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Diophantus of Alexandria, Egypt lived during the 3rd century
AD. Here he is:
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Metrodorus indicated the life span of Diophantus through a
puzzle poetically as:

’Here lies Diophantus,’ the wonder behold.
Through art algebraic, the stone tells how old:
’God gave him his boyhood one-sixth of his life,
One twelfth more as youth while whiskers grew rife;
And then yet one-seventh ere marriage begun;
In five years there came a bouncing new son.
Alas, the dear child of master and sage
after attaining half the measure of his father’s life chill fate
took him.
After consoling his fate by the science of numbers for four
years, he ended his life.’
This puzzle implies that Diophantus’s age x = 84 is a solution
of the equation

x =
x

6
+

x

12
+

x

7
+ 5 +

x

2
+ 4.
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Diophantus was interested in solving polynomial equations in
many variables where he sought solutions in integers or, more
generally, in rational numbers.

He wrote a number of books titled ‘Arithmetica’ many of
which have got lost.
The amateur mathematician Pierre de Fermat had, in his copy
of Bachet’s translation of Diophantus’s Arithmetica, made a
famous marginal note which came to be known as Fermat’s
last theorem.
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Waring conjectured (in 1770)

Every positive integer N is a sum of at the most 9 cubes of
positive integers -
proved by Wieferich (1909) and Kempner (1912).

In fact, if N is large enough, 7 cubes suffice (Linnik 1942); can
7 be reduced to 6 or 5 or 4? -

unknown.
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Allow cubes of negative integers also; then 5 cubes suffice but
it is as yet unknown if 4 cubes suffice.

Therefore, the problem as to which integers are sums of three
integer cubes becomes very interesting.
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Regarding this, by 2021, the only two elusive cases of 33 and
42 remained among the numbers up to 100.

Finally settled by Andrew Booker from Bristol, and Andrew
Sutherland from MIT - authorities on parallel computations.

They used ‘Charity Engine’, a world-wide computer that
harnessed idle, unused computing power from over 500000
home PCs to create a crowd-sourced platform.
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The most difficult case of 42 resolved using a computing
platform reminiscent of ‘Deep Thought’, the giant machine
which gave the answer 42 in Douglas Adams’s Hitchhiker’s
Guide to the Galaxy.

The Earth was actually a giant supercomputer, created by
another supercomputer, Deep Thought.
‘Deep Thought’ built by its creators to give the answer to the
“Ultimate Question of Life, the Universe, and Everything”.
After eons of calculations, the answer was given simply as
“42”.
Deep Thought was then instructed to design the Earth
supercomputer to determine what the Question actually is!
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Challenge for the clairvoyant

“It occurs to me that these sorts of questions would
be excellent challenge questions to pose to any
psychics who claim to be in contact with
super-intelligent aliens, since the solutions are
already expected to be produced by computer search
in a few years but would be instantly verifiable
evidence of some extraordinary computational or
intellectual resource if produced sooner”.
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Everyone must have heard of the famous taxicab number 1729
and Ramanujan’s story thanks to Mahalanobis, who was a
contemporary of Ramanujan at Cambridge.

The Ramanujan taxicab number concerns the Diophantine
equation x3 + y 3 = 1729 for which Ramanujan observed two
integer solutions; (12, 1) and (10, 9) are the only ones.

However, what may not be so well-known is that it has
infinitely many rational solutions. For instance, if u, v is a
solution, then so is U = u(u3 − 3458)/(1729− 2u3) and
V = v(u3 + 1729)/(1729− 2u3).
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Determining which integers n are sums of two rational cubes,
has a rich history tracing back to Sylvester.

Sylvester predicted that:
primes p ≡ 2, 5 (mod 9) are not sums of two rational cubes,
primes p ≡ 4, 7, 8 (mod 9) are sums of two rational cubes.
In contrast, primes p ≡ 1 (mod 9) may or may not be sums of
two rational cubes.
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The notion of Diophantine approximation arises in many
situations - we briefly mention one, where π occurs.

