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Abstract. We apply group actions to some natural situations like the natu-
ral ‘linear’ action ofGLr(Zn) and some of its subgroups to derive number-
theoretic identities like

∑
t1∈(Zn)∗,t2,··· ,tr∈Zn

GCD(n, t1−1, t2, · · · , tr) = φ(n)σr−1(n).
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1 Introduction

The title “A lemma that is not Burnside’s” was the fancy name of a paper
by Peter Neumann [2] who revealed that this lemma was already used by
Cauchy and Frobenius. He proposed the name Cauchy-Frobenius lemma but
ironically, the name “not-Burnside lemma” seems to have stuck. We shall
apply this lemma to the natural ‘linear’ action ofGLr(Zn) and some of its
subgroups and derive number-theoretic identities. For instance, applying the
lemma to the action of a certain group of upper triangular matrices, we obtain
the identity:

For any natural number n,

∑
t1∈(Zn)∗,t2,··· ,tr∈Zn

GCD(n, t1−1, t2, · · · , tr) = φ(n)σr−1(n).
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Hereσk(m) := ∑d|mdk and, we use the notationZn for the groupZ/nZ. In
fact, this identity can be proved using elementary number theory but our stress
is more on the fact that both sides drop out naturally from group actions.
Probably, there is scope for the method to carry over to more general groups
and hopefully give new identities. Note the special caser = 1 is the following
beautiful identity due to P.K. Menon [1]:

Let n be a natural number. Then,

∑
GCD(a,n)=1

GCD(a−1,n) = φ(n)d(n).

Here d(n) is the divisor function. He had proved this by number-theoretic
methods. In the last section where we analyze the action ofGLr(Zn) on(Zn)r ,
we obtain two sets

{(a1, · · · ,ar) : ai ≤ n,GCD(a1, · · · ,ar ,n) = 1}

and
{c≤ nr : pr 6 |GCD(c,nr) ∀ prime p}

which have the same cardinality but there doesn’t seem to be an obvious bi-
jection between them !

2 ‘Not-Burnside’ lemma for the upper triangular group.

‘Not-Burnside’ lemma Let a finite group G act on a finite set S with N orbits.
Then,

∑
g∈G

|Sg|= O(G)N.

This simple lemma is well-known to have applications, via Polya’s theory of
enumeration, to chemistry - in particular, to counting of isomers.

Before stating a more general result, we point out how a special case proves
Menon’s identity; this will set the tone for later computations which is slightly
messier.

Proof of Menon’s identityLet the groupG = Z∗
n of integers coprime ton,

under multiplication modn, act onS= Zn by (a,b) 7→ ab. Now, for a ∈ G,
Sa = {b ∈ Zn : ab≡ b mod n}. We see that(a− 1)b≡ 0 modn is equiva-
lent to a−1

d b≡ 0 mod n
d whered = (a−1,n) and has exactly thed solutions

n
d , 2n

d , · · · ,0. Thus, the left hand side of the not-Burnside lemma gives the left
hand side of Menon’s identity.
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To count the numberN of orbits for our action, we observe that two ele-
mentsb andc of Zn have the same orbit if, and only if,(b,n) = (c,n). In other
words, orbits are

Ωd := {a : (a,n) = d}
for divisorsd of n. ThusN = d(n). Note also that|Ωd| = φ(n/d) and, since
Zn is the union of orbits, we have the well-known identity

n = ∑
d|n

φ(n/d).

The two sides of the not-Burnside lemma now give Menon’s identity. ut

Note that Menon’s identity gives an immediate proof of the well-known in-
equality d(n)φ(n) ≥ n as the left hand side of the not-Burnside lemma has n
as a term (corresponding to a= 1).

Theorem 1 Let n be a natural number. Consider the action of the group

G = {


t1 t2 t3 · · · tr
0 1 0 · · · 0
...

...
...

...
...

0 0 0 · · · 1

 : t1 ∈ (Zn)∗, ti ∈ Zn f or alli > 1}

on S= (Zn)r as matrix multiplication on the left on column vectors. Write

g(t1, · · · , tr) =


t1 t2 t3 · · · tr
0 1 0 · · · 0
...

