
A VARIANT OF MOORE'S UNIQUENESS OF
RECIPROCITY LAWS

B. SURY

Abstract. In the case of F-isotropic groups for a global field F, Moore
[Mo] computed the metaplectic kernel using crucially his theorem of uniqueness
of reciprocity laws. For F-anisotropic G, a variant of Moore's theorem is,
therefore, needed to compute the metaplectic kernel. Such a variant was
announced by G. Prasad [GP1] (in 1986) and here we give the details.

Introduction. Let G be an absolutely simple, simply-connected algebraic
group over a global field F. For any finite set S of places of F, it is of interest
to compute the relative fundamental group of the S-adele group of G with
respect to G(F). Indeed, if S contains all the archimedean places of F and if

S-rank of (G) = £ F^-rank (G) > 2,
veS

this computation along with the normal subgroup structure of G(F) gives the
computation of the congruence subgroup kernel ([P-R]). In the case of
F-isotropic groups, Moore [Mo] computed this relative fundamental group (or,
equivalently, its Pontryagin dual 'the metaplectic kernel') using crucially his
theorem of uniqueness of reciprocity laws. For F-anisotropic G, a variant of
Moore's theorem is, therefore, needed to compute the metaplectic kernel. In
fact, this variant enables us to compute the metaplectic kernel for anisotropic
groups of type An, which is used, in turn, to compute the metaplectic kernel
for any F-anisotropic G. The details of the computation of the metaplectic
kernel will be published elsewhere. The appropriate variant of Moore's
Theorem was announced in [GP1]. Here, we give the details of that announce-
ment. We adopt the same method adopted by Chase and Waterhouse in
[C-W], where they gave an elegant proof of Moore's theorem. In [R], A. S.
Rapinchuk has computed the metaplectic kernel for anisotropic G for some S
though not quite singling out a result like this variant of Moore's uniqueness
theorem. Our format is as follows. We formulate the variant of the uniqueness
theorem as the exactness of a particular sequence involving the elements of
norm 1 from a cyclic extension of global fields. The formulations also vary
according to the parity of the extension degree. In Section 2, we give the proof
when the cyclic extension is of odd degree. Sections 3 and 4 contain
the formulations and the proofs for extensions of even degree which are
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nonquadratic and quadratic, respectively. The proofs will be first given for
number fields and in the last section, the modifications necessary for the same
proofs to work in positive characteristics, will be pointed out.

Notations. F is a Global field, J*'/F is a cyclic extension of degree
n, F = Gal (&/F), a is a generator of T, N is the Norm map from J5" to F,p
is a rational prime fixed once for all, i r ' = {xe J^: N(X) = 1}, fi(^)p, is the
p-primary part of the group of roots of unity in &. For a non-archimedean
place v of &, let pv denote the residue field characteristic of &v and 0v denote
the ring of integers in !FV.

Further let n = Card. \i (#" )p and fiv = Card, n (&0)p for all places v of &.
The \i o-th power norm residue symbol is denoted by ( , )„. The symbol is
called wild or tame according as pD =p or not. Finally, we let £ denote the set
of all places of #", E denote the subset of noncomplex ones, and £/ the subset
of nonarchimedean places.

§1. Remarks on symbols.
1. For each place v of &, the field automorphism

a: (#", | \„)-*(&, | !„,„) is continuous, and hence extends to a topological
field isomorphism from &v to IFa.u; we denote this again by a. Moreover,

x) for all v

2. For any finite set S of places of #", the diagonal embedding
diag.

& * © &v
veS

has dense image. In particular, if v is a place of & and

F • v = {v, a • v,..., ad~' • v}

then the composite embedding

au:& -©JV.^ • © &v
d copies

x' >diag. (JC)' >(x, <7~'x, a~2x,..., a~id~})x)

has dense image. We note that d divides n; indeed the decomposition group
at v is the cyclic group <<rrf> generated by ad.

