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p-NUMERICAL SEMIGROUPS OF PYTHAGOREAN TRIPLES

TAKAO KOMATSU AND B. SURY

ABSTRACT. We give an explicit formula for the p-Frobenius number of primitive Pythagorean triples,
that is the largest positive integer that can only be represented in p ways by combining the three integers
of the Pythagorean triple. When p = 0, it is the original Frobenius number in the famous Diophan-
tine problem of Frobenius. We also obtain closed forms for the number of positive integers, and the
largest positive integer that can be represented in only p ways by combining the three integers of the
Pythagorean triple. Our generalization is natural in terms of the Apéry set; a detailed analysis is needed,
and the results are not trivial. Our method has an advantage in terms of visually grasping the elements
of the Apéry set, and is useful to determine other related constants. In addition, as an application of our
method, we can determine the p-Frobenius number of other triples such as those associated to the sides
of integer-sided triangles with an angle of 60 degrees. This corresponds to the Diophantine equation
x2 + y2 − xy = z2; in principle, the method works for more general Diophantine equations also whose
solutions can be similarly parameterized.

1. Introduction

For integer k ≥ 2, consider a set of positive integers A = {a1, . . . ,ak} with gcd(A) = gcd(a1, . . . ,ak) =
1. To find the number of non-negative integral representations x1,x2, . . . ,xn, denoted by d(n;A) =
d(n;a1,a2, . . . ,ak), to a1x1 + a2x2 + · · ·+ akxk = n for a given positive integer n is one of the most
important and interesting topics. This number is often called the denumerant and is equal to the
coefficient of xn in 1/(1−xa1)(1−xa2) · · ·(1−xak) ([28]). Sylvester [27] and Cayley [4] showed that
d(n;a1,a2, . . . ,ak) can be expressed as the sum of a polynomial in n of degree k− 1 and a periodic
function of period a1a2 · · ·ak. For two variables, a formula for d(n;a1,a2) is obtained in [31]. For three
variables in the pairwise coprime case d(n;a1,a2,a3), in [9], the periodic function part is expressed in
terms of trigonometric functions.

For a non-negative integer p, define Sp and Gp by

Sp(A) = {n ∈ N0|d(n;A)> p}
and

Gp(A) = {n ∈ N0|d(n;A)≤ p}
respectively, satisfying Sp ∪Gp = N0, which is the set of non-negative integers. The set Sp is called
p-numerical semigroup because S(A) = S0(A) is a usual numerical semigroup. Gp is the set of p-gaps.
Define gp(A), np(A) and sp(A) by

gp(A) = max
n∈Gp(A)

n, np(A) = ∑
n∈Gp(A)

1, sp(A) = ∑
n∈Gp(A)

n ,
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p-NUMERICAL SEMIGROUPS OF PYTHAGOREAN TRIPLES 2

respectively, and are called the p-Frobenius number, the p-Sylvester number (or p-genus) and the
p-Sylvester sum, respectively. When p = 0, g(A) = g0(A), n(A) = n0(A) and s(A) = s0(A) are the
original Frobenius number, Sylvester number (or genus) and Sylvester sum, respectively. To find such
values is one of the crucial matters in the Diophantine problem of Frobenius. More detail descriptions
of the p-numerical semigroups and their symmetric properties can be found in [18].

The Frobenius problem (also known as the Coin Exchange Problem or Postage Stamp Problem or
Chicken McNugget Problem) has a long history and is one of the popular problems that has attracted
the attention of experts as well as amateurs. For two variables A = {a,b}, it is known that

g(a,b) = (a−1)(b−1)−1 and n(a,b) =
(a−1)(b−1)

2

([28, 29]). For three or more variables, the Frobenius number cannot be given by any set of closed
formulas which can be reduced to a finite set of certain polynomials ([5]). For three variables, various
algorithms have been devised for finding the Frobenius number. For example, in [23], the Frobenius
number is uniquely determined by six positive integers that are the solution to a system of three
polynomial equations. In [7], a general algorithm is given by using 3 × 3 matrix. Nevertheless,
explicit closed formulas have been found only for some special cases, including arithmetic, geometric,
Mersenne, repunits and triangular (see [21, 24, 25] and references therein). We are interested in
finding explicit closed forms, which is one of the most crucial matters in Frobenius problem. Our
method has an advantage in terms of visually grasping the elements of the Apéry set, and is more
useful to get more related values, including genus (Sylvester number), Sylvester sum [32], weighted
power Sylvester sum [10, 19, 20] and so on.

We are interested in finding a closed or explicit form for the p-Frobenius number, which is more
difficult when p > 0. For three or more variables, no concrete examples had been found until recently,
when the first author succeeded in giving the p-Frobenius number as a closed-form expression for
the triangular number triplet ([11]), for repunits ([12]), Fibonacci triplet ([16]), Jacobsthal triplets
([15, 14]) and arithmetic triplets ([17]).

It is well-known that the primitive Pythagorean triple (x,y,z) has the unique expression:

x = s2 − t2, y = 2st, z = s2 + t2 ,

where s and t are positive integers having different parity with s > t and gcd(s, t) = 1 (e.g., [30,
Theorem 2.13]). In this paper, we give an explicit formula for the p-Frobenius number of primitive
Pythagorean triples. As an application, we can also solve the analogous problem for triples of integers
that form a triangle contains an angle of 60 degrees.

Theorem 1. When s < (
√

2+1)t, for a nonnegative integer p with p ≤ ⌊t/(s− t)⌋, we have

gp(s2 − t2,2st,s2 + t2) = s
(
(s+ t)(s+ t −2)−2t2)+ p(s− t)(s2 + t2) .