...
...

...
...

0 0 0 · · · 1

 ∈G.

Then, we have:

(i) |Sg(t1,··· ,tr )|= nr−1GCD(n, t1−1, t2, · · · , tr).
(ii) The number of orbits isσr−1(n).
(iii) We have the identity :

∑
t1∈(Zn)∗,t2,··· ,tr∈Zn

GCD(n, t1−1, t2, · · · , tr) = φ(n)σr−1(n).

Although the proof is not different for differentr, it is a bit more transparent
whenr = 1. We first discuss this case separately for clarity. So, we now write

G = {
(

a b
0 1

)
: a∈ (Zn)∗,b∈ Zn}.

Proposition 1 (i) |Sg|= n(n,a−1,b) if g =
(

a b
0 1

)
∈G.
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(ii) The number of orbits isσ(n).
(iii) ∑a∈(Zn)∗ ∑b∈Zn

(n,a−1,b) = φ(n)σ(n).

Proof Of course, (iii) follows from (i) and (ii) by the not-Burnside lemma.

To prove (i), considerg =
(

a b
0 1

)
∈G and(a1,a2)t ∈ Sg. Then, we have :

(a−1)a1 +ba2 ≡ 0 mod n.

If GCD(n,a−1) = d, we haved|ba2 and so there are(d,b) solutions fora2.
Also, thena1 can be arbitrary; hence|Sg|= n(n,a−1,b).

Now, to prove (ii), look at the orbitΩ(a1,a2) = {(aa1 +ba2,a2) : (a,n) =
1, b≤ n} of any(a1,a2). Note that the second co-ordinate remains fixed. We
observe that the cardinality of this is a multiplicative function ofn, due to the
following reason. LetGCD(l ,m) = 1 and look at the isomorphisms

Z l ×Zm→ Z lm

and
(Z l )∗× (Zm)∗→ (Z lm)∗

given by the Chinese remainder theorem. Evidently, the above isomorphism
maps orbits to orbits. Therefore, it suffices to compute the number of orbits
whenn = pk for some primep. Let (pk,a2) = pl with l ≤ k. If l = 0, then the
set

{(a0,a2) : a0 ∈ Zn}

is an orbit because one can solve fora,b with aa1 +ba2 ≡ a0 mod pk. Thus,
eacha2 relatively prime ton gives one orbit. This contributesφ(pk) orbits.
Next, look at anypa2 ∈ Zn for which (a2, p) = 1. For any such fixeda2, there
are two orbits

{(a0, pa2) : a0 ∈ (Zpk)∗}

and
{(pa0, pa2) : a0 ∈ Zpk}.

Thus, there areφ(pk−1) sucha2’s and, for each one, there are two orbits; these
contribute 2φ(pk−1) orbits.
If we look at orbits of elements of the form(∗, p2a2) with (a2, p) = 1, we get
the orbits

{(a0, p2a2) : a0 ∈ (Zpk)∗},

{(pa0, p2a2) : a0 ∈ (Zpk)∗};

{(p2a0, p2a2) : a0 ∈ Zpk}.
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Thus, we get three orbits from each of thea2’s here, which areφ(pk−2) in
number asp2a2≤ pk and(a2, p) = 1. In this manner, we have 3φ(pk−2) orbits.
Proceeding in this manner, the total number of orbits is

k

∑
l=1

lφ(pk−l+1) = σ(pk).

In fact, we can easily show thatσ(n) = ∑t|nd(t)φ(n/t) for anyn, by looking
at the corresponding Dirichlet series. Thus, (ii) is proved.

Then (iii) follows from the not-Burnside lemma because the order ofG is
nφ(n). The proof of the proposition is complete. ut

Proof of Theorem 1Once again (iii) is a consequence of (i) and (ii) from the
not-Burnside lemma since the order of the group isnr−1φ(n).

To prove (i), we need to compute|Sg(t1,··· ,tr )|. Look at the number of solu-
tions ina1,a2, · · · ,ar ∈ Zn for g(a1, · · · ,ar) = (a1, · · · ,ar); that is,

(t1−1)a1 + t2a2 + · · ·+ trar ≡ 0 mod n.

