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1. Introduction

If S is a sequence of integers, then we say that an integer m divides the sequence if it23

divides at least one term of the sequence. The sequence {ak + bk}∞k=1 we will denote
by Sa,b. Several authors studied the problem of characterizing (prime) divisors of25

the sequence Sa,b. Hasse [8] seems to have been the first to consider the Dirichlet
density of prime divisors of such sequences. Later, authors, e.g., Odoni [17] and27

Wiertelak [22] strengthened the analytic aspects of his work, with the strongest
result being due to Wiertelak. In particular, Theorem 2 of Wiertelak [22], in the29

formulation of [14], yields the following corollary (recall that Li(x) =
∫ x

2
dt/ log t

denotes the logarithmic integral):31

Theorem 1. Let a and b be positive integers with a �= b. Let Na,b(x) count the
number of primes p ≤ x that divide Sa,b. Put r = a/b. Let λ be the largest integer
such that r = u2λ

, with u a rational number. Let L = Q(
√

u). We have

Na,b(x) = δ(r)Li(x) + O

(
x(log log x)4

log3 x

)
,

1
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Table 0. The value of δ(r).

L λ δ(r)

L �= Q(
√

2) λ ≥ 0
21−λ

3

L = Q(
√

2) λ = 0
17

24

L = Q(
√

2) λ = 1
5

12

L = Q(
√

2) λ ≥ 2
2−λ

3

where the implied constant may depend on a and b, and δ(r) is a positive rational1

number that is given in Table 0.

Theorem 1 implies that if a and b are positive integers such that a �= b, then3
asymptotically Na,b(x) ∼ δ(r)x/ log x with δ(r) > 0. In particular, the set of prime
divisors of the sequence {ak + bk}∞k=1 has a positive natural density.5

In this paper, we will establish, inspired by a letter from Fermat (see next
section), a related result.7

Theorem 2. Let a, b, c, d be positive integers with (c, d) = 1 and assume that a �= b.
Let r and λ be as in the previous theorem. Let

Na,b(c, d)(x) := #{p ≤ x : p|Sa,b, p ≡ c (mod d)}.
Then, for

ab ≤ log2/3 x and d ≤ log1/6 x

log log x
,

we have

Na,b(c, d)(x) = δa,b(c, d)Li(x) + O

(
2λx log log x

log7/6 x

)
,

where δa,b(c, d) is a rational number that is given in Tables 1– 6 and the implied
constant is absolute.9

Table 1. Q(
√

r0) �= Q(
√

2), D′ � d′.

λ δ φ(d)δa,b(c, d)

< δ ≤ γ 1 − 2λ+1−δ

3

∗ > 0,≤ min(λ, γ)
2δ−λ

3

∗ 0
21−λ

3

≥ γ > γ 0

< γ > γ 1 − 2λ−γ
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Table 2. Q(
√

r0) �= Q(
√

2), D′|d′, δ0 ≤ δ.

λ δ

„
D(r0)

c

«
φ(d)δa,b(c, d)

≥ δ − 1 > 0,≤ γ 1
2δ−1−λ

3

−1 2δ−1−λ

∗ 0 1
2−λ

3

−1 2−λ

< δ − 1 ≤ γ 1 1 − 2λ+2−δ

3

−1 1

≥ δ > γ ∗ 0

≤ γ − 1 > γ 1 1 − 2λ+1−γ

−1 1

≥ γ > λ ∗ 0

We have 0 ≤ δa,b(c, d) ≤ 1/ϕ(d) by the prime number theorem for arithmetic1

progressions. In the case δa,b(c, d) = 0, there could potentially be infinitely many
primes p ≡ c (mod d) dividing Sa,b. However, using elementary arguments not going3

beyond quadratic reciprocity, one can show that there are at most finitely many
primes p dividing Sa,b in this case. Likewise if δa,b = 1/ϕ(d), using elementary5

arguments not going beyond quadratic reciprocity, one can show that in each case
there are at most finitely many primes p ≡ c (mod d) not dividing Sa,b. For a more7

precise statement, we refer to Theorem 2.
Inspection of the tables shows that we can always write ϕ(d)δa,b(c, d) = c

2m·3 ,9

for some non-negative integers c and m.

Notations. As the tables for the density depend on some auxiliary parameters11

computed from a, b, c, d, some notations are needed to read them. We introduce
these notations here and they will be maintained throughout this article. Given a, b13

and the modulus d, there is a unique table among the six from which one reads off
the density. Put r = a/b = rh

0 , where r0 is not a proper power of a rational number.15

Write h = 2λh′, d = 2δd′, with h′, d′ odd. Put v2(c− 1) = γ, where it is understood
that γ is larger than any number when c = 1. We denote the discriminant of the17

quadratic field Q(
√

t) by D(t) and we put D(r0) = 2δ0D′. We also write r0 = u/v

and t = −r0 or
∏k

i=1(
−1
pi

)pi according as to whether uv is odd or uv = 2
∏k

i=1 pi.19

By d∞, we denote the supernatural (Steinitz) number
∏

p|d p∞. For each positive

integer j ≥ 1, we put Nj = Q(ζ2j , r1/2j−1
, ζd) and N ′

j = Q(ζ2j , r1/2j

, ζd), where21

ζl for any l, denotes any fixed primitive lth root of unity. Finally, for j ≥ 1, the
intersection fields Kj := Q(ζ2j , r1/2j−1

)∩Q(ζd) and K ′
j := Q(ζ2j , r1/2j

)∩Q(ζd) will23

occur throughout our discussion.
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Table 3. Q(
√

r0) �= Q(
√

2), D′|d′ and δ0 > δ.

