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Let a,b be nonzero rational numbers and C(y) a polynomial with rational
coefficients. We study the Diophantine equations

aBn(x) =bfu(y) + C(¥)

and

afm(x) =bB,(y) + C(y)

with m > n > deg C 42 for solutions in integers x, y. Here f,(x) =xx+1)--- (x +
n — 1) and the Bernoulli polynomials B, (x) are defined by the generating series

tet* ad "
7 —1 = Z(:)Bn(X)‘n"‘

Then, B,(x) =>"7_ (})By-ix" where B, = B,(0) is the rth Bernoulli number. In

i
fact, B, are rational numbers defined recursively by Bo = 1 and 37— (7) B; = 0 for
all » > 2. The odd Bernoulli number B, = 0 for » odd > 1 and the first few are:
Bo=1, By=-1/2, By=1/6, Bus=—1/30.
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The Bernoulli polynomials B, are related to the sums of nth powers of the first few
natural numbers as follows. For any n > 1, the sum 1" +2" 4 - -+ k" is a polynomial
function S, (k) of k and S, (x) = (Byt1(x + 1) — Buy1)/(n + 1).

One says that an equation f(x) = g(y) has infinitely many rational solutions with
bounded denominator if there exist a positive integer & such that f(x) = g(y) has
infinitely many rational solutions x, y satisfying x, y € %Z and, more generally, we
look for rational solutions with bounded denominators.

Earlier, we have studied the equations of the type f(x) = g(y) for:

@ f@x)=x(@x+1)---(x+m—1) and a general g(y) [2,4] and
(i) f(x)=aBm(x), g(y) =bB,(y) + C(y) where m > n > deg(C) + 2 [5].

Here, we prove the following two theorems:

Theorem 1. For m > n > deg(C) + 2, the equation

aBm(x) =bfn(y) + C()

has only finitely many rational solutions with bounded denominator except in the
Jollowing situations:

(i) m =n, m+ 1 is a perfect square, a = b(m + 1)",

(i) m =2n, (n+ 1)/3 is a perfect square, a = b(5/ ”T“ ).

In each case, there is a uniquely determined polynomial C for which the equation

has infinitely many rational solutions with a bounded denominator. Further, C is
identically zero when m = n = 3 and has degree n — 4 when n > 3.

Theorem 2. For m > n > deg(C) + 2, the equation

afm(x) =bBn(y) + C(y)

has only finitely many rational solutions with bounded denominator excepting the
Jfollowing situations when it has infinitely many:

m=n, m+1isaperfectsquare, b=a(¥m+1)".

In these situations, the polynomial C is also uniquely determined to be

l—-mF/m+1
2

C) = afm<(i«/m F1)x + ) — bB(x)

and has degree m — 4.
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Remarks. (a) The condition n > deg(C) + 2 in the two theorems is sharp as can
be seen from the fact that the equation

Bi(y+2) = fa(y) + 2y + 6y + 13—109
holds for all y.
(b) A (common) particular case of the theorems was proved in [1].
(c) In the exceptional cases (i) and (ii) in the first theorem, the unique polyno-
mial C for which the equation has infinitely many solutions, is given as follows:
In case (i),

x+(mE/m+1-1)/2
+/m+1

In case (ii), writing # + 1 = 3u4? and writing ¢ (x) for the unique polynomial of
degree n for which ¢ (x2) = Bo,(x +1/2),

C(x)=aBm( )—bfm(x)-

2x + 6u3 + 24u® + 6u — 16
u@Buz -1

C(x) = ad)( ) —bfy2_1(x).

(d) It should be noted that when ¢ = b, the computations are much easier and
yield in all cases that there are only finitely many solutions.
(e) Evidently, one may assume @ = 1 by replacing b by b/a and C(y) by C(y)/a.

We shall make extensive use of the following theorem of Bilu and Tichy [3]:

Theorem A. For non-constant polynomials f(x) and g(x) € Q[x1, the following
are equivalent:

(a) The equation f(x) = g(y) has infinitely many rational solutions with a bounded
denominator.

(b) We have f = ¢ (f1(\)) and g = ¢{g1(n)) where A(x), u(x) € Q[X] are linear
polynomials, ¢(x) € Q[X], and (f1(x), g1{x)) is a standard pair over Q such
that the equation fi(x) = g1(y) has infinitely many rational solutions with a
bounded denominator.

Standard pairs are defined as follows. In what follows, @ and b are nonzero
elements of some field, m and n are positive integers, and p(x) is a nonzero
polynomial (which may be constant).