Claim : For any b1,b2 · · · ,br ∈ Zn, the cardinality of

{(x1, · · · ,xr) ∈ (Zn)r :
r

∑
i=1

bixi = 0}

equals nr−1GCD(n,b1,b2, · · · ,br).

This can be proved by induction onr. If r = 1, clearlyb1x1 ≡ 0 modn
has the(n,b1) solutionsln/(n,b1) with 1≤ l ≤ (n,b1). Assumingr > 1 and
that the result is true forr −1, we consider any possible solution(x1, · · · ,xr)
of ∑r

i=1bixi ≡ 0 modn. So ∑r
i=2bixi ≡ 0 mod(n,b1). By induction hypoth-

esis, the number of tuples(x2, · · · ,xr) with xi varying mod(n,b1) equals
(n,b1)r−2(n,b1,b2, · · · ,br). But, if x2, · · · ,xr vary modn, we are allowed to
change eachxi by any one of then/(n,b1) multiples of (n,b1). Thus, the
number of tuples(x2, · · · ,xr) with xi varying modn is

(n,b1)r−2(n,b1,b2, · · · ,br)(n/(n,b1))r−1.

Now, when(x2, · · · ,xr) is any one such tuple with∑r
i=2bixi ≡ 0 mod(n,b1),

the equation
b1

(n,b1)
x1 + ∑r

i=2bixi

(n,b1)
≡ 0 mod

n
(n,b1)

has a unique solution forx1 modulo n
(n,b1)

. Thus, allowing for changing ofx1

by a multiple of n
(n,b1)

, we have(n,b1) choices forx1 mod n for each fixed
x2, · · · ,xr . Therefore, the number of solutions is

(n,b1)(n,b1)r−2(n,b1,b2, · · · ,br)(n/(n,b1))r−1 = (n,b1,b2, · · · ,br)nr−1.
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Hence, the claim is proved and we have (i).
Finally, (ii) can be proved once again by reducing to prime powers using

the Chinese remainder theorem as before. Indeed, assume thatn= pk and look
at the orbit of any(a1, · · · ,ar). The lastr −1 co-ordinates are fixed and the
first one runs over the set

{(t1a1 + · · ·+ trar : t1 ∈ (Zn)∗, ti ∈ Zn ∀ 2≤ i ≤ r}.

If (p,ai) = 1 for some 2≤ i ≤ r, then the set

{(a0,a2, · · · ,ar) : a0 ∈ Zn}

is a single orbit since one can solve the equationt1a1 + · · ·+ trar = a0 for
t1 ∈ (Zpk)∗ for suitablet2, · · · , tr ∈ Zpk whena0 is arbitrary. This is so, be-
cause if(ai , p) = 1, then one may chooseti ∈ (Zpk)∗ so thata0−∑r

i=2 tiai is in
(Zpk)∗. Thus, for each choice ofa2, · · · ,ar with at least oneai a unit, one has
one orbit. This gives(pk)r−1− (pk−1)r−1 orbits.
Now, look at the orbit of an element of the form(a1, pa2, pa3, · · · , par). Clearly
all the tuples(a0, pa2, · · · , par) with (a0, p) = 1 form an orbit as one can solve,
for anya0,a1 relatively prime top, the equalityt1a1 +∑r

i=2 ti pai ≡ a0 mod pk

for t1 ∈ (Zpk)∗. Thus, we have(pk−1)r−1 orbits of this kind.
If (ai , p) = 1 for some 2≤ i ≤ r, then the set

{(pa0, pa2, · · · , par) : a0 ≤ pk−1}

is a single orbit as argued in the beginning. This way provides(pk−1)r−1−
(pk−2)r−1 orbits.

Proceeding in this manner, we see that there are two orbits of a tuple of the
form (a1,0,0, · · · ,0); these are

{(a0,0,0, · · · ,0) : (p,a0) = 1}

and the singleton{(0,0, · · · ,0)}. Thus, the total number of orbits equals

((pk)r−1−(pk−1)r−1)+(pk−1)r−1+((pk−1)r−1−(pk−2)r−1)+· · ·+(pr−1−1)+2.

