that our element tγ satisfies

α(tγ) = 1 ∀ α ∈ D0.

So, tγ ∈ T ′ := (
⋂

α∈D0
Ker(α))0, which is a torus with character group Q′

(which is the sublattice of Q = X∗(π(T ))) with basis (α)D−D0 . Also, c(γ) =
θ−1◦γ◦θ◦γ−1 can be thought of as a 1-cocycle in Z1(K, T ′) (as we mentioned
above K-forms correspond to first cohomology of automorphisms). We have
seen earlier in earlier lectures while defining the index, wγ etc. that γ acts
on Q′ via τ(γ) (15.5.4 shows that the action on α ∈ D − D0 has some D0-
components and the D−D0 component is just τ(α)). Therefore, the character
group Q′ of T ′ is a direct sum of free abelian groups on bases corresponding
to roots in the various Γ-orbits in the basis D−D0 of Q′. In other words, the
torus T ′ is a direct product of K-tori, one for each Γ-orbit on D−D0; thus,
T ′ is a product of tori of the form

∏
L/K Gm where L runs through some

finite subextensions of Ksep. By Hilbert 90, H1(K, T ′) = 1 which means
there exists t ∈ T ′(Ksep) such that tγ = t.γt−1. Hence θ ◦ Int(t) : G → G1 is
a K-isomorphism.

Remarks.
Let H be any connected, semisimple K-group with a maximal torus T defined
over K. If Ψ = (X,R,X∨, R∨) is the corresponding root datum, then, by the
existence theorem for K-split groups, we have a connected, semisimple, K-
split group G with the same root datum. Hence H is a Ksep-form of G and
by the bijection between (K-isomorphism classes of) connected, reductive
K-groups with root datum Ψ and the set H1(K, Aut(G)). This bijection is
set up by what is known as a twisting procedure. What is twisting? Firstly,
for a Galois extension L of K, a K-group G is said to be a L/K-form of
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another K-group G0 if these two groups are L-isomorphic. If we fix an L-
isomorphism, the two abstract groups G(L), G0(L) can be identified as the
same group with two different actions of Gal(L/K). That is, there are two
homomorphisms θ, θ0 of Gal(L/K) into Aut (G0(L)). The quotient of these
two is the map β(x) = θ0(x)θ(x)−1 is a map from Gal(L/K) to Aut G0(L)
satisfying the one-cocycle identity

β(xy) = β(x)θ(x)β(y).

Let us recall the useful construction of twisting more formally. If c ∈
Z1(K, Aut(G)), an one-cocycle, then we have the twisted group Gc to be
that K-form of G such that Gc(Ksep) = G(Ksep) and Γ acts on Gc(Ksep) as

γ ∗ g = c(γ)(γ.g).

Any K-form of G is of the form Gc for some c as above. So, we have :
There is a bijection between the set of isomorphism classes of connected
semisimple K-groups having the root datum Ψ and the set H1(K, Aut(G)).
This follows from the lemma we proved in the section on diagram automor-
phisms and from the oft-used bijection between the K-forms of a variety V
and first cohomology set of Aut(V ).
One can twist Aut(G) itself also and obtain the K-group Aut(G)c by twisting
Aut(G) by an one-cocycle c ∈ Z1(K.Aut(G)), where the group acts on itself
by inner conjugation. The action of Γ is then

γ ∗ σ = c(γ)(γσ)c(γ)−1.

We similarly have Inn(G)c. One can see easily by first principles that :
The group of K-automorphisms (respectively, inner K-automorphisms) of Gc

is isomorphic to Aut(G)c(K) (respectively, Inn(G)c(K)).
We discuss one last ingredient to the existence theorem to be proved in the
next section. Let G be a connected semisimple K-split group as above and,
for an one-cocycle c in Z1(K, Aut(G)), we look at the K-form Gc given by
the twisting procedure above. Let S be a maximal K-split torus in Gc and
T ⊃ S a maximal K-torus in Gc. Let R be the root system of (G, T ) and
choose a positive system R+ (as in 15.5.1) characterized by the property that
α is positive if and only if π(α) is in the positive K-root system where π is
the map induced by the restriction map X∗(T ) → X∗(S). If D is the simple
roots determined by this R+, and B ⊃ T , the corresponding Borel subgroup,
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we have consequently an indexed root datum Ψ = (X, D, X∨, D∨, D0, τ).
Now, the parabolic subgroup PD0 ⊃ B is a minimal K-parabolic subgroup
of Gc (recall from 15.4.7 that minimal K-parabolics are generated by the
centralizer of a maximal K-split torus and the root groups U(α) corresponding
to α ∈ R+). Let now T0 be a maximal torus of G which isK-split (remember
G is K-split) and let B0 ⊃ T0 be a Borel over K. Hence, there exists some
g ∈ G(Ksep) with B0 = gBg−1T0 = gTg−1. So P0 = gPD0g

