Classroom

In this section of Resonance, we invite readers to pose questions likely to be raised
in a classroom situation. We may suggest strategies for dealing with them, or invite
responses, or both. “Classroom” is equally a forum for raising broader issues and

sharing personal experiences and viewpoints on matters related to teaching and

learning science.
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Sam Lioyd, the
originator of this
puzzle

offered in 1879 a
prize of $1000 to
anyone who could
get the
arrangement

with 14 and 15
switched above.

How Safe is Sam Lloyd’s Bet? The 15-Puzzle and Beyond

A Puzzle

Look at the picture here of a 4 x 4 square on which 15
coins have been placed leaving the last square empty.

112134
S|6 78
9 1101112
13114 [ 15

The idea is to slide the coins utilising the empty square
and to find out what kind of arrangements are possible.
As the story goes, Sam Lloyd, the originator of this puz-
zle offered in 1879 a prize of $1000 to anyone who could
get the arrangement with 14 and 15 switched above. He
knew his money would be safe with him. We hope to
convince the reader, of this and much more by the end
of this discussion.

To get a feeling for this the natural thing is to first look
at the simplest analogue of it viz. the figure
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1]2
3

A moment’s thought would convince the reader that the
pattern

113
2

can never occur. In fact, only those arrangements are
possible where 1,2, 3 occur in that order (if we go clock-
wise).

Now, let us see what happens if we look at:

1121}3
41516
718

A little bit of fiddling with it already shows that many
arrangements are possible. However, it is not easy to
get even a candidate for an arrangement which might
not be possible. Having said that, it is perhaps justified
to introduce some technology which might allow us to
analyse the puzzle systematically. This technology is in
the form of what are known as permutation groups.

Permutation Groups

A permutation of a finite set {aj,as, -, a,} of objects
is, as evident from the normal meaning of the English
word, a correspondence which associates to each mem-
ber of the set a unique member. For instance, the corre-
spondence that associates to each member the member
itself, is called the identity permutation. It is at once
clear that so far as a permutation is concerned the el-
ements aj, as, -« «, a, are just certain symbols and what
is important is only which symbol corresponds to which,
under the permutation. In other words, one might think
of the permutation as a correspondence of the subscripts.
So it is customary to write {1,2,---,n} for the set in-
stead of {a1,aq, -, an}.
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Notice that
common sense
tells us that any
permutation is a

product of
transpositions —
after all we mortals
have only two
hands!

Now, evidently one can define the composition of two
permutations as the process of applying one after the
other. Of course, a momentary thought makes it clear
that the order in which they are applied is important
and the final effect may vary according to the order of
application. Under this product operation the set S,
of all permutations of n objects has the structure of a
group (see [1], p.50 for a brief discussion of this notion).

It is easy to see that there are exactly n! permutations
in S,,. The following notation turns out to be convenient
while describing a permutation. To motivate this, look
at 1,2,3 and the permutation ¢ which sends 1 to 2, 2
to 3 and 3 to 1. One writes 0 = (1,2,3). If 7 is the
permutation which sends 1 to 2, 2 to 1 and 3 to itself,
one writes 7 = (1, 2)(3) or simply (1,2). In general, o =
(41,32, -+, %) in S, means that i; — iy — -+ — 4, — 1)
and o(z) = ¢ for all ¢ # 41,42, ,i,. This is called an r-
cycle. A 2-cycle is also called a transposition for obvious
reasons. Let us use the convention that o7 denotes the
permutation where o is applied after 7. For instance, in
S3, look at 0 = (1,2) 7 = (2,3). Then o7 = (1,2,3).

Exercises

(i) Let o0 € S, be an r-cycle. Then, show that o has
order v i.e. o’ s the identity permutation and it is the
least positive power when this happens.

(ii) Prove that disjoint cycles commute.

(iii) Show that any o € S, is a product of disjoint cycles
in a unique manner, apart from the order.