λ δ

„
D(t)

c

«
φ(d)δa,b(c, d)

< δ − 1 ≤ γ 1 1 − 2λ+1−δ

3
+

2λ+2+δ−2δ0

3

< δ − 1 ≤ γ −1 1 − 2λ+1−δ

3
− 2λ+2+δ−2δ0

3

= δ − 1 ≤ γ 1
2

3
+

22δ+1−2δ0

3

= δ − 1 ≤ γ −1
2

3
− 22δ+1−2δ0

3

≤ γ − 1 > γ ∗ 1 − 2λ−γ

≥ γ > λ ∗ 0

≥ δ > γ ∗ 0

≤ δ0 − 2 > 0,≤ min(γ, λ) 1
2δ−λ

3
+

2λ+2+δ−2δ0

3

≤ δ0 − 2 > 0,≤ min(γ, λ) −1
2δ−λ

3
− 2λ+2+δ−2δ0

3

≥ δ0 − 1 > 0,≤ γ 1
2δ−1−λ

3

≥ δ0 − 1 > 0,≤ γ −1 2δ−λ−1

≤ δ0 − 2 0 1
21−λ

3
+

2λ+3−2δ0

3

≤ δ0 − 2 0 −1
21−λ

3
− 2λ+3−2δ0

3

≥ δ0 − 1 0 1
2−λ

3

≥ δ0 − 1 0 −1 2−λ

In the next section, we reconsider a letter from Fermat and papers by three authors1

[1, 2, 21] in the light of Theorem 2. In Sec. 3, we prove Theorem 2, except for
the fact that an expression for δa,b(c, d) in terms of data from algebraic number3

theory appears. In Secs. 4–7, we evaluate this expression for δa,b(c, d). The outcome
is recorded in Tables 1–6. This then completes the proof of Theorem 2. In Sec. 8,5

we determine the cases in which δa,b(c, d) = 0, respectively δa,b(c, d) = 1/ϕ(d). In
Sec. 9, we give the results of some numerical experiments and show that they match7

well with what can be read from our tables. In the final section, we discuss some
connections between the Stufe of certain fields and the divisibility properties of Sp,19

(p prime).
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Table 4. Q(
√

r0) = Q(
√

2), δ ≤ 2.

λ δ γ φ(d)δa,b(c, d)

0 ≤ 1 ≥ δ
17

24

0 2 ≥ δ
11

12

0 2 1
1

2

1 2 1 0

1 ≤ 1 ≥ δ
5

12

1 2 ≥ δ
5

6

≥ 2 ≤ 1 ≥ δ
2−λ

3

≥ 2 2 ≥ δ
21−λ

3

≥ 2 2 1 0

Table 5. Q(
√

r0) = Q(
√

2), δ ≥ 3, λ > 0.

λ δ γ φ(d)δa,b(c, d)

≥ 2 3 < δ 0

≥ δ − 1 ≥ 3 ≥ δ
2δ−1−λ

3

≥ 2, < δ − 1 ≥ 4 ≥ δ 1 − 2λ+2−δ

3

≥ 2,≤ γ − 2 ≥ 4 < δ 1 − 2λ+1−γ

≥ max(2, γ − 1) ≥ 4 < δ 0

1 ≥ 3 ≥ δ 1 − 23−δ

3

1 ≥ 3 1 0

1 ≥ 3 2 1

1 ≥ 3 > 3, < δ 1 − 22−γ

Table 6. Q(
√

r0) = Q(
√

2), δ ≥ 3, λ = 0.

γ c(mod 8) φ(d)δa,b(c, d)

≥ δ 1 1 − 22−δ

3

≤ 2 ±1 0

≤ 2 ±3 1

≥ 3, < δ 1 1 − 21−γ
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2. On a Letter of Fermat to Mersenne1

Fermat [7, p. 220], cf. Dickson [5, p. 267], in a letter to Mersenne dated 15 June
1641 stated that (p will always be used to denote primes):3

Conjecture 1.1 (Fermat, 1641).

(1) If p|S3,1, then p �≡ −1 (mod 12).5

(2) If p|S3,1, then p �≡ +1 (mod 12).
(3) If p|S5,1, then p �≡ −1 (mod 10).7

(4) If p|S5,1, then p �≡ +1 (mod 10).

Put r = a/b. For p � ab, there exists a smallest positive integer k such that rk ≡9

1 (mod p); this is ordp(r), the multiplicative order of r (mod p). It is not difficult
to see that if p � ab, then p|Sa,b if and only if ordp(r) is even. If p|ab and p � (a, b),11

then clearly p � Sa,b. (With (a, b) and [a, b] we denote the greatest common divisor,
respectively lowest common multiple of a and b.) Using this observation and the13

law of quadratic reciprocity it is easy to see that the following holds:

Proposition 1. Conjecture 1.1 of Fermat holds true.15

Proof. For p > 3, by the law of quadratic reciprocity, we have ( 3
p )(p

3 ) = (−1)
p−1
2 .

Suppose that p ≡ −1 (mod 12). It then follows that ( 3
p ) = 1. By Euler’s identity17

we then have 3
p−1
2 ≡ ( 3

p ) = 1 (mod p). Since (p − 1)/2 is the largest odd divisor of
p − 1 it follows that ordp(3) is odd. This implies that p � S3,1.19

However, a computeralgebra computation learns that the remaining conjectures are
all false. Counterexamples (in ascending order) are listed below:21

Counterexamples to:

Conjecture 1.2. 37, 61, 73, 97, 157, 193, 241, 337, 349, 373, 397, 409, 457, . . .23

Conjecture 1.3. 41, 61, 241, 281, 421, 521, 601, 641, 661, 701, 761, 821, 881, . . .

Conjecture 1.4. 29, 89, 229, 349, 449, 509, 709, 769, 809, 929, 1009, 1049, . . .25

Sierpiński suggested that Conjecture 1.2 is false for infinitely many primes. This was
proved by Schinzel [20], who in the same paper showed that also Conjectures 1.327

and 1.4 are false for infinitely many primes. Theorem 2 implies that there is even a
positive density of primes for which the conclusions of these three conjectures are29

false:

Corollary 1. We have

δ3,1(1, 12) =
1
6
, δ3,1(5, 12) =

1
4
, δ3,1(7, 12) =

1
4

and δ3,1(11, 12) = 0.