Here is a routine-looking question? Is the infinite series∑
1

n3 sin2(n)
convergent?

The convergence of the series depends on the behavior of the
sequence n| sin(n)| as n → ∞ and, this is mysterious. It
depends on something unknown as yet - how well can π be
approximated by rational numbers?
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The irrationality measure µ(α) of an irrational number α is
the infimum of all a > 0 such that the inequality
|α− p/q| < 1/qa has only finitely many solutions p, q.

The Dirichlet box principle implies that µ(α) ≥ 2 and
generically (that is, almost all) α have µ(α) = 2.

For a specific number, it is difficult to find µ; for instance,
µ(e) = 2 but, the constant µ(π) is still unknown.
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One knows µ(π) < 8 but not much more is known.

Here is the shocker - the series
∑

1
n3 sin2(n)

diverges if

µ(π) > 5/2 and converges if, µ(π) < 5/2. So, take your pick!
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Many problems of mathematics can be formulated as seeking
solutions of certain Diophantine equations. In fact, in a sense
of mathematical logic, every problem can be so formulated!

Hilbert’s famous 10th problem asserted: Given a diophantine
equation with any number of unknown quantities and with
rational integral numerical coefficients: To devise a process
according to which it can be determined by a finite number of
operations whether the equation is solvable in rational integers.

Theorem (Davis-Putnam-Robinson-Matiyasevich) There is no
general algorithm that, given any Diophantine equation,
decides whether it has solutions in positive integers or not. In
more technical terms, the notions of ‘effectively enumerable’
sets and ‘Diophantine’ sets coincide.
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a to z

The ideas appearing in the resolution of the 10th problem yield
interesting implications such as:

The set of positive values of the following polynomial in 26
variables when the variables take positive integer values,
equals the set of prime numbers!
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There are several questions like Fermat’s last theorem
asserting the nonexistence of solutions in positive integers of
the equations xn + yn = zn for n > 2 (which is solved now),

Catalan’s conjecture asserting that the only solution in positive
integers of xm − yn − 1 is x = 3,m = 2, y = 2, n = 2 (which is
also solved now)

which require very different techniques; we will say more about
them in a while but first, let us discuss a more elementary
problem.
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Think of a fruit-seller arranging her fruits in a triangular
pattern in the morning and in a square pattern in the evening.

Can she do both of these with the same number of fruits?

For instance, if he has 36 fruits, he can do this because
62 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8.

Which other squares are so expressible as ‘triangular
numbers’?
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If n2 = 1 + 2 + · · ·+ k = k(k + 1)/2, then

8n2 = 4k(k + 1) = (2k + 1)2 − 1
Thus, (2k + 1, 2n) is a solution of the equation x2 − 2y 2 = 1.

Being aesthetically-minded fruit-sellers, all of us of course
want to know what the solutions of x2 − 2y 2 = 1 are !
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Here is another instance when the above equation occurs and
involves Ramanujan:
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December 22, 1887 to April 26, 1920
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In the Strand magazine, Mahalanobis had seen the following
problem which he mentioned to Ramanujan:

Imagine that you are on a street with houses marked 1
through n. There is a house in between such that the sum of
the house numbers to the left of it equals the sum of the
house numbers to its right. If n is between 50 and 500, what
are n and the house number?

Ramanujan thought for a moment and replied “Take down the
solution” and dictated a continued fraction saying that it
contained the solution!

Evidently, Ramanujan wanted to have some fun instead of
directly giving the answer! So, what is behind this?
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Evidently, Ramanujan wanted to have some fun instead of
directly giving the answer! So, what is behind this?
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If the house number is r , then we have

1 + 2 + · · ·+ (r − 1) = (r + 1) + · · ·+ n

The LHS is (r−1)r
2

and if we add 1 + 2 + · · ·+ r = r(r+1)
2

to
both sides, we have:

r 2 = n(n+1)
2

.