When s > (
√

2+1)t, for a nonnegative integer p with p ≤ ⌊(s− t)/t⌋, we have

gp(s2 − t2,2st,s2 + t2) = s
(
(s+ t)(s+ t −2)−2t2)+ pt(s2 + t2) .
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Remark. If p = 0 in Theorem 1, Theorem 2.1 in [8] is recovered as a special case. We also give an
explicit formula for the p-Sylvester number (p-genus) of primitive Pythagorean triples (Theorem 3
below). However, the result for p = 0 has not been discovered yet.

For integer-sided triangles with an angle of 60 degrees, the analogue of Theorem 1 is the following
result we prove.

Theorem 2. Let s and t be positive integers having different parity with s > t, gcd(s, t) = 1 and 3 ∤ s.
When s < 3t, for a nonnegative integer p with p ≤ ⌊(2t)/(s− t)⌋, we have

gp(s2 −3t2 +2st,4st,s2 +3t2)

= (s− t −1)(s2 +3t2)+
(
(p+1)s− (p−1)t −1

)
(4st)− (s2 −3t2 +2st) .

When s > 3t, for a nonnegative integer p with p ≤ ⌊(s− t)/(2t)⌋, we have

gp(s2 −3t2 +2st,4st,s2 +3t2)

= (2t −1)(s2 +3t2)+
(
s+(2p+1)t −1

)
(s2 −3t2 +2st)−4st .

Our method can be applied to obtain closed formulae for constants such as the p-Sylvester (power)
sum [13, 32], and the p-Sylvester weighted sum [19, 20].

2. Preliminaries

For a positive integer p and a set of positive integers A = {a1,a2, . . . ,ak} with gcd(A) = 1, denote by
Rp(A) the set of all nonnegative integers whose representations in terms of a2, . . . ,ak with nonnegative
integral coefficients have at least p ways. Note that when p = 0, R1 ∪NR(A) = N∪{0} (the set of
nonnegative integers). We introduce the Apéry set (see [1]) below in order to obtain the formulas for
gp(A), np(A) and sp(A). Without loss of generality, we assume that a1 = min(A).

Definition 1. Let p be a nonnegative integer. For a set of positive integers A = {a1,a2, . . . ,aκ} with
gcd(A) = 1 and a1 = min(A) we denote by

App(A) = App(a1,a2, . . . ,aκ) = {m(p)
0 ,m(p)

1 , . . . ,m(p)
a1−1} ,

the p-Apéry set of A, where each positive integer m(p)
i (0 ≤ i ≤ a1 −1) satisfies the conditions:

(i)m(p)
i ≡ i (mod a1), (ii)m(p)

i ∈ Sp(A), (iii)m(p)
i −a1 ̸∈ Sp(A)

Note that m(0)
0 is defined to be 0.

It follows that for each p,

App(A)≡ {0,1, . . . ,a1 −1} (mod a1) .

When k ≥ 3, it is hard to find any explicit form of gp(A) as well as np(A) and sp(A). Nevertheless,
the following convenient formulas are known (For a more general case, see [13]). Though finding
m(p)

j is enough hard in general, we can obtain it for some special sequences (a1,a2, . . . ,ak).
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Lemma 1. Let k and p be integers with k ≥ 2 and p ≥ 0. Assume that gcd(a1,a2, . . . ,ak) = 1. We
have

gp(a1,a2, . . . ,ak) =

(
max

0≤ j≤a1−1
m(p)

j

)
−a1 ,(1)

np(a1,a2, . . . ,ak) =
1
a1

a1−1

∑
j=0

m(p)
j − a1 −1

2
,(2)

sp(a1,a2, . . . ,ak) =
1

2a1

a1−1

∑
j=0

(
m(p)

j

)2 − 1
2

a1−1

∑
j=0

m(p)
j +

a2
1 −1
12

.(3)

Remark. When p = 0, the formulas (1), (2) and (3) reduce to the formulas by Brauer and Shockley
[2], Selmer [26], and Tripathi [32], respectively:

g(a1,a2, . . . ,ak) =

(
max

1≤ j≤a1−1
m j

)
−a1 ,

n(a1,a2, . . . ,ak) =
1
a1

a1−1

∑
j=0

m j −
a1 −1

2
,

s(a1,a2, . . . ,ak) =
1

2a1

a1−1

∑
j=0

(m j)
2 − 1

2

a1−1

∑
j=0

m j +
a2

1 −1
12

,

where m j =m(0)
j (1≤ j ≤ a1−1) with m0 =m(0)

0 = 0. More general formulas using Bernoulli numbers
can be seen in [10].

3. Proof of the main theorem

3.1. The case where s2 − t2 is shortest. Let s < (
√

2+1)t, that is s2 − t2 < 2st. For simplicity, put

ri, j := i(2st)+ j(s2 + t2)

or just (i, j) when we tabulate these values.
First, consider the case p = 0. We shall show that the (s2 − t2) elements in Ap0(A) with A =

{s2 − t2,2st,s2 + t2} are arranged as in Table 1.

(0,0) · · · (s− t −1,0) (s− t,0) · · · · · · (s−1,0)
...

...
...

...
(0,s− t −1) · · · (s− t −1,s− t −1) (s− t,s− t −1) · · · · · · (s−1,s− t −1)
(0,s− t) · · · (s− t −1,s− t)

...
...

...
...

(0,s−1) · · · (s− t −1,s−1)

TABLE 1. Ap0(s
2 − t2,2st,s2 + t2) when s < (

√
2+1)t
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p-NUMERICAL SEMIGROUPS OF PYTHAGOREAN TRIPLES 5

Since gcd(2t2,s2 − t2) = 1, it is enough to show that

Ap0(A) :≡ { j|0 ≤ j ≤ s2 − t2 −1} ≡ {2 jt2|0 ≤ j ≤ s2 − t2 −1} (mod s2 − t2) .