3. By Hilbert's Theorem 90, we have J^1 = {xa{x)~l: xe&*}. If v is an
inert place i.e. T • v = v, then #"' is dense in tF\. If v is such that F •
then there exists ddividing n such that F • y={y, <r • v,..., ad'x • v}

We consider, as before, the embedding

x' >(x, a~xx,..., a~id~X)x).

Here, and henceforth, we write ®&v for ©dcopies &v. Since the image is
dense, for arbitrary x0, x,,.. ., xd-xe&v we can find xe& such that cr~'x~x,
for O^i^d- 1 in !FV. We have written ~ to mean that the elements are as
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near as we want them to be with respect to the topology of J5",,. Therefore,
av((7x) = (ax,x,..., a~id~2)x)~(crdxd-x,xo,... ,xd-2) in © d copies ̂ V
Hence, we note

aD(xa(x)~l)~(x0(J
d(xd-i),

It is trivial to check that

Here, Nv stands for the norm on &o. Conversely, it is easy to see that any
(yo, • • • ,}>d-\) in ©J^u satisfying Nv(y0 . .. yd-\) = 1, is of the form

(Xo(T (Xrf-i), . . . , Xd-\Xd-2).

Thus av(!F
x) is dense in

{{yo,---,yd-\):Nv(yo. ..yd-x)=\}.

This can be thought of as the weak approximation property for the anisotropic
F-torus #•'.

4. For a place of J5", we denote by n{&S)}> the subgroup of /i(J* v)p gener-
ated by {{x,y)o:x,ye&*}.

(a) If F • v # v (which is so for infinitely many v by Cebotarev
density theorem), then by Remark 3, &x is dense &0 and so

l

(b) If F • v = v and v is non-archimedean and pv=p, it follows from the
main theorem in [GP 2] and from the density of J*' in S'l that, if

^{\} and either p or n is different from 2, then again

(c) If F • v = v, v is non-archimedean andpvi^p, then ( , )v is tame, and
since J^1 c &*, the symbol is trivial on j ^ ' x / 1 and hence

5. If ( , )„ is tame, then (a, b)v is the unique element of J* „ which is
congruent, modulo the maximal ideal to

/ _ i \Ord

Thus, if OrdBa = 0 and Orduft = OrdI)c, then (a, b)v = (a, c)v.
6. Given x,ye^\ for almost all v, (x,y)v= 1. Thus, we have a

homomorphism

P
veT.

On the other hand, if pvepi{^v), then p ^ e ^ J ^ ) - So, we have a
homomorphism

which is surjective, since, for some (in fact, infinitely many) v,
With these remarks we can state the main results. We first consider odd

degree extensions in the next section.
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§2. Odd degree extensions.

THEOREM 1. If n = \&r :F\ is odd, then

is exact.

Proof We shall give the proof when Char (F) = 0 and in the last section
give the necessary modifications for positive characteristic. We have already
remarked that y/ is surjective, and since Artin's reciprocity law implies that
y/ ° 4> is trivial, we have to prove only the assertion Ker (y/) c Im (</>). We first
observe that for any finite set S of noncomplex places of J5", the homomorphism
^'x®z^rX-*®vssH(Fv)p is surjective. For this, it is enough to show that for
any v in S and any pv in ^(J5"^, there exists xv, yve^x such that (xv,yv)0 =
pv and (xv,yv)w= 1 for w in S, w^v. Consider any v in S. We may assume
that p u # l .

Case I. Fv = v. Then, by Remark 4, the symbol (x, y)v is necessarily wild.
By weak approximation for J5"1, we can choose x, ye#"' such that x~xv, y~yv

in J% and x, y~ 1 in !FW for all we5\{t)}.