Multiplying by 8 and adding 1, we have 8r 2 + 1 = (2n + 1)2,
the very same equation encountered by the fruit-seller!
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One can similarly look at m2 − dn2 for any square-free positive
integer d .

Can it take the value 1? Can it take the value −1? How many
solutions are there?
This rich area of mathematics is popularly (and erroneously!)
known as the theory of the Pell equations.
Interestingly, it turns out that there are infinitely many pairs
m, n for which m2 − dn2 = 1 and essentially, they are all
generated from a single pair.
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The ancient Indian mathematicians (especially Brahmagupta,
Bhaskara II and Jayadeva) studied the equations
x2 − dy 2 = ±1 and solved them!

What is more - they gave an algorithm (the so-called
Chakravala or cyclic method) which produces all the solutions.
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Brahmagupta lived during 598-670 AD
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Bhaskaracharya lived from 1114 to 1185 AD.
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In 1657, Fermat, writing to his friend Frenicle, he posed “to
the English mathematicians and all others” the problem of
finding a solution of x2 − Ny 2 = 1 “pour ne vous donner pas
trop de peine” like N = 61, 109.

Fermat : August 17, 1601 to January 12, 1665
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The 20th century great André Weil’s comment on this was:

“What would have been Fermat’s astonishment if some
missionary, just back from India, had told him that his problem
had been successfully tackled there by native mathematicians
almost six centuries earlier ?”
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Andre Weil : May 6, 1906 to August 6, 1998
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Indeed, in 1150 A.D., Bhaskara II gave the explicit solutions

17663190492 − 61(226153980)2 = 1

1580706719862492 − 109(15140424455100)2 = 1!

Indeed, Brahmagupta (598-665) had already solved this
equation in 628 A.D. for several values like N = 83 and
N = 92.
Brahmagupta had remarked, “Kurvannaavatsaraad ganakah” -
meaning (approximately), “a person who is able to solve these
within a year is truly a mathematician”’ !
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The wrong attribution to Pell of these equations is due to the
most prolific of mathematicians - Leonhard Euler, but the
name has stuck.

In view of the above understanding of mathematical history,
now the equations can better be referred to as the
Brahmagupta-Pell equations.
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• The Congruent Number Problem:

A natural number d is said to be a congruent number if there
is a right-angled triangle with rational sides and area d .
For example, 5, 6, 7 are congruent numbers.
Why?
6 is easy from the usual 3, 4, 5 triangle.
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To see that 5 is a congruent number, consider the right-angled
triangle with sides 3/2, 20/3, 41/6.

What about 7?
Look at a right triangle with sides 35/12, 24/5, 337/60.
How did we guess this? More importantly, how do we decide if
a given number is a congruent number?
This will be done by relating it to another problem!
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Question. Can we have an arithmetic progression of three
terms which are all squares of rational numbers and the
common difference d?

That is, can x2 − d , x2, x2 + d be squares of rational numbers
and x rational?
The congruent number problem and the above question are
equivalent!
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Indeed, Let u ≤ v < w be the sides of a right triangle with
rational sides.

Then x = w/2 is such that (v − u)2/4,w 2/4, (u + v)2/4 form
an arithmetic progression.
Conversely, if x2 − d = y 2, x2, x2 + d = z2 are three rational
squares in arithmetic progression, then:
z − y , z + y are the legs of a right angled triangle with
rational legs, area (z2 − y 2)/2 = d and rational hypotenuse 2x
because 2(y 2 + z2) = 4x2.
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1, 2, 3 are not congruent numbers.