Notice that common sense tells us that any permutation
is a product of transpositions — after all we mortals have
only two hands! Let us be warned that this expression as
a product of transpositions is far from unique. Witness
(1,2)(2,3) = (2,3)(1,3) = (1,2)(1,3)(1,2)(1, 3). The as-
tute reader, however, notices that the number of trans-
positions occurring are even.
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It is easily verified that: A permutation cannot be a prod-
uct of an even number of transpositions on the one hand
and of an odd number of transpositions on the other.

Thus, one naturally has the notions of even permuta-
tions and of odd permutations. As identity is an even
permutation and any two even numbers add to give an
even number, the set A, of all even permutations is a
subgroup of S, i.e., a subset of S, which is a group in
its own right. A, is called the alternating group.

Here are two very useful observations:

(i) A conjugate of an r-cycle is again an r-cycle viz,

o (i1 iz, -, i) = (0(ir),0(32), -+, o (ir))

This is evident. In fact, any two r—cycles are conjugates!

For, if (i1,%2, -+, ,) and (1,72, -+, jr) are r-cycles, look

at a permutation o which sends each i, to jg and {1, 2, - -

’I’L} \ {ihi?v“"iT} to {1,2a"'an}\{j17j2a"'7j'r} in a
bijective fashion.

(ii)For any n > 3, A,, is generated by 3-cycles i.e. even
permutations are expressible as products of 3-cycles.

Proof: Evidently every 3-cycle (a, b, c) is (a,b)(b, ¢), an
even permutation. Further, any element of A,, is a prod-
uct of an even number of transpositions. So it is enough

to show the product of two transpositions is equal to a
product of 3-cycles. For this, we observe:

(a,b)(c,d) = (a,b,c)(b,¢,d)
(a,b)(a,c) = (a,c,b)
(a,b)(a,b) = Id = (a,b,c)>.

With these tools in hand, let us take a new look at the
puzzle. In fact, let us look at the general n x n puzzle
where the last location is empty.

‘Never odd or
even'isa
palindrome.

Even
permutations are
expressible as
products of 3-
cycles.
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The good positions (n2 — 1)- Puzzle

correspond to
even permutations.
This explains Sam
Lloyd's confidence

Use the numbers 1,2, - - -, n? to indicate locations in the
frame which holds the squares. In the starting position,
square 1 is in location 1, and the blank space in the

, location n?.
- (14, 15) is an
odd permutation! 1 2 oo n=1 | n
n+1 n+2 e feee 1 2n—11 2n
n?—n+1l|n®—n+2]-- |- | n?—1

The location number remains fixed; the numbered squares
in the locations may change. A permutation o € S,
can be viewed as permuting any given arrangement A
as follows. The square in location 7 of A is moved by o
to the location ¢(7) in the new arrangement o(A). For
instance, the transposition (15, 16) applied to the start-
ing position, has blank space moved to 15" location in
the new arrangement in the 15-puzzle.

Our aim would be to say something about the good posi-
tions i.e. the arrangements which can be obtained from
the starting position by sliding.

We start with the following trivial observation. Given
any arrangement, we can perform a series of simple
moves in order to bring the blank space to the n2-th
location. Let H be the subset of S,2 consisting of all el-
ements that correspond to arrangements which are ob-
tained from the starting position by a series of moves
which ends with the blank square in the location n2.
Then, by its very definition, H is the subset consisting of
all those permutations which give all the good positions.
We shall show now that H is a group and that it consists
entirely of even permutations. This would furnish the
explanation for Sam Lloyd’s confidence — (14, 15) is an

odd permutation!.

