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ABSTRACT 

Let d.4 E QVI b e an irreducible polynomial of degree n 2 3. We prove that 
there are only finitely many rational numbers x, y with bounded denominator 
and an integer m > 3 satisfying the equation X(X + 1) (x + 2)...(x + (m - 1)) 
= g(v). We also obtain certain finiteness results when g(y) is not an irreducible 
polynomial. 

1. INTRODUCTION 

Letf(x)=x(x+l)(x+2)...(x+(m-1)),m~2andg(y)beanypolynomial 
of degree II > 2 in Q[ Y]. In this paper we consider the equation 

(1) f(x) = a> 
with 

(2) x>.Y rational with bounded denominator. 

Here we say that the equation;f(x) = g(v) has infinitely many rational solu- 
tions with bounded denominator if there exists a positive integer A such that 
f(x) = g(v) has infinitely many rational solutions x, y satisfying Ax, Ay E Z. 

We obtain an explicit criterion for the solutions of equation (1) satisfying (2). 
When g(v) is an irreducible polynomial, our methods here yield a bound C on 
m which is effective. 

The equations of type f(x) = g(v) f or various polynomials g(v) have 
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been studied extensively during the last decade. One can see papers [9], [lo], 
[ll], l-121, [13], [14] and [16] of R.Tijdeman et al. more details. Also a special 
case is when g(y) = yn - r where r is any rational number in Q. Earlier in [6], 
we have proved that in this case there are effective finiteness results for x E Z 
and y E Q. Note that, although our results in this paper apply to the special 
case, they do not give effective results as in [6]. 

MAIN RESULTS 

Main results of this paper are as follows: 

Theorem 1.1. ,S’upposef(x) = g(y) h as infinitely many solutions x, y satisfying 
(2). Then we are in one of the following cases: 

1. g(y) =f(gl(~))firsomegl(~) E QLYI. 
2. m even and g(y) = +(gl (y)) where 4(X) = (X - (-$2)(X - (s)‘) . . . . . . 

(X - (-j2) and a(y) E Q[Yl 2 is a polynomial whose squarefree part has at 
most two zeroes. 

3. m = 4 and g( y) = & + bS( y)2 where S is a linear polynomial. 

Theorem 1.2. (a) Fix m 2 3 such that m # 4 and let g(y) be an irreduciblepoly- 
nomial in Q[y]. Then there are onlyfinitely many solutions (x, y) of equation (1) 
satisfying (2). 

(b) Let m = 4 and g( y) b e an irreducible polynomial. Then equation (1) has in- 
finitely many solutions only when g(y) = & + bS(y)2, where b E Q” and 
S(y) E Q[y] is a linear polynomial. Besides this, equation (1) has only finitely 
many solutions satisfying (2). 

Theorem 1.3. Assume that g(y) is an irreducible polynomial in Q[y] and A be a 
positive integer. Then there exists a constant C = C(g, A) such that for any 
m 2 C, equation (1) does not have any rational solution with bounded denomi- 
nator A Moreover, C can be calculated effectively. 

Theorem 1.4. Let g(y) be an irreducible polynomial in Q[y] of degree at least 3. 
Then there are only finitely many solutions x, y, m with m 2 3 of equation (1) sa- 
tisfying (2). 

When deg g(y) = 2, equation (1) has finitely many solutions x, y, m E Z sa- 
tisfying equation (1) for m # 4. 

Remark 1.5. For each of the cases in theorem 1.1, a set of rational solutions 
(x, y) with bounded denominator can be given as follows. 

In case (l), an infinite set of rational solutions x, y with bounded denomi- 
nator can be given as x = gi (y) with y suitably chosen. Note that if we had in- 
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sisted on integral solutions x,y we would not have any solutions for 
g(y) = w or w for instance. 

To get an infinite set of solutions in case (2), we write gl(,v) = apt 
where a(v) has degree < 2 and only simple zeroes, if any. Then we check if a(t) 
can be square for infinitely many choices of t. For each such t, denote a(t) = /I2 
for some ,!?. Then @p(t) - 9, t) is a solution of equation (1). 