This simplifies topk(r−1) + p(k−1)(r−1) + · · ·+ pr−1+1= σr−1(pk). The proof
is complete. ut

Problem worth further investigation: For the action on(Zn)r of the sub-
group of upper triangular matrices contained inGLr(Zn), compute both sides
of the not-Burnside lemma.
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3 The general linear group over finite rings

Let us look at the ‘linear’ action ofG = GLr(Zn) on the setS of r-tuples
Zn×Zn×·· ·×Zn, for any fixed natural numbersn, r ≥ 2. We write the tuples
as columns and take matrix multiplication on the left. The situation is more
complicated. Before stating the results, for anyr ≥ 1, we recall the generalized
totient function (sometimes called Jordan’s totient)φr(n) = nr ∏p|n(1−1/pr).
Noteφ1 is the usual phi-function. The main result is :

Theorem 2 (i) The orbits are parametrized by divisors d of n and are given
as

Ωd = {(a1, · · · ,ar) ∈ S: GCD(a1, · · · ,ar ,n) = d}.
(ii) The cardinality|Ωd|= φr(n/d). In particular, nr = ∑d|n ∏p|d dr(1−1/pr).
(iii) For any r,n, there is a bijection between the setsΩ1 and

{c≤ nr : pr 6 |GCD(c,nr) ∀ prime p}.

(iv) We have

∑
g∈G

|Sg|= d(n)nr2 ∏
p|n
{(1− 1

p
)(1− 1

p2) · · ·(1− 1
pr )}.

(iii) If n = pα1
1 · · · pαk

k , then

∑
g∈G

|Sg|=
k

∏
i=1

∑
g∈GLr (Zp

αi
i

)
((Zp

αi
i
)r)g|.

That is, the expressions given by the not-Burnside lemma is a product of
corresponding expressions when n is a prime power.

Proof The Chinese remainder theorem tells us that the groupG as well as the
set(Zn)r breaks up into a Cartesian product corresponding to the prime pow-
ers dividingn and, the orbits themselves are products of the orbits ofGLr(Zpk)
on (Zpk)r for various prime powers dividingn. The Chinese remainder theo-
rem also helps us compute the order ofG. Indeed, it is easy to show that

O(GLr(Zn)) = nr2 ∏
p|n

((1− 1
p
)(1− 1

p2) · · ·(1− 1
pr )).

Hence, we have the assertion in (v). Moreover, the assertion (iv) follows from
this excepting that one has to show that the number of orbits isd(n). Let us
now prove (i),(ii) and (iii). We start with various observations.

Observation 1Orbit of any(x1, · · · ,xr) is the orbit of(d1, · · · ,dr) where di =
(xi ,n).
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Proof It is easy to get even a diagonal matrix inG. ut

Observation 2 For divisors d1, · · · ,dr and divisors h1, · · · ,hr of n, if the orbits
are the same, then GCD(d1, · · · ,dr) = GCD(h1, · · · ,hr).

Proof Let g = (gi j ) ∈G be such that

g


d1

d2
...

dr

 =


h1

h2
...

hr

 in Zn×·· ·×Zn.

Then,∑r
j=1gi j d j = h j + ncj as integers wherec j ∈ Z. Thus, the GCD of all

the di ’s divides each right hand side above. As it certainly dividesn, this
GCD must divide eachh j . HenceGCD(d1, · · · ,dr) dividesGCD(h1, · · · ,hr).
By symmetry, the result follows. ut

Observation 3 For divisors d1, · · · ,dr and divisors h1, · · · ,hr of n, the orbits
are the same, if GCD(d1, · · · ,dr) = GCD(h1, · · · ,hr).

Proof. Let GCD(d1, · · · ,dr) = D, say. Then, get integersg11, · · · ,g1r such that
g11d1 + · · ·+ g1rdr = D. Now, one can complete this unimodular row to a

matrix g∈ SL(r,Z). Then,g


d1

d2
...

dr

 is of the form


D

l2D
...

lrD

 for some integers

l j . Left multiplying by the matrix


1 0 0 · · · 0
−l2 1 0 · · · 0
... ... ... ... ...
−lr 0 0 · · · 1

, we get a matrixA∈

SL(r,Z) such that

A


d1

d2
...

dr

 =


D
0
...
0

 .