−1 is defined over
K. If we replace c by the cocycle γ 7→ g−1c(γ)(γg), which represents the same
element in H1(K,Aut(G)), we have T = T0, P0 = PD0 . Thus, T, PD0 are both
subgroups of G and H although the K-structures are different. Thus, the
Levi subgroup of PD0 determined by (that is, containing) T is also defined
over K for both K-structures as PD0 is defined over K for both structures.
We have the K-subgroup R(L) = Z(L)0 =

⋂
α∈D0

Ker(α) of G. Consider
the map τ on Γ; by its definition, its image is contained in the subgroup
A0 (recall A0 consists of diagram automorphisms acting trivially on Z(L)0).
Also, we saw in 15.5.3, τ(Γ) leaves both D0 and D −D0 invariant. Since A0

contains automorphisms which are all defined over K, we may view τ as a
homomorphism from Γ to Aut(G)(K). Further, we may view τ as an one-
cocycle in AutKsep(L). This gives rise to a twisted K-group Lτ . Similarly,
we have a twisted K-group Gτ . Now, for our semisimple K-split group G,
the group Aut(G) has the closed K-subgroup AutD0(G) of automorphisms
which stabilize PD0 and its Levi L. The group InnD0(G) is similarly defined
and it can be seen that InnD0(G) is the image of L in Inn(G) and AutD0(G)
is the semidirect product of Inn(G) and the stabilizer of D0 in A0. Thus, we
also have a map z 7→ z̄ ;

Z1(K, (InnD0G)τ ) → Z1(K, (Inn(L))τ ).

Lemma.
(i) Gτ , Lτ are quasi-split K-groups.
(ii) There exists an one-cocycle z ∈ Z1(K, (InnD0G)τ ) such that Gc = (Gτ )z.
(iii) Any connected reductive K-group G is an inner K-form of a quasi-split
K-group - inner form of a group H means an element of H1(K, Inn(G)).
(iv) The anisotropic kernel of Gc is K-isomorphic to (Lτ )z̄.
Proof.
Now, clearly B is a Borel of Gτ defined over K and hence Gτ is quasi-split
over K. Similarly, Lτ is also quasi-split over K.
As the Γ-actions on D both for G and Gc are the same, it follows that Gc is
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an inner K-form of Gτ . By that (lone) lemma on diagram automorphisms,
we get z ∈ Z1(K, (Inn(G))τ ) with Gc = (Gτ )z. To show that it actually
comes from an one-cocycle with values in (InnD0(G))τ (and remembering
that InnD0(G) is identified with the image of L in Inn(G)), we proceed as
follows. If z(γ) = Int(gγ), then gγ’s centralize S(Ksep) as S is a K-split torus
in Gc. Since L = centralizer of S, it follows that gγ ∈ L for all γ. The proof
is complete.

Existence theorem in general

The condition for a given admissible triple (Ψ, H, C) to come from a con-
nected reductive K-group (for some S, T ) will be discussed. As usual, the ar-
gument reduces to the triples which would correspond to connected semisim-
ple groups. Thus, one leaves out the central torus C and considers a pair
(Ψ, H) where Ψ is an abstract based root datum and H is an anisotropic
K-group.
Let G be a connected semisimple K-group which is K-split. Suppose Ψ0 =
(X, D, X∨, D∨) is the based root datum of G. Let Ψ be an abstract based
root datum whose underlying based root datum is Ψ0 and the other entries
are D0 and τ ; that is, Ψ = (X,D,X∨, D∨, D0, τ). If PD0 denotes the stan-
dard parabolic subgroup of G determined by D0, and L is its Levi subgroup
which contains T , then L is K-split. If H is an anisotropic K-form of L,
let us try to see when (Ψ, H) comes from a K-group. There are quasi-split
K-groups Gτ , Lτ which are K-forms of G,L and such that G,L are inner
forms. There is a homomorphism from (InnD0G)τ to (Inn(L))τ . There is
a corresponding map θ : H1(K, (InnD0G)τ ) → H1(K, (Inn(L))τ ). Then, we
have :

