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Let a, b be nonzero rational numbers and C(y) a polynomial with rational 
coefficients. We study the Diophantine equations 

and 

a B m ( x ) = b f n ( y ) + C ( y )  

a fm(x)=bBn(y)-I -C(y)  

with m ~> n > deg C + 2 for solutions in integers x, y. Here fn (x) = x (x + 1)-. .  (x + 
n -  1) and the Bernoulli polynomials Bn (x) are defined by the generating series 

tetX ~ tn 

e' - 1 = ~ B,(x)~. .  
n=0 

Then, Bn(x) = ~i~=o (n)Bn_ixi where Br = Br(O) is the rth Bernoulli number. In 

fact, Br are rational numbers defined recursively by Bo = 1 and n-1 ~ i = 0  ('~)Bi = 0  for 
all n ~> 2. The odd Bernoulli number Br = 0 for r odd > 1 and the first few are: 

Bo = 1, B1 = - 1 / 2 ,  B2 = 1/6, B4 = - 1 / 3 0 .  

MSC: 11D45 
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The Bernoulli polynomials Bn are related to the sums ofn th  powers of  the first few 
natural numbers as follows. For any n >/1, the sum 1 n + 2  n + . - -  + k" is a polynomial 
function Sn(k) o fk  and Sn(x) = (Bn+l (X -F 1) - Bn+l)/(n -Jc 1). 

One says that an equation f ( x )  = g(y) has infinitely many rational solutions with 
bounded denominator if there exist a positive integer L such that f ( x )  = g(y) has 
infinitely many rational solutions x, y satisfying x, y ~ 1Z and, more generally, we 
look for rational solutions with bounded denominators. 

Earlier, we have studied the equations of  the type f ( x )  = g(y) for: 

(i) f ( x )  = x(x + 1 ) . . -  (x + m - 1) and a general  g(y) [2,4] and 
(ii) f ( x )  = aBm(x), g(y) = bBn(y) + C(y) where m >/n > deg(C) + 2 [5]. 

Here, we prove the following two theorems: 

T h e o r e m  1. For m ~> n > deg(C) + 2, the equation 

aBm(x) = bfn(y) + C(y) 

has only finitely many rational solutions with bounded denominator except in the 

following situations: 

(i) m = n, m + 1 is a perfect square, a = b ( ~ - +  1 )m, 

(ii) m = 2n, (n + 1)/3 is a perfect square, a = b( ~ ~/ ~-~ ! )n. 

In each case, there is a uniquely determined polynomial C for which the equation 
has infinitely many rational solutions with a bounded denominator. Further, C is 

identically zero when m = n = 3 and has degree n - 4 when n > 3. 

T h e o r e m  2. For m ~> n > deg(C) + 2, the equation 

afro(x) = bBn(y) + C(y) 

has only finitely many rational solutions with bounded denominator excepting the 

following situations when it has infinitely many: 

m = n ,  m + l i s a p e r f e c t s q u a r e ,  b=a(m~/--m~) m. 

In these situations, the polynomial C is also uniquely determined to be 

C ( x ) = a f m (  ( 4 - ~ ) x  + 1 - m  qzq/-m+ 1 ) 2  - b B m ( x )  

and has degree m - 4. 
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Remarks.  (a) The condition n > deg(C) + 2 in the two theorems is sharp as can 
be seen from the fact that the equation 

B4(y + 2) = f4(Y) + 2Y 2 + 6y + 1 1___99 
30 

holds for all y. 
(b) A (common) particular case of  the theorems was proved in [ 1 ]. 
(c) In the exceptional cases (i) and (ii) in the first theorem, the unique polyno- 

mial C for which the equation has infinitely many solutions, is given as follows: 
In case (i), 

C(x)=aBm(x + (m'4-~/m + l -1)/2) 
"4-~-m + 1 - bfm (x). 

In case (ii), writing n + 1 = 3u 2 and writing q~(x) for the unique polynomial of  
degree n for which q~(x 2) = B2n(x + 1/2), 

2x + 6u 3 + 24u 2 + 6u - 16~ 
C(x) = a49 u(3u 2 - 1) ) bf3u2_l (x). 

(d) It should be noted that when a = b, the computations are much easier and 
yield in all cases that there are only finitely many solutions. 