Why?
The fact that 1, 2 are not congruent numbers is essentially
equivalent to Fermat’s last theorem for the exponent 4(!)
Indeed, if a2 + b2 = c2, 1

2
ab = 1 for some rational numbers

a, b, c then x = c/2, y = |a2 − b2|/4 are rational numbers
satisfying y 2 = x4 − 1.
Similarly, if a2 + b2 = c2, 1

2
ab = 2 for rational numbers a, b, c ,

then x = a/2, y = ac/4 are rational numbers satisfying
y 2 = x4 + 1.
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The equations y 2 = x4 ± 1 over rational numbers, reduce to
the equation x4 ± z4 = y 2 over integers which was proved by
Fermat using the method of descent not to have nontrivial
solutions.

The un-solvability of y 2 = x4 ± 1 in rational numbers are
exactly equivalent to showing 1, 2 are not congruent.
In fact y 2 = x4 − 1 for rational x , y gives a right-angled
triangle with sides y/x , 2x/y , (x4 + 1)/xy and area 1.
Similarly, y 2 = x4 + 1 for rational x , y gives a right-angled
triangle with sides 2x , 2/x , 2y/x and area 2.
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Here is a (rather unusual!) way of using the above fact that 1
is not a congruent number to show that

√
2 is irrational!

Indeed, consider the right-angled triangle with legs
√
2,
√
2

and hypotenuse 2. If
√
2 were rational, this triangle would

exhibit 1 as a congruent number!
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Though it is an ancient problem to determine which natural
numbers are congruent, it is only in late 20th century that
substantial results were obtained and progress has been made
which is likely to lead to its complete solution.
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The rephrasing in terms of arithmetic progressions of squares
emphasizes a connection of the problem with rational solutions
of the equation y 2 = x3 − d2x .

Such equations define “elliptic curves”.
It is easy to show that:
d is a congruent number if, and only if, the elliptic curve
Ed : y 2 = x3 − d2x has a solution with y ̸= 0.

B.Sury The world of ∆ιoϕαντoζ



The rephrasing in terms of arithmetic progressions of squares
emphasizes a connection of the problem with rational solutions
of the equation y 2 = x3 − d2x .
Such equations define “elliptic curves”.

It is easy to show that:
d is a congruent number if, and only if, the elliptic curve
Ed : y 2 = x3 − d2x has a solution with y ̸= 0.

B.Sury The world of ∆ιoϕαντoζ



The rephrasing in terms of arithmetic progressions of squares
emphasizes a connection of the problem with rational solutions
of the equation y 2 = x3 − d2x .
Such equations define “elliptic curves”.
It is easy to show that:
d is a congruent number if, and only if, the elliptic curve
Ed : y 2 = x3 − d2x has a solution with y ̸= 0.

B.Sury The world of ∆ιoϕαντoζ



In fact, a2 + b2 = c2, 1
2
ab = d implies bd/(c − a), 2d2/(c − a)

is a rational solution of y 2 = x3 − d2x .

Conversely, a rational solution of y 2 = x3 − d2x with y ̸= 0
gives the rational, right-angled triangle with sides
(x2 − d2)/y , 2xd/y , (x2 + d2)/y and area d .
In a nutshell, here is the reason we got this elliptic curve.
The real solutions of the equation a2 + b2 = c2 defines a
surface in 3-space and so do the real solutions of 1

2
ab = d .

The intersection of these two surfaces is a curve whose
equation in suitable co-ordinates is the above curve!
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The set of rational solutions of an elliptic curve over Q forms
a group and, it is an easy fact from the way the group law is
defined, that there is a solution with y ̸= 0 if and only if there
are infinitely many rational solutions.

Therefore, if d is a congruent number, there are infinitely
many rational-sided right-angled triangles with area d(!)
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The connection with elliptic curves has been used, more
generally, to show that numbers which are 1, 2 or 3 mod 8 are
not congruent. This is rather deep.

Further, assuming the truth of a famous, deep, open
conjecture known as the weak Birch & Swinnerton-Dyer
conjecture, it has been shown that this is a complete
characterization of congruent numbers!
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The system of Diophantine equations that describes a
rectangular box whose sides are X ,Y ,Z , face diagonals are
U ,V ,W , and the long diagonal is T (with all these lengths
rational) is:

X 2 + Y 2 = U2,Y 2 + Z 2 = V 2,

Z 2 + X 2 = W 2,X 2 + Y 2 + Z 2 = T 2.