Same procedure as above gives a set of solutions in case (3). Here 
fi C-4 = 4-4~(4~ w h ere Q(X) is a polynomial of degree two and gi(v) = LJ(JJ)~ 
where q(y) is a linear polynomial. We check if a(t) can be square for infinitely 
many choices of t. For each such t, denote u(t) = S2 for some 6. Then for 
q(y) = vy + s we get (t, T) as a solution of equation (1). 

2. SOME KNOWN RESULTS 

In this section we recall some useful results which will be used to prove the main 
theorems. 

For a polynomialf(x) E C[x], let 5” denote the set of stationary points off 
(i.e. points wheref’ vanishes). For any a E C, let m, = # {c~ E +/f(a) = a}. 
Then, a theorem of Beukers et al. [ 31 asserts: 

Theorem 2.1. Let f(x) = x(x + l)...(x + (m - 1)). Then, for all a E C, m, < 2. 
Moreover, m, 5 1 ifm is odd. 

Now we mention the results of Tichy, Bilu et al. on equations of the form 
f (-4 = g(y). 

Definition 2.2. A decomposition of a polynomial F(x) E C[x] is an equality of the 
form F(x) = Gl(G(x)), h w ere G1 (x), Go E C[x]. The decomposition is called 
nontrivial ifdeg G1 > 1, deg G2 > 1. 

Two decompositions F(x) = Gi(Gz(x)) and F(x) = Hl(Hz(x)) are called 
equivalent if there exist a linear polynomial Z(x) E C[x] such that Gi (x) = 
Ht(Z(x)) and HZ(X) = Z(Gz(x)). Th e o p ly nomial called decomposable if it has 
atleast one nontrivial decomposition, and indecomposable otherwise. 

The following result is due to Bilu et al [2]: 

Therorem 2.3. Let m 2 3 andf,(x) = x(x + 1).,.(x + (m - 1)). Then, 
(i) fm (x) is indecomposable ifm is odd and, 
(ii) if m = 2k, then any nontrivial decomposition of fm(x) is e2quivalent to 

fm(x) = &((x + v)2) where Rk = (x - $)(x - $) . . . . (x - 9). 
In particular, the polynomial Rk is indecomposable. 

The relevance of this theorem is seen from a theorem of Bilu and Tichy [4]. To 
state it, we need to recall the following notions. 
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Definition 2.4. The Dickson polynomial Dn(x, a) is defined as, 

El 
D&ha) = ZA 

( > 
12; i (-a)ixn-2i. 

Note that Dn(x, a) has degree ~1. 

Definition 2.5. For a complex polynomial P, a complex number c is said to be an 
extremum if P(x) - c has multiple roots. 

Definition 2.6. The P-type of c is defined to be the tuple (,LL~, ’ . . , pLs) of the multi- 
plicities of the distinct roots of P(x) - c. 

With this definition, one has the following well known property of Dickson 
polynoimial. For a detail proof one can see [Sj: 

Theorem 2.7. (a) The Dickson polynomial P(x) = Dt(x, 0) has exactly one ex- 
tremum 0 of P-type (t). 
(b) rfa # 0 and t > 3 then Dt(x, a) has exactly two extrema f2ai. If t is odd, 
then both are of P-type (1,2,2 . . . . 2). If t is even, then 2as is of P-type (1, 1,2... ,2) 
and -2af is of P-type (2,2, . ., 2). 

In what follows, a and b are nonzero elements of some field, m and n are positive 
integers, and p(x) is a nonzero polynomial (which may be constant). 

STANDARD PAIRS 

A standard pair of the first kind is 

(x’, axrp(x)“) or (axrp(x)t, x”) 

where0 5 r < t, (r,t) = 1 andr+degp(x) > 0. 
A standard pair of the second kind is 

C& (a2 + blp(42) or ((a2 + b)p(x)2, 2). 

A standard pair of the third kind is 

(O&, afLDdx, ak)) 

where (k, t) = 1. Here Dt is the t-th Dickson polynomial. 
A standard pair of the fourth kind is 

(aa/2Dt(x, a), b-k/2Dk(x, a)) 

where (k, t) = 2. 
A standard pair of the fifth kind is 

((a2 - 1)3,3x4 - 4x3) or (3x4 - 4x3, (ax2 - 1)3). 
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By a standard pair over a field k, we mean that a, b E k, and p(x) E k[x]. 
The following theorem is by Tichy & Bilu [4]. 