(e) Evidently, one may assume a = 1 by replacing b by b/a and C(y) by C(y)/a.  

We shall make extensive use of  the following theorem of  Bilu and Tichy [3]: 

Theorem A. For non-constant polynomials f (x) and g(x) ~ Q[x], the following 
are equivalent: 

(a) The equation f (x ) = g (y) has infinitely many rational solutions with a bounded 
denominator. 

(b) We have f = ~b(flO0) and g = ~b(gl(ix)) where L(x), Ix(x) ~ Q[X] are linear 
polynomials, ~ (x ) ~ Q[X], and ( f l (x) ,  gl(x)) is a standard pair over Q such 
that the equation f l  (x) = gl (y) has infinitely many rational solutions with a 
bounded denominator. 

Standard pairs are defined as follows. In what follows, a and b are nonzero 
elements of  some field, m and n are positive integers, and p(x) is a nonzero 
polynomial (which may be constant). 

STANDARD PAIRS 

A standard pair of  the first kind is 

(xt ,ax r p(x) t) or (ax r p (x ) t , x  t) 

where 0 ~< r < t ,  (r, t) = 1 andr  + degp(x)  > O. 
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A standard pair of  the second kind is 

(X 2, (ax 2 + b)p(x) 2) or ((ax 2 -I- b)p(x) 2, x2). 

A standard pair of  the third kind is 

(Dk(x, at), Dr(x, ak)) 

where (k, t) = 1. Here Dt is the tth Dickson polynomial 

[t/2] t ( t - i )  
Dr(x, c) = ~ ~ i (-e)i  xt-2i" 

i=0 

A standard pair of  the fourth kind is 

(a-t/2 Dt (x, a ), b-k/2 Dk (x, a ) ) 

where (k, t) = 2. 
A standard pair of  the fifth kind is 

((ax 2 -- 1) 3, 3x 4 -- 4x 3) or (3x 4 -- 4x 3, (ax 2 -- 1)3). 

By a standard pair over afield k, we mean that a, b ~ k, and p(x) ~ k[x]. 
The theorem of  Bilu and Tichy above shows the relevance of  the following 

definition: 

A decomposition of  a polynomial F(x)  c C[x] is an equality of  the form F(x) = 

G1 (Gz(x)), where G1 (x), G2(x) c C[x]. The decomposition is called nontrivial i f  
degG1 > 1, degG2 > 1. 

Two decompositions F (x ) = G1 ( G2 (x ) ) and F (x ) = 1-11 (Hz(x)) are called equiv- 
alent i f  there exist a linear polynomial l(x) c C[x] such that Gl(x)  = Hl(I(x)) 
and H2(x) = l(G2(x)). The polynomial called decomposable i f  it has at least one 
nontrivial decomposition, and indecomposable otherwise. 

We shall also use the following result due to Bilu et al. [1]: 

Theorem B. Let m >~ 2. Then, 

(i) Bin(x) is indecomposable i f  m is odd and, 
(ii) / fm = 2k, then any non trivial decomposition of  Bm (x ) is equivalent to Bm (x ) = 

h((x - 1/2)2). 

The equation Sin(x) = Sn(y) has been studied in [1]. This is a particular case of  
our result. 

We first consider the first theorem. Evidently, we may assume a = 1 and we look 
at the equation Bm(x) = bfn(y) + C(y) where fn(x) = x(x + 1)-. .  (x + n - 1) and 
m ~> n > deg(C) + 2. 
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P r o o f  of  T h e o r e m  1. As remarked in the beginning (remark (e)), we may  assume 

that a = 1. 
Case  I: Let us first consider the case when m = n --- 2d. 
I f  the equation has infinitely many  solutions, the Bi lu-Tichy theorem gives B2d = 

~b o f~ o )~ and bfzd + C = 4~ o gl  o lz where )~,/z are linear polynomials  over Q and 
( f l ,  gl)  is a standard pair over •. Since we know from [1] that the only nontrivial 
decomposi t ion o f  B2d up to equivalence where has f l  (x) = (x - 1/2) 2, it follows 
that either: 

(a) deg ¢ = 1, or 
(b) degq~ = d and B2a(x)  = 49((10 + llX - 1/2) 2) and b f z d ( x )  + C ( x )  = O ( k x  2 -}- 

l x  + t) and the equation (x - 1/2) 2 = k y  2 + ly  + t has infinitely many  solutions, 
or 

(c) deg ¢ = 2d in which case 

B2d(rx q-s) = bf2d(X) q- C(x). 