STANDARD PAIRS

A standard pair of the first kind is
(x',ax"p(x)") or (ax"p(x), x")
where 0 <r <t, (r,t)=1and r +deg p(x) > 0.

53



A standard pair of the second kind is
(x%, @x®+b)p(x)?) or ((ax®+b)px), x?).
A standard pair of the third kind is
(Di(x,a"), Di(x,a"))
where (k, ) = 1. Here D; is the rth Dickson polynomial

A e (i i £=2
Ditr, =3 —( . Joix.

i=0

A standard pair of the fourth kind is
(a7 Di(x,a), b Dy(x, a))

where (k, 1) =2.
A standard pair of the fifth kind is

((ax? = 1)%,3x% —4x%) or (3x* —4x3, (ax? — 1)%).

By a standard pair over a field k, we mean that a, b € k, and p(x) € k[x].

The theorem of Bilu and Tichy above shows the relevance of the following
definition:

A decomposition of a polynomial F(x) € C[x] is an equality of the form F(x) =
G1(G2(x)), where G1(x), G2(x) € C[x]. The decomposition is called nontrivial if
degGy > 1,degGy > 1.

Two decompositions F(x) = G1(G2(x)) and F(x) = H (Hy(x)) are called equiv-
alent if there exist a linear polynomial /(x) € C[x] such that G;(x) = H;((x))
and Hp(x) =1(G2(x)). The polynomial called decomposable if it has at least one
nontrivial decomposition, and indecomposable otherwise.

We shall also use the following result due to Bilu et al. [1]:

Theorem B. Let m > 2. Then,

(i) B, (x) is indecomposable if m is odd and,
(ii) if m = 2k, then any nontrivial decomposition of By, (x) is equivalent to By, (x) =
h((x —1/2)%).

The equation S, (x) = S, (y) has been studied in [1]. This is a particular case of
our result.

We first consider the first theorem. Evidently, we may assume a = 1 and we look
at the equation B, (x) =bf,(y) + C(y) where f,(x) =x(x+1)---(x +n—1) and
m 2 n > deg(C) + 2.
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Proof of Theorem 1. As remarked in the beginning (remark (e)), we may assume
thata =1.

Case I: Let us first consider the case when m =n = 2d.

If the equation has infinitely many solutions, the Bilu-Tichy theorem gives Byg =
¢o frorandbfry + C =¢ o gy oy where A, p are linear polynomials over Q and
(f1, g1) is a standard pair over Q. Since we know from [1] that the only nontrivial
decomposition of Bzs up to equivalence where has f1(x) = (x — 1/2)?, it follows
that either:

(a) deggp =1, or

(b) deg¢ =d and Baa(x) = ¢((lo + l1x — 1/2)*) and bfas(x) + C(x) = d(kx* +
Ix +¢) and the equation (x — 1/2)2 = ky? 4 Iy + has infinitely many solutions,
or

(c) deg¢ =2d in which case

Byi(rx +s) =bfaa(x) + C(x).

First, suppose (a) holds, i.e., deg¢ = 1. This means that (f1, g1) is a standard
pair with deg f; = deg g1 = 2d > 2. This is impossible as seen by looking at the
conditions on the degrees of standard pairs.

Next, we consider (b), i.e., the possibility where ¢ has degree d.

We use the following observation, see [51:

Lemma. If Byy(rx +s) = ¢ ((x — 1/2))? for some r, s € Q with r £ 0, then (r,s) =
(1,0) or (=1, 1). In particular, Byg(x) = ¢((x — 1/2)%).

Therefore, Byg(x) = ¢ ((x — 1/2)%) and bfrg(x) + C(x) = p(kx2 + 1x + 1).

Considering the coefficients of x27, x2~1, x24-2 and x24~3 of the second equa-
tion, we get the following expressions.

Coefficient of x2¢ is b = ¢pgk? = k? (the fact that ¢4 = 1 we know from the first
equation).

Coefficient of x>~ gives | = k(2d — 1).

Coefficient of x2~2 gives t = k(d — 1)(2d — 1)/3 + 2d — 1)/12.

Coefficient of x243 gives

d*(d — 1)(2d — 1)2(2d — 3)
6

d
=d(d — Dk 2t + ( 3)kd—313 +¢g_1(d — DK%

c-3+b

where ¢24-3 is the coefficient of x24~3 in C(x).

