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Summary This expository note describes some of the history behind Georg Cantor’s proof that the real numbers
are uncountable. In fact, Cantor gave three different proofs of this important but initially controversial result. The
first was published in 1874 and the famous diagonalization argument was not published until nearly two decades
later. We explore the different ideas used in each of his three proofs.

Nothing Lucky about 13
B. SURY

Stat-Math Unit, Indian Statistical Institute
8th Mile Mysore Road

Bangalore 560 059 India
sury@isibang.ac.in

Recently, a high school teacher came across the following problem which he passed
on to a forum for mathematics teachers:

Evaluate cos

(
2π

13

)
+ cos

(
6π

13

)
+ cos

(
8π

13

)
.

One could solve this in a number of elementary ways, and as we will show below, the
value turns out to be −1+√

13
4 . The point here is to find what is special about 13 and

about 2, 6, 8.
Without further ado, let us break the illusion that 13 might be particularly “lucky”

to admit such a simple expression: We show a corresponding result for every prime
number congruent to 1 modulo 4 and, indeed, for every prime.

Here we will explain briefly how to prove for any prime number p ≡ 1 modulo 4
the identity

∑
a∈Q

cos

(
2aπ

p

)
= −1 + √

p

2
, (1)

where the sum is over the set Q of quadratic residues mod p; that is, a ∈ Q if 1 ≤
a ≤ p − 1 and for some integer b, a ≡ b2 mod p. When p ≡ 1 mod 4, then −1 is a
square mod p; indeed, for those who know it, we mention that Wilson’s congruence
(p − 1)! ≡ −1 mod p simplifies to ((

p−1
2 )!)2 ≡ −1 mod p in the case p ≡ 1 mod 4.

Thus the squares mod p (as well as the nonsquares mod p) come in pairs a, −a with
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exactly one of these less than or equal to (p − 1)/2. As cos(t) = cos(−t), the identity
(1) could be rewritten as

∑
a∈Q

a≤(p−1)/2

cos

(
2aπ

p

)
= −1 + √

p

4
,

and this explains the opening result, as the squares mod 13 are ±1, ±3, ±4.
The identity mentioned for primes congruent to 1 mod 4 has an analog for primes

congruent to −1 mod 4.
The secret is the so-called Gauss sum, which Gauss used to prove the quadratic

reciprocity law. Let p be an odd prime. The Gauss sum is the expression
∑p−1

a=1 ±za ,
with z = e2iπ/p, where we use a plus sign if a is a square mod p and put a minus sign
if a is not. The Legendre symbol

(
a
p

)
, which denotes 1 or −1 depending on whether a

is a square mod p or not, allows us to express this more clearly: Write

G :=
p−1∑
a=1

(
a

p

)
za .

It is a remarkable fact that G2 = ±p with the sign determined by whether p ≡ ±1
mod 4. With some care for the signs, we can show that G is

√
p or i

√
p as p is 1 or

−1 mod 4 [1, pp. 70–76]. We have, therefore,

G =
p−1∑
a=1

(
a

p

)
za =

{√
p if p ≡ +1 mod p, and

i
√

p if p ≡ −1 mod p.
(2)

(A different choice of primitive pth root of unity as z can lead to a different sign for
G.)

In this note we will first show how to use (2) to prove identities like (1) and its
analogy for primes congruent to −1 mod 4. After this main result, we make a brief
tour of the history of Gauss sums and, specifically, of the determination of their signs.
Finally, we give a proof of (2).

The main result is :

THEOREM. Let p be an odd prime and let Q be the subset of squares in Z∗
p. Then,

(i) if p ≡ 1 mod 4, so that Q = T ∪ −T with T ⊆ {1, . . . ,
p−1

2 }, then

∑
a∈Q

cos

(
2aπ

p

)
= 2

∑
b∈T

cos

(
2bπ

p

)
= −1 + √

p

2
.

(ii) If p ≡ −1 mod 4, so that Z∗
p = Q ∪ −Q, then

∑
a∈Q

sin

(
2aπ

p

)
=

√
p

2
and

∑
a∈Q

cos

(
2aπ

p

)
= −1

2
.

Remark The prime 2 is special and, when we apply the proof below to it, we get the
trivial identity cos(π) = −1.

