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Sam Lloyd, the 
originator of this 

puzzle 

offered in 1879 a 

prize of $1000 to 

anyone who could 

get the 
arrangement 

with 14 and 15 

switched above. 

A Puzz le  

Look at the picture here of a 4 • 4 square on which 15 
coins have been placed leaving the last square empty. 

1 2 3 4 

5 6 7 8 

9 10 11 i2 
13 14 15 

The idea is to slide the coins utilising the empty square 
and to find out what kind of arrangements are possible. 
As the story goes, Sam Lloyd, the originator of this puz- 
zle offered in 1879 a prize of $1000 to anyone who could 
get the arrangement with 14 and 15 switched above. He 
knew his money would be safe with him. We hope to 
convince the reader, of this and much more by the end 
of this discussion. 

To get a feeling for this the natural thing is to first look 
at the simplest analogue of it viz. the figure 
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~1 2 

~3 

A moment's thought would convince the reader that the 

pattern 

1 3 

2 

can never occur. In fact, only those arrangements are 
possible where i, 2, 3 occur in that order (if we go clock- 

wise). 

Now, let us see what  happens if we look at: 

1 2 3 

4 5 6 
7 8 

A little bit of fiddling with it already shows that many 
arrangements are possible. However, it is not easy to 
get even a candidate for an arrangement which might 

not be possible. Having said that, it is perhaps justified 
to introduce some technology which might allow us to 
analyse the puzzle systematically. This technology is in 

the form of what are known as permutation groups. 

Permutation Groups 

A permuta t ion  of a finite set {al, a2, '" ", an} of objects 
is, as evident from the  normal meaning of the English 
word, a correspondence which associates to each mem- 
ber of the set a unique member.  For instance, the corre- 
spondence tha t  associates to each member  the member  
itself, is called the  ident i ty  permutat ion.  It is at once 
clear tha t  so far as a permutat ion is concerned the el- 
ements  a~, a 2 ~ " ' ,  an are just certain symbols and what  
is impor tan t  is only which symbol corresponds to which, 
under  the permutat ion.  In other words, one might  think 
of the  permuta t ion  as a correspondence of the subscripts. 
So it is cus tomary to write ( 1 , 2 , . - . , n }  for the set in- 
s tead of (a l ,  a 2 , . - - , a n } .  
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Notice that 

common sense 

tells us that any 

permutation is a 

product of 

transpositions - 

after all we mortals 

have only two 

hands! 

Now, ev iden t ly  one  can  define t he  composition of two 
p e r m u t a t i o n s  as t he  process  of a p p l y i n g  one af ter  t he  
other .  Of course,  a m o m e n t a r y  t h o u g h t  makes  it clear 
t h a t  t he  order  in which  t h e y  are app l i ed  is i m p o r t a n t  
and  the  final effect m a y  vary  acco rd ing  to the  order  of 
appl ica t ion .  U n d e r  this  product o p e r a t i o n  t he  set S~ 
of all p e r m u t a t i o n s  of n ob jec t s  has  t h e  s t r u c t u r e  of a 
g roup  (see [1], p .50 for a br ief  d i scuss ion  of th is  no t ion) .  

I t  is easy to see t h a t  the re  are exac t ly  n! p e r m u t a t i o n s  
in S,~. T h e  fol lowing n o t a t i o n  t u r n s  ou t  to  be conven ien t  
while  descr ib ing  a p e r m u t a t i o n .  To m o t i v a t e  this ,  look 
at  1, 2, 3 and  the  p e r m u t a t i o n  a wh ich  sends  1 to 2, 2 
to  3 and  3 to  1. One  wri tes  a = (1,2,3). If 7- is t he  
p e r m u t a t i o n  which  sends  1 to  2, 2 to  1 and  3 to  itself, 
one wri tes  T = (1 ,2) (3)  or s imp ly  (1, 2). In  general ,  c = 

( i l ,  i 2 , "  " ",  ir) in S~ m e a n s  t h a t  i l  --~ i2 --* . - .  --~ iT -~ il  
and  a( i )  = i for all i # il ,  i 2 , . . . ,  i t .  T h i s  is cal led an  r- 
cycle. A 2-cycle is also called a transposition for obvious  
reasons.  Let  us use  the  conven t ion  t h a t  aT deno te s  t he  
p e r m u t a t i o n  where  a is app l i ed  af ter  ~-. For  ins tance ,  in 
$3, look at  a = (1,2) T = (2,3). T h e n  aT = (1,2,3). 