One can evidently regardA as an element ofG. This proves that the orbit of
(d1, · · · ,dr) is that of(D,0, · · · ,0). The observation follows. ut

Completion of proof of Theorem 2By the last observation, the orbits are

Ωd(n) = {(a1, · · · ,ar) : GCD(a1, · · · ,ar ,n) = d}

asd varies over divisors ofn; the number of orbits isd(n). This proves (i).
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Now, clearly

Ωd(n) = {(da1, · · · ,dar) : ai ≤ n/d,GCD(a1, · · · ,ar ,n/d) = 1}.

Thus, one needs to compute only the cardinality of the set

{(b1, · · · ,br) : bi ≤m,GCD(b1, · · · ,br ,m) = 1}

for any m. Once again, the Chinese remainder theorem gives a bijection be-
tweenΩ1(l)×Ω1(m) and Ω1(lm). Indeed, if lL + mM = 1, then the map
(a,b) 7→ mMa+ lLb mod lm gives such a bijection. Here, we have writtena
andb in short for(a1, · · · ,ar) and(b1, · · · ,br) respectively. Thus,

|Ω1(pα1
1 · · · pαk

k )|=
k

∏
i=1

|Ω1(pαi
i )|.

Now, (b1, · · · ,br) 6∈ Ω1(pk) if and only if p|bi for eachi andbi ≤ pk. Evi-
dently, this has cardinality(pk−1)r which means

|Ω1(pk)|= (pk)r − (pk−1)r = pkr(1−1/pr).

Hence,|Ω1(n) = nr ∏p|n(1−1/pr). We have proved (ii).
Finally, to prove (iii), look at the set

Φ(n) := {c≤ nr : pr 6 |GCD(c,nr) ∀ prime p}.

To show that the cardinality|Φ(n)| is a multiplicative function ofn, look
at two relatively primea,b. Then we haveAan + Bbn = 1 for some integers
A,B. We will define a one-to-one correspondence betweenΦ(a)×Φ(b) and
Φ(ab). Indeed, ifu∈ Φ(a), andv∈ Φ(b), considervAan +uBbn (this is ex-
actly the solutionx mod anbn produced by the Chinese remainder theorem
given x ≡ u mod an andx ≡ v mod bn). Adding a suitable multiplekanbn,
we get an elementt = Φ(a)vAan+uBbn+kanbn in Φ(ab). Indeed,(u,v) 7→ t
is the bijection we were looking for. This proves the multiplicativity. Now,
a simple count gives the cardinality ofΦ(pk) to be pkr − p(k−1)r . Therefore,
|Φ(n)|= nr ∏p|n(1−1/pr) = φr(n). Therefore, we have proved (iii) also.ut

We have an
Intriguing question.
Proposition 2 (iii) proves equality of cardinalities of the sets

{(a1, · · · ,ar) : ai ≤ n,GCD(a1, · · · ,ar ,n) = 1}

and
{c≤ nr : pr 6 |GCD(c,nr) ∀ prime p}.

Is there a natural bijection between them ?
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Note that the left hand side of the not-Burnside lemma in general seems
difficult to compute. We look at the case whenn = p, a prime and draw some
corollaries.

Clearly, forg∈G, we have

Sg = {(d1, · · · ,dr) : (g− I)(d1, · · · ,dr)t = (0, · · · ,0)t}

which is a vector space overZp. Thus,|Sg|= pdim(Ker(g−I)). If Nt = |{g∈G :
rank(g− I) = t}|, then the not-Burnside lemma implies

2(pr −1)(pr − p) · · ·(pr − pr−1) = ∑
0≤t≤r

Nt p
r−t

since the order ofG is (pr −1)(pr − p) · · ·(pr − pr−1).

Corollary 1 For r ≥ 2, p divides|{g∈GLr(Zp) : g− I ∈GLr(Zp)}|.
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