Proving the theorem We consider first the case when p ≡ 1 mod 4, when Q =
T ∪ −T with T ⊆ {1, . . . ,

p−1
2 }. If N denotes the nonsquares mod p,

G = √
p =

∑
a∈Q

za −
∑
b∈N

zb.
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On the other hand, since it is well known that the sum of the roots of unity sum to zero,
we have

−1 =
∑
c∈Z

∗
p

zc =
∑
a∈Q

za +
∑
b∈N

zb. (3)

Adding the two equations and substituting z = e2i p/p, we have

−1 + √
p = 2

∑
a∈Q

za =
∑
a∈Q

(za + z−a) =
∑
a∈Q

2 cos

(
2aπ

p

)

which is our first claim.
If p ≡ −1 mod 4, so that Z∗

p = Q ∪ −Q, then G = i
√

p gives∑
a∈Q

(za − z−a) = i
√

p;

which quickly simplifies to
∑

a∈Q 2 sin(2aπ/p) = √
p. The second identity in (ii)

follows immediately from (3).

Some history of Gauss sums Gauss sums were introduced by Gauss in 1801, when
he stated some of their properties and used them to prove the quadratic reciprocity law
in different ways. Gauss wrote that he had studied since 1805 the theory of cubic and
biquadratic residues and, since results for these proved elusive, that he was motivated
to find more proofs of the quadratic reciprocity law, hoping that one of them would
yield a generalization for higher reciprocity laws. Gauss’s fourth and sixth proofs of
the quadratic reciprocity law used Gauss sums and, indeed, proved successful in in-
vestigating higher reciprocity laws.

The sign of the Gauss sum was a notoriously difficult question; he recorded the
correct assertion in his mathematical diary in May 1801, but could find a proof only
in 1805. He says in a letter to Olbers written in September 1805 that he was annoyed
by this inability to determine the sign and that hardly a week went by for those 4
years when he did not make one or more unsuccessful attempt. He says that finally the
mystery was solved “the way lightning strikes” [1].

As mentioned earlier, if z is a primitive pth root of unity, the sign of the sum∑p−1
a=1

(
a
p

)
za depends on the choice of z. However, the key observation seems to be

that the equality

p−1∑
a=0

(
a

p

)
za =

(p−1)/2∏
b=1

(z−b/2 − zb/2)

holds for any choice of primitive pth root of unity z. This can be deduced from a result
on polynomials and, it is in this context that Gauss introduced the so-called Gaussian
polynomials which generalize the binomial coefficients. Proofs to determine the sign
of the Gauss sum were found later by Kronecker, Schur, Mertens, etc. A beautiful
proof by Schur appears in Landau’s classic German text [2, pp. 162–166]. Although
Ireland and Rosen is a convenient modern reference for the Gauss sum computation
[1, pp. 70–76], we take the liberty of recalling Schur’s proof briefly for the sake of
English-speaking readers.

THEOREM. Let n > 0 be odd. Then S := ∑n−1
s=0 e2iπs2/n = √

n or i
√

n depending
on whether n ≡ ±1 mod 4.
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Before proving this result, we mention that when n is prime, S = G, the Gauss sum.
This is again due to the observation that

∑p−1
a=0 e2iπa/p = 0 mentioned earlier.

Proof (Schur). Put z = e2iπ/n and consider the n × n matrix A = (zkl)0≤k,l<n. Our
sum is S = ∑

k zk2 = tr A = ∑n
r=1 λr , where λ1, . . . , λn are the eigenvalues of A.

Viewing S as the trace of a matrix involving roots of unity proves advantageous be-
cause sums involving roots of unity often admit lots of cancellations.

The u, v entry of A2 is (A2)u,v = ∑
w z(u+v)w = bu+v, where bm = ∑

w zmw. If
n | m, then evidently bm = ∑

w zmw = ∑
w 1 = n. On the other hand, if n � m, we

have zmbm = ∑
w zm(w+1) = bm , which gives bm = 0 since zm 
= 1. Note that

∑
r λ2

r =
tr A2 = ∑

u b2u = n. Also, (A4)uv = ∑
w bu+wbw+v = n2 or 0, depending on whether

u = v or not. Thus A4 = n2 I where I is the n × n identity matrix.
The characteristic polynomial χA4(λ) of A4 is (λ − n2)n , which means that the

eigenvalues λ4
1, . . . , λ4

n are all equal to n2. In particular, λr = i ar
√

n where ar = 0,
1, 2, or 3. For each k = 0, 1, 2, 3, we count the number of eigenvalues with that power
of i , by setting mk = |{ar : ar = k}|. Note that m0 + m1 + m2 + m3 = n, because there
are n eigenvalues.