E x e r c i s e s  

(i) Let a 6 S,, be an r-cycle. Then, show that a has 
order r i.e. a r is the identity permutation and it is the 
least positive power when this happens. 

(ii) Prove that disjoint cycles commute. 

(iii) Show that any a E Sn is a product of disjoint cycles 
in a unique manner,  apart from the order. 

Notice  t h a t  c o m m o n  sense tells us t h a t  any  p e r m u t a t i o n  
is a p r o d u c t  of t r a n s p o s i t i o n s  - af ter  all we mor t a l s  have 
only  two hands!  Let  us be w a r n e d  t h a t  th i s  express ion  as 
a p r o d u c t  of t r a n s p o s i t i o n s  is far f rom unique .  W i t n e s s  
(1 ,2 ) (2 ,3 )  = (2 ,3 ) (1 ,3 )  = (1 ,2 ) (1 ,3 ) (1 ,  2) (1 ,3) .  T h e  as- 
t u t e  reader ,  however ,  not ices  t h a t  t he  n u m b e r  of t rans-  
pos i t ions  occu r r ing  are even.  
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It is easily verified that:  A permutation cannot be a prod- 
uct of an even number of  transpositions on the one hand 
and of an odd number of  transpositions on the other. 

Thus,  one natural ly  has the notions of even permuta- 
tions and of odd permutations. As ident i ty  is an even 
pe rmuta t ion  and any two even numbers add to give an 
even number,  the set An of all even permutat ions  is a 
subgroup of Sn i.e., a subset of Sn which is a group in 
its own right. An is called the Mternating group. 

Here are two very useful observations: 

(i) A conjugate of an r-cycle is again an r-cycle viz., 

a(i l , i2,"  " ,it)or -1 = (a ( i l ) ,a ( i2 ) , . .  " ,a(ir))  

'Never odd or 

even' is a 

palindrome. 

This is evident. In fact, any two r - c y c l e s  are conjugates! 

For, if (il, i 2 , ' " ,  it) and (Jl, J~,""", j r)  are r-cycles, look 
at a permuta t ion  a which sends each i k to Jk and {1, 2,. �9 �9 
n } \ { i l , i 2 , . . . , i r }  to { 1 , 2 , . . . , n } \ { j l , j 2 , . . - , j r )  i n a  
bijective fashion. 

(ii)For any n > 3, An is generated by 3-cycles i.e. even 
permuta t ions  are expressible as products  of 3-cycles. 

P r o o f :  Evident ly  every 3-cycle (a, b, c ) i s  (a, b)(b, c), an 
even permutat ion.  Further ,  any element of An is a prod- 
uct  of an even number  of transpositions. So it is enough 
to show the product  of two transpositions is equal to a 
product  of 3-cycles. For this, we observe: 

(a,b)(c,d) = (a,b,c)(b,c,d)  

( a , b ) ( a , c ) - - ( a , c , b )  

(a,b)(a,b) =- Id = (a,b,c) 3. 

With  these tools in hand,  let us take a new look at the 
puzzle. In fact, let us look at the general n • n puzzle 
where  the last location is empty. 

Even 

permutations are  

expressible as 

products of 3- 

cycles. 
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The good positions 
correspond to 

even permutations. 
This explains Sam 
Lloyd's confidence 

- ( 1 4 ,  1 5 )  is  a n  

odd permutation! 

(u 2 - 1)- Puzz le  

Use the numbers 1, 2, �9 �9 �9 n 2 to indicate locations in the 
frame which holds the squares�9 In the s tar t ing position, 
square 1 is in location 1, and the blank space in the 
location n 2. 

1 2 
n + l  n + 2  

n 2 - n + l  n 2 - n + 2  

n - 1  
2n - 1 

n 2 -  1 

n 

2n 

�9 ~ . 