From the equation Byy(x) = ¢((x — 1/2)?), we obtain ¢y = 1 and ¢y_; =
—d(2d — 1)/12. Using this and the values of 5,k,/, ¢, we obtain cy_3 = 0. Thus,
degC <2d —3.

We now proceed to show that 4 must be of a special form and in that case C must
be determined uniquely to be of degree 2d — 4.
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The infinitude of the number of solutions of

(x—1/2?=ky* +1y+1¢

kd-1)2d—-1) 2d-1
=k +had -~y + SEZ DD

3 12
kQd+1)2d—1) 2d—1
=k(y+d—1/2)%—
v+ /2) 0 + >

forces that k(2d 4 1) = 1 and that k is a square in Q. Therefore, we getd = 2r(r +1)
for some natural number 7.
Then C is uniquely determined to be

x+2r2 +3r 1
Clx)= B4r(r+l)( 71 ) T @r 3 D Jarg+1)(x).
The claim that deg(C) = 2d — 4 when d = 2r(r + 1), etc., is seen as follows.
We use the property Byy(x + 1) — Bag(x) = 2dx??~1 of the Bernoulli polynomi-
als. We have

w243 4r244r—1
() 4r(r + 1)(%) =C(x+2r+1)=C(x)
1
+ W(f4r(r+l) G +2r +1) = farp41)(x)) -

Already, from this one can see that C' cannot be a constant; otherwise a comparison
with x =0 gives

24ar
Qr+2)@2r +3)--- (42 +6r) = 4r(r + 1)(2r2 +3r)"

The last identity is impossible since a prime p exists with 2r2 +3r < p < 4r2 +6r
and this divides the left side and not the right.

To use the above identity () to find the coefficient of x24—% = x>+ 4 of C(x),
we find the coefficient of ¥4 =5 on both sides. Clearly, on the left side, it is
(4r2 + 4r — H)(2r + 1)Cyy2.4,_4- Thus, we need to check that the coefficient of

2 . .
x4 “+4r=3 is nonzero. This is computed to be

dr(r+1) 4r? +4r —1 2 4 u(r)
(e )er )

where u(r) is the coefficient of x**+4~5 in fare+n & +2r + 1) — fare41(x), e,

u(r) is the coefficient of x4 =5 in (x + 27 + 1)(x + 27 +2)--- (x + 42 +67) —

x(x+ 1) (x +4r2 +4r — 1).
Lauay=aw+Dmﬂ+4n@ﬂ+3m%*%ﬁ”)
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Using MAPLE, we can explicitly compute «(r) and v(r) as polynomials in r.

4 231424 14069248
4'(;967.19 + 7;047-18 + 3 3 r17 + 2068487‘16 + Trls

655616 ;, 2556544 ,; 10018816 ;, 6033008 .,
+—r " - r- - re— r
3 45 45 45
n 6376 10 146144 o 433384 ¢ 126929r7+ 643973r6
5 o ' T a5 | 45 90
157321 5 7211 , 30647 5 1091 , 1
+ ro+ r+ ro+ re+

36 8 360 360 5°

4096 5, 47104 15 231424 9373984r15

3 3
636384 14
3

u(r) =

+ 206848716 +
645056r12
3

v(r) =

97544
,10

—54912,13 — — 114864r! +

+47120r° + 4524r% — 633617 — 864r° + 32457,

Thus, in fact, the first four coefficients of u(r) and v(r) match!
However, MAPLE shows that they are never equal because
2r + (2 +r—1
o) —u(r) = “EF )3(;0+r ) (20481 + 43008r° + 278528/
+976640r% + 215232017 4 302220876 + 2589888°

+12502887* + 29785273 + 29844r% + 10197 +72)

which is obviously positive for all positive .
Thus, C4r2+4r_4 # 0, i.e., deg C=2d—-4.
Finally, we consider the possibility (¢), i.e.,

Baa(rx +5) =bfrg(x) + C(x).

2d 2d—-2

Comparing the coefficients of x%¢, x*¥~! and x%4~2 we get

2
-1 —
r¥—p, 2s—1=r(2d 1), s2——S+é=r(d ;(6d 1)'

This gives
(4d + 2)s? — (4d +2)s — 2d% +3d = 0.