Theorem 2.8. For non-constant polynomials f (x) and g(x) E Q[x], the following 
are equivalent: 

(a) The equation f(x) = g(y) k as injinitely many rational solutions with a 
bounded denominator. 

(b) We kavef = $vl(X)) andg = $(gl (p)) where X(x), p(x) E Q[X] are linear 
polynomials, $(x) E Qlxl, and (h (x), gl (x)) is a standardpair over Q suck that 
the equation fi (x) = gl (y) k as infinitely many rational solutions with a bounded 
denominator. 

We use the following result in the proofs of the main theorems. 

Theorem 2.9. Letf(x) = x(x + 1) . . (x + m - 1) and c E Q. Then 
(a) When m > 6, tkepolynomialf (x) + c has atleast three simple roots. 
(b) Ifm = 3, 6 then, tkepolynomialf (x) + c has only simple roots. 
(c) When m = 4, f(x) + c has multiple root only for c = 1 and c = g. 

In fact f (x) + 1 = (x2 + 3x + 1)2 and has no rational root. 
Also f (x) - & = (x + $)“(x” + 3x - b) and the factor 2 + 3x - $ has distinct, 

non-rational roots. 
(d) When m = 6, f(x) + c has multiple root only ifc = (y,‘. In this case, 

f(x) + (@ = (x+;)2(x4+ 10x3 +++Tx+$). 

The factor O(x) = x4 + 10x3 + yx2 + yx + & has no multiple root and also 
e(2) # 0. 

Note that part (a) is a direct consequence of Theorem 2.1 and parts (b), (c) and 
(d) can be verified by direct and straightforward computation. 

3. PROOFS OF THE THEOREMS 

Let f(x) = x(x + 1)(x + 2)...(x + (m - l)), m > 3 and let g(y) be any poly- 
nomial in Q[ Y]. Fix m and suppose the equation (1) has infinitely many solu- 
tions satisfying (2). Then by theorem 2.8, there exists linear polynomials 
X(x), ~(4 E QLfl> and a standard pair (fi (x),gr (x)) such that for some 
4(x) E QiA, we havef (4 = vU(G))) and&) = db(d4)). 

Now as degree off(x) is m, degree of 4(x) can be atmost m. This together 
with theorem 2.3 implies that degree of d(x) can be m or 7 or 1. We will deal 
separately with each of these cases in the following propositions. 

Proposition 3.1. Suppose deg 4 = m Then equation(l) has infinitely many solu- 
tions (x, y) satisfying (2) implies g(x) is as in case (1) of Theorem 1.1. 
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Proof. Suppose f(x) = g(y) h as infinitely many solutions. Then, as above, 
there are linear polynomials X(x), ,u(x) E Q[X], and a standard pair 
U+%d4) such that.@) = WdW)) anddx) = 4MdW 

Since deg 4(x) = m = &gf(x), we get that 4(x) =f(s(x)) for some linear 
polynomial S(x) = ux + v E Q[X]. Therefore deg fi = 1. So the standard pair 
(fi , gi) can only be of first kind or third kind. 

If the standard pair is of first kind then (fi, gi) = (x, acx’) or (acx, x’) for 
some t E Z and a, c E Q. In both possibilities we get g(x) = 4(gi (p(x))) = 
f(~klM-4))). BY d enoting h(x) = Ql(p(x)) E Q[xl, we get g(x) =f(h(x)). 
Therefore, in this case (m,g(x)) = (m,f(h(x)). Which is case (1) of Theorem 1.1. 
We get similar result if (fi, gi) is a standard pair of third kind. This completes 
the proof. 0 

Proposition 3.2. Suppose deg 4 = 7. Then equation(l) has infinitely many solu- 
tions (x, y) satisfying (2) implies (m, g(x)) . 1s as in case (2) of Theorem 1.1. 