The  location number  remains fixed; the numbered  squares 
in the locations may  change. A permuta t ion  a E Sn2 
can be viewed as permut ing any given arrangement  A 
as follows. The square in location i of A is moved by 
to the location a( i)  in the new ar rangement  ~r(A). For 
instance, the transposit ion (15, 16) applied to the start- 
ing position, has blank space moved to 15 th location in 
the new arrangement  in the 15-puzzle�9 

Our aim would be to say something about  the good posi- 
tions i.e. the arrangements  which can be obtained from 
the start ing position by sliding�9 

We start  with the following trivial observation. Given 
any arrangement,  we can perform a series of simple 
moves in order to bring the blank space to the n2-th 
location�9 Let H be the subset of Sn2 consisting of all el- 
ements that  correspond to arrangements  which are ob- 
tained from the s tar t ing position by a series of moves 
which ends with the blank square in the location n 2. 
Then,  by its very definition, H is the subset consisting of 
all those permutat ions  which give all the  good positions�9 
We shall show now tha t  H is a group and tha t  it consists 
entirely of even permutat ions.  This would furnish the 
explanat ion for Sam Lloyd's confidence - (14, 15) is an 
odd permutation!.  

C l a i m  : H is a subgroup of And-l�9 
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P r o o f :  Every simple move corresponds to a transposi-  
t ion (a, b) where ei ther a or b is the  locat ion of the  blank 
square before the  move is applied. Suppose  a E H.  
Then ,  as a leaves any a r rangement  with the  n2-th loca- 
t ion blank to an a r rangement  wi th  the  same property,  
we can write  

a = (n2, x t _ l ) (X t_ l ,X t_2 )  . . .  (x2, x l ) ( X l , n  2) 

It  is clear tha t  H is a subgroup  as the  p roduc t  of any two 
e lements  of this form is again of this form. Let a E H 
be a p roduc t  of t t ransposi t ions .  While opera t ing  by 
r let u, d, l, r denote  number  of moves up,  down, left 
and  right,  respectively, of the blank square. Therefore,  
u + d + l + r  = t. As the  blank square re turns  to the 
original  posit ion,  one mus t  have l = r , u = d. Thus  
t = 2 ( / + u )  i.e., t is even and a E An2. Note tha t  
a E S,2_1 as the  last square stays e m p t y  even after 
is applied; hence a E A,~-I .  In other  words, we have 
es tabl ished tha t  H C A,2_1. 

Let us s top for a m o m e n t  to notice wha t  H is in the  
s imples t  case viz., t ha t  of n = 2. We see t h a t  

H-- {Id, (1,3, 2), (i, 2,3)}as 

1 2 3 1 2 3 
3 2 1 

are the  good posi t ions  wi th  the  last place blank. In 
o ther  words, H = A3. Now we go on to show tha t  H is 
ac tua l ly  the  whole of A,,2_1 even in general. Let 's  first 
look at the  original 15-puzzle i.e., the  case n = 4, 

1 2 3 4 

5 6 7 8 
9 10 11 12 

13 14 15 

Let  us look at the  following permuta t ions .  

o~ = ( 1 , 2 , 3 , 4 , 8 , 1 2 , 1 5 , 1 4 , 1 3 , 9 , 5 )  
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# = ( 6 , 7 , 8 , 1 2 , 1 5 , 1 4 , 1 0 )  

7 = (11, 12, 15) 

a = (2, 3, 4, 8, 12, 15, 14, 10,6) 

The  reader  can see t ha t  these are all in H.  Notice a 
pa t t e rn  among  the  e lements  above, which  is in te rms of 
the  port ions  of the  square  these e lements  leave invariant .  

As 135 = (6, 14, 12,7, 10, 15 ,8 ) ,7  = (11,12;15)  E H,  we 
have 

85"7# -5  = ( # 5 ( 1 1 ) , # 5 ( 1 2 ) , # 5 ( 1 5 ) )  = (11,  7 , 8 )  = 

(7, 8, 11) E H. 

Also, if T is a power  of a or of a ,  t hen  

T(7, 8, l l ) T  -1 = (7, ~-(8), 11). 

Now we observe t h a t  every x # 7, 11 can be wr i t t en  as 
hi(8)  or aJ(8) which  implies tha t  (7, x ,  11) = (7, T(8), 11) 
= T(7, 8, l l )T  -1 E H (where  T is a power  of a or a) .  Thus  
(7,  x ,  l l ) ( 7 ,  y,  l l ) ( 7 ,  x ,  l l )  -1  = ( z , y , 7 )  e H.  Hence 
(7,  z ,  l l ) ( x , y , 7 ) ( 7 ,  z ,  l l )  -1  = ( z , y , z )  e H .  Thus  H 
conta ins  all the  3-cycles. 