Case H.r-v={v,G-v,...,ad~i-v}^v. We note that d divides n and
is, therefore, odd. We choose xv,yve?Fv such that (xv,yv)v = pv. Let
be so chosen that

av(x)~(xv,l, l,...,x:])

Choose jeJ5" be such that av{y)~{yv, 1,. . . , 1). Then, av(y • u(y)~l)~
(yv,yZlA,---,\)- Thus, (x, y • a(y)~1)v = pn and (x, y • a{yyx)a<v= 1 for
i= 1 , . . . , d- 1. In fact, by weak approximation, we can get xe&\ yegF such
that additionally x,y~\ in J5^ for all weS\T • v. Thus, x,ya{yYl are
elements of J5"1 satisfying (x,ycr(v)~l)v = pv and (x, ya(y)~l)w= 1 for all
weS1, w#y. To continue with the proof of the theorem, consider any
(PtOeKer (0). We will exhibit a place w and an element (t]v) of ®^(^u)p
such that

(i) t)v= 1 for u#K,
(ii) (p») = (»70) modulo Im (0);

(hi) /i,, = )U.
This would prove the theorem since, we would have that (T/^eKer ((/>) and

so T]u= 1 so that (pu)elm (0). Consider the field extension &{Q where f is
a primitive/>r+1-th root of unity where £ does not belong to J* but C,pe3F. Let
J = {u: pv =£ 1}. We consider the finite set

S= {set of archimedean places} u {Primes in IF which ramify in ^{Q}

u {Primes in J5" which dividep) u {places v: ( , )„ is wild}.

By our observation in the beginning of the proof, if necessary, we change
(pv) by an element in Im (</>) and assume that pv= 1 for v in S. Thus, with
this notation, TnS=F. We will show now that, we can change (pv) by an
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element of Im (0) and assume that T is equal either to <p or to [u, a • u) for
some place « of / such that nu = H- To do this, we show that any three
elements in Tcan be replaced by two elements of the form {v, a • v}. Consider
any three places {V\, v2, v3} e T. We will have three cases to consider according
to the way F acts on V\, v2, v3.

Case I. Tvi, Tv2, Tv3 are disjoint. Since u, are tame, we can choose
xv,,yv,e&vt of orders 0 and 1, respectively, such that (xVi., yv)Vi. = pVi for /=
1, 2, 3. Writing TVJ= {u,-, cry, , . . . ad'~1vi} for i= 1, 2, 3, we note that dt are
odd integers dividing n. We choose x e F 1 with aVj(x)~(xVt, 1 , . . . , x»,') in
0^"o,.. By Dirichlet's theorem on arithmetic progressions ([B-M-S]), there
exists a place u outside F • S u F • i>, such that if Pv denotes the prime ideal
corresponding to a place v, then

PuPvlPV2PV3 = (y)

with y close to 1 at all those places where x is not a unit as well as at the places
in F • S. Then, it can be seen that multiplying (pv) by (p(x®yo{yYv)~l replaces
Vi,v2, u3 in Tby u, a • u.

Case II. Fui = Fu 2 #Fu 3 , so that v2=a'v\ for some \^i^d-\ where
F • V\ = {vi, a • U i , . . . od~x • V\\. We choose xVl,yVle&Vl such that
(x»/> yv)v,=Pv, for i= 1, 2, 3 and where the x's have order 0 and yv,, yv, have
order 1, whereas yV2 is chosen to have order — 1. Choose xeJ^1 so that

ao,(x)~(xVl, 1 , . . . , a '(xV2), 1 , . . . , Xe/er '(xv*), 1 , . . . , 1)

av,(x)~(xv,, I , . . . , * " 1 )

Again, by Dirichlet's theorem, there exists a prime u$Y • S u F • vt such that

where y ~ 1 at all places in F • 51 as well as wherever x is not a unit. Then,
once again we can replace V\, v2, u3 in 7" by u,cru by changing (pu) by

1

/// . Fu1 = ru2 = ru3. We first consider the case rf/3 i.e.
Tvi^{vi,v2,v3}. We write Fui = {vu crvu .. ., ad~lVi}, V2 = <J'V1,V3 = OJVI

with l^i<j^d—l. Choose xOl, yOl in ^Vl of orders 0 and 1 respectively such
that (xVl,yVl)Ol = pOl. We take xeJ5"1 such that

aoi(x)~(xvi, I , . . . , a~\xvi), 1 , . . . , <J~J(xv,),

1,. . . , xja-'(x£)a~j(x£), 1,. . . , 1).
Here the term x^a~'(x^)(T~J(x^) is at the ?-th place where t depends only on
i and j . We will choose y as before using Dirichlet's theorem. In each case,
we just write down the choices and it is straightforward to verify that they
satisfy the properties