Furthermore, we have

δ5,1(1, 10) =
1
12

, δ5,1(3, 10) =
1
4
, δ5,1(7, 10) =

1
4

and δ5,1(9, 10) =
1
12

.



1st Reading

April 30, 2009 15:22 WSPC/203-IJNT 00231

Primes in Prescribed Arithmetic Progression Dividing Sequence {ak + bk}∞k=1 7

In particular, the relative density of the primes for which the conclusion in Conjec-
tures 1.1–1.4 fail are, respectively,

δ3,1(11, 12)
δ(3)

= 0,
δ3,1(1, 12)

δ(3)
=

1
4
,

δ5,1(9, 10)
δ(5)

=
1
8
,

δ5,1(1, 10)
δ(5)

=
1
8
.

After Fermat various authors considered primes in arithmetic progressions dividing1

Sa,b. Thus Sierpiński [21] proved that every prime p ≡ ±3 (mod 8) divides S2,1 and,
furthermore, that no prime p ≡ 7 (mod 8) divides S2,1. This result easily follows3

on using that ( 2
p ) = (−1)(p

2−1)/8. Sierpiński states that Makowski has proved that
infinitely many primes p ≡ 1 (mod 8) divide S2,1 (namely Makowski notices that5

the prime factors of the numbers of the form 22n

+ 1 with n ≥ 3 have the required
property) and ends his paper with stating the problem of whether there are infinitely7

many primes p ≡ 1 (mod 8) not dividing S2,1. Subsequently, using results on the
biquadratic and octavic residue character of 2, this problem has been independently9

resolved by Aigner [1] and Brauer [2]. Brauer shows for example that the infinitely
many primes p ≡ 9 (mod 16) which can be represented as 65x2 + 256xy + 256y211

all do not divide S2,1 (the number of such primes ≤ x is of order O(x/
√

log x) by a
result of Pall [18], and thus this set has natural density zero). Using the first entry13

of Table 6, we infer that there many more primes not dividing S2,1: 1/6th of all
primes p ≡ 1 (mod 8) do not divide S2,1.15

3. The Density Written as Infinite Sum

In order to evaluate δa,b(c, d), we will make use of the following result:17

Theorem 1. Let a, b, c, d be positive integers with c ≥ 1 and d ≥ 1 coprime. Let σc

denote the automorphism of Q(ζd) determined by σc(ζd) = ζc
d. The density δa,b(c, d)19

of primes p ≡ c (mod d) such that p|Sa,b exists and satisfies

δa,b(c, d) =
∞∑

j=1

(
τ(j)

[Nj : Q]
− τ ′(j)

[N ′
j : Q]

)
, (1)

21

where

τ(j) =

{
1 if σc|Kj = id.;

0 otherwise,

and, similarly,

τ ′(j) =

{
1 if σc|K′

j
= id.;

0 otherwise.

Furthermore, Theorem 2 holds true with δa,b(c, d) as given by (1).

Proof. In case ordp(r) is defined we can define the index, ip(r), as (p− 1)/ordp(r).
Note that it equals [F∗

p : 〈r〉]. There is a unique j ≥ 1 such that 2j−1||ip(r).
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Let Pj denote the set of primes p such that 2j−1||ip(r). Note that
⋃∞

j=1 Pj equals,
with finitely many exceptions, the set of all primes and that the Pi are disjoint
sets. Now note that for a prime p in Pj we have that ordp(r) is even if and only if
p ≡ 1 (mod 2j). Thus, except for finitely many primes, the set of prime divisors of
Sa,b satisfying p ≡ c (mod d) is of the form

⋃∞
j=1 Qj , where

Qj := {p : p ≡ c (mod d), p ≡ 1 (mod 2j), p ∈ Pj}.
It is an easy observation that n|ip(r) if and only if p splits completely in Q(ζn, r1/n).
Using this observation and writing “s.c.” below to mean that the prime is split
completely, we infer that

Qj = {p : p ≡ c (mod d), p s.c. in Q(ζ2j , r1/2j−1
), but not s.c. in Q(ζ2j , r1/2j

)}.
On invoking the Chebotarev density theorem, it is then found that the set Qj has
a natural density that is given by

δ(Qj) =
τ(j)

[Nj : Q]
− τ ′(j)

[N ′
j : Q]

.

On proceeding as in the proof of [19, Lemma 8] it is then found that for ab ≤ log2/3 x1

and [d, 2j ] ≤ y := log1/6 x/ log log x, and any number A > 0, we have

Qj(x) = δ(Qj)Li(x) + OA

(
x

logA x

)
. (2)

3

Thus

Na,b(c, d)(x) =
∑
j≥1

Qj(x) =
∑

[d,2j]≤y

Qj(x) + O


 ∑

[d,2j]>y

π(x; [2j , d], cj)


 ,

where π(x; m, n) denotes the number of primes p ≤ x such that p ≡ n(mod m) and
cj is any integer such that cj ≡ c (mod d) and cj ≡ 1 (mod 2j) if such an integer5

exists and 1 otherwise. A minor modification of the proof of [10, Lemma 2] then
yields that7

Na,b(c, d)(x) =
∑

[d,2j ]≤y

Qj(x) + O

(
x log log x

log7/6 x

)
. (3)

Using Lemma 2 we find that9

∞∑
[d,2j ]>y

δ(Qj) = O


2λ

∑
[d,2j]>y

1
[d, 2j ]2j


 = O

(
2λ

y

)
. (4)

On combining (2)–(4), the result is then obtained with δa,b(c, d) =
∑∞

j=1 δ(Qj).11

Remark 1. The algebraic side of the approach above (originating in Moree [10])13

is not the traditional one to study the divisiblity of sequences Sa,b, but is chosen
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since it turns out to be easier to explicitly work out. The traditional approach rests1

on the observation that if p ≡ 1 + 2j (mod 2j+1) for some j (which is uniquely
determined), then ordp(r) is odd if and only if r(p−1)/2j ≡ 1 (mod p), that is if3

and only if p splits completely in Q(ζ2j , r1/2j

), see, e.g., [15] for a sketch of the
traditional approach. Note that (p− 1)/2j is the largest odd divisor of p− 1 and so5

ordp(r) is odd if and only if ordp(r) divides (p − 1)/2j.