I t  turns  out  t ha t  exac t ly  the  same proof  can be modif ied 
to analyse the n x n a r ray  for any n > 4. Note  t ha t  if n -- 
3, the  analogues of c~ and  # both  coincide and  thus,  the 
same  proof  will no t  car ry  over. However  the  result  is t rue  
(see B o x  1). This  is an  aspect  which  f requent ly  occurs  
in ma themat ics .  Some proofs require enough  d imens ions  
or - to pu t  it in more  colourful l anguage  - more  elbow- 
room! 

1 2 
n + l  n + 2  

n 2 - 2n  + I 

n 2 - n + l  

n 2 - 2n  + 2 

n 2 - n + 2 .  

n - 1  n 
2 n -  1 2n 

�9 ~ �9 

n 2 - n  - 1 

n 2 - 1 

n 2 - -  n 
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B o x  1. 

1 2 3 

4 5 6 
7 8 

We look at  the  3 x 3 puzzle above and consider  the  cycles 

a = ( 1 , 2 , 3 , 6 , 8 , 7 , 4 ) ,  ~ = (4 ,5 ,6 ,8 ,7 ) ,  3' = (2 ,3 ,6 ,8 ,5 ) ,  6 = (5 ,6 ,8) .  

If  we show tha t  all 3-cycles in which 5 occurs,  are in H,  it would follow tha t  H = As 
as (x, y, z) = (z, x, 5)(z, y, 5)(5, x, z). This  is seen as follows. 

(5 ,6 ,8)  = 5 
(5,8,7) = a S a  - 1  

(5,7,4) = o~ 250~ - 2  

(5,4,1) = a35a -3 
(5,3,6) = a-15a 
(5,2,3) = c ~ - 2 5 o I  2 

(5,1,2) = o l - 3 5 t ~  3 

(6,5,7) = 6c~6a-16 -1 

(8 ,5 ,4)  = ( 5 , 8 , 7 ) ( 5 , 7 , 4 ) ( 5 , 8 , 7 )  -1  
(5 ,6 ,4)  = 6(8, 5 , 4 ) 5  -1  
(7,5,1) = (5 ,7 ,4) (5 ,4 ,  1)(5,7,4)  -1 
(4,5,2) = ( 5 ,4 ,1 ) ( 5 ,1 ,2 ) ( 5 ,4 ,1 )  -1 
(1,5,3) = (5, 1 ,2) (5 ,2 ,3) (5 ,  1,2) -1 
(2,5,6) = ( 5 ,2 ,3 ) ( 5 ,3 ,6 ) ( 5 ,2 ,3 )  -1 
(3,5,8) = (5, 3, 6)6(5, 3, 6) -1 
(5,3,7) = (5 ,3 ,6 ) (6 ,5 ,7 ) (5 ,3 ,6 )  -1 
(3,5,4) = (5 ,3 ,6 ) ( 5 ,6 ,4 ) ( 5 ,3 ,6 )  -1 
(2,7,5) = (6 ,5 ,7 ) ( 2 ,5 ,6 ) ( 6 ,5 ,7 )  -1 
(8,2,5) = (4 ,5 ,2 ) ( 8 ,5 ,4 ) ( 4 ,5 ,2 )  -1 
(6,1,5) = (2 ,5 ,6 ) (5 ,1 ,2 ) (2 ,5 ,6 )  -1 
(1,8,5) = (3 ,5 ,8 ) ( 1 ,5 ,3 ) ( 3 ,5 ,8 )  -1 

T h e r e  are (27) ( twenty  one) 3-cycles conta in ing 5. Therefore  we have listed all of  
them.  
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Given a position, 

one can decide 

whether it is good 

or not by writing it 

as a product of 

transpositions. 

Once it is known to 

be good, we can 

wri te  it as  a 

product of 3-cycles 

and go through the 

above analysis to 

actually arrive at a 

sequence of sliding 

moves which 

reaches the 

starting position. 