First, suppose (a) holds, i.e., d e g ¢  = 1. This means that ( f l ,  gl) is a standard 
pair with deg f l  = deg ga = 2d > 2. This is impossible as seen by looking at the 
conditions on the degrees o f  standard pairs. 

Next,  we consider (b), i.e., the possibil i ty where ¢ has degree d. 
We use the following observation, see [5]: 

L e m m a .  I f  B2~ ( r x + s) = 49((x - 1~2) )2 for  s o m e  r, s ~ Q wi th  r 5~ O, then (r, s) = 
(1, 0) or  ( - 1 ,  1). In part icular ,  B2d(X) = ~b((x - 1/2)2). 

Therefore,  B2d(X) = qb((x -- 1/2) 2) and bf2d(x )  + C ( x )  = dp(kx 2 + Ix  + t) .  

Considering the coefficients o f  x 2d, x 2d-1, x 2d-2 and x 2~-3 o f  the second equa- 

tion, we get the following expressions. 
Coefficient o f  x 2d is b = ¢dk  d = k d (the fact that q~d = 1 we know from the first 

equation). 
Coefficient o f x  2d-a gives 1 = k (2d  - 1). 
Coefficient o f x  2d-2 gives t = k ( d  - 1)(2d - 1)/3 + (2d - 1)/12. 
Coefficient o f x  2d-3 gives 

bdZ(d  - 1)(2d - 1)2(2d - 3) 
C2d-3 + 

6 

= d ( d - 1 ) k d - 2 1 t + ( 3 ) k d - 3 1 3 + ( b a _ l ( d - 1 ) k d - 2 1  

where c2a-3 is the coefficient o f  x 2~-3 in  C (x). 
From the equation B2a(x) = ~b((x - 1/2)2), we obtain q~d = 1 and ~bd-1 = 

- d ( 2 d  - 1)/12. Using this and the values o f  b, k, l, t, we obtain C2d-3 = 0. Thus, 
deg C < 2d - 3. 

We now proceed to show that d must  be  of  a special fo rm and in that case C must  
be determined uniquely to be o f  degree 2d - 4. 
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The infinitude o f  the number o f  solutions o f  

(x - 1/2) 2 = ky 2 + ly + t 

= x'y2 + k(2d - 1)y + k(d - 1)(2d - 1) + _ _ 2 d  - 1 
3 12 

--~-2 k(2d + 1)(2d - 1) 2d - 1 
= k ( y + d - l / z )  - + - -  

12 12 

forces that k(2d + 1) = 1 and that k is a square in Q. Therefore, we get d = 2r(r + 1) 
for some natural number r. 

Then C is uniquely determined to be 

C(x) = B4r(r+l) (x  -Jr" 2r 2 -t- 3 r ]  1 
2r  ~-i- ] (2r -t- 1) 4r(r+l) f4r(r+l)(X). 

The claim that deg(C) = 2d - 4 when d = 2r(r + 1), etc., is seen as follows. 

We use the property B2d(X + 1) -- B2d(X) = 2dx 2d-1 of  the Bernoulli polynomi- 
als. We have 

(*) 4 r ( r +  1)(x  + 2r2 + 3r )  4r2+4r-1 
2r + 1 = C(x + 2r + 1 ) -  C(x) 

1 
+ (f4r(r+l)(X + 2r + 1) - f4r(r+l)(X))'". 

(2r 1)4r(r+l) + 

Already, from this one can see that C cannot be a constant; otherwise a comparison 
with x = 0 gives 

(2r + 2)(2r + 3 ) . . .  (4r 2 + 6r) = 4r(r + 1)(2r 2 + 3r) 4r2+4r-1. 

The last identity is impossible since a prime p exists with 2r 2 + 3r < p ~< 4r 2 + 6r 

and this divides the left side and not the right. 