Proof. Let deg 4(x) = 7 and suppose equation(l) has infinitely many solutions. 
Then by theorem 2.8, there are linear polynomials X(x), p(x) E Q[X] and a 
standard pair (fi (x), gi (x)) such that f(x) = Wi(Wx))L g(x) = 4klW))) 
and fi (x) = gl (y) has infinitely many rational solutions x, y with bounded de- 
nominator. 

Since deg 4(x) = 7 and degf = m we have degfi (x) = 2. Therefore, f(x) has 
a nontrivial decomposition. Then theorem 2.3 and theorem 2.8 together imply 
f(x) = WVi(~($)) and g(y) = 4(~kd4y))N where CW = (x - b)(x - $1 
. . . . . . (x-v)and6 is a linear polynomial. Choose X(x) = x, p(y) = y and 
denote hi(x) = S(fi(x)), hz(y) = S(gi(y)). Then, (f(x),g(y)) can be written as 
(Gl(x))> @(hz(y)). 

We have to show that the squarefree part of hz(y) has at most two zeroes. 
But, since hi(x) is the square of a linear polynomial (by theorem 2.3) and 
h(x) = h(y) h as infinitely many rational solutions with bounded denomi- 
nator, it follows immediately from Siegel’s theorem that hl (x) has at most two 
zeroes of odd multiplicity. 0 

Proposition 3.3. Suppose deg 4 = 1. Then equation (1) hasjinitely many solu- 
tions satisfying (2) except in the case m = 4. 

When m = 4 the equation has infinitely many solutions only when 
g(v) = & + WYN2f or some b E Q* and linear polynomial p(y) E Q[ Y]. 

(Note that m = 4 and g(y) = & + b(p(y))2 is case (3) of theorem 1.1). 

Proof. Suppose, if possible, that f(x) = g(y) has infinitely many solutions. 
Then, by theorem 2.8, there are linear polynomials X, p E Q[X], and a standard 
pair (h,gl) E QWI such that for some 4 E Q[X], we havef(x) = d(fi(X(x))) 
and g(x) = 4(gi(p(x))). As deg 4(x) = 1, we write 4(x) = Q + /3x for some 
a E Q, p E Q*. Therefore, we can write 
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(3) f(x) = a + pfi (X(x)), g(x) = a + PklM4 

Note that here, degft = deg f = m. Let X(x) = lx + 1’ for some I, 1’ E Q. 

Let (fi , gl) be a standardpair ofjirst kind. 

Then (fi (xl, gl (xl) = ( x’, ax’p(x)‘) or switched with r < t, (r, t) = 1, rt 
degp > 0. 

Let Ui(4d4) = ( xt, axrp(x)t), r < t, (r, t) = 1 i r + deg p > 0. By equa- 
tions (3), we havef(x) = Q + p(x(x))’ i.e.f(x) - a = p(x(x))‘. But, this implies 
all roots off(x) - a! are rational and no root is simple. By theorem 2.9, it is not 
possible. 

Now let (ft (x), gt (x)) = (axrp(x)t, xt), r < t, (r, t) = 1, Y + deg p > 0. Since 
t = deg gt = deg g 2 2, r # 0. Thus,f(x) - a = Pa(X(x))‘p(X(x))“. 

As r f 0, we have t 2 2. So every root ofp(x) is a multiple root off(x). Since 
X(x) = Ix + I’, x = $ is a rational root off(x) - n with multiplicity r. By the- 
orem 2.9, f(x) - CY has at least one simple root unless m = 4 and Q = -l( in 
which case the roots are irrational). This forces r = 1. But, this meansf(x) - Q 
has exactly one simple root. However, theorem 2.9 imples that f(x) - a can 
never have exactly one simple root. 

Therefore, (h (4, gl (4) can not be a standard pair of first kind. 

Let (fi , gl) be a standardpair of second kind. 
Then, (fi (XL gl (xl> = (x2, (ax2 + b)p(x)2) or switched. Let (f~ (x),gt (x)) = 
(x2, (ax2 + b)p(x)2). This is not possible as it implies that m = deg f = deg 
fi =2. 