Since rs−t+i,s−t+ j ≡ ri, j (mod s2 − t2) and rs−t+i,s−t+ j > ri, j (i, j ≥ 0), any element of the form
rs−t+i,s−t+ j (i, j ≥ 0) is not in Ap0(A). Since ri,s+ j ≡ rt+i, j (mod s2 − t2) and ri,s+ j > rt+i, j (i, j ≥ 0),
any element of the form ri,s+ j (i, j ≥ 0) is not in Ap0(A). Since rs+i, j ≡ ri,t+ j (mod s2 − t2) and
rs+i, j > ri,t+ j (i, j ≥ 0), any element of the form rs+i, j (i, j ≥ 0) is not in Ap0(A). (See also Table
2 in these situations.) Therefore, only s2 − t2 elements in the area represented in Table 1 remain as
candidates for the elements of Ap0(A).

Now, all the elements 2 jt2 (mod s2 − t2) (0 ≤ j ≤ s2 − t2 − 1) are arranged inside of the area
represented in Table 1 as follows. First,

r0, j ≡ 2 jt2 (mod s2 − t2) (0 ≤ j ≤ s−1)

and

rt, j ≡ 2(s+ j)t2 (mod s2 − t2) (0 ≤ j ≤ s− t −1) .

If t ≤ s− t −1, this continues for s− t ≤ j ≤ s−1. Then, by rt,s ≡ r2t,0 (mod s2 − t2), one moves to
the column of r2t, j ( j ≥ 0). If t ≥ s− t, by rt,s−t ≡ r2t−s,0 (mod s2 − t2), one moves to the column of
r2t−s, j ( j ≥ 0).

In general, assume that ry,0 ≡ 2ht2 (mod s2 − t2) (0 ≤ y ≤ s−1) for some non-negative integer h.
Then for j ≥ 0, ry, j ≡ 2(h+ j)t2 (mod s2 − t2). If y ≥ s− t, then by ry,s−t ≡ ry−s+t,0 (mod s2 − t2)
one moves to the column of ry−s+t, j ( j ≥ 0) after ry, j (0 ≤ j ≤ s− t − 1). If y ≤ s− t − 1, then by
ry,s ≡ ry+t,0 (mod s2 − t2) one moves to the column of ry+t, j ( j ≥ 0) after ry, j (0 ≤ j ≤ s−1). Since
gcd(2t2,s2 − t2) = 1, any of two element of the form 2 jt2 (mod s2 − t2) (0 ≤ j ≤ s2 − t2 −1) inside
of the area in Table 1 is not overlapped.

Now we are on stage where we can determine the Frobenius number by using Lemma 1 (1). It is
clear that the candidates to take the largest value in Ap0(A) are at (s− t −1,s−1) or (s−1,s− t −1).
Since s2 + t2 > 2st, we have rs−t−1,s−1 > rs−1,s−t−1. Hence,

g0(s2 − t2,2st,s2 + t2) = (s− t −1)(2st)+(s−1)(s2 + t2)− (s2 − t2)

= s
(
(s+ t)(s+ t −2)−2t2) .

3.1.1. p = 1. All elements of Ap1(A) are arranged in the form of shifting elements of Ap0(A) whose
residues are equal. Table 2 is as follows. That is, the (s− t)× (s− t) area at the lower left of Ap0(A)
is shifted to the upper right of Ap1(A), and the (s− t)× (s− t) area at the upper right of Ap0(A) is
shifted to the lower left of Ap1(A). Most of the other parts of Ap0(A) shift in the lower right oblique
direction as it is.

As checked in the case where p = 0, we have found that the set of all elements in these three areas
is congruent to {0,1, . . . ,s2 − t2 − 1} (mod s2 − t2). It is left to show that each element has at least
two different representations. For the (s− t)× (s− t) area at the bottom left of Table 2, we have for
0 ≤ y ≤ s− t −1 and 0 ≤ z ≤ s− t −1

0(s2 − t2)+ y(2st)+(s+ z)(s2 + t2) = s(s2 − t2)+(y+ t)(2st)+ z(s2 + t2) .
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p-NUMERICAL SEMIGROUPS OF PYTHAGOREAN TRIPLES 6

(s,0) · · · (2s− t −1,0)
...

...
(s,s− t −1) · · · (2s− t −1,s− t −1)

(s− t,s− t) · · · (2s−2t −1,s− t) · · · (s−1,s− t)
...

...
(s− t,2s−2t −1) · · · (s−1,2s−2t −1)

...
...

(s− t,s−1) · · · (2s−2t −1,s−1)
(0,s) · · · (s− t −1,s)

...
...

(0,2s− t −1) · · · (s− t −1,2s− t −1)

TABLE 2. Ap1(s
2 − t2,2st,s2 + t2) when s < (

√
2+1)t

For the (s−t)×(s−t) area at the top right of Table 2, we have for 0≤ y≤ s−t−1 and 0≤ z≤ s−t−1

0(s2 − t2)+(s+ y)(2st)+ z(s2 + t2) = t(s2 − t2)+ y(2st)+(t + z)(s2 + t2) .

For the middle area of Ap1(A), we have for 0 ≤ y ≤ s−1 and 0 ≤ z ≤ s−1

0(s2 − t2)+(s− t + y)(2st)+(s− t + z)(s2 + t2) = (s+ t)(s2 − t2)+ y(2st)+ z(s2 + t2) .

In fact, for the elements in the area where y ≥ s− t and z ≥ s− t, there are more than two representa-
tions belonging to App(A) (p ≥ 2).

There are four candidates to take the largest value in Ap1(A) and we can easily find that

rs−t−1,2s−t−1 > rs−1,2s−2t−1 > r2s−2t−1,s−1 > r2s−t−1,s−t−1.

Hence, by Lemma 1 (1)

g1(s2 − t2,2st,s2 + t2) = (s− t −1)(2st)+(2s− t −1)(s2 + t2)− (s2 − t2)

= s
(
(s+ t)(s+ t −2)−2t2)+(s− t)(s2 + t2) .