To use the above identity ( ,)  to find the coefficient o f x  2d-4 = x 4rz÷4r-4 of  C(x), 

we find the coefficient o f  X 4rz+4r-5 o n  both sides. Clearly, on the left side, it is 

(4r 2 + 4r - 4)(2r + 1)C4r2+4r_ 4. Thus, we need to check that the coefficient o f  

x 4r2+4r-5 is nonzero. This is computed to be 

( 4 )  4r(r + 1) 4r 2 + r 1 (2r2 + 3r)4 _ (2r + 1) 4r(r+l) 
(2r + 1) 4re+4r-1 

4r2+4r 5 where u(r) is the coefficient o f x  - in f4r(r+l)(x + 2r + 1) - f4r(r+l)(x), i.e., 

u(r) is the coefficient o f x  4rz+4r-5 in (x + 2r + 1)(x + 2r + 2 ) - . .  (x + 4r  2 + 6r) - 

x(x + 1) . . .  (x + 4 r  2 + 4 r -  1). 

Let v(r) = (2r + 1)(4r 2 + 4r)(Zr 2 + 3r)4(4rZ+44r-1 ). 
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Using MAPLE,  we can explicitly compute  u(r)  and v(r )  as polynomials  in r. 

4096 19 47104 18 231424r17 14069248.15 
u(r)  = ---~--r + - - - - ~ r  + 3 + 206848r16 -~ 45 r 

655616r l  4 2556544 ,13 10018816 12 6033008 .11 
+ r r r 

3 45 45 45 
6376 lO 146144.9 433384 .8 126929r7 ÷ 643973 .6 

+ - - - f f - - r  + 9 r 45 r 45 ~ r  

30647 r3 1091 r2 1 157321 r5 7211 r4 ÷ ÷ -t- ~r, 
÷ 36 -t- 8 360 360 

v(r)  = 4096r19 47104r18 231424r17 937984 
3 ÷ 3 ÷ 3 + 206848r 16 ÷ - - - 7 -  r'15 

97544 656384r14 - 5 4 9 1 2 r  13 645056r12 - 114864r 11 ÷ - - - - ~ r  1° 
÷ 3 3 
-t- 47120r 9 ÷ 4524r 8 - 6336r 7 - 864r 6 ÷ 324r 5. 

Thus, in fact, the first four coefficients o f  u(r)  and v(r )  match! 
However, M A P L E  shows that they are never equal because 

v ( r ) -  u(r)  = r (2r  + 1)(r 2 + r - 1) (2048r l l  ÷ 4 3 0 0 8 r l  o + 278528r9 
360 

÷ 976640r 8 ÷ 2152320r 7 ÷ 3022208r 6 ÷ 2589888r 5 

÷ 1250288r 4 ÷ 297852r 3 ÷ 29844r 2 ÷ 1019r ÷ 72) 

which is obviously positive for all positive r. 

Thus, C4r2+4r_ 4 ~ 0, i.e., deg C = 2d - 4. 
Finally, we consider the possibili ty (c), i.e., 

B2d(rx  ÷ s) = bf2d(X) ÷ C ( x ) .  

Comparing the coefficients o f x  2a, x 2d-1 and x 2d-2 we get 

1 
r 2d = b, 2s - 1 = r (2d  - 1), S 2 - -  S ÷ g -~- 

This gives 

(4d + 2)s 2 - (4d ÷ 2)s - 2d 2 ÷ 3d = 0. 

r2(d - 1)(6d - 1) 

This is possible for a rational number  s if, and only if, 2d + 1 is a perfect square, 
say (2u ÷ 1) 2. We obtain 

1 1 4u 2 ÷ 4u - 1 1 
r = - 4 - 2 u + 1 ,  s = ~ - 4 -  2 ( 2 u + 1 )  ' b =  (2uq-1 )  4u2+4u" 

With these values o f  r, s, we find that C is the same as it was for case (b). Therefore,  
the same computat ion shows that C has degree 2d - 4. 

This completes  the case I when m = n is even. 
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Case II: Let m = n be odd and > deg C + 2. 

As before, infinitude o f  solutions implies the existence o f  a decomposition 

B m ( x ) = q b o  f l  o)~(x), b f m ( x ) + C ( x ) = d p o g l  olX(x)  

with )~, # linear. Now, as m is odd, B m is indecomposable. Hence either deg q~ = m, 

deg f l  = 1 or deg ~b = 1, deg f l  = m. 