Claim : H is a subgroup of Ap2_;.
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Proof: Every simple move corresponds to a transposi-
tion (a, b) where either a or b is the location of the blank
square before the move is applied. Suppose ¢ € H.
Then, as o leaves any arrangement with the n2-th loca-
tion blank to an arrangement with the same property,
we can write

o= (nz,xt—l)(ﬂﬂt—l,ﬂﬁt—z) te (332,231)(131,“2)

It is clear that H is a subgroup as the product of any two
elements of this form is again of this form. Let 0 € H
be a product of t transpositions. While operating by
o, let u,d,l,r denote number of moves up, down, left
and right, respectively, of the blank square. Therefore,
u+d+1+r =t As the blank square returns to the
original position, one must have | = r , u = d. Thus
t = 2(l +u) ie., t is even and ¢ € A,2. Note that
o € S,2_; as the last square stays empty even after o
is applied; hence o € A,2_1. In other words, we have
established that H C A,2_;.

Let us stop for a moment to notice what H is in the
simplest case viz., that of n = 2. We see that

H ={1d,(1,3,2),(1,2,3)}as

112 31 213
3 2 1

are the good positions with the last place blank. In
other words, H = A;. Now we go on to show that H is
actually the whole of A,2_; even in general. Let’s first
look at the original 15-puzzle i.e., the case n = 4.

11213]4
o | 6|78
9 101112
13|14 (15

Let us look at the following permutations.

a = (1,2,3,4,8,12,15,14,13,9,5)
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B = (6,7,8,12,15,14,10)
v = (11,12,15)
o = (2,3,4,8,12,15,14,10,6)

The reader can see that these are all in H. Notice a
pattern among the elements above, which is in terms of
the portions of the square these elements leave invariant.

As 8° = (6,14,12,7,10,15,8),7 = (11,12,15) € H, we
have

B587° = (B5(11), 8%(12), B°(15)) = (11,7,8) =
(7,8,11) € H.

Also, if 7 is a power of a or of ¢, then
7(7,8,11)77 = (7,7(8), 11).

Now we observe that every = # 7,11 can be written as
o*(8) or 07(8) which implies that (7, z, 11) = (7, 7(8), 11)
= 7(7,8,11)7~1 € H (where 7 is a power of o or ¢). Thus
(7,2,11)(7,y,11)(7,2,11)"! = (z,y,7) € H. Hence
(7,2,11)(z,y, 7)(7,2,11)7 = (z,y,2) € H. Thus H
contains all the 3-cycles.

It turns out that exactly the same proof can be modified
to analyse the n xn array for any n > 4. Note that if n =
3, the analogues of & and 3 both coincide and thus, the
same proof will not carry over. However the result is true
(see Boz 1). This is an aspect which frequently occurs
in mathematics. Some proofs require enough dimensions
or — to put it in more colourful language — more elbow-
room!

n+1 n+2 2n—1 2n
n—2n+1(n*=2n+2{---|---|nf=n—-1|n?-n
n—n+1|nP-n+2]---] - n®—1
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Box 1.

—t
[\]
[9%)

o
3]
o

We look at the 3 x 3 puzzle above and consider the cycles
a=(1,2,3,6,8,7,4), 3 =(4,5,6,8,7), v=(2,3,6,8,5), 6§ = (5,6,8).

If we show that all 3-cycles in which 5 occurs, are in H, it would follow that H = Ag
as (z,v,2) = (2,z,5)(2,¥,5)(5,z, z). This is seen as follows.

(5,6,8) = 6

(5,8,7) = aba”!

(5,7,4) = a%6a2

(541) = a36a73

(5,36) = a léa

(5,2,3) = a 2a?

(5,1,2) = a3

(6,5,7) = dbaba~1671

(8,54) = (58,7)(5,7,4)(5,8,7)7}
(5,6,4) = 6(8,5,4)67!