Remark 2. On GRH, the existence of δa,b(c, d) was established by Moree [12, The-7

orem 1]. He showed under GRH that the set of primes p such that p ≡ a1 (mod d1)
and ordp(r) ≡ a2 (mod d2) has a density δr(a1, d1; a2; d2) and gave an expression9

for it in terms of field degrees and Galois intersection coefficients (τ(j) and τ ′(j) in
Theorem 1 are examples of such coefficients). Since δa,b(c, d) = δr(c, d; 0, 2), where11

r = a/b, it follows that δa,b(c, d) exists under GRH.

From our tables it is seen that δa,b(c, d) is always rational. Below a conceptual13

explanation for this is given.

Proposition 2. The density δa,b(c, d) is always a rational number.15

Proof. We show that the sum in (1) always yields a rational number. Note that
Kj ⊆ Kj+1 and K ′

j ⊆ K ′
j+1 and hence the fields limj→∞ Kj , limj→∞ K ′

j exist.17

Denote these limits by K, K ′. Note that K = K ′. It follows that there exists j0 such
that τ(j) = τ ′(j) and Kj = K ′

j = K = K ′ for every j ≥ j0. By Lemma 2, it follows19

that there exist constants c1 and c2 such that [Nj : Q] = c14j and [N ′
j : Q] = c24j

for every j large enough. It follows that the terms with j large enough in (1) are21

in geometric progression and sum to a rational number. The terms are all rational
and so δa,b(c, d) is itself rational.23

4. Preliminaries on Field Degrees and Field Intersections

The following facts from elementary algebraic number theory, for further details we25

refer to, e.g., Moree [12], will be used freely in the sequel:

(1) A quadratic field K ⊆ Q(ζn) iff the discriminant of K divides n.27

(2) Let Q(
√

∆) ⊆ Q(ζn) be a quadratic fields of discriminant ∆ and b be an integer
with (b, n) = 1. Then σb|Q(

√
∆ = id. iff (∆

b ) = 1, with ( ··) the Krnecker symbol.29

In order to use Theorem 1 to compute δa,b(c, d), we first compute the degrees
of the fields Nj, N

′
j for j ≥ 1. This can be done directly or by using the general31

formula from [11, Lemma 1] quoted below:

Lemma 1. Put nt = [2v2(ht)+1, D(r0)]. We have

[Q(ζkt, r
1/k) : Q] =

φ(kt)k
ε(kt, k)(k, h)

, where ε(kt, k) =

{
2 if nt|kt;

1 if nt � kt.
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Using the lemma or otherwise, we compute the degrees of{
Nj = Q(ζ2j , r1/2j−1

, ζd) = Q(ζ2max(j,δ)d′ , r1/2j−1
);

N ′
j = Q(ζ2j , r1/2j

, ζd) = Q(ζ2max(j,δ)d′ , r1/2j

),

to be as given in Lemma 2. The degrees turn out to be dependent on the following1

property which we call Cj :

The property (Cj) holds if and only if D′|d′, δ0 ≤ max(j, δ).3

Note that if D′|d′, then (Cj) can fail only for finitely many j’s.

Lemma 2. The degrees of Nj = Q(ζ2j , r1/2j−1
, ζd) and N ′

j = Q(ζ2j , r1/2j

, ζd) over
Q are given by:

1
ϕ(d)

[Nj : Q] =




2max(j,δ)−1 if j ≤ λ + 1;

2max(j,δ)+j−λ−3 if j > λ + 1 and (Cj) holds;

2max(j,δ)+j−λ−2 if j > λ + 1, and (Cj) fails,

1
ϕ(d′)

[N ′
j : Q] =




2max(j,δ)−1 if j ≤ λ;

2max(j,δ)+j−λ−2 if j > λ and (Cj) holds;

2max(j,δ)+j−λ−1 if j > λ and (Cj) fails.

Remark 3. Equivalent form of (Cj).5

It will also be convenient to use the following version of (Cj) later.

Property (Cj) holds if and only if, either D(r0)|d or D(r0)|2ld, D(r0) � 2l−1d for7

some l ≥ 1 and j ≥ l + δ.
Equivalently, property (Cj) fails if, and only if, either D(r0) � 2ld ∀l ≥ 0 or9

D(r0)|2ld, D(r0) � 2l−1d for some l ≥ 1 and j < l + δ.

In the remainder of this section, we assume that Q(
√

r0) �= Q(
√

2). The case11

Q(
√

r0) �= Q(
√

2) requires modification due to the ramification of 2 in cyclotomic
extensions generated by large 2-power roots of unity and is discussed in Secs. 713

and 8.
We need to determine precisely the set of all j ≥ 1 for which τ(j) = 1 and those15

for which τ ′(j) = 1. To this end we first determine the degrees of Kj, K
′
j over Q.

Lemma 3. When δ > 0, the degrees of Kj, K
′
j are given by the expressions:

[Kj : Q] =




2min(j,δ) if j ≤ λ + 1;

2min(j,δ) if j > λ + 1 and (Cj) holds;

2min(j,δ)−1 if j > λ + 1 and (Cj) does not hold,

[K ′
j : Q] =




2min(j,δ) if j ≤ λ;

2min(j,δ) if j > λ and (Cj) holds;

2min(j,δ)−1 if j > λ and (Cj) does not hold.
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Proof. When j ≤ λ+1, clearly r1/2j−1
is rational and, therefore, Kj = Q(ζ2min(j,δ)).