{.x,ya{y)~\=pOl for i = l , 2 , 3 ,

(x,ya(y)^)v=\ for U#M, cru, vu v2, v3.
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We write down the choice of u and y when i> 1 (the case i= 1 is easier). By
Dirichlet's theorem, we choose u^FSvYvt satisfying

unless we have i+l=j=d—l, in which case, we choose u such that

PuPttP^-^Pl"-^Pl^-vx = (y),

where y ~ 1 at the places where x is not a unit as well as at the places in T • S.
Finally, when d= 3 in Case III, we can just ignore y3 and replace v{, v2 in

T by w, aw on choosing a prime w not in T • S u T • V\ with ?»,?„, = (y) etc.
Then, as in Case II we can replace, w, a • w, v3 by u, a • u for some u.

Thus, we have shown now that any three elements in T can be replaced by
two elements of the form u, a • u for some u. If we had at the most 2 places
in T to start with, then again, it is easy to see as before that this 'reduction'
can be done. We claim we can assume without loss of generality that
Hu = H- For this, we choose xu,yue&u and xa.u,y.a.us!Fa.u with
(xa,.„, yOj u)a, u = P<*, u for /=0 , 1, and the x's have order 0, yu has order 1 and
yau has order — 1. Also, by Chebotarev's density theorem, we can choose a
place v such that (PVPU, # " ( 0 / ^ ) ^ 1 . We can get XB3FX such that
au(x)~(xu, o~\xau), XuXa~*(xZ^, 1 , . . . , 1) and x ~ 1 in!Fy.v for all y in Y.
Again, by Dirichlet's theorem, there exists w not i n r - S u r - w u r - u satisfy-
ing PwpuPv = (y) with y~ 1 at all places where x is not a unit. For these last-
mentioned places v0, since y~\, therefore {x,J<T(J)~1)UO= 1. Clearly,
(JC, yo(y)~l)a> u= 1 when / # 0 , 1 and equals pCT<.u for /=0 , 1. At any other place
v0 excepting w, ow, the symbol {x,ya{y)~l)ns=\. We have hence changed
M, au to w, ow where, moreover, we have nw = n since (Pw, lF(£)/&r)^l.
Thus, we could have assumed that T= {u, <J-U] with //u = ^ .

Now pu=6epi(^)p, Pau=6~x and other pv=l. We choose a place v out-
side F • S u F • M such that PvPu = (y) with y~ 1 at all places in S as well as
wherever 0 is not a unit. Then (9, y)u = (0,y)v = 6 and other (9, y)w = 1. Thus,
by the usual Artin reciprocity {i.e. for the field J^), we have
ee""/" = \,i.e.e2=\ as Hv = n. Hence, we have that Ker O ) / I m (</>) is
2-torsion. So we assume p = 2. To conclude the proof, we must show that
pe lm (<f>), where pu = pCT«= — 1 and pv- 1 for u#M, where w is any non-inert
place not in S such that HV

 = H-
If there exists an inert place v not in S with nv — fi, then we will have

finished. For, we can choose w0 not in Ssuch that Pm, PDPu?F{Q/^)^\. We
can also get xeJ5"1 with x, cx~\ in #"„,„ a,,(x)~(—1, - 1 , 1 , . . . , 1) and x is a
unit in J* „ which is congruent to — 1 modulo the maximal ideal. By Dirichlet's
theorem there is a place ^ S u T . u r , such that PwPuPv = {y), with y~ 1 at
all places in S as well as at all those places where x is not a unit. Now,
<f>(x<8>y) = Z where ^v = ̂ u = — \ and ^ 0 = 1 for vo¥"V,u by Artin's reciprocity,
since iiv = pu = \iw = \i. Similarly, we get (p(x(g)yo(yyl) = p.