No solutions are known.
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Now, we discuss a natural problem which leads to a
Diophantine equation discussed above.

Look at the figure below.

�
�
�
�
�
��

#
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#
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The rule is to walk on a straight line to some point of the
middle vertical line as in the figure and, on reaching that
point, walk towards the opposite corner along a straight line.

Thus, we have a path as in the figure consisting of one
segment of length r until the middle line is reached and the
other of length s from that point to the opposite corner.
The question is whether we can follow such a path with both
the distances r , s rational numbers.
It is an easy exercise to prove that such a ‘rational’ walk is
impossible because 1 is not a congruent number!

B.Sury The world of ∆ιoϕαντoζ



The rule is to walk on a straight line to some point of the
middle vertical line as in the figure and, on reaching that
point, walk towards the opposite corner along a straight line.
Thus, we have a path as in the figure consisting of one
segment of length r until the middle line is reached and the
other of length s from that point to the opposite corner.

The question is whether we can follow such a path with both
the distances r , s rational numbers.
It is an easy exercise to prove that such a ‘rational’ walk is
impossible because 1 is not a congruent number!

B.Sury The world of ∆ιoϕαντoζ



The rule is to walk on a straight line to some point of the
middle vertical line as in the figure and, on reaching that
point, walk towards the opposite corner along a straight line.
Thus, we have a path as in the figure consisting of one
segment of length r until the middle line is reached and the
other of length s from that point to the opposite corner.
The question is whether we can follow such a path with both
the distances r , s rational numbers.

It is an easy exercise to prove that such a ‘rational’ walk is
impossible because 1 is not a congruent number!

B.Sury The world of ∆ιoϕαντoζ



The rule is to walk on a straight line to some point of the
middle vertical line as in the figure and, on reaching that
point, walk towards the opposite corner along a straight line.
Thus, we have a path as in the figure consisting of one
segment of length r until the middle line is reached and the
other of length s from that point to the opposite corner.
The question is whether we can follow such a path with both
the distances r , s rational numbers.
It is an easy exercise to prove that such a ‘rational’ walk is
impossible because 1 is not a congruent number!

B.Sury The world of ∆ιoϕαντoζ



The fact that a product of r > 1 consecutive numbers can not
be a perfect power was settled 50 years back by Erdös &
Selfridge.

Erdös-Selfridge theorem is so simple to state that one may be
tempted to think it could perhaps have an elementary proof.

For instance, these are easy to observe when r = 2, 3.

However, for r > 3, the proof needs deeper properties of prime
numbers, such as:
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a classical theorem due to Sylvester which asserts that any set
of k consecutive numbers with the smallest one > k contains
a multiple of a prime > k .

The special case of this when the numbers are k + 1, · · · , 2k
is known as Bertrand’s postulate.

By the way, the product of any four consecutive integers is one
less than a perfect square:

n(n + 1)(n + 2)(n + 3) = (n2 + 3n + 1)2 − 1.
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Which natural numbers have all their digits to be 1 with
respect to two different bases?

Equivalently, solve

xm − 1

x − 1
=

yn − 1

y − 1

in natural numbers x , y > 1;m, n > 2.
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For example 31 and 8191 have this property;

(11111)2 = (111)5 , (111)90 = 213 − 1.

(Observed by Goormaghtigh nearly a century ago).

However, it is still unknown whether there are only finitely
many solutions in x , y ,m, n. In fact, no other solutions are
known.

For any fixed bases x , y , it was proved only as recently as in
2002 that the number of solutions for m, n is at the most 2.

B.Sury The world of ∆ιoϕαντoζ



For example 31 and 8191 have this property;

(11111)2 = (111)5 , (111)90 = 213 − 1.

(Observed by Goormaghtigh nearly a century ago).