Similarly, K ′
j = Q(ζ2min(j,δ)) if j ≤ λ. Further, note that Kj ⊆ K ′

j for all j. Writing
Lj = Q(ζ2j , r1/2j−1

), and L′
j = Q(ζ2j , r1/2j

), we have Nj = LjQ(ζd) and Kj =
Lj ∩ Q(ζd). Therefore,

[Kj : Q] =
[Lj : Q][Q(ζd) : Q]

[Nj : Q]
.

Similarly, N ′
j = L′

jQ(ζd) and K ′
j = L′

j ∩ Q(ζd). So,

[K ′
j : Q] =

[L′
j : Q][Q(ζd) : Q]

[N ′
j : Q]

.

Using the above degree computations for Nj , N
′
j etc., we obtain the asserted1

expressions.

For δ = 0, the above formula has to be modified as we have used φ(2δ) = 2δ−1. In3

this case, we get:

Lemma 4. When δ = 0, we have

[Kj : Q] =
{

2 if j > λ + 1 and (Cj) holds;
1 if either j ≤ λ + 1 or j > λ + 1 and (Cj) fails,

and

[K ′
j : Q] =

{
2 if j > λ and (Cj) holds;
1 if either j ≤ λ or j > λ and (Cj) fails.

Remark 4. Since Kj is a subfield of K ′
j, it follows from the above degree compu-

tation that Kj = K ′
j in all cases except possibly when j = λ + 1. For j = λ + 1,

we have Q(ζ2min(λ+1,δ)) = Kλ+1 and the degree of K ′
λ+1 over Kλ+1 is 2 if D′|d′ and

δ0 ≤ max(λ+1, δ). If this latter condition (Cλ+1) does not hold, then Kλ+1 = K ′
λ+1.

In other words, we have the following property:

Kj = K ′
j , τ(j) = τ ′(j) ∀j �= λ + 1.

We would like to actually write the fields Kj, K
′
j in a convenient form so that we can5

determine how the automorphism ζd → ζc
d acts on them. Note that clearly the field

Q(ζ2min(j,δ)) is always contained in Kj, K
′
j and its degree is either the whole or half7

of that of Kj , K
′
j. We look for a subfield of the form Q(ζ2min(j,δ)) or Q(ζ2min(j,δ) ,

√
v)

which has the full degree and will, therefore, have to be the whole field.9

Lemma 5. For j ≤ λ, Kj = K ′
j = Q(ζ2min(j,δ)).

Furthermore, Kλ+1 = Q(ζ2min(λ+1,δ)).11

For j > λ + 1, Kj = K ′
j.

For j ≥ λ + 1, K ′
j is.13

(a) Q(ζ2min(j,δ)) if either D′ � d′ or if δ0 > max(j, δ);
(b) Q(ζ2min(j,δ) ,

√
r0) if D(r0)|d;
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(c) Q(ζ2min(j,δ) ,
√−r0) if D′|d′, δ < δ0 ≤ max(j, δ), where r0 = u/v and 2 � uv;1

(d) Q(ζ2min(j,δ) ,
√∏k

i=1(
−1
pi

)pi) if D′|d′, δ < δ0 ≤ max(j, δ), where r0 = u/v with

uv = 2
∏k

i=1 pi and pi > 2 for i = 1, . . . , k.3

Proof. We know that Kj = K ′
j = Q(ζ2min(j,δ)) if either j ≤ λ or j > λ+1 and (Cj)

fails. Also, Kλ+1 = Q(ζ2min(λ+1,δ)) = K ′
λ+1 unless (Cλ+1) fails. In other words, we5

have to determine K ′
j only for those j > λ for which (Cj) holds.

Recall that the truth of (Cj) is equivalent to the property: either D(r0)|d or7

D(r0)|2ld, D(r0) � 2l−1d for some 1 ≤ l ≤ 3 and j ≥ l + δ.

We examine each case separately.9

When D(r0)|d, we have
√

r0 ∈ Q(ζd) and so,
√

r0 ∈ K ′
j .

Moreover, if δ ≥ 1, then [Q(ζ2min(j,δ) ,
√

r0) : Q] = 2min(j,δ) = [Kj : Q], except11

in the case when Q(
√

r0) = Q(
√

2) which we have excluded in this section. Also,
when δ = 0, [Q(

√
r0) : Q] = 2 = [K ′

j : Q]. Therefore K ′
j = Q(ζ2min(j,δ) ,

√
r0)13

if D(r0)|d.

When D(r0)|2ld, D(r0) � 2l−1d for some 1 ≤ l ≤ 3 and j ≥ l + δ, it means that15

D′|d′, δ0 = δ + l. If r0 = u/v, note that Q(
√

r0) = Q(
√

uv). Now, if uv is odd, it
has to be ≡ 3 (mod 4) since otherwise D(r0) = uv which cannot divide 2ld without17

dividing d. Also then D(r0) = 4uv = 4D′, D′|d′, δ0 = 2 = δ+l means that l = 1 = δ

or l = 2, δ = 0. In case uv ≡ 3 (mod 4), we have
√−r0 ∈ Q(

√
d) as the discriminant19

of Q(
√−r0) = −uv = D′ which divides d′ and hence divides d. Therefore K ′

j =
Q(ζ2min(j,δ) ,

√−r0), when D(r0)|2ld, D(r0) � 2l−1d for some 1 ≤ l ≤ 3 and j ≥ l + δ21

and r0 = u/v with uv odd. Here, we have used the fact that since j ≥ δ0 = 2, ζ4

(and hence
√−r0) belongs to L′

j .23

When uv = 2s0 with s0 > 1 odd, then D(r0) = 4uv = 8s0, δ0 = 3, D′ = s0. Also
δ = δ0 − l = 3 − l and s0 = D′|d′. Thus, if s0 =

∏k
i=1 pi, then

√
t ∈ Q(ζp1···pk

) ⊆25

Q(ζd), where t :=
∏k

i=1(
−1
pi

)pi. We have used the fact that
√

2, i ∈ Q(ζ8) and that
j ≥ δ0 = 3. Hence K ′

j = Q(ζ2min(j,δ) ,
√

t) when uv is even and D(r0)|2ld, D(r0) �27

2l−1d for some 1 ≤ l ≤ 3 and j ≥ l + δ.