3.1.2. p ≥ 2. When p ≥ 2, it continues until p ≤ ⌊t/(s− t)⌋, that the area of Ap1(A) moves to the
area of Ap2(A), which moves to the area of Ap3(A), and so on, in the correspondence relation modulo
(s2− t2). Table 3 shows the areas of the App(A) (p = 0,1,2,3) for the case where 3 ≤ ⌊t/(s− t)⌋< 4.
In Table 3, the area of Ap0(A) is marked as 0 (including 0a and 0b); that of Ap1(A) is marked as 1
(including 1c and 1d) with 1a and 1b; that of Ap2(A) is marked as 2 (including 2e and 2 f ) with 2a, 2b,
2c and 2d; that of Ap3(A) is marked as 3 with 3a, 3b, 3c, 3d , 3e and 3 f . The areas having the same
residue modulo (s2 − t2) are determined as

0a ⇒ 1a ⇒2a ⇒ 3a ,

0b ⇒ 1b ⇒2b ⇒ 3b ,

1c ⇒2c ⇒ 3c ,

1d ⇒2d ⇒ 3d ,

2e ⇒ 3e ,

2 f ⇒ 3 f ,
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p-NUMERICAL SEMIGROUPS OF PYTHAGOREAN TRIPLES 7

and the main parts are as

0 (excluding 0a and 0b)⇒ 1 (including 1a and 1b) ,

1 (excluding 1c and 1d)⇒ 2 (including 2e and 2 f ) ,

2 (excluding 2e and 2 f )⇒ 3 .

That is, the elements of the area of the lower left stair portions in App(A) correspond to the elements
of the area of the upper right stair portion in App+1(A), and are aligned from the upper right row to
the lower left. The elements of the area of the upper right stair portion in App(A) correspond to the
elements of the area of the lower left stair portion in App+1(A), respectively, and line up in the upper
right direction from the lowest left column. The elements of the area of App(A) in the center portion,
except for the (s− t)× (s− t) area in the lower left and the (s− t)× (s− t) area in the upper right,
correspond to the elements of the area of App+1(A) in the lower right diagonal direction.

0 0b 1a 2c 3e

1 1d 2b 3a

2 2 f 3d

0a 1c 2e 3

1b 2a 3c

2d 3b

3 f

TABLE 3. App(s
2 − t2,2st,s2 + t2) (p = 0,1,2,3) when s < (

√
2+1)t

More generally and more precisely, for 1 ≤ l ≤ p, each element of the l-th (s− t)× (s− t) block
from the left in the area of the lower left stair portions in App(A) is expressed by

(4) ((l −1)s− (l −1)t + i,(p− l +1)s− (p− l)t + j) (0 ≤ i ≤ s− t −1, 0 ≤ j ≤ s− t −1) ,

and for 1 ≤ l′ ≤ p, each element of the l′-th (s− t)× (s− t) block from the right in the area of the
upper right stair portions in App′(A) is expressed by

(5) ((p′− l′+1)s− (p′− l′)t + i,(l′−1)s− (l′−1)t + j) (0 ≤ i ≤ s− t −1, 0 ≤ j ≤ s− t −1) .

Then we have the congruent relation for p′ = p+1 and l′ = p′− l +1 = p− l +2(
(l −1)s− (l −1)t + i

)
(2st)+

(
(p− l +1)s− (p− l)t + j

)
(s2 + t2)
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p-NUMERICAL SEMIGROUPS OF PYTHAGOREAN TRIPLES 8

≡
(
(p′− l′+1)s− (p′− l′)t + i

)
(2st)+

(
(l′−1)s− (l′−1)t + j

)
(s2 + t2) (mod s2 − t2) ,

as well as for p = p′+1 and l = p− l′+1 = p′− l′+2.
For simplicity, denote by (x,y,z) the value of x(s2 − t2)+ y(2st)+ z(s2 + t2). Each element of the

leftmost (s− t)× (s− t) area of App(A) (p ≥ 1) has exactly (p+1) representations, because(
0,0, ps− (p−1)t

)
=
(

js+( j−1)t, jt − ( j−1)s,(p− j)s− (p− j)t
)

( j = 1,2, . . . , p) .

Note that ps ≤ (p+1)t since p ≤ ⌊t/(s− t)⌋.
Each element of the second from the left (s− t)×(s− t) area of App(A) (p ≥ 2) has exactly (p+1)

representations, because(
0,s− t,(p−1)s− (p−2)t

)
=
(
s+ t,0,(p−2)s− (p−3)t

)
=
(

js+( j−1)t,( j−1)t − ( j−2)s,(p− j−1)s− (p− j−1)t
)

( j = 1,2, . . . , p−1) .

Each element of the third from the left (s− t)× (s− t) area of App(A) (p ≥ 3) has exactly (p+1)
representations, because(

0,2s−2t,(p−2)s− (p−3)t
)
=
(
s+ t,s− t,(p−3)s− (p−4)t

)
=
(
2s+2t,0,(p−4)s− (p−5)t

)
=
(

js+( j−1)t,( j−2)t − ( j−3)s,(p− j−2)s− (p− j−2)t
)

( j = 1,2, . . . , p−2) .

In general, each element of the l-th (1≤ l ≤⌊t/(s− t)⌋) from the left (s−t)×(s−t) area of App(A)
(p ≥ l) has exactly (p+1) representations, because(

0,(l −1)s− (l −1)t,(p− l +1)s− (p− l)t
)

=
(
i(s+ t),(l − i−1)(s− t),(p− l − i+1)s− (p− l − i)t

)
(i = 1,2, . . . , l −1)

=
(

js+( j−1)t,( j− l +1)t − ( j− l)s,(p− l − j+1)(s− t)
)

( j = 1,2, . . . , p− l +1) .