Now let (fi(x),gl(x)) = ((ax2 +~)P(x)~,x~). 
Here deg fi = m = 2 + 2 degp. Therefore, m is even and also deg g = 2. Now 

m > 2 gives deg p > 0. Therefore, f (x) - a = p[a(X(x))2 + blp(X(x))‘. This im- 
plies thatf (x) - cy h as at most two simple roots. By theorem 2.9 this is possible 
only when m = 4 and a: = &. By substituting this values, we get g(v) is of the 
form g(v) = & + /~,u(JJ)~. By denoting b = /?, we get in this case (m, g(x) is as in 
case (3) of Theorem 1.1. 

Let (fl , 81) be a standardpair ofjifth kind. 
Then (h(x),gl(x)) = ((ax2 - 1)3, 3x4 - 4x3) or switched. 

If (fi(x),gl(x)) = ((ax” - 1)3,3x4 - 4x3) then f (x) - cli = p[a(X(x))2 - 113. 
This implies degree off(x) - o = 6 and all roots off(x) - cx are multiple roots. 
But this is impossible by theorem 2.9. 

Now let (fi(x),gt(x)) = (3x4 -4x3, (ax2 - 1)3). Once again, we have, 
f(x) - a = /3(?1(x))~[3X(x) - 41. This implies m = 4 and that f (x) - a has only 
one simple root and the other root is multiple root with multiplicity 3. This 
again contradicts theorem 2.9. 

Therefore, (fi (x), gl (x)) can not be a standard pair of fifth kind. 

Let (fi, gl) be a standardpair of third kind. 
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Then VI (x) , a(x)> = (&CT a*>, 0, ( x, am)), (m, n) = 1. As before, we have a, ,8 
in Q, ,0 f 0 so that f(x) - a! = P&(X(x), an) for some rational linear poly- 
nomial X(x) = Ix + I’. By theorem 2.1, we know that for any complex number c, 
the polynomialf(X) - c can have atmost one multiple root if deg f = m is odd 
and atmost two multiple roots if m is even. 

If a = 0 thenfr (x) = &(x, 0) = P which is not possible as we have checked 
when VI (~1~ gl(4 1 is a standard pair of first kind. Therefore a # 0 and 
fi(x) = (&(x, a’)). By theorem 2.7, f(x) has two extrema and f(x) - a = 
P&(X(x), a’) also has two extrema. 

If m is an odd integer then by theorem 2.7, both extrema are of the type 
(1,2,2. ..). But, by theorem 2.l,f(x) - a! can have atmost one multiple root if m 
is odd. This implies that in this case the only type an extremum can have is 
(1,2). Therefore, if m is odd then m = 3. But, by theorem 2.9, when m = 3, all 
roots off(x) - 01 are simple. This is a contradiction. 

If m is even, then by theorem 2.7, the extrema are of the type (1, 1,2,2, . . . . 2) 
and (2,2, . . . . 2). Now, sincef(x) - QI can have atmost two multiple roots, the 
above types can only be either (1, 1,2,2) or (1, 1,2) or (2,2). Thus, if m is even 
then it must be 4 or 6. 

If m = 6, the type (1, 1,2,2) is ruled out by theorem 2.9 because when m = 6, 
f(x) - a has four simple roots and only one multiple root. 

We now deal with the case when m = 4. In this case equation (1) can be 
wriiten as 

x(x + 1)(x + 2)(X + 3) = Q: + P&(1’ + lx, a”) 

= a + p[(a + zx)4 - 4a”(Z’ + lx)2 + 2a2”]. 

Evaluating at x = 0, - 1, -2, -3, and using the fact that ,i3 # 0, we obtain 

Z14 - 4anzt2 = (Z’ - z)4 - 4u”(Z’ - q2 = (I’ - 2z)4 - 4a”(Z’ - 2z)2 

= (I’ - 3z)4 - 48(Z’ - 3z)2. 

Since Z # 0, this equation does not have a solution. Hence the case m = 4 is also 
ruled out. Therefore (fr , gr ) can not be a standard pair of third kind. 

Let (fi , gl) be a standardpair offourth kind. 
Then (fi, gi) = (a-“/2Dm(x, a), b-“12D,(x, b)) where (m, n) = 2. 