An immediate consequence of the previous lemma is the following result on the29

values of τ(j) and τ ′(j).

Lemma 6. If j ≤ λ + 1, then τ(j) = 1 ⇔ min(j, δ) ≤ γ.31

If j > λ + 1 and if either D′ � d′ or δ0 > max(j, δ), then τ(j) = 1 ⇔ min(j, δ) ≤ γ.
If j > λ + 1 and D(r0)|d, then τ(j) = 1 ⇔ min(j, δ) ≤ γ and

(D(r0)
c

)
= 1.33

If j > λ + 1 and D′|d′, δ < δ0 ≤ j with uv odd where r0 = u/v, then τ(j) = 1 ⇔
min(j, δ) ≤ γ and

(D(−r0)
c

)
= 1.35

If j > λ + 1 and D′|d′, δ < δ0 ≤ j with uv = 2
∏k

i=1 pi where r0 = u/v and pi’s odd

primes, then τ(j) = 1 ⇔ min(j, δ) ≤ γ and
(

D(
Qk

i=1(−1
pi

)pi)

c

)
= 1.37

We have τ ′(j) = τ(j) for j �= λ + 1.
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If either D′ � d′ or δ0 > max(λ + 1, δ), then τ ′(λ + 1) = 1 ⇔ min(λ + 1, δ) ≤ γ.1

If D(r0)|d, then τ ′(λ + 1) = 1 ⇔ min(λ + 1, δ) ≤ γ and
(D(r0)

c

)
= 1.

If D′|d′, δ < δ0 ≤ λ + 1 with uv odd where r0 = u/v, then τ ′(λ + 1) = 1 ⇔3

min(λ + 1, δ) ≤ γ and
(D(−r0)

c

)
= 1.

If D′|d′, δ < δ0 ≤ λ + 1 with uv = 2
∏k

i=1 pi where r0 = u/v, then τ ′(λ + 1) = 1 ⇔5

min(λ + 1, δ) ≤ γ and
(

D(
Qk

i=1(
−1
pi

)pi)

c

)
= 1.

5. Tables for the Density δa,b(c, d) when Q(
√

r0) �= Q(
√

2)7

Recall that the density δa,b(c, d) is given by (1). Since the primes considered are in
φ(d) residue classes, it is more natural to compute the sum9

S := φ(d)δa,b(c, d) = φ(d)
∑
j≥1

(
τ(j)

[Nj : Q]
− τ ′(j)

[N ′
j : Q]

)
. (5)

Note that S gives the relative density of divisibility of Sa,b, that is

S = lim
x→∞

#{p ≤ x : p ≡ c (mod d), p|Sa,b}
#{p ≤ x : p ≡ c (mod d)} .

Putting in the degrees of Nj , N
′
j we can simplify the sum in (5) as follows:11

Since [Nj : Q] = [N ′
j : Q] and τ(j) = τ ′(j) for j ≤ λ, the terms corresponding to

j ≤ λ do not contribute. Also τ(j) = τ ′(j) for j > λ + 1, but τ(λ + 1) and τ ′(λ +1)
may be different (only) when (Cλ+1) holds. Therefore, we have:

S

φ(2δ)
= τ(λ + 1)21−max(λ+1,δ) − τ ′(λ + 1)21−max(λ+1,δ)

+ 2λ+1
∑

j>λ+1,(Cj) fails

τ(j)2−max(j,δ)−j if (Cλ+1) holds

+ 2λ+2
∑

j>λ+1,(Cj) holds

τ(j)2−max(j,δ)−j

S

φ(2δ)
= τ(λ + 1)21−max(λ+1,δ) − τ(λ + 1)2−max(λ+1,δ)

+ 2λ+1
∑

j>λ+1,(Cj) fails

τ(j)2−max(j,δ)−j if (Cλ+1) fails.

+ 2λ+2
∑

j>λ+1,(Cj) holds

τ(j)2−max(j,δ)−j

As the degrees of the fields Nj , N
′
j and the values of τ(j), τ ′(j)’s depend on the

following three conditions, is convenient to have three tables depending on them.13

The three conditions are:

(A) D′ � d′;15

(B) D′|d′, δ0 ≤ δ;
(C) D′|d′, δ0 > δ.17
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Let us first work out the expression for S in Case A.1

Case A. D′ � d′.

Here, every (Cj) fails. In particular,

S

φ(2δ)
= τ(λ + 1)2−max(λ+1,δ) + 2λ+1

∑
j>λ+1

τ(j)2−max(j,δ)−j .

Moreover, since Kj = K ′
j = Q(ζ2min(j,δ)) for all j ≥ λ + 1, we have:3

For all j ≥ λ + 1, τ(j) = τ ′(j) and this is 1 if and only if min(j, δ) ≤ γ.
Thus, S = φ(2δ)2λ+1

∑
j>λ,min(j,δ)≤γ 2−max(j,δ)−j = φ(2δ)2λ+1(S1 + S2), where S1

is the sum over j ≤ δ and S2 is the sum over j ≥ δ + 1.
We get

S1 =
∑

λ+1≤j≤min(γ,δ)

2−δ−j and S2 =




∑
j≥max(λ+1,δ+1)

4−j if δ ≤ γ;

0 otherwise.

From this, it is easy to obtain Table 1.

Case B. D′|d′, δ0 ≤ δ.5

Note that (Cj) holds for all j.
Here Kλ+1 = Q(ζ2min(λ+1,δ)) and K ′

λ+1 = Q(ζ2min(λ+1,δ) ,
√

r0).
For all j > λ + 1, we have Kj = K ′

j = Q(ζ2min(j,δ) ,
√

r0).
Therefore, τ(λ + 1) = 1 if and only if min(λ + 1, δ) ≤ γ; τ ′(λ + 1) = 1 if and only if
min(λ + 1, δ) ≤ γ and

(D(r0)
c

)
= 1.