This is possible for a rational number s if, and only if, 2d + 1 is a perfect square,
say (2u + 1)%. We obtain

1 1 4u?+4u—1 1

=:l:———————’ = — ———e e =
m+1 T 2T T 20u+D (Qu + 1) +4u

r

With these values of r, s, we find that C is the same as it was for case (b). Therefore,
the same computation shows that C has degree 2d — 4.
This completes the case I when m = n is even.
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Case II: Let m = n be odd and > deg C + 2.
As before, infinitude of solutions implies the existence of a decomposition

Bin(x) =¢ o fioi(x), bfm(x) +C(x) =¢ogiopx)

with A, p linear. Now, as m is odd, B,, is indecomposable. Hence either deg ¢ = m,
deg fi=1ordegep =1, deg f1 =m.

First, let us suppose that deg¢ = 1. Then deg f; = m = deg g;. The standard pair
(f1, g1) must, therefore, be of the first kind. So, for some r, s € Q with r #£ 0, we
have either

B (rx +5) = ¢o + p1x™
or
bfm(rx +s5)+ C(rx +5) = ¢o + p1x™.

If the first possibility occurs, we equate the coefficients of x~2, and get 65> — 65 +
1 =0, s € Q, which is not possible.
Suppose the second possibility occurs. Let us compare the coefficients of x™,
x™~1 and x™~2. We have
1—

br™ = ¢, v=——2m, v+ (m—1)+

(m~1)@m—1)

Oa
6

respectively. Substituting the value of v into the last equation, one gets m? = 1
which is impossible.
Thus, we suppose that deg ¢ = m. Then, we have u, v € Q with u # 0 such that

C(x) = B (ux + v) — bfim(x).

Comparing the coefficients of x™, ™1, x™~2 on both sides and noting that the left
side does not contribute anything, we have:
m—1 1 , 1

vty W=

u"=»s, v=

Thus, first of all, this forces m to be such that m + 1 is a perfect square, say, 4r2.
This also determines u, v in terms of r as u = £1/(2r) and v = (2r* — Du + 1/2.
Hence C is uniquely determined to be the polynomial

x+2r+r—1 1
) Farra (),

€0 =By (i 2 T2t

Notice that the expression for C we obtained in case I and the expression here have
the common form

x+mEt/m+1-1)/2
m+1

C(x)=aBm( )—bfm(x).
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A calculation exactly as in the case of even m shows that the coefficient of x” 3 on
the right side is zero. Therefore, C must either be zero or have degree smaller than
m — 3.

If m =3, we must have C =0 and

f3x) = —833(_7").

Letm > 3.
Of course, one can easily check as in the even case that C cannot be a constant.
Indeed, if it were, we would have

422

@r—-D@2r*+r-1) =Q2r +2)Q2r +3)--- (4r* +2r —2).

But, if 7 > 1 (which is the case when m > 3), there is a prime p with 2r> +r — 1 <
p < 4r% 4 2r — 2; this divides the right hand side and not the left hand side. In fact,
the polynomial C has degree m — 4. To see this, we may proceed as in the m even
case using the property B, (x 4+ 1) — By, (x) = mx™ L.

Case III: Let m be odd and > n > deg C + 2.

As before writing B,, = ¢ o fi o A, we have either deg¢ = 1 or = m. Since bf, +
C = ¢ 0 g1 o p has degree n < m, the degree of ¢ must be 1. Thus, the standard pair
(f1, g1) must be of either the first or the third kind.

If it is of the first kind, the above argument for m = n carries over verbatim to
give n? = 1, which is a contradiction.

If it is the third kind, we have B, (rx + s) = Dy,(x,a") and we have already
derived a contradiction by concluding m = 9/2 in this case.

Finally, we are left with:

Case IV: Let m be even and > n > deg C + 2.

Writing By, = ¢ o fiA and bf, = ¢ o g1 o 1, we must have either deg¢p =m or
degp =1ordegg =m/2and fi = (x — 1/2)%.

Note that in the last case n = m/2 since m > n and n is a multiple of deg d = m /2.
Also, then degg; = 1.

Since m > n > deg ¢, the possibility deg ¢ = m cannot occur.

Now, if deg¢ = 1, then (f1, g1) is a standard pair with deg f; =m, degg, =n.

We have already seen in case II that if this pair is of the first kind, we get a
contradiction to either of the equations

By (rx +5) =¢o + p1x™
or
bfurx+s5)+ C(rx +5) =g+ P1x".

Since m, n > 2, this standard pair cannot be of the second kind.
Suppose it is of the third kind. Then,

f1(x) = Dp(x,a"), g1(x) = Dy(x,a™)
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where (m, n) = 1. Now, By, (rx + 5) = ¢o + ¢1 (D (x, ™).