First, let us suppose that deg~b = 1. Then d e g f l  = m = deggl .  The standard pair 
( f l ,  gl) must, therefore, be o f  the first kind. So, for some r, s c Q with r # 0, we 
have either 

Bm(rX + s) = (bo + c~lx m 

or 

bfm(rX + s) + C ( r x  + s) = qSo + ~)1 xm. 

I f  the first possibility occurs, we equate the coefficients ofx  m-2, and get 6s 2 - 6s + 

1 = 0, s ~ Q, which is not possible. 
Suppose the second possibility occurs. Let us compare the coefficients o f  x m, 

X m-1 and x m-2. We have 

1 - m  ( m  - 1 ) ( 2 m  - 1)  
br m = 4)t, v - 2 ' 1)2 + (m -- 1) + 6 = 0, 

respectively. Substituting the value o f  v into the last equation, one gets m 2 = 1 

which is impossible. 

Thus, we suppose that deg ~b = m. Then, we have u, v c Q with u # 0 such that 

C ( x )  = Bm(ux  + v) - b fm(X).  

Comparing the coefficients o f x  m , X m-1 , X m-2 on both sides and noting that the left 

side does not contribute anything, we have: 

m - 1  1 1 
u r n = b ,  v=_---z---u+_-, u 2 =  

2 2  m + l  
Q 

Thus, first o f  all, this forces m to be such that m + 1 is a perfect square, say, 4r 2. 

This also determines u, v in terms o f r  as u = -t-1/(2r) and v = (2r 2 - 1)u + 1/2. 

Hence C is uniquely determined to be the polynomial 

i x  + 2r 2 + r - 1 )  1 
C ( x )  = B4r2_ 1 \ 2 r  (2r)4r2_ 1 f4r2_i (x). 

Notice that the expression for C we obtained in case I and the expression here have 

the common  form 

C ( x ) = a B m ( x  + (m 4- ~-m + l - 1 ) / 2 )  
~/--m--+ l - bfm(X).  
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A calculat ion exact ly as in the case o f  even m shows that the coefficient o f x  m-3 on 

the fight side is zero. Therefore,  C must  either be zero or have degree smal ler  than 

m - 3 .  

I f m  = 3, we must  have C = 0 and 

Let  m > 3. 

O f  course,  one can easily check as in the even case that C cannot be a constant. 

Indeed, i f  it were, we would  have 

(2r - 1)(2r 2 + r - 1) 4r2-2 = (2r + 2)(2r  + 3 ) - - - ( 4 r  2 + 2r - 2). 

But, i f  r > 1 (which is the case when m > 3), there is a pr ime p with 2r 2 + r - 1 < 

p ~< 4r  2 + 2r - 2; this divides the fight hand side and not  the left hand side. In fact, 

the po lynomia l  C has degree m - 4. To see this, we may  proceed as in the m even 

case using the proper ty  Bm(x + 1) - Bin(x) = m x  m - 1 .  

Case III: Let  m be odd and > n > deg C ÷ 2. 

As  before wri t ing B m = ~b o f l  o )~, we have either deg ~b = 1 or = m. Since bfn + 
C = ~b o gl  o/x has degree n < m, the degree of~b must  be 1. Thus, the standard pair  

( f l ,  g l )  must  be o f  either the first or the third kind. 

I f  it is o f  the first kind, the above argument  for m = n carries over verbat im to 

give n 2 = 1, which is a contradiction. 

I f  it is the third kind, we have Bm(rx + s) = D m ( x  , a n) and we have a l ready 

derived a contradict ion by  concluding m = 9 /2  in this case. 

Finally, we are left  with: 

Case IV: Let  m be even and > n > deg C + 2. 

Wri t ing  Bm = ~b o fl)~ and bfn = (b o ga o I*, we must  have either degq~ = m or 

degq~ = 1 or degq~ = m/2 and f l  = (x - 1/2) 2. 

Note  that in the last case n --  m/2  since m > n and n is a mult iple  ofdeg~b --  m/2. 
Also,  then deg gl = 1. 