However, it is still unknown whether there are only finitely
many solutions in x , y ,m, n. In fact, no other solutions are
known.

For any fixed bases x , y , it was proved only as recently as in
2002 that the number of solutions for m, n is at the most 2.

B.Sury The world of ∆ιoϕαντoζ



For example 31 and 8191 have this property;

(11111)2 = (111)5 , (111)90 = 213 − 1.

(Observed by Goormaghtigh nearly a century ago).

However, it is still unknown whether there are only finitely
many solutions in x , y ,m, n. In fact, no other solutions are
known.

For any fixed bases x , y , it was proved only as recently as in
2002 that the number of solutions for m, n is at the most 2.

B.Sury The world of ∆ιoϕαντoζ



Another problem is:
• Can one have different finite arithmetic progressions with the
same product?

Note that

2.6 · · · (4n − 2) = (n + 1)(n + 2) · · · (2n)

for all natural numbers n.

Are there other solutions to the equation

x(x + d1) · · · (x + (m − 1)d1) = y(y + d2) · · · (y + (n − 1)d2)

where d1, d2 are positive rational numbers and d1 ̸= d2 if
m = n ?

It is only in 1999 that using ideas from algebraic geometry, it
was proved that if m, n, d1, d2 are fixed, then the equation has
only finitely many solutions in integers apart from some
exceptions which occur when m = 2, n = 4.
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A deep conjecture due to Erdös in 1975 asserts that:

For each c ∈ Q, the number of (x , y ,m, n) satisfying

x(x + 1) · · · (x +m − 1) = cy(y + 1) · · · (y + n − 1)

with y ≥ x +m , min(m, n) ≥ 3, is finite.
This is unsettled as yet.
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Apollonian circle packing

Apollonius from 200 BC discovered something beautiful.
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If we have three circles touching each other, one may place
another circle touching all three.

In the 17th century, Descartes discovered the remarkable fact
that the radii satisfy the equation(∑4

i=1
1
ri

)2

= 2
∑4

i=1
1
r2i
.

Here, the circles are supposed to have no common interior
point which means by convention that the outermost circle’s
exterior is the interior and the interior is the exterior and the
radius is negative.
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In terms of the curvature, which is the reciprocal of the radius,
the equation becomes

(C1 + C2 + C3 + C4)
2 = 2(C 2

1 + C 2
2 + C 2

3 + C 2
4 ).

Thus, if we are given 3 of the circles and they have integer
curvatures,t he fourth must also have integral curvature
because of the equation!
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In the figure here, the curvatures are −1, 2, 2, 3.
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In this manner, we can get a packing by circles and it is a
nontrivial problem to find all solutions of the above
Diophantine equation.

Recently, very deep mathematical tools have been brought to
bear on these problems and there is a veritable treasure for the
eye as well as the brain awaiting you if you are interested!
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Upping the ante

Questions on counting (and many questions we considered
above) often involve finding integer solutions of equations of
the form f (x) = g(y) for integer polynomials f , g .

An example comes from counting lattice points in generalized
octahedra.

The number of integral points on the n-dimensional
octahedron |x1|+ |x2|+ · · ·+ |xn| ≤ r is given by the
expression pn(r) =

∑n
i=0 2

i
(
n
i

)(
r
i

)
.
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The question of whether two octahedra of different dimensions
m, n can contain the same number of integral points becomes
equivalent to the solvability of pm(x) = pn(y) in integers x , y ;
this is proved now to have only finitely many solutions.

B.Sury The world of ∆ιoϕαντoζ



Modus operandi - Siegel’s theorem

Theorem (Siegel, 1929). If F ∈ Z[X ,Y ] is absolutely
irreducible and the curve F = 0 has genus > 0, then the
number of integral points on the curve is finite. Further, the
finiteness of the number of integer points holds good except
when the (projective completion of the) curve defined by
F = 0 has genus 0 and at most 2 points at infinity.