Moreover, for j > λ+ 1, we have τ(j) = τ ′(j) which is 1 if and only if min(j, δ) ≤ γ

and
(D(r0)

c

)
= 1.

Hence, we have

S

φ(2δ)
= τ(λ + 1)21−max(λ+1,δ) − τ ′(λ + 1)21−max(λ+1,δ)

+ 2λ+2
∑

j>λ+1

τ(j)2−max(j,δ)−j ,

which can be written down more explicitly as S = φ(2δ)(t1 + t2 + S0), where

t1 =

{
21−max(λ+1,δ) if min(λ + 1, δ) ≤ γ;

0 otherwise,

t2 =


−21−max(λ+1,δ) if min(λ + 1, δ) ≤ γ and

(
D(r0)

c

)
= 1;

0 otherwise,

S0 =




2λ+2
∑

j>λ+1,min(j,δ)≤γ

2−max(j,δ)−j if
(

D(r0)
c

)
= 1;

0 otherwise.
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Further, S0 = S01 +S02, where S01 is the subsum where j varies over j ≤ δ and S02

is the subsum where j varies over j > δ. We find

S01 =


2λ+2−δ(2−1−λ − 2−min(γ,δ)) if

(
D(r0)

c

)
= 1 and λ + 2 ≤ min(δ, γ);

0 otherwise,

and that

S02 =


2λ+2−2max(λ+1,δ)/3 if

(
D(r0)

c

)
= 1 and δ ≤ γ;

0 otherwise.

From this, we obtain Table 2.1

Finally, we work out the expression for S in Case C. We write r0 = u/v and t = −r0

or
∏k

i=1(
−1
pi

)pi according as to whether uv is odd or uv = 2
∏k

i=1 pi. We also write3

D(t) for the discriminant of the quadratic field Q(
√

t).

Case C. D′|d′, δ0 > δ.5

Notice that there are finitely many j’s for which the property (Cj) may fail in this
case. Now

Kλ+1 = Q(ζ2min(λ+1,δ)), K ′
λ+1 =

{
Q(ζ2min(λ+1,δ)) if λ + 1 < δ0;

Q(ζ2min(λ+1,δ) ,
√

t) otherwise.

For all j > λ + 1, we have

Kj = K ′
j =

{
Q(ζ2min(j,δ)) if j < δ0;

Q(ζ2min(j,δ) ,
√

t) otherwise.

So, we have τ(λ + 1) = 1 if and only if min(λ + 1, δ) ≤ γ and furthermore we have

τ ′(λ + 1) = 1 ⇔




min(λ + 1, δ) ≤ γ, λ + 1 < δ0;

min(λ + 1, δ) ≤ γ, λ + 1 ≥ δ0 and
(

D(t)
c

)
= 1.

Moreover, for j > λ + 1 with j < δ0, we have τ(j) = τ ′(j) which is 1 if and only if
min(j, δ) ≤ γ. On the other hand, for j > λ + 1 with j ≥ δ0, we have τ(j) = τ ′(j)
which is 1 if and only if min(j, δ) ≤ γ and

(D(t)
c

)
= 1.

Therefore, we get S = φ(2δ)(t1 + t2 + S1 + S2), where

t1 = τ(λ + 1)21−max(λ+1,δ);

t2 =

{
−τ ′(λ + 1)21−max(λ+1,δ) if λ + 1 ≥ δ0;

τ(λ + 1)2−max(λ+1,δ) if λ + 1 < δ0;

S1 = 2λ+1
∑{2−max(j,δ)−j : j > λ + 1, jδ0, min(j, δ) ≤ γ};

S2 = 2λ+2
∑{2−max(j,δ)−j : j > λ + 1, j ≥ δ0, min(j, δ) ≤ γ} if

(D(t)
c

)
= 1 and, is 0,7

otherwise.



1st Reading

April 30, 2009 15:22 WSPC/203-IJNT 00231

16 P. Moree & B. Sury

Putting in the values of τ(λ + 1) and τ ′(λ + 1), we obtain

t1 =

{
21−max(λ+1,δ) if min(λ + 1, δ) ≤ γ;

0 otherwise,

t2 =



−21−max(λ+1,δ) if λ + 1 ≥ δ0, min(λ + 1, δ) ≤ γ,

(
D(t)

c

)
= 1;

−2−max(λ+1,δ) if λ + 1 < δ0, min(λ + 1, δ) ≤ γ;

0 otherwise.

Finally, as before, we break up each of S1 and S2 into two subsums over j ≤ δ,
respectively, over j > δ. So, we have S1 = S11 + S12, where

S11 = 2λ+1−δ
∑

{2−j : min(γ, δ) ≥ j > λ + 1};

S12 =

{
2λ+1

∑
{4−j : δ0 > j ≥ max(λ + 2, δ + 1)} if δ ≤ γ;

0 otherwise.

Similarly, we have S2 = S21 + S22, where

S21 = 0,

S22 =


2λ+2

∑
{4−j : j ≥ max(λ + 2, δ0)} if δ ≤ γ and

(
D(t)

c

)
= 1;

0 otherwise
.

On evaluating these expressions further we obtain Table 3.1

6. The Intersection Fields when Q(
√

r0) = Q(
√

2)

Next we consider the case where r0 = 2 or 1/2. Note that the discriminant of Q(
√

2)3

is 8 and that
√

2 belongs to the cyclotomic field Q(ζ8) (indeed
√

2 = ζ8 + ζ−1
8 ). Also

note that Q(i,
√

2) = Q(ζ8) (we have ζ8 = (i + 1)/
√

2). For j ≥ 1 we consider as5

before the degrees of the fields Nj , N
′
j. The earlier expressions in Lemma 2 are valid

and, in fact, simplify to give:7

Lemma 7. The degrees of Nj = Q(ζ2j , r1/2j−1
, ζd) and N ′

j = Q(ζ2j , r1/2j

, ζd) over
Q are given by:

1
φ(d′)

[Nj : Q] =




2max(j,δ)−1 if j ≤ λ + 1;
2max(j,δ)+j−λ−3 if j > λ + 1 and 3 ≤ max(j, δ);
2max(j,δ)+j−λ−2 if j > λ + 1 and 3 > max(j, δ),

1
φ(d′)

[N ′
j : Q] =




2max(j,δ)−1 if j ≤ λ;
2max(j,δ)+j−λ−2 if j > λ and 3 ≤ max(j, δ);
2max(j,δ)+j−λ−1 if j > λ and 3 > max(j, δ).