Since m > n ~> deg ~b, the poss ib i l i ty  deg ~b = m cannot  occur. 

Now, i f  degq~ = 1, then ( f l ,  g l )  is a s tandard pair  with deg f l  = m, d e g g l  = n. 

We have a l ready seen in case II that i f  this pair  is o f  the first kind, we get  a 
contradict ion to ei ther o f  the equations 

Bm (rx + s) = Oo + ~91Xm 

o r  

bfn(rx + s) + C(rx + s) =q~0 + c])lx n. 

Since m, n > 2, this s tandard pair  cannot  be o f  the second kind. 

Suppose it is o f  the third kind. Then, 

fl(X)=Drn(x, an),gl(x)=Dn(x,a m) 
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where (m, n) = 1. Now, Bm (r x + s) = 49o + ~bl ( Dm (x , otn ). 
This means 

~ ( m )  [m/2] 
nm- i (rx .1. s) i = (90 .1. q~l Z d . Ix m-2i'l i m,~t 1' 

i=0 : i=0 

wheredm,i= m ( m - i ) _  . m - i  i (--oln)t" 

We will compare  the coefficients on both sides. 
Equating the coefficients o f x  m on both sides, we have r m =-- ¢1. 
The coefficient o f x  m-1 on the right-hand side is zero and, so we get (7)rm-ls + 

( : l ) n l r m - 1  =0 .  
This gives s = 1/2. 
The coefficients o f x  m-2 give 

m(m--1) 'rm-2( 6 s 2 - 6 s  ( )  i 2  "1"1)= m m - 1  
m - 1 1 (--°/n)~bl 

which on simplification yields r2ot n = (m - 1)/24. 
By  considering the coefficients o f  x m-4 and on using the values o f  ¢1, r2otn, we 

get m = 9 /2  which is a contradiction. Hence ( f l ,  g~) can not be a standard pair o f  
the third kind also. 

The same argument  goes through i f  the pair  is o f  the fourth kind as the number  
•1 above is s imply replaced by ot-m/2dt)l . 

Finally, i f  ( f l ,  g l )  is & t h e  fifth kind, then m = 6, n = 4 and 

f l  (X) = (t~X 2 -- 1) 3, g l  (X) = 3X 4 -- 4X 3. 

So 

B6(x) = q~o ,1, ~bl (ot(rx "1" s) 2 --  1) 3. 

This means that the derivative B'6(x) has a multiple root; however, B~(x) = 6B5 (x) 
and one knows that Bodd(X) has only simple roots by a result o f  Brillhart. 

Alternatively, even by direct computation,  comparison o f  coefficients o f  x 6, x 5 
and x 4 gives r 2 = 12/5ot, s = - r / 2 ,  ~bl = (5/12) 3 and then the coefficients o f x  2 do 
not match. 

Now, we are left with the case deg~b = m/2 and f l  = (x - 1/2)2; so m = 2n 
and gl is linear. Clearly, f l  (x) = gl (y) has infinitely many  rational solutions with a 
bounded denominator. 

N o w  B2n (ux "1" v) = ~b ((x - 1/2) 2) and by the l emma observed while discussing 
case I, we know that we must  have B2n(ux + v) = B2n (x). 

Hence we have B2n(X) = q~((x - 1/2) 2) and bfn(rx + s) + C(rx + s) = q~(x) for 
some r, s ~ Q with r ¢ 0. Thus, we have 

B2n (x) = bfn (r (x - 1/2) 2 .1. s ) -t- C (r (x - 1/2) 2 .1. s ). 
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Using the identity B2n(X + 1) - B2n(X) = 2nx 2n-1 , we have, for some r, t ~ Q with 

r s ~ 0 ,  

2nx2n- l  = bfn(rX 2 + r x  + t) - b fn(rx2  - r x  -t-t) 

+ C ( r x  2 + r x  + t ) - C ( r x 2 - r x  + t ) .  

In fact, t --= r / 4  + s .  