Another situation when we would have finished is when there is a non-inert
place u$S with ^ K # / / . Therefore, we may assume that nu=H (resp. # / / ) if u
is non-inert (resp. inert) (for places u$S). Note that #"(£)/#" is a quadratic
extension. Let u be non-inert and outside S. Choose JC in J5"1 satisfying
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a M ( x ) ~ ( - l , - 1 , 1,. . . , 1) and get v outside S with PvPu = (y) where >>~1 at
5 as well as where x is not a unit. Then nv = n and so v is non-inert. Moreover,
clearly (p(x®yo(y)~l) = <§ with <̂ M,= — 1 for w = u, v, au, av and £„.= 1 for other
w. Now, we choose v0 not in S1 with {PVISPVPU, ^(Q/^) / 1 . Let x0 in J^1 be
so that au(x0)~(—1, — 1, 1,. . . , 1), a,,(xo)~(—1, 1,. . . , — 1) and x, crx~l in
#"„„. Get w^S such that PwPvoPuPv-(yo) with _yo~l at 51 and those places
where x0 is not a unit. Then nw = n so that w is non-inert. Also, it is clear
that £~l<p(x0(g)yo<j(y0)~

]) = Ti where r\aw= r\av = - \ and 77WO=1 at other
places. We have 7jelm (</>). We rename a-w and a-v as Ui and v2. Get u3 not
in S with ( I I ^ , ^ ^»,, ^ ( O / - ^ ) ^ ! - Choose x, in #"' with aDI

( x , ) ~ ( - l , 1 , . . . , 1,-1), a t , 2 ( x , ) ~ ( l , - l , . . . , 1,-1) a n d x i , « r x , ~ l i n ^ , .
There is a place M not in S such that Pu II P<>, = (y\) with ĵ i ~ 1 in S and where
x is not a unit. Then ^« = /i and so '7~V(-x:i®.}'icr(j;i)~1) = P> where pw = — \
for w = u, ou and = 1 for other w. Hence p e lm (</>). Of course, we have already
seen how to get from this the fact that for any non-inert w not in S, the element
6 denned by 0W0 = - 1 if vv0 = w, <JW and = 1 otherwise, is in Im (</>). This com-
pletes the proof of the theorem.

§3. Even degree nonquadratic extensions. When n is even, the image of the
map <p (introduced in remark 6 of §) is slightly smaller than in the odd degree
case; in fact as we will see, it injects into the following subset A of ©/i(J%)],

For a non-complex place v such that T • v={v,<j-v}, let nl denote the
subgroup spanned by (x, u)v for xetf* and ue^l. Let

if Tv={v, av}}.

We note that nl = ZFl nn(?Fv), \ipv±p. To see that Im ( 0 ) c A , consider any
\ and any v with Tv= {v, a-v}. Now

by the bimultiplicativity of ( , )„ and by the fact that xo-~'x, yo'^ye^l (if
we write x = t/a~l • t, thenx • a~ix = t/a~2 • tetFl = {s/a~1s: se^*}) whence

(x,y)Zx • a~\(x,y)

We also notice that in case n = 2, we have //J, = {1}. With this notation, the
next result is the following.

THEOREM 2. If \^: F\ =2m>2, then we have the exact sequence.

^ x * A - ^

Proof. Once again, we give the proof for number fields and the positive
characteristic case is discussed in Section 5. As before y/ ° <f> is trivial by Artin's
reciprocity law. Also, y/ is surjective, since, for some (in fact, infinitely many)
v, we have r • v^{v, a • v} and T • v^v so that n{&„)}, = n{&v)p. So, we
have to prove only that Ker (i^) d m {(/>). As in the case of odd degree exten-
sions, we first show that for any finite set 5<=Z, and (pv)Ves, we can get
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r;elm(«p) so that rjv = pv for all v in S. If Tv = v, or, if Fu =
{v, a • v,..., ad~ ' • « } # { « , a •«} , the proof of this fact is exactly the same
as the one we gave for odd degree. We have only to consider the case Tv =
{v, av}^{v}. Since we have p^1<r"1(p(ru)£//i, we have pav = <j(Pvriv) for
some r)0 in n\. So there are «,£#"* and Z>,e^J with r\v = \\i<i<r (a,-, bj)v. We
first choose xv,yve^* such that (xo,yo)a = pv. Let xoe£Fx be so that
a v(x0) ~ (xv, xZ') and j>0 e #" so that a v( y0) ~ (jo, 1) and also such that x0, yo ~ 1
in ^ for w in S\{u, cry}. Then, av(yo<r{yoYx)~(>>„, .y^' )• Moreover,