Similarly, each element of the l′-th (1 ≤ l′ ≤ ⌊t/(s− t)⌋) from the top right (s− t)× (s− t) area of
App(A) (p ≥ l′) has exactly (p+1) representations, because(

0,(p− l′+1)s− (p− l′)t,(l′−1)s− (l′−1)t
)

=
(
i(s+ t),(p− l′− i+1)s− (p− l′− i)t,(l′− i−1)(s− t)

)
(i = 1,2, . . . , l′−1)

=
(
( j−1)s+ jt,(p− l′− j+1)(s− t),( j− l′+1)t − ( j− l′)s

)
( j = 1,2, . . . , p− l′+1) .

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42



p-NUMERICAL SEMIGROUPS OF PYTHAGOREAN TRIPLES 9

Concerning the central portion of App(A), it is easy to see that each element is expressed by(
0, p(s− t)+ i, p(s− t)+ j

)
(0 ≤ i ≤ s− t −1,0 ≤ j ≤ pt − (p−1)s−1;

s− t ≤ i ≤ pt − (p−1)s−1,0 ≤ j ≤ s− t −1) ,(6)

and all elements have exactly (p+1) representations, because(
0, p(s− t), p(s− t)

)
=
(

j(s+ t),(p− j)(s− t),(p− j)(s− t)
)

( j = 1,2, . . . , p) .

Finally, the candidates to take the largest value in App(A) are clearly scattered in the lower right
corners: (

0, l(s− t)−1,(p+2− l)s− (p+1− l)t −1
)

(l = 1,2, . . . , p),(
0,(p+1)(s− t)−1,s−1

)
,

(
0,s−1,(p+1)(s− t)−1

)
,(

0,(p+2− l′)s− (p+1− l′)t −1, l′(s− t)−1
)

(l′ = 1,2, . . . , p) .

By comparing these values, we can find that (0,s− t −1,(p+1)s− pt −1) is the largest. Hence, by
Lemma 1 (1)

gp(s2 − t2,2st,s2 + t2) = (s− t −1)(2st)+
(
(p+1)s− pt −1

)
(s2 + t2)− (s2 − t2)

= s
(
(s+ t)(s+ t −2)−2t2)+ p(s− t)(s2 + t2) .

In addition, Theorem 1 does not hold for p > ⌊t/(s− t)⌋. As can be seen from the example in
Table 3, the elements of the central area of Ap4(A) corresponding to the elements of the central area
of Ap3(A) are not all left, and there will be elements corresponding to another location. Due to the
deviation, the place where the maximum value is taken also changes from (0,s− t−1,(p+1)s− pt−
1) in App(A) for p > ⌊t/(s− t)⌋. In the case of the example in Table 4, for p = 4, the elements in
the area of the stair part on both sides still regularly move to the opposite side, but in the main central
part, some surplus elements moves to the lower left (3i ⇒ 4i) and some to the upper-right (3k ⇒ 4k).
In this case, in general, (0,2s− 2t − 1,(p+ 1)s− pt − 1) takes the largest value. It is as shown in
Table 4. At p = 5, the place where the largest value is taken becomes more complicated, since the
corresponding residue part is further displaced.

In the table, n⃝ denotes the position of the largest element in Apn(A). Note that the area 3h (and so,
4h) does not exist if t/(s− t) is an integer.

3.2. The case where 2st is shortest. Let s > (
√

2+1)t, that is s2 − t2 > 2st. For simplicity, put

γx,z := x(s2 − t2)+ z(s2 + t2)

or just (x,z). First, consider the case p = 0. All the 2st elements in Ap0(A) are arranged as in Table 5.
Since rt+i,t+ j ≡ ri, j (mod 2st) and rt+i,t+ j > ri, j (i, j ≥ 0), any element of the form rt+i,t+ j (i, j ≥ 0)

is not in Ap0(A). Since ri,s+ j ≡ rs+i, j (mod 2st) and ri,s+ j > rs+i, j (i, j ≥ 0), any element of the form
ri,s+ j (i, j ≥ 0) is not in Ap0(A). Since rs+t+i, j ≡ ri,s−t+ j (mod 2st) and rs+t+i, j > ri,s−t+ j (i, j ≥ 0),
any element of the form rs+t+i, j (i, j ≥ 0) is not in Ap0(A). Therefore, only 2st elements in the area
represented in Table 5 remain as candidates for the elements of Ap0(A).
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p-NUMERICAL SEMIGROUPS OF PYTHAGOREAN TRIPLES 10

0 0b 1a 2c 3e 4k

1 1d 2b 3a 4c

2 2 f 3d 4b

3h 3i
4 f

0a 1c 2e 3k
0⃝ 4h

1b 2a 3c 4e
1⃝

2d 3b 4a
2⃝

3 f 4d
3⃝ 4⃝

4i

TABLE 4. App(s
2 − t2,2st,s2 + t2) (p = 4) when s < (

√
2+1)t

(0,0) · · · (t −1,0) (t,0) · · · · · · (s+ t −1,0)
...

...
...

...
(0, t −1) · · · (t −1, t −1) (t, t −1) · · · · · · (s+ t −1, t −1)
(0, t) · · · (t −1, t)

...
...

...
...

(0,s−1) · · · (t −1,s−1)

TABLE 5. Ap0(s
2 − t2,2st,s2 + t2) when s > (

√
2+1)t

It is similar to the case where s < (
√

2+ 1)t to find that any of two elements in this area is not
congruent modulo (2st).

Since s > t, we have γs+t−1,t−1 > γt−1,s−1. Hence,

g0(s2 − t2,2st,s2 + t2) = (s+ t −1)(s2 − t2)+(t −1)(s2 + t2)− (2st)

= s
(
(s+ t)(s+ t −2)−2t2) .

When p ≥ 1, the situation is somewhat similar to that of the case where s < (
√

2+1)t, but the role
of 2st and s2 − t2 is interchanged. Therefore, the calculation is not so similar.

Table 6 shows the case where 3< ⌊(s− t)/t⌋< 4. The numbers 0,1,2,3 indicate the area of App(A)
for p = 0,1,2,3.