This means
m m [m/2]
Z (i )Bm—-i(r-x +5) = ¢o +¢1 Z dm,i(meZl)s
i=0 i=0
where d,, ; = L (m B l) (—a")i.
m—i i

We will compare the coefficients on both sides.
Equating the coefficients of x™ on both sides, we have 7™ = ¢;.
The coefficient of x™~! on the right-hand side is zero and, so we get (H)rm=ts +
(,,)B =0
m—1/P1 -
This gives s = 1/2.
The coefficients of x™ 2 give

m(%_llrm_z(wz —6s+1)= _m (m ; 1) (~a")é1

m—1

which on simplification yields r2” = (m — 1)/24.

By considering the coefficients of x”~* and on using the values of ¢, r’a”, we
get m = 9/2 which is a contradiction. Hence (f1, g1) can not be a standard pair of
the third kind also.

The same argument goes through if the pair is of the fourth kind as the number
¢ above is simply replaced by a=™/2¢,.

Finally, if (f1, g1) is of the fifth kind, then m = 6, n =4 and

A =(ax?—1)°, gi(x)=3x"—4x°,
So
Bs(x) = ¢o + ¢1 (ot(rx +5)* — 1)3_

This means that the derivative Bg(x) has a multiple root; however, B¢(x) = 6Bs(x)
and one knows that Bygq(x) has only simple roots by a result of Brillhart.

Alternatively, even by direct computation, comparison of coefficients of x6, x
and x* gives r2 = 12/5a, s = —r/2, ¢1 = (5/12)° and then the coefficients of x2 do
not match.

Now, we are left with the case deggp =m/2 and fi = (x — 1/2)%; so m =2n
and g is linear. Clearly, f1(x) = g1(y) has infinitely many rational solutions with a
bounded denominator.

Now By, (ux +v) = ¢ ((x — 1/2)?) and by the lemma observed while discussing
case I, we know that we must have By, (ux + v) = By, (x).

Hence we have By, (x) = ¢ ((x — 1/2)2) and bf,(rx +s) + C(rx + ) = ¢ (x) for
some r, s € Q with r # 0. Thus, we have

5

Ban(x) =bfu(r(x —1/2)* +5) + C(r(x — 1/2)* + ).
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Using the identity By, (x + 1) — B, (x) = 2nx?"~1, we have, for some r, r € Q with
r #0,
2nx? 1 = bf, (rx2 +rx+ t) —bf, (rx2 —rx+ t)
+C(rx2+rx+t) - C(rx2 —rx +t).

Infact, t =r/4 +s.
The coefficients of x2*~1 and x2" 3 give:

brt = 1 ; l—n r
r-=1, = _ .
2 n
Comparing the coefficients of x>~ and substituting the above value of ¢, we have
2 _rnt+D)
IRV

In other words (n + 1)/3 must be a square in Q.
Note that since n > deg C +2 > 2, this means n > 11. Writing n + 1 = 3u? with
u > 2, we have

_u@But-1) g

B 2 T2 2

PR T Vs 2
SEITR T Ty “\uG2 - 1)

Also, the coefficient of x"~3 in C(x) = ¢((x — 5)/r) — bf,(x) is seen to be zero by
substituting the values of ¢y, ¢y—1, dn—2, Pn—3 obtained from the equation By, (x) =
$((x — 1/2)2),

deg C is found to be n — 4.

Therefore, Theorem 1 is proved. 0O

Proof of Theorem 2. Once again, we may assume ¢ = 1 and look at the equation

Jm(x) =bBp(y) + C(y).

We shall use our earlier general result on equations of the form f,, (x) = g(y) foran
arbitrary polynomial:

Theorem C (cf [4]). Suppose f,,(x) = g(y) has infinitely many rational solutions
x, y with a bounded denominator. Then we are in one of the following cases:

(D) g = fn(81(») for some g1(y) € Q[Y].

(2) m even and g(y) = ¢(g1(y)) where ¢(X) = (X — (1/2)*)(X — 3/ - (X —
((m — 1)/2)%) and g1(y) € Q[Y] is a polynomial whose square-free part has at
most two zeroes.

(3) m=4 and g(y) =9/16 + b8(y)? where § is a linear polynomial.
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Here, g(y) =bB,(y) + C(y) where m = n > deg(C) + 2.

The last inequality shows that #» > 2 and so, we are not in case (3) above.

If we are in case (1), then again m > n shows that m = n. Then, we have r, s € Q
with r 54 0 so that

bB,(x) +C(x) = fo(rx + )

where n > deg(C) + 2.
Therefore, we have

bz (?)Bn_ixi +CH)=0x+)ox+s+1D)--rx+s+n—1).
i=0

Comparing the coefficients of x”, x"~1, x" 2, we get
b=r", r=-2s—n-+1,

respectively, and a straightforward calculation gives
rP=n+1.