Now, we choose x,, ^eJ5"1 such that ao{xi)~{aji, a,) and a u ( j , ) ~ ( l , £,)•
Then, (*,,}>,)„= 1 and (x,, j,)CT.!) = <T((a,, 6,)u). Our choice is also so that
xt,yt~ 1 in fFw for w m S,w^v, av. Hence

satisfies ^u = p u and ^aw=cT(pvr]v) = pa.v, and %w= \ for all weS\{v, a- v}.
To continue with the proof, we start with any p in Ker(v) and letting

r = { u : p y # l } , w e can assume without loss of generality that TnS=0, where
5 is taken to include the archimedean places, the wild places, the places which
ramify in J^XO and the placed dividing/?. We once again show that by changing
p by an element of Im (0), any three elements v,, v2, v^eT can be replaced
either by 0 or by u, uu for some place u. As before we make three cases:

Case I. TV( are disjoint. Let T • vt= {v(, a • vt,... ad'~x • u,}. If all rf,>2,
then the proof is just as before as in the odd case. Therefore we assume that
some di=2. We want to change p by some £ in Im ((j>) so that V\, v2, v3 are
replaced by some uau, or by 0 . We note that we have only to take care that
our choice of £ must satisfy < ĈTI,,= 1 if pCTU,= 1. Now, if some v(, say V\, is so
that pa.Vl = 1, then we have pViefil (since peA means that pZl{a~\pa.v^)e^.l).
We choose xe!Fx such that aVl(x)~(pvl, 1) (this is possible because
pr i€/ij, = #"„', n ^ ( J r

u , ) ) . Similarly, the behaviours of a^ , av, are assumed to
be either as in the odd case or as for vx. By Dirichlet's theorem, we can choose
H to be a place outside T • S u F • v such that PKJPD ,P^PU3 = (y), with y ~ 1 at
all places in T • S as well as at those places where x is not a unit. If we multiply
p by ^ = (p(x®ya(y)~^), then i>, get replaced in Thy u, au.

Case II. Fvi = Tv2#Fu3. If T • V\^{v\, v2}, then we choose aoi(x),
av£x) as in the odd case and aVi(x) as in Case I above.

If F • V] = {v\, v2}, then we proceed as follows. Now pa.v^ = <j(aVlr]vl) for
some /?„,enln J^J,. Let xOl,yvie&vx so that OxdDx{xVx) = 0, OrdUi(yvl) = 1 and
(xVl,yV])vi = PB,- We let xe^] with aVl(x)~(xVl, x^t]^) and appropriate
av,(x). Again, by Dirichlet's theorem we choose a place u$T • S u F - i>, such
that PuPv,PV2 = (y) with y~ 1 at all places in T • S as well as wherever x is not
a unit. Clearly ^ = <?'(x®>'(T(_y)~1) satisfies the requirements.

Case III. Tv\2{^i, v2, v3}. As di=d2 = di>2, the proof is exactly as in
the case of odd degree extensions.
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To recapitulate, therefore, T can be assumed to be either 0 or to be of the
form {M, <JU) with fiu=fi. We have to show that pelm (0) in the latter case.
Write r • u = {ua • u,.. ., ad~l • u} # U.