For simplicity, denote γx,z = x(s2− t2)+z(s2+ t2) by (x,z). More generally and more precisely, for
1 ≤ l ≤ p, each element of the l-th t × t block from the left in the area of the lower left stair portions
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p-NUMERICAL SEMIGROUPS OF PYTHAGOREAN TRIPLES 11

0 1 2 3
0⃝

1 2 3
1⃝

2 3
2⃝

3
3⃝

1 2 3

2 3

3

TABLE 6. App(s
2 − t2,2st,s2 + t2) (p = 0,1,2,3) when s < (

√
2+1)t

in App(A) is expressed by

(7) ((l −1)t + i,s+(p− l)t + j)(0 ≤ i ≤ t −1, 0 ≤ j ≤ t −1) ,

and for 1 ≤ l′ ≤ p, each element of the l′-th t × t block from the right in the area of the upper right
stair portions in App′(A) is expressed by

(8) (s+(p′− l′+1)t + i,(l′−1)t + j)(0 ≤ i ≤ t −1, 0 ≤ j ≤ t −1) .

Concerning the central portion of App(A), each element is expressed by(
pt + i, pt + j

)
(0 ≤ i ≤ t −1,0 ≤ j ≤ s− pt −1;

t ≤ i ≤ s− (p−1)t −1,0 ≤ j ≤ t −1) .(9)

All the lower right elements of the (t × t) square areas and the central area are candidates for the
largest value of App(A). And by comparison, we can see that the position at

(
s+ t −1,(p+1)t −1

)
takes the largest value, which is at the right-bottom of the central area, and in Figure 6, the position is
shown by p⃝ (p = 0,1,2,3). Hence, by Lemma 1 (1)

gp(s2 − t2,2st,s2 + t2) = (s+ t −1)(s2 − t2)+
(
(p+1)t −1

)
(s2 + t2)−2st

= s
(
(s+ t)(s+ t −2)−2t2)+ pt(s2 + t2) .
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p-NUMERICAL SEMIGROUPS OF PYTHAGOREAN TRIPLES 12

4. p-genus

We can use Table 1 to obtain an explicit form of genus (Sylvester number). First, let s < (
√

2+ 1)t.
For a non-negative integer p, by the representation of each element in (4), (5) and (6), we have

∑
w∈App(A)

w =
p

∑
l=1

s−t−1

∑
i=0

s−t−1

∑
j=0

(
((l −1)s− (l −1)t + i)(2st)

+((p− l +1)s− (p− l)t + j)(s2 + t2)
)

+
p

∑
l=1

s−t−1

∑
i=0

s−t−1

∑
j=0

(
((p− l +1)s− (p− l)t + i)(2st)

+((l −1)s− (l −1)t + j)(s2 + t2)
)

+
s−t−1

∑
i=0

pt−(p−1)s−1

∑
j=0

(
(p(s− t)+ i)(2st)+(p(s− t)+ j)(s2 + t2)

)
+

pt−(p−1)s−1

∑
i=s−t

s−t−1

∑
j=0

(
(p(s− t)+ i)(2st)+(p(s− t)+ j)(s2 + t2)

)
=

(s+ t)2(s3 − s2 −2st2 + t3 + t2)

2
− p2(s− t)3(s+ t)2

2
+

p(s+3t)(s2 − t2)2

2
.

by Lemma 1 (2) we have

np(s2 − t2,2st,s2 + t2)

=
1

s2 − t2

(
(s+ t)2(s3 − s2 −2st2 + t3 + t2)

2

− p2(s− t)3(s+ t)2

2
+

p(s+3t)(s2 − t2)2

2
)

)
− s2 − t2 −1

2

=
s3 +2s2(t −1)−2st − t3 +1

2
− p

2
(s2 − t2)

(
p(s− t)− (s+3t)

)
.

Next, let s > (
√

2+1)t. For a non-negative integer p, by the representation of each element in (7),
(8) and (9), we have

∑
w∈App(A)

w =
p

∑
l=1

t−1

∑
i=0

t−1

∑
j=0

(
((l −1)t + i)(s2 − t2)

+(s+(p− l)t + j)(s2 + t2)
)

+
p

∑
l=1

t−1

∑
i=0

t−1

∑
j=0

(
(s+(p− l +1)t + i)(s2 − t2)

+((l −1)t + j)(s2 + t2)
)
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p-NUMERICAL SEMIGROUPS OF PYTHAGOREAN TRIPLES 13

+
t−1

∑
i=0

s−pt−1

∑
j=0

(
(pt + i)(s2 − t2)+(pt + j)(s2 + t2)

)
+

s−(p−1)t−1

∑
i=t

t−1

∑
j=0

(
(pt + i)(s2 − t2)+(pt + j)(s2 + t2)

)
= st

(
s3 +2s2(t −1)− t3)− p2s2t3 + ps2t2(4s− t) .

by Lemma 1 (2) we have

np(s2 − t2,2st,s2 + t2)

=
1

2st

(
st
(
s3 +2s2(t −1)− t3)− p2s2t3 + ps2t2(4s− t))

)
− 2st −1

2

=
s3 +2s2(t −1)−2st − t3 +1

2
+

pst
2
(
4s− (p+1)t

)
.

Theorem 3. When s < (
√

2+1)t, for a non-negative integer p with p ≤ ⌊t/(s− t)⌋, we have

np(s2 − t2,2st,s2 + t2)

=
s3 +2s2(t −1)−2st − t3 +1

2
− p

2
(s2 − t2)

(
p(s− t)− (s+3t)

)
.

When s > (
√

2+1)t, for a non-negative integer p with p ≤ ⌊(s− t)/t⌋, we have

np(s2 − t2,2st,s2 + t2)

=
s3 +2s2(t −1)−2st − t3 +1

2
+

pst
2
(
4s− (p+1)t

)
.