As a # 0 we can argue as in the previous case and since here, m is even, the 
only case possible is m = 4 or 6. This gives a contradiction exactly as in the 
previous case. Therefore (fl , gr ) can not be a standard pair of fourth kind. 

Hence we have shown that when deg 4 = 1, equation (1) has only finitely 
many solutions except for the case m = 4. In this case it has infinitely many 
solutions only when g(u) = & + bp(~~)~. This completes the proof of the 
proposition. II1 

Proof of theorem 1.1. Fix m 2 3. We have to prove that if equation (1) has in- 
finitely many solutions then the pair (m, g(x)) is as in case (1) or (2) or (3). This 
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is clear from the discussion in the begining of this section and propositions 3.1, 
3.2 and 3.3. 

Proof of theorem 1.2. Let g(v) be an irreducible polynomial Q[ Y]. We have to 
prove that there are only finitely many solutions x,y of equation (1) satisfying 
(2) except for the case m = 4 and g(y) = & + bp(y)‘. 

Suppose equation (1) has infinitely many solutions. Then, as before by theo- 
rem 2.8, there are linear polynomials X, p E Q[X], and a standard pair 
(fr,gr) E Q[X] such that for some 4 E Q[X], we havef(x) = $(f~(X(x))) and 
g(x) = 4kl W>)). A s we have observed before, deg $ can be m, F or 1. 

When deg 4 = m, by proposition 3.1, g(v) is of the form f(h(y) for some 
polynomial h(y) E Q[ Y]. Asf( x is reducible, in this case g(y) is also reducible ) 
which violates the assumption. 

When deg 4 = 4, from proposition 3.2 we have g(y) = $(/z(y)) for some 
polynomial h(y) E Q[Y] and 4(x) = (x -$)(x - $) . . . (x - ((2k - l)2/4)). 
As 4(x) is reducible, we get g(v) is also reducible, which again violates the as- 
sumption. 

Therefore, the only possibility is deg 4 = 1. In this case, proposition 3.3 gives 
the required result. 

Proof of theorem 1.3. Let g(v) be an irreducible polynomial of degree n in Q[ Y] 
and A be a positive integer. Write g(y) = gg for some nonzero integer A and a 
polynomial gl (y) E Z[ Y]. A ssume that f(x) = g(v) (i.e. nf(x) = gr (v)) has a 
rational solution (x, y) with bounded denominator A. 

Since g(y) (and hence gr (y)) is an irreducible polynomial, by the Chebotarev 
density theorem, there are infinitely many primes p E Z such that gr (y) has no 
root modulo p. Choose a prime P such that (AA, P) = 1, and gr (v) does not 
have root modulo P. We will show that when m 2 P there does not exist any 
rational solution with denominator A of equation (1). 

Suppose m > P and assume thatf(x) = g(v) (i.e. /If(x) = gr (v)) has a solu- 
tion satisfying (2). Let y,g be a solution where d, dr , x0, yo are integers such 
that d and dl divide A. Then we have, Axs(xo + d)(xo + 2d)...(xo + (m - 1)d) 
= dmgl($). Clearing the denominator on the right hand side, we get 
dl”Axo(xo + d)(xo + 2d)...(xo f (m - 1)d) = dmh(yo) where h(v) = dIngi is 
in Zb]. Since m 2 P and (d, P) = 1, P divides x0(x0 +d)(xo +2d)... 
(x0 + (m - I)d). Th ere ore f P divides d”“h(yo) and so h(yo) _= 0 mod P. Since 
(dl , P) = 1, this implies gr (ZO) E 0 mod P where dlzo z yo mod P. Hence g1 has 
a root modulo P, which is a contradiction. Therefore when m > P, equation (1) 
does not have any rational solution with bounded denominator A. This com- 
pletes the proof of the theorem. 

Note that the bound C = P in the theorem can be made effective by using the 
effective versions of Cebotarev density theorem in [7] and [8] by Lagarias et al. 

Proof of theorem 1.4. It is clearly a consequence of theorems 1.2 and 1.3. 
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