Representability criterion:
Let c ∈ Z1(K, (Inn(L))τ ) be such that H = (Lτ )c. Then (Ψ, H) is repre-
sentable if and only if the class of c in H1(K, (Inn(L))τ ) belongs to Image(θ).
Proof.
If (Ψ, H) is representable, then (ii) of the previous lemma implies that the
cohomology class of c is in the image of θ. Conversely, if this property holds,
we consider the twisted K-group (Gτ )c which group contains a K-split torus
S whose centralizer L1 is isomorphic to H over K. Thus, this group repre-
sents (Ψ, H). Moreover, S is the maximal K-split torus of Z(L1)

0 and must,
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thus, be a maximal K-split torus in (Gτ )c. So, L1 is the anisotropic kernel
of (Gτ )c and the indexed root datum is as specified.

Determining the K-root system

Let us see how to determine the relative Dynkin diagram of G over K from
the Tits index. We assume G is absolutely (almost) simple for simplicity.
The general semisimple case can be deduced from the case for absolutely
simple groups by a combination of operations of the three types : central
isogenies, restriction of scalars and direct products. Let us denote by Φ the
absolute system of roots and Σ, a basis. Then, the vertices of KΣ are in
bijection with circled orbits O(u) of vertices u. We need to determine when
an element of KΣ is multipliable and how two vertices are connected. Let
u′ be an element of O(u) and consider the complement in Σ of the union of
all circled orbits different from O(u). Let Σu′ be the connected component
of u′ in that complement. Denote O′(u) = O(u) ∩ Σu′ and c′(u) = sum of
the coefficients of the element of O′(u) in the highest root of Σu′ . Note that
c′(u) = 1 or 2; it is 2 iff u is multipliable. To determine when two roots are
connected, let u, v be two distinct vertices of KΣ. Consider the complement
in Σ of the union of all circled orbits other than O(u), O(v). Let Σuv be
a connected component of this complement which intersects both the orbit
of u and of v (if such a component exists). In case such a component does
not exist, then u and v will not be connected in KΣ. Suppose it exists. Let
c(u), c(v) denote the sums of the coefficients of highest root of Σuv occurring
in O(u), O(v) respectively. If c(u) = c(v) = 2, assume that u is multipliable;
then, there is a double bond between u and v in KΣ with the arrow going
from v to u. If c(u) = c(v) = 1, then u, v are joined in KΣ by a single bond.
If c(u) = 1, c(v) = 2, there is a double bond with the arrow going from u to
v. Finally, if c(u) = 2, c(v) = 3 then there is a triple bond with arrow going
from u to v.
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Example of Tits index :
Consider a quadratic Galois extension L/K (with Gal(L/K) =< σ >) and a
L/K-Hermitian form (V, f) of Witt index r and dimension 2m+1. Assume K
is infinite. Consider the K-group G = SU(f) := {g ∈ SL(V ) :t gσhg = h}
where h represents f with respect to some chosen basis. In other words,
SU(f) is the fixed point subgroup of SL(V ) under the involution

g 7→ h−1(tgσ)−1h.

To determine the Tits index of G, we note that Dynkin diagram LΣ of G
over L is the diagram of type A2m. The maximal parabolic L-subgroups
are stabilizers of proper nonzero subspaces of V . If we number the vertices
of LΣ from 1 to 2m such that the i-th vertex represents the stabilizers of i-
dimensional subspaces. Now, the involution σ transforms subspaces of V into
their orthogonal complements (w.r.t. f) and thus, acts on LΣ by exchanging
i and 2m − i + 1. Thus, the pairs {(i, 2m − i + 1)} are the orbits in LΣ
under Gal(L/K). Arbitrary L-parabolics are the stabilizers of flags in V ;
therefore, the K-parabolics are the stabilizers of self-orthogonal flags. This
is a minimal K-parabolic iff the flag is maximal self-orthogonal. Let F be
one such maximal self-orthogonal flag and let X ∈ F have dimension ≤ m
and maximal w.r.t. to these properties. Then, by this maximality, the flag
F ′ of all subspaces contained in X and belonging to F forms a complete flag
inside X. By hypothesis, dim X = r and thus, by the last statement, the
dimensions of the elements of F which constitute the minimal K-parabolic
Stab F are the integers 1, 2, · · · , r, 2m− r + 1, 2m− r + 2, · · · , 2m. In other
words, the Witt index of G looks as follows :
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