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An Integral Polynomial

B. SURY
Tata Institute of Fundamental Research
Bombay 400005, India

On many occasions, we find ourselves surprised when some general formula being
used for some specific purpose suddenly seems to yield something totally different.
For instance, we discover while looking at the so-called Weyl dimension formula for

the compact group SU(n) that, for any n integers a, <a, < - - a, the fraction
I a;—a;
i>j i=]

occurs as the dimension of some representation of this group. As a result, we see the
unexpected fact that the fraction given above is always an integer. We would like to
derive this fact by an elementary method. Surprisingly enough, this does not seem to
be very easy to prove. For one thing, an induction argument invariably fails. Even
more surprising is the fact that we can give an elementary proof of the following more
general fact (whereas the proof itself cannot be applied directly to show the weaker
result that the above fraction is an integer!).

TueOREM. For any integers a, <a, < '+ <a,

X% -1
P(X) = — e Z| X|.
(X) nzgzr -1 €4X]

Of course, by L'Hépital’s rule then

a,—a;
p(1) =11 i_.f €7z,

P> J

which was our original assertion. As we will see, we can deduce more from the proof
of the theorem.

Proof. Writing X" —1=T1, ,,®,(X), where ®, is the dth cyclotomic polynomial
([1], Theorem 3.4) we have

Mo a(X)
PO =T =5 &

i>j

Fix any positive integer d. Since ®, is irreducible ([1], Theorem 3.7), we need only
show that the power of ®,(X) occurring in the denominator is at the most the power
occurring in the numerator. For 0 <i <d — 1, we let r;, denote the number of a’s
that are in the residue class i modulo d. Similarly, we denote by s, the corresponding
numbers when {a,..., a,} is replaced by {1,...,n}. Then Lr, = Ls; = n. Moreover, if
we write n=qd +r, 0 <r <d, then it is clear that s;,=¢ =5, for r <i <d and
s;=q + 1 for 0 <j <r. The power of ®, dividing IT,, ;(X*“~% —1) equals

d—1 d—1

% Zri(ri_l)=% Zriz_%'

i=0 : i=0
It is reasonable to guess that X¢~'r2 is minimum when the r; are almost equal. To
see that this is indeed true, we write r; =s, +t,, with ¢, € Z. Then, Xt; = 0. Now, if
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r=0ie. if d/n, then s;=¢q for all 0 <i<d and Lr2=X(q+t,)=dg*>+ LtZ>
dq®=Ys?. If r > 0, then

r d—1
YLri=(q+t)’+ L (q+1+8t)°+ ¥ (q+t)°
i=1

i=r+1

d—1

i
=(d-r)g®>+r(g+1)*+ Y 2+2) ¢,
i=0 i=1

2(d-r)g®+r(qg+1)"= Ls?,
provided Zf;oltf +2X!_1t;>0.But, if I={i:1<i<r, ¢,= —1}, then

I3

d—1 r
Ye2+2yt> Y+ X (#2+2t)
i=0

i=1 0<i<d—1,t>0 1<i<r,¢;<0
2 Z ti2+ Z ti(ti+2)
0<i<d—1,¢>0 l<i<r,t;=-1
= X -
0<i<d—1,t>0
> Y (t7-t)=0

0<i<d—1,¢>0

since Lo ;< g1, ¢,»ot; = 11| by the equality ©{t, = 0 where |1 is the cardinality of
I. This completes the proof of the theorem.
If we look at the proof carefully, we can guess at the following result.

Bonus result Let k be any natural number and let a,,..., a, be integers such that
the number of a;’s in each residue class modulo k is the number of i’s in that class.
Then

na-Emk(ai—a')
T —=22e® ez

i#j nisj(k)(i —J)
In particular, if k = 1, we need no restriction on the a,’s.
We notice that the above expression equals P(e2™'/*). Consequently, P(e?™/*) is

an algebraic integer as well as a rational number, which forces it to be a rational
integer.

Remark We notice that in the proof of the theorem, the cyclotomic polynomials
®,(X) could be replaced by any irreducible polynomials T,(X) with integer coeffi-
cients. Then our argument goes through without change to show that

T(X) _ l—[ Hd/(ai—aj)Td(X)
i>; Ty 6-pTa(X)

For instance, for each d, if we choose T,;(X) to be the constant polynomial 2, we
would get

eZ[X].

ZT(ai_a]‘) = ZT(i_j)’

i>j i>j
where 7(n) is the number of divisors of n.
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