We first show that |S|2 = n. We start with

|S|2 = SS̄ =
n−1∑
s=0

zs2
n−1∑
t=0

z−t2 =
∑
s,t

zs2−t2 =
∑
s,t

z(s+t)2−t2

=
∑
s,t

zs2+2st =
∑

s

(
zs2 ∑

t

z2st

)
.

As z = e2iπ/n, we have
∑

t z2st = ∑
t e4iπst/n = n or 0 depending on whether n | s or

not. Therefore, |S|2 = n and it remains to establish which square root gives the correct
value of S.

Since S is determined in terms of the eigenvalues λr s which, in turn, depend on
the mi s, we try to obtain linear equations satisfied by the mi s as a consequence of the
equality |S|2 = n. Continuing with the proof, since

S =
∑

r

λr =
∑

r

i ar
√

n = √
n(m0 + im1 − m2 − im3)

and |S|2 = n, we have (m0 − m2)
2 + (m1 − m3)

2 = 1. In other words, either m0 −
m2 = ±1 and m1 = m3 or m0 = m2 and m1 − m3 = ±1. Hence S = vη

√
n where

v = ±1 and η = 1 or i . Thus, we have in terms of the mi s, the equation

m0 + im1 − m2 − im3 = vη

and its conjugate

m0 − im1 − m2 + im3 = vη−1.

Also, the equality tr A2 = ∑
r λ2

r = n observed earlier gives the equation

m0 − m1 + m2 − m3 = 1.

Thus, the system of four linear equations can be written as a matrix equation Bx = y,
where

B =
⎛
⎜⎝

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞
⎟⎠ , x =

⎛
⎜⎝

m0

m1

m2

m3

⎞
⎟⎠ , and y =

⎛
⎜⎝

n
vη

1
vη−1

⎞
⎟⎠ .
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Inverting this matrix, we get x = B−1 y with

B−1 = 1

4

⎛
⎜⎝

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎞
⎟⎠ .

In particular, m2 = n+1−v(η+η−1)

4 being an integer implies that η = 1 or i , depending
on whether n ≡ 1 mod 4 or n ≡ 3 mod 4. Further, det A = ∏

r λr = nn/2im1+2m2−m3

= nn/2i3(n−1)/2v = nn/2i n(n−1)/2v; to obtain this, we have used the fact, obtained from
x = B−1 y, that m1 + 2m2 − m3 is n+1

2 − v or n+1
2 + v depending on whether n ≡ 1 or

3 mod 4. We have also used iv = iv to simplify.
Finally, we show that v = 1: This will be a consequence of evaluating—in two

different ways—the determinant of the matrix A:

det A =
∏

0≤l<k<n

(
e2iπk/n − e2iπl/n

) =
∏
l<k

eiπ(k+l)/n
(
eiπ(k−l)/n − eiπ(l−k)/n

)
.

From
∑

0≤l<k<n(k + l) = n(n − 1)2/2, we have∏
l<k

eiπ(k+l)/n = eiπ(n−1)2/2 = i (n−1)2 = 1.

Hence

det A =
∏
l<k

(eiπ(k−l)/n − eiπ(l−k)/n) =
∏
l<k

(
2i sin

π(k − l)

n

)

= i n(n−1)/2
∏
l<k

(
2 sin

π(k − l)

n

)
.

As the last mentioned product is positive, the two expressions det A = nn/2i n(n−1)/2v =
i n(n−1)/2

∏
l<k

(
2 sin π(k−l)

n

)
imply that v > 0 and is, therefore, equal to 1.
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Summary Gauss sums were introduced by Gauss in 1801, when he stated some of their properties and used
them to prove the quadratic reciprocity law in different ways. The determination of the sign of the Gauss sum
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