Thus 7 + 1 has to be a perfect square.
Therefore, the equation

Jn(x) =bBp(y) +C(y)

has infinitely many solutions if, and only if, n + 1 is a square, r =+/r+ 1, b =+"
and C is the polynomial

l—n—r

C(x):fn<rx+ >

) — "B, (x).
In fact, it turns out that C has degree n — 4; a comparison of the coefficients of x"~3
yields ¢,—3 = 0 and that of x"~% is not zero.

Finally, suppose we are in case (2). Then, either m = n and g; has degree 2 or
m = 2n and g is linear.

Let us consider the former possibility first. Then, m is even, and fn,(x) =

o (f1(x)) where

2
fi(x) = (x - mT“l) and

o= (e () (- (2

Therefore, writing g;(y) = k(y + [)?> + ¢ and assuming that f(x) = g1(y) has
infinitely many solutions with a bounded denominator, it follows that r = O and
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k is a square; that is, g1(y) is the square of a polynomial. Hence, we have r,s € Q
with r # 0 and

farx +5) =bBy(x) + C(x).

This is exactly the same expression considered in case (1). Thus, in this case also,
we must have that n + 1 is a perfect square and C is determined uniquely to be a
polynomial of degree n — 4.

Let us now consider the latter possibility; that is, suppose m =2n and deg g1 = 1.

Then,
1 2 3 2
an(x)—i—C(x):(rx-l-s—(E) )(rx—i—s—(E) )
(e (%57))
2

Comparing the coefficients of x*, ! and x"~2, we get b =r",

—6r=12s - 2n+1)2n—-1)

and
nn—1) 2 nn — 1)s2 B (n—Dn@2n+1)2n — l)s
2 2 12
n?(2n + 1)*2n — 1) B n(48n* — 40n* +7
2532 480 ’
respectively, and a straightforward calculation gives
2 4dn+1D2rn+ 1DH(2n — 1).
15

We claim that this gives a contradiction. Indeed, we assert:

Claim. (n + 1)(2n+ 1)(2n — 1)/15 is not a square in Q.

Letus write n-+1 = au?, 2n+1 = bv?, 2n — 1 = cw? where a, b, c are square-free.
Note that 2n + 1 is coprime to n + 1 as well as to 2n — 1 and that the two numbers n +
1,2n — 1 have greatest common divisor 1 or 3. Thus, if (n + 1)(2n + 1)(2n — 1)/15
is a square, a, b, ¢ are pairwise coprime and abc = 15. A number of cases are
possible.

Case 1: Suppose 15/b.

Then, a = ¢ =1, b =15. This gives

n—|-1=112, 2n —1=uw?
Hence 2u? — 3 = w? = 15v% — 2. So w is 0odd which means
—v?=15v> =w?+2=3mod 8

which is impossible.
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Case II: Suppose 3 | b but 51b.

Then, b =3 and either () a=5,c=1or(ii)a=1,c=5.

In case (i), 5u® — 1 = 3v? = w? + 2, which means that v, w must be odd. Hence
u is even, say u = 2u;. This gives

20u? =302 4+ 1=1mod 3

an impossibility.
In case (ii), 3v2 — Sw? = 2 means v, w are odd. But then

2=3v% - 5w?=—-2mod 8

a contradiction.
CaseIII: 3tbbut 5| b.
Again, b=>5 and either ) a=3,c=1or(i)a=1,c=3.
In case (i), 6u? — 1 = 5v% = w? + 2. So, v is even, say v = 2v;. Thus,

w? +2=200? =0mod 4

which gives a contradiction.
In case (i), 2u® — 1 = 5v? = 3w? + 2. This gives v, w are odd. So,

2u? =5v>+1=6mod 8

an impossibility.

CaseIV:3tb,51b.

Then, b =1 and either (i) a=3,c=5o0r(ii)a=5,c=3or (iiiya=15,c=1o0r
(ivya=1,c=15.

In case (i),

v =5w?+2=2o0r3mod4

an impossibility.
In case (ii),

v =3w?2+2=20r5mod8

an impossibility.
In case (iii), 2 = v?> — w? is impossible mod 4.
Finally, in case (iv), v> — 15w? =2, which is impossible mod 3.
Therefore, we have shown the claim.
Theorem 2 is proved. O
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