5. Sylvester power sum and weighted sum

Our method, having an advantage in terms of visually grasping the elements of the Apéry set, is also
useful to get Sylvester µ-th power sum

s(µ)p (A) := ∑
n∈Gp(A)

nµ

and weighted power sum with weight λ

s(µ)λ ,p(A) := ∑
n∈Gp(A)

λ nnµ (λ ̸= 1) ,

where A = {a1, . . . ,ak} with gcd(A) = 1 and a1 := min(A).
In [13, Theorem 1, Theorem 2], both values are given explicitly by using Bernoulli numbers Bn,

defined by the generating function
x

ex −1
=

∞

∑
n=0

Bn
xn

n!
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and Eulerian numbers
⟨ n

m

⟩
, appearing in the generating function

∞

∑
k=0

knxk =
1

(1− x)n+1

n−1

∑
m=0

⟨ n
m

⟩
xm+1 (n ≥ 1) ,

respectively.

Lemma 2. For integers k, p and µ with k ≥ 2, p ≥ 0 and µ ≥ 1, we have

spµ(A) =
1

µ +1

µ

∑
κ=0

(
µ +1

κ

)
Bκaκ−1

1

a1−1

∑
i=0

(
m(p)

i

)µ+1−κ
+

Bµ+1

µ +1
(aµ+1

1 −1) ,

Lemma 3. For λ a1 ̸= 1 and a positive integer µ , we have

s(µ)λ ,p(A) =
µ

∑
n=0

(−a1)
n

(λ a1 −1)n+1

(
µ
n

) n

∑
j=0

⟨
n

n− j

⟩
λ ja1

a1−1

∑
i=0

(
m(p)

i

)µ−nλ m(p)
i

+
(−1)µ+1

(λ −1)µ+1

µ

∑
j=0

⟨
µ

µ − j

⟩
λ j .

What we need is for an non-negative integer ν to obtain

∑
w∈App(A)

wν or ∑
w∈App(A)

wνλ w .

When s < (
√

2+1)t, by(
y(2st)+ z(s2 + t2)

)ν
=

ν

∑
κ=0

(
ν
κ

)(
y(2st)

)ν−κ(z(s2 + t2)
)κ

,

we have

∑
w∈App(A)

wν =
p

∑
l=1

s−t−1

∑
i=0

s−t−1

∑
j=0

ν

∑
κ=0

(
ν
κ

)(
((l −1)s− (l −1)t + i)(2st)

)ν−κ

×
(
((p− l +1)s− (p− l)t + j)(s2 + t2)

)κ

+
p

∑
l=1

s−t−1

∑
i=0

s−t−1

∑
j=0

ν

∑
κ=0

(
ν
κ

)(
((p− l +1)s− (p− l)t + i)(2st)

)ν−κ

×
(
((l −1)s− (l −1)t + j)(s2 + t2)

)κ

+
s−t−1

∑
i=0

pt−(p−1)s−1

∑
j=0

ν

∑
κ=0

(
ν
κ

)(
(p(s− t)+ i)(2st)

)ν−κ

×
(
(2st)+(p(s− t)+ j)(s2 + t2)

)κ

+
pt−(p−1)s−1

∑
i=s−t

s−t−1

∑
j=0

ν

∑
κ=0

(
ν
κ

)(
(p(s− t)+ i)(2st)

)ν−κ
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×
(
(p(s− t)+ j)(s2 + t2)

)κ
.

When s > (
√

2+1)t, we have

∑
w∈App(A)

wν =
p

∑
l=1

t−1

∑
i=0

t−1

∑
j=0

ν

∑
κ=0

(
ν
κ

)(
((l −1)t + i)(s2 − t2)

)ν−κ

×
(
(s+(p− l)t + j)(s2 + t2)

)κ

+
p

∑
l=1

t−1

∑
i=0

t−1

∑
j=0

ν

∑
κ=0

(
ν
κ

)(
(s+(p− l +1)t + i)(s2 − t2)

)ν−κ

×
(
((l −1)t + j)(s2 + t2)

)κ

+
t−1

∑
i=0

s−pt−1

∑
j=0

ν

∑
κ=0

(
ν
κ

)(
(pt + i)(s2 − t2)

)ν−κ(
(pt + j)(s2 + t2)

)κ

+
s−(p−1)t−1

∑
i=t

t−1

∑
j=0

ν

∑
κ=0

(
ν
κ

)(
(pt + i)(s2 − t2)

)ν−κ(
(pt + j)(s2 + t2)

)κ
.

By substituting each of the above identities into the formula in Lemma 2 we obtain a general explicit
formula. It is similar about the weighted sums.

Though the above general expression cannot be further simplified, for a specific ν , we can get a
more explicit form. For example, when s > (

√
2+1)t, for ν = 2, we have

∑
w∈App(A)

w2 =
st
3

(
2s6 +6s5(t −1)+ s4(8t2 −12t +5)−6s3t3 −2s2(2t −3)t3 + t4(2t2 −1)

)
− 8p3s4t4

3
+2pst3(3s4 − s3(2t −1)+ t4)

+
2pst2

3
(
6s5 +3s4(3t −4)− s3(2t −3)t −6s2t3 +3t5) .

Together with the form where ν = 1:

∑
w∈App(A)

w = st
(
s3 +2s2(t −1)− t3)+ ps2t2(4s− (p+1)t) ,

by using Lemma 2 we obtain an explicit form of the Sylvester sum sp(A) = s(1)p (A). It is similar when
s < (

√
2+1)t.

Proposition 1. When s < (
√

2+1)t, for a non-negative integer p with p ≤ ⌊t/(s− t)⌋, we have

sp(s2 − t2,2st,s2 + t2)

=
1
12

(
2s6 +6s5(t −1)+ s4(8t2 −18t +5)−6s3t(t2 +2t −2)

−2s2t2(2t2 −3t −2)+6st4 +2t6 − t4 −1
)

− p3

3
(s2 − t2)3 +

p2

2
(
s5 +6s4t2 −2s3t2(4t +1)+ st4 +2t6)
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+
p
6
(
2s6 +3s5(t −1)+6s4t(3t −2)−6s3t2(4t +1)+12s2t3 −3st4(t −3)+4t6) .