We first consider the case d>3. Choose v not in S such that
(PDPuP,,.u&

r(C)/$r)jt=l,andxe3?lwithav(x)~(-l, - 1 , 1,. . . , l ) a n d r x ~ l
in &0 for all yeT. By Dirichlet's theorem, there is w$S so that Pv,PvPuPOu =
{y} with y ~ 1 at places in S as well as wherever x is not a unit. It is easy to check
that (/> (x<8>y<j2(y)~*) = p. This proves our assertion for d> 3. (Incidentally, the
same proof works in the odd degree case, if d> 3.)

The cases d=2 or 3 are similar. This completes the proof of Theorem 2.

§4. Quadratic extensions. In the case |#" :F\ =2, we make a minor correc-
tion in the announcement of theorem 2 (ii) in [GP1], and we will formulate
the theorem in the following way. We fix a set V of places with Vn a • V= 0
and V<u a • v = "Lf. Let S, as before, contain the set of archimedean places,
wild places, places lying above p as well as those ramifying in

Let us define

by (po)i
veV

and denote by C the set { pe A: pv = 1 for all veS}. Then C Im (<f>) = A. (This
can be seen as follows. As in the case of Card. F = 2m>2, if SeA, we can
get delm(</>) such that dv = Sv for veS. Thus, (d~15)v=\ for all veS so
that d^SeC.) So v̂ ' gives rise to a homomorphism from A/Im (0) to

If we define ^(J^)=n(^)p/yf'jCn Im (< )̂, and £ to
be the resulting map from A to n{^), which is trivial on Im ((/>), then the
result is

THEOREM 3. If\&:F\=2, then the following sequence is exact.

3FX®z 3FX - ^ A - ^

Proof. We give the proof for number fields. We first note that e is well
defined. From the definition, we have for any SeA, e(S) = y/'(c) in
where 8 = cd for some ceC and delta (<f>). e is well defined because if cd=
C\dx then cT>c = did~]eCn!m (<p). We have, by the definition of £, that
£(Im ((/>)) = 1 in Ji(W). We hve to show Ker (e) s lm (0). Just as in the odd
degree case, we may assume that, if u is a non-inert tame place, then nu = n.
As before, we see that for any peA and for any finite set S, there exists
7/eIm (</>) with r\v — pv for all ueS. In fact, if peC, then we can choose r; to
be in C too. We start with any peKer (e). Firstly, since C.Im (</>) = A, we can
assume without loss of generality, that peKer (e) nC. Thus, by the above,
we have SnT=0, where T={v. pv¥=l}. Therefore, by the definition of e,
we have ty'(p)ey/'(CnIm (0)). After changing p by an element of '
Cn Im (0), we can assume that peKer (y/') n C. Denoting again by T the
set {u:pw#l}, we claim that pu=—1 for all veT. Consider any veT. Now
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; let us call it 9 for convenience. Choose w$S such that PwP0 = (y)
with y~ 1 at all places in 5 and wherever 0 is not a unit. Also fiw = fi. Then
<p(0®y) = £ where £„, = <!;„ = 0 and §„ = 1 at other places. By Artin's reciprocity
law, 02= 1 so that 0 = — 1. Writing r = {v\,v2,... ,vr,a • V\ ... a • vr}, since
peKer ^', we get (—l)r= v ' ( p ) = 1> '•£• r is even. In this case we have already
shown pelm (</>). This completes the proof of the theorem.

§5. Modifications for positive characteristic. The proofs of the theorems
work also if the characteristic of F is a prime />0 with minor modifications.
The necessary modifications are already given in [C-W]. For the sake of
completeness, we just recall them again. In the case when Chari r=/>0 all
places are tame since clearly / J ( ^ U ) / = 1 . In this case we take any place v0

and consider 5'={y0}- We work inside the ring Os of S-integers viz.
{ x e J ^ : OTdV0(x)^0 for all v*v0}.

We notice that:
(i) if O r d j j ) is divisible by | ^ ( f ) : #1 , then \y, &(£)/&) = 1; and
(ii) if OrdJjO is divisible by n^ . \3F{Q:3F\, then (x,y)vo = 1.

Every time we apply Dirichlet's theorem, we just make sure that the above two
conditions are satisfied by y. We note that y cannot be close to 1 at S and so
these modifications are indeed necessary.
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