The coefficients o f x  2n-1 and x 2 n - 3  give: 

1 - n  r 
br n = 1, t -- - -  

2 n 

Comparing the coefficients o f x  2n-5 and substituting the above value o f  t, we have 

r 2 _ n2n; + 1) 

12 

In other words (n + 1)/3 must  be a square in Q. 
Note that since n > deg C + 2 ~> 2, this means n ~> 11. Writing n + 1 = 3u 2 with 

u ~> 2, we have 

u(3u  2 -- 1) 
r - -  , t = l  

2 

s = l  
3u 3u 2 3u 3 

8 2 8 ' 

u 3u 2 

2 2 '  

"~3u 2-1 

Also, the coefficient o f x  n-3 in C(x)  = ~ ( ( x  - s ) / r )  - bfn(X) is seen to be zero by 

substituting the values o f  4~n, ~bn-1,4~n-2, ~bn-3 obtained from the equation B2n (x) = 
q~((x -- 1/2)2). 

deg C is found to be n - 4. 

Therefore, Theorem 1 is proved. [] 

P r o o f  o f  T h e o r e m  2. Once again, we may assume a = 1 and look at the equation 

f m ( x )  = bBn(y)  q- C(y ) .  

We shall use our earlier general result on equations o f  the form fm (x) = g(y )  for an 
arbitrary polynomial:  

T h e o r e m  C (c f  [4]). Suppose fm (x) = g(y )  has infinitely many rational solutions 

x, y with a bounded denominator. Then we are in one o f  the fo l lowing  cases: 

(1) g(y)  = f m ( g l ( y ) )  f o r  some g l (Y)  ~ Q[Y]. 
(2) m even and g(y )  = ~b(gl (y)) where 49(X) = (X  - (1/2)2)(X - (3/2)2) . . .  (X - 

((m - 1)/2) 2) and gl(Y)  ~ Q[Y] is a polynomial  whose square-free par t  has at  

most  two zeroes. 

(3) m = 4 and g(y )  = 9/16 + b3(y) 2 where 3 is a linear polynomiaL 
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Here, g(y)  = bB~(y)  + C(y)  where m ~> n > deg(C) + 2. 

The last inequality shows that n > 2 and so, we are not in case (3) above. 
I f  we are in case (1), then again m ~> n shows that m = n. Then, we have r, s ~ Q 

with r 7~ 0 so that 

bBn(x)  + C(x)  = f n ( r x  + s) 

where n > deg(C) + 2. 

Therefore, we have 

±(:) • b Bn- i x '  + C(x )  = (rx + s ) ( r x  + s -+- 1) . . .  (rx -1- s q- n - 1). 
i = 0  

Comparing the coefficients o f  x n, X n - 1  , X n-2, we get 

b = r  n, r = - 2 s - n + l ,  

respectively, and a straightforward calculation gives 

r 2 = n + l .  

Thus n + 1 has to be a perfect square. 

Therefore, the equation 

f n ( x )  = bBn(y)  + C(y )  

has infinitely many solutions if, and only if, n + 1 is a square, r = ~ + 1, b = r n 

and C is the polynomial 

1 - n  - r )  
C(x)  = fn rx  + -~ - rnBn(x) .  

In fact, it turns out that C has degree n - 4; a comparison o f  the coefficients o f x  n-3 

yields c,,-3 = 0 and that o f x  n-4 is not zero. 

Finally, suppose we are in case (2). Then, either m = n and gl has degree 2 or 

m = 2n and gl is linear. 
Let us consider the former possibility first. Then, m is even, and fro(x) = 

q~(fl (x)) where 

m - l )  2 
f l ( x )  = x ~ and 

Therefore, writing gl (y) = k ( y  + 0 2 + t and assuming that f l  (x) = gl (Y) has 
infinitely many solutions with a bounded denominator, it follows that t = 0 and 
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k is a square;  that is, gl  (Y) is the square o f  a po lynomia l .  Hence ,  we have r, s ~ Q 

with  r ¢ 0 and  

fn(rX + s) = bBn(x) + C(x) .  

This  is exact ly  the same express ion  cons ide red  in  case (1). Thus ,  in  this case also, 

we mus t  have that n + 1 is a perfect  square  and  C is de t e rmined  u n i q u e l y  to be  a 

p o l y n o m i a l  o f  degree n - 4. 

Let  us  no w cons ider  the latter poss ibi l i ty ;  that  is, suppose  m = 2n and  deg gl  = 1. 