B.Sury The world of ∆ιoϕαντoζ



Let f , g ∈ C[X ] be two polynomials such that the polynomial
f (X )− g(Y ) ∈ C[X ,Y ] in two variables is irreducible.
Suppose the stationary points of f and g are simple. For each
stationary point a ∈ Sf , define

ra := |{b ∈ Sg : f (a) = g(b)}|.

Then, the genus g of the curve f (X ) = g(Y ) is given by

2g =
∑
a∈Sf

(deg(g)− 2ra)− deg(f ) + 2−GCD(deg(f ), deg(g)).
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Given F ∈ Q[X ,Y ), one may homogenize this polynomial to a
homogeneous polynomial of three variables X ,Y ,Z . Then,
the points in the projective space corresponding to the
solutions of F (x , y , 0) = 0 are called the points at infinity of
the curve F = 0.

Yuri Bilu and Robert Tichy found a novel way to use Siegel’s
theorem in a more effective manner.
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The power of these geometric methods can be exemplified by
one application as follows:

The following theorems address Erdös’s conjecture and gives
finiteness of integral solutions when the genus is > 0 and the
finiteness of rational solutions when the genus is > 1.
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ABC

The dilemma of using transcendental methods due to Alan
Baker and others is that although one may prove the finiteness
of the number of solutions, the result may not be effective.

Even when we have an effective result, the bound may be so
big as to rule out any checking by powerful computers also.

For instance, for the Catalan equation xm − yn = 1, Robert
Tijdeman’s finiteness result was made effective by Langevin
who obtained an upper bound for x , y ,m, n that was of the
order of exp(exp(exp(exp(730)))).
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Later, in 20024, the Catalan equation was completely solved
by Preda Mihailescu, showing that the only perfect powers
differing by 1 are 8 and 9.

A more general conjecture due to S S Pillai is still open; it
asserts that the gaps in the sequence of perfect powers tends
to infinity.
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The ABC conjecture - formulated independently by Masser
and Oesterlé - supercedes many conjectures in Diophantine
equations and implies many of them.

It formalizes the observation that when two numbers A and B
are divisible by large powers of small primes, then A+ B tends
to be divisible by small powers of large primes.

More precisely:
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For any ϵ > 0, there are only finitely many triples A,B ,C of
relatively prime integers satisfying A+ B = C, and
max(A,B ,C ) > Rad(ABC )1+ϵ, where Rad(n) is the product
of all distinct prime divisors of n.

For instance, the ABC-conjecture implies Fermat’s last
theorem for sufficiently large exponents; in fact, it implies
finiteness of the number of solutions of the generalized Fermat
equation Ax r + By s = Cz t .
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I end with two remarkable results from a century back:
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Ritt’s first theorem. Let f1 ◦ f2 ◦ · · · fr = g1 ◦ g2 ◦ · · · gs where
fi , gj ∈ C[X ] be nontrivial decompositions into
indecomposables. Then, r = s and the sets of degrees
{deg(f1), · · · , deg(fr )} = {deg(g1), · · · , deg(gs)}.
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Ritt’s second theorem. let f1 ◦ g1 = f2 ◦ g2 be two proper
decompositions over C where deg(f1) = deg(g2) is relatively
prime to deg(g1) = deg(f2).
Then, either

f1(X ) = X rP(X )s = g2(X ) , g1(X ) = f2(X ) = X s

or

f1(X ) = g2(X ) = Dm(X ) , g1(X ) = f2(X ) = Dn(X )

where Dn(X ) is the Dickson polynomial of degree n defined by

Dn(X + 1/X ) = X n + 1/X n.
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We had this year’s Pi Day

just now - last Friday.
To Pi, 22 by 7 is closer
but somehow 3.14 is kosher.
But who cares? Let’s celebrate any way!
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Thank You For Listening!
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Which numbers are popular in IIT?

All love Pi, and know by sight e.
Last Friday was Pi Day,
celebrate despite delay,
- the best way to start is with High Tea!
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