(7,5,1) = (57,4)(5,4,1)(5,7,4)7¢
(4,52) = (5,4,1)(5,1,2)(5,4,1)7!
(1,53) = (51,2)(5,2,3)(5,1,2)71
(2,56) = (5,2,3)(5,3,6)(5,2,3)7!
(3,58) = (5,3,6)6(5,3,6)7!
5,3,) = (5,3,6)(6,5,7)(5,3,6)71
(3,54) = (5,3,6)(5,6,4)(5,3,6)7!
(2,75) = (6,5,7)(2,5,6)(6,5,7)7"
(8,2,5) = (4,5,2)(8,5,4)(4,5,2)7!
(6,1,5) = (2,5,6)(5,1,2)(2,5,6)71
(1,85) = (3,5,8)(1,5,3)(3,5,8)7!

There are (3) (twenty one) 3-cycles containing 5. Therefore we have listed all of
them.
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Given a position,
one can decide
whether it is good
or not by writing it
as a product of
transpositions.
Once it is known to
be good, we can
write itas a
product of 3-cycles
and go through the
above analysis to
actually arrive at a
sequence of sliding
moves which
reaches the
starting position.

Look at the cycles

o1=(1,2,--,n,2n,---,n*—nn® =1, 0 —n+1,
...,n+1)
oo=(Mn+2,n+3,---,2n,--- n*—=nn®-1... n2-

n+2,---,2n+2)

Ona=(n*=2n-2n%>-2n—1,n?2—2n,n*—n,n? -1,

n2——2,n2—n—2):6
On1=n*=n—-1n2—nn?—-1)=+~
on=m*=3n—-2.,n-3n, . n*—n,n?-1n%-2
n?—2n—-2)=o.
Clearly o4,---,0, € H. In this case all the elements

o1, ,0n-3 together play the role that o plays in the
15-puzzle. Now

B° = (n?-2n-2,n2-2,n*-n,n*-2n—1,n%*—n—-2,n%—1,
n? — 2n)
which gives us

ByB~° = (B°(n®—n—1),6%n® —n),B%(n* - 1))
= (nP-n-1,n%—2n —1,n% - 2n)

= (W -2n—-1,n2-2n,n*—n—-1) € H.
If 7 is any power of 01,05, -+, 0,_3 Or 0y, then
r(n®—2n—-1,n> = 2n,n® ~n—- 177 = (n? - 2n -1,

7(n? = 2n),n* —n — 1)

as 7 moves neither n2 — n — 1 nor n? — 2n — 1.
Moreover, every z # n?—n—1,n2 — 2n — 1 has the form
7%(n? — 2n) for some i, where 7 is one of 61,09, -+, 0n_3

-
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or o, which gives (n? —2n—1,z,n%~n—1) € H for all
z. S0,

(n?—2n-1,z,n*—n—-1)(n*=2n—-1,y,n*~n—1)(n®*~2n-1,

z,n?—n—-1)"'=(z,y,n’-2n—1) € H.
Thus,

(n®—2n—1,z,n*—n—1)(z,y,n*—2n—1)(n*—2n—1, 2,

n*—n—-1)"'=(z,y,2) € H.

In other words, for any n, the good positions are exactly
those which can be reached by applying any permutation
in A,2_; to the starting position.

To conclude our discussion, it is clear from the above
analysis that given a position, one can decide whether
it is good or not by writing it as a product of transpo-
sitions. Once it is known to be good, we can write it as
a product of 3-cycles and go through the above analysis
to actually arrive at a sequence of sliding moves which
reaches the starting position. However, this may not be
the quickest way. Hopefully, the reader is convinced now
that one knows much more about this puzzle than the
mere fact that Sam Lloyd’s money was safe!

Finally, we draw attention to the fact that the 15-puzzle
admits of a graph-theoretic interpretation and may be
generalised in that direction (See [2]). We recommend
[3] as a source for a nice discussion of the 15-puzzle.
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Given a position,
one can decide
whether it is good
or not by writing it
as a product of
transpositions.
Once it is known to
be good, we can
write it as a
product of 3-cycles
to actually arrive at
a sequence of
sliding moves
which reaches the
starting position.
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