Then ,  

(.~)1 2 ) ( r x  ( ~ ) 2 )  bB , ( x )  + C(x)  = \ r x  + s + s . . . .  

(r +s 
C o m p a r i n g  the coefficients  o f x  n, x n-1 and  x n-2, we get  b = r n , 

- 6 r = 1 2 s -  ( 2 n + l ) ( 2 n  - 1) 

and  

n(n - 1) 2 n(n - -  1)  ,2 ( r / - -  1)n(2n + 1)(2n -- 1) 
r ~ 5 - -  S 

2 2 12 
n2(2n + 1)2(2n - 1) 2 n (48n  4 - 40n 2 + 7 

+ 
2532 480 ' 

respectively,  and  a s t ra ightforward ca lcula t ion  gives 

r2 = 4(n  + 1)(2n + 1)(2n - 1) 

15 

We c la im that this gives a contradic t ion.  Indeed,  we assert:  

C l a i m .  (n + 1)(2n + 1)(2n - 1) /15 is not a square in •. 

Let us wri te  n + 1 = au 2, 2n + 1 = by 2, 2n - 1 = c w  2 where  a,  b, c are square-free.  

Note  that 2n + 1 is copr ime  to n + 1 as wel l  as to 2n - 1 and  that the two n u m b e r s  n + 

1, 2n - 1 have greatest  c o m m o n  divisor  1 or 3. Thus,  i f  (n + 1)(2n + 1)(2n - 1) /15  

is a square,  a,  b, c are pa i rwise  copr ime  and  abc = 15. A n u m b e r  o f  cases are 

possible .  

Case I: Suppose  15/b. 
Then,  a = c = 1, b = 15. This  gives 

n + 1 = u 2, 2 n -  1 = w 2. 

Hence  2u 2 - 3 = w 2 = 15v 2 - 2. So w is odd wh ich  m e a n s  

- v  2 ~ 15v 2 = to  2 q- 2 ~ 3 m o d  8 

wh ich  is imposs ib le .  
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Case II: Suppose  3 [ b but  5 ~ b. 

Then ,  b = 3 and  e i ther  (i) a = 5, c = 1 or  (ii) a = 1, c = 5. 

In case  (i), 5u 2 - 1 = 3v 2 = w 2 + 2, w h i c h  means  that  v, w mus t  be  odd. H e n c e  

u is even,  say u = 2Ul.  This  g ives  

20u 2 = 3v 2 -1- 1 --- 1 m o d  3 

an impossibi l i ty .  

In  case  (ii), 3v 2 - -  5 w  2 = 2 m e a n s  v, w are odd. But  then  

2 = 3 v  2 - 5/I; 2 ~ --2 m o d  8 

a cont radic t ion .  

Case III: 3 ~ b but  5 I b. 

Aga in ,  b = 5 and e i ther  (i) a = 3, c = 1 or  (ii) a = 1, c = 3. 

In  case  (i), 6u 2 - 1 = 5v 2 = w 2 + 2. So, v is even,  say v = 2v l .  Thus ,  

w 2 + 2 = 20v~ - 0 rood 4 

wh ich  g ives  a contradic t ion.  

In  case  (ii), 2u 2 - 1 = 5v 2 = 3w 2 + 2. This  g ives  v, w are odd. So,  

2U 2 = 5V 2 q- 1 ~ 6 m o d  8 

an impossibi l i ty .  

Case IV: 3 { b ,  5 { b .  

Then,  b = 1 and e i ther  (i) a = 3, c = 5 or  (ii) a = 5, c = 3 or  (iii) a = 15, c = 1 or  

(iv) a = 1, c = 15. 

In  case  (i), 

v2 = 5 w 2  + 2 _ =  2 or  3 r o o d 4  

an impossibi l i ty .  

In  case  (ii), 

1) 2 = 3w 2 -b 2 = 2 or  5 m o d  8 

an  impossibi l i ty .  

In  case  (iii), 2 = v 2 - 11) 2 is imposs ib le  m o d  4. 

Finally, in case  (iv), v 2 - 15w 2 = 2, wh ich  is imposs ib le  rood 3. 

There fo re ,  we  have  shown  the c la im.  

T h e o r e m  2 is proved.  [] 
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