Explicit solutions of $\phi (m) = k!$

In [1] Peter Shiu considered the equations $\phi (m) = k!$ and $\sigma (n) = k!$. He discusses interesting algorithms for each of these equations. For several years (at least since 1995), I had known a way of getting an explicit solution for the former which I have been sharing with mathematics olympiad students. The paper [2] not only mentions this method but goes on to prove that there are infinitely many common values of the ϕ and the σ functions. Since Shiu comments in [1] that it is unknown whether the ranges of the totient function and the ‘sum of divisors’ function have infinite intersection, I thought it would be a good idea to draw attention to [2] and also recall my simple explicit solution for the readers of the Gazette.

We recall just one definition. For a positive integer $n > 1$ with the prime decomposition $n = \prod_{i=1}^{r} p_i^{a_i}$, the radical of n, denoted by $\text{rad}(n)$, is the product $\prod_{i=1}^{r} p_i$; it is the largest square-free divisor of n.

Theorem: Let $n = \prod_{i=1}^{r} p_i^{a_i} > 1$ be a positive integer. If $\phi \left(\text{rad}(n) \right)$ divides n, then $\phi \left(\frac{n^2}{\phi(n)} \right) = n$.

Further, $\frac{n^2}{\phi(n)}$ is the unique solution in this case which shares the same prime divisors with n.*

As we shall see, each $n = k!$ satisfies the hypothesis of the theorem; that is, we claim that $\phi \left(\text{rad}(k!) \right)$ divides $k!$, so that we have the following result.

Corollary: For any positive integer k, $\phi \left(k! \right)$ divides $(k!)^2$, and

$$\phi \left(\frac{(k!)^2}{\phi(k!)} \right) = k!.$$

Further, the positive integer $\frac{(k!)^2}{\phi(k!)}$ is the unique solution which shares the same prime divisors with $k!$.

Proof of the corollary: We claim that $\phi \left(\text{rad}(k!) \right)$ divides $k!$, so that the theorem will apply to yield the corollary. To prove the claim, first note that a prime number p divides $k!$ if, and only if, $p \leq k$. So, if $p_1 < p_2 < \ldots < p_r$ are the entirety of prime numbers not exceeding k, then we may write

$$k! = \prod_{i=1}^{r} p_i^{a_i}.$$

* Please clarify the meaning of this sentence.
Also, the positive integer \(\text{rad}(k!) = \prod_{i=1}^{r} p_{i} \) satisfies the property that
\(\phi(\text{rad}(k!)) = \prod_{i=1}^{r} p_{i} \) divides \(k! \) since each \(p_{i} - 1 \) occurs as a distinct term in \(k! = k(k - 1)(k - 2) \ldots 2 \times 1 \).

This proves the claim. Hence the corollary follows from the theorem.

Proof of the theorem: As \(\phi(\text{rad}(n)) = \prod_{i=1}^{r} (p_{i} - 1) \) is assumed to divide \(n = \prod_{i=1}^{r} p_{i}^{c_{i}} \), we may write

\[
\phi(\text{rad}(n)) = \prod_{i=1}^{r} (p_{i} - 1) = \prod_{i=1}^{r} p_{i}^{b_{i}}
\]

with \(0 \leq b_{i} \leq a_{i} \).

Then we have

\[
\frac{n^{2}}{\phi(n)} = \prod_{i=1}^{r} p_{i}^{a_{i}} (p_{i} - 1) = \prod_{i=1}^{r} p_{i}^{a_{i} - b_{i} + 1},
\]

which is an integer. Thus, \(\phi(n) \) divides \(n^{2} \).

Further, we have

\[
\phi\left(\frac{n^{2}}{\phi(n)}\right) = \prod_{i=1}^{r} \phi(p_{i}^{a_{i} - b_{i} + 1}) = \prod_{i=1}^{r} p_{i}^{a_{i} - b_{i}} (p_{i} - 1) = \prod_{i=1}^{r} p_{i}^{a_{i}} = n.
\]

Also, if \(\phi(\text{rad}(n)) \) divides \(n \), then evidently both \(\frac{n^{2}}{\phi(n)} \) and \(n \) have the same prime factors \(p_{1}, \ldots, p_{r} \).

Conversely, if \(m = \prod_{i=1}^{r} p_{i}^{c_{i}} \) has the same prime factors as \(n \) (so \(c_{i} > 0 \) for all \(i \)), then

\[
\frac{m}{\phi(m)} = \prod_{i=1}^{r} \frac{1}{1 - 1/p_{i}} = \frac{n}{\phi(n)}.
\]

Hence, if \(\phi(m) = n \), then we have \(m = \frac{n^{2}}{\phi(n)} \).

This completes the proof.

Remark: We comment very briefly on the proof of the corollary. Note that, if \(p_{1}, \ldots, p_{r} \) are primes dividing a certain number \(n \) such that each \(p_{i} - 1 \) divides \(n \) as well, then, in general, some conditions on \(n \) are required if we are to assert truthfully that the product \(\prod_{i=1}^{r} (p_{i} - 1) \) divides \(n \). The special nature of a number \(n \) of the form \(k! \) is what makes the proof work.

For example, look at \(n = 18! \). The primes dividing 18! are all the primes less than 18, that is, 2, 3, 5, 7, 11, 13, 17. Now, the product

\[
(2 - 1)(3 - 1)(5 - 1)(7 - 1)(11 - 1)(13 - 1)(17 - 1) = 1.2.4.6.10.12.16
\]

divides 18! because each factor appears in
Acknowledgment: The author would like to thank an anonymous referee and the editor for their input which made the proofs more transparent; in particular, they suggested including an example, as in the above remark.

References
1. Peter Shiu, Solutions to $\phi(m) = k!$ and $\sigma(n) = k!$, *Math. Gaz.* 97 (March 2013) pp. 110-115.

B. SURY

Indian Statistical Institute, 8th Mile Mysore Road, Bangalore 560059, India

e-mail: sury@isibang.ac.in