When s > (
√

2+1)t, for a non-negative integer p with p ≤ ⌊(s− t)/t⌋, we have

sp(s2 − t2,2st,s2 + t2)

=
1
12

(
2s6 +6s5(t −1)+ s4(8t2 −18t +5)−6s3t(t2 +2t −2)

−2s2t2(2t2 −3t −2)+6st4 +2t6 − t4 −1
)

− 2
3

p3s3t3 +
p2t2

2
(
3s4 − s3(2t −1)+ s2t + t4)

+
pt
6
(
6s5 +3s4(3t −4)− s3t(2t +9)−3s2t2(2t −1)+3t5) .

6. Application to triples associated to integer-sided triangles with a 60 degree angle

In the above sections, we considered triples (x,y,z) satisfying the Diophantine equation x2 + y2 =
z2. This method is applicable to triples satisfying another Diophantine equation. Instead of a right
triangle, consider three sides of a triangle that has an angle of 60 degrees. Namely, consider the
triples (x,y,z) = (s2 − 3t2 + 2st,4st,s2 + 3t2), satisfying x2 + y2 − xy = z2. For primitivity, we need
the additional condition, 3 ∤ s; then gcd(s2 −3t2 +2st,4st,s2 +3t2) = 1.

Note that if s = 3t, then x = y = z. Thus, there are two cases to consider.
(1) If s < 3t, then x = s2 −3t2 +2st is the shortest side.
(2) If s > 3t, then y = 4st is the shortest side.

In the case of [1], we have and x < z < y. Then all the elements of the 0-Apéry set are given as in
Table 7.

(0,0) · · · (s− t −1,0) (s− t,0) · · · · · · (s+ t −1,0)
...

...
...

...
(0,s− t −1) · · · (s− t −1,s− t −1) (s− t,s− t −1) · · · · · · (s+ t −1,s− t −1)
(0,s− t) · · · (s− t −1,s− t)

...
...

...
...

(0,s+ t −1) · · · (s− t −1,s+ t −1)

TABLE 7. Ap0(s
2 −3t2 +2st,4st,s2 +3t2) when s < 3t

Since s < 3t, the largest value is at (s− t −1,s+ t −1). Hence, by x < z < y, we have

g0(s2 −3t2 +2st,4st,s2 +3t2) = (s− t −1)(s2 +3t2)+(s+ t −1)(4st)− (s2 −3t2 +2st) .

By applying a similar method, as long as p ≤ ⌊(2t)/(s− t)⌋, the largest value of App(A) is at
(
s− t −

1,s+ t −1+ p(s− t)
)
. Thus,

gp(s2 −3t2 +2st,4st,s2 +3t2)
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= (s− t −1)(s2 +3t2)+
(
(p+1)s− (p−1)t −1

)
(4st)− (s2 −3t2 +2st) .

In the case of [2], we have y < z < x. Then all the elements of the 0-Apéry set are given as in Table
8.

(0,0) · · · (2t −1,0) (2t,0) · · · · · · (s+ t −1,0)
...

...
...

...
(0,2t −1) · · · (s− t −1,s− t −1) (s− t,s− t −1) · · · · · · (s+ t −1,2t −1)
(0,2t) · · · (2t −1,2t)

...
...

...
...

(0,s+ t −1) · · · (2t −1,s+ t −1)

TABLE 8. Ap0(s
2 −3t2 +2st,4st,s2 +3t2) when s > 3t

Since s > 3t, the largest value is at (2t −1,s+ t −1). Hence, by y < z < x, we have

g0(s2 −3t2 +2st,4st,s2 +3t2) = (2t −1)(s2 +3t2)+(s+ t −1)(s2 −3t2 +2st)−4st .

By applying a similar method, as long as p ≤ ⌊(s− t)/(2t)⌋, the largest value of App(A) is at
(
2t −

1,s+ t −1+ p(2t)
)
. Thus,

gp(s2 −3t2 +2st,4st,s2 +3t2) = (2t −1)(s2 +3t2)+
(
s+(2p+1)t −1

)
(s2 −3t2 +2st)−4st .

Theorem 4. Let s and t be positive integers having different parity with s > t, gcd(s, t) = 1 and 3 ∤ s.
When s < 3t, for a nonnegative integer p with p ≤ ⌊(2t)/(s− t)⌋, we have

gp(s2 −3t2 +2st,4st,s2 +3t2)

= (s− t −1)(s2 +3t2)+
(
(p+1)s− (p−1)t −1

)
(4st)− (s2 −3t2 +2st) .

When s > 3t, for a nonnegative integer p with p ≤ ⌊(s− t)/(2t)⌋, we have

gp(s2 −3t2 +2st,4st,s2 +3t2)

= (2t −1)(s2 +3t2)+
(
s+(2p+1)t −1

)
(s2 −3t2 +2st)−4st .

More generally, when we consider Diophantine equations in three variables which have infinitely
many triples of solutions given by two-dimensional parameters as above, it would be interesting to
analyse whether the same method as above can be applied. They will be discussed in subsequent
works.
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7. Some remarks

It is very difficult to completely determine the p-Frobenius and the p-Sylvester numbers for all non-
negative integers p, as seen in [11, 12, 15, 14, 16, 17] too. The reason is that if p is greater than a
certain value, the regularity of the p-Apéry set is broken. This is the principal reason why we only
proved in Theorem 1 partial results for the p-Frobenius and the p-Sylvester numbers of primitive
Pythagorean triples for p bounded by a certain constant. For example, for

⟨
s2 − t2,2st,s2 + t2

⟩
if

s = 4m+1, t = 2m (with m ≥ 2), then the results are given only for p = 0; and if s = 10m+1, t = 4m
(with m ≥ 2), then the results are given only for p = 0,1.
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