L o o k  a t  the  cycles  

o l  = ( 1 , 2 , . . - , n , 2 n , - . . , n  2 - n , n  2 - l , . . . , n  2 - n + i,  

. . . , n + l )  

a 2 =  (n + 2, n + 3 , . . . , 2 n , . . . , n  2 - n , n  2 - 1 , . . . , n  2 -  

n + 2 , . . . , 2 n + 2 )  

�9 ~ . 

r  = ( n 2 -  2 n -  2, n 2 -  2n - 1, n 2 -  2 n , n  2 -  n , n  2 -  1, 

n 2 - 2 , n  2 - n - 2 )  = 

an-1  = ( n  2 - n -  1 , n  2 - n , n  2 -  1) = 

On = (n 2 -  3n - 2, . ,n  2 - 3 n , . , n  2 - n , n  2 - 1, n 2 - 2,. ,  

n 2 - 2n - 2) = a. 

C lea r ly  a l , . ' . , a n  r H .  In  th is  case  all  the  e l e me n t s  

O l , . . . ,  an-3  t o g e t h e r  p l ay  the  role t h a t  a p lays  in t he  

15-puzzle.  Now 

f15= (n2 2n_2 ,  n2 2, n 2 _ n ,  n 2 _ 2 n  _ l , n 2 _ n _ 2 , n 2 _ l ,  

n 2 - 2n) 

wh ich  gives us 

/357f1-5 = ( B 5 ( n 2 - n  - 1 ) , z S ( n 2 - n ) , j 3 5 ( n  2 -  1)) 

= (n 2 - n -  1 ,n  2 - 2 n - l , n  2 - 2 n )  

= (n 2 - 2 n - l , n  2 - 2 n , n  2 - n - 1 )  E H .  

I f  T is a n y  power  of  o l ,  0 2 , - - . ,  a n - a  or  on, t h e n  

T(n 2 - 2 n -  1, n 2 - 2 n , n  2 - n -  1)7" - 1 =  (n 2 - 2 n - 1 ,  

T(n 2 -  2n ) ,n  2 - n -  1) 

as T moves  n e i t h e r  n 2 - n - 1 nor  n 2 - 2n  - 1. 

Moreover ,  every  x # n 2 - n - 1, n 2 - 2n - 1 has  t h e  fo rm 

Ti(n 2 -  2n) for s o m e  i, whe re  ~- is one  of o1, a 2 , . . . , o , _ 3  
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or a,, which  gives (n 2 - 2n - 1, x, n 2 - n - 1) �9 H for all 

x. So, 

( n 2 -  2n - 1, x ,  n 2 - n  - 1) ( n 2 -  2n - 1, y,  n 2 - n  - 1) ( n 2 -  2 n -  1, 

x , n  2 - n - 1 )  - l = ( x , y , n  2 - 2 n - 1 )  � 9  

Thus ,  

(n 2 - 2 n -  1, z , n Z - n  - 1 ) ( x , y ,  n 2 - 2 n  - 1)(n 2 - 2 n -  1, z, 

n 2 - n - 1 )  - l = ( x , y , z )  E H .  

In o the r  words,  for any n, the good posit ions are exact ly  
those  which  can be reached  by applying any p e r m u t a t i o n  
in A,,2_1 to the s ta r t ing  posit ion.  

To conclude our discussion, it is clear from the above 

analysis that given a position, one can decide whether 

it is good or not by writing it as a product of transpo- 

sitions. Once it is known to be good, we can write it as 

a product of 3-cycles and go through the above analysis 

to actually arrive at a sequence of sliding moves which 

reaches the starting position. However, this may not be 

the quickest way. Hopefully, the reader is convinced now 

that one knows much more about this puzzle than the 

mere fact that Sam Lloyd's money was safe! 

Finally, we draw attention to the fact that the 15-puzzle 

admits of a graph-theoretic interpretation and may be 

generalised in that direction (See [2]). We recommend 

[3] as a source for a nice discussion of the 15-puzzle. 

Given a position, 

one can decide 

whether  it is good 

or not by writing it 

as a product of 

transpositions. 

Once it is known to 

be good, we can 

write it as a 

product of 3-cycles 

to actually arrive at 

a sequence of 

sliding moves 

which reaches the 

starting position. 
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