The fields Kj = Q(ζ2j , r1/2j−1
) ∩ Q(ζd) and K ′

j = Q(ζ2j , r1/2j

) ∩ Q(ζd) are to be
determined. This is where the computation gives different values from Lemma 3.
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However, the method of evaluation is the same and the degrees turn out to be:1

For j > λ + 1,

[Kj : Q] =




22 if j ≤ 2, δ ≥ 3;
2min(j,δ)−1 if either j ≥ 3, δ ≥ 1 or j < 3, 1 ≤ δ ≤ 2;
1 if δ = 0.

For j > λ,

[K ′
j : Q] =




2j if j ≤ 2, δ ≥ 3;
2min(j,δ)−1 if either j ≥ 3, δ ≥ 1 or j < 3, 1 ≤ δ ≤ 2;
1 if δ = 0.

As we have evidently, Kj = Q(ζ2min(j,δ)) for j ≤ λ + 1 and for every j, Q(ζ2min(j,δ))
is a subfield of Kj , we have the following result:3

Lemma 8. We have Kj = Q(ζ2min(j,δ)) for all j unless λ = 0, j = 2, δ ≥ 3.
In the exceptional cases λ = 0, j = 2, δ ≥ 3, we have K2 = Q(ζ2min(j,δ) ,

√
2) =5

Q(i,
√

2) = Q(ζ8).

Further, we have K ′
j = Q(ζ2min(j,δ)) for all j unless λ < j ≤ 2, δ ≥ 3. The exceptional

cases here are: either λ = 0, j = 1, δ ≥ 3 or λ ≤ 1, j = 2, δ ≥ 3. We find the following
intersection fields:{

λ = 0, j = 1, δ ≥ 3, K ′
1 = Q(ζ2min(j,δ) ,

√
2) = Q(

√
2);

λ ≤ 1, j = 2, δ ≥ 3, K ′
2 = Q(ζ2min(j,δ) ,

√
2) = Q(i,

√
2) = Q(ζ8).

7. Tables for the Density when Q(
√

r0) = Q(
√

2)7

Let S be defined as in (5). We divide its computation into four cases:

(A) δ < 3;9

(B) δ ≥ 3 and λ ≥ 2,
(C) δ ≥ 3 and λ = 1, and11

(D) δ ≥ 3 and λ = 0.

Case A. δ < 3.13

Then Kj = K ′
j = Q(ζ2min(j,δ)) for all j. Thus τ(j) = τ ′(j) for all j and, this is 1 if

and only if min(j, δ) ≤ γ. It turns out that S = φ(2δ)(t1 + t2 + t3), with

t1 =
{

2−max(λ+1,δ) if λ ≤ 1, min(λ + 1, δ) ≤ γ;
0 otherwise,

t2 =




1
8

if λ = 0, δ ≤ γ;

0 otherwise,

t3 =
{

2λ+2−2max(λ+1,2)/3 if δ ≤ γ;
0 otherwise,
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where t1, t2, t3 correspond, respectively, to the terms in (5) with j = λ + 1, λ + 2 ≤1

j ≤ 3, j ≥ max(3, λ + 2) and j ≥ max(3, δ + 1). From this, we obtain Table 4.

Case B. δ ≥ 3, λ ≥ 2.3

Once again, Kj = K ′
j = Q(ζ2min(j,δ)) for all j. Note that (Cj) always holds true. We

obtain

S = ϕ(d)
∑

j≥λ+2
min(j,δ)≤γ

(
1

[Nj : Q]
− 1

[N ′
j : Q]

)
= φ(2δ)(t1 + t2),

where

t1 =
{

21−δ − 2λ+2−δ−min(γ,δ) if λ + 2 ≤ min(γ, δ);
0 otherwise,

t2 =
{

2λ+2−2max(λ+1,δ)/3 if δ ≤ γ;
0 otherwise,

with ϕ(2δ)t1, ϕ(2δ)t2 the subsum over j ≤ δ, respectively j > δ.

Case C. δ ≥ 3, λ = 1.5

Here, we need to observe that when 8|d, the Galois automorphism ζd → ζc
d of Q(ζd)

fixes
√

2 if and only if c ≡ ±1 (mod 8). We obtain

S

ϕ(2δ)
=

τ(λ + 1)
2δ−1

− τ ′(λ + 1)
2δ−1

+ 2λ+2
∑

3≤j≤δ

τ(j)
2max(j,δ)+j

+ 2λ+2
∑

j>max(2,δ)

τ(j)
2max(j,δ)+j

,

which can be written as t1 + t2 + t3 + t4 say, where further evaluation yields that

t1 =
{

21−δ if 2 ≤ γ;
0 otherwise;

, t2 =
{−21−δ if 3 ≤ γ;

0 otherwise;

t3 =
{

21−δ − 23−δ−min(γ,δ) if 3 ≤ γ;
0 otherwise;

and t4 =
{

23−2δ/3 if δ ≤ γ;
0 otherwise.

Table 5 is obtained from Cases B and C.

Case D. δ ≥ 3, λ = 0.7

As in the previous case, we need the fact that when 8|d, the Galois automorphism
ζd → ζc

d of Q(ζd) fixes
√

2 if and only if c ≡ ±1 (mod 8).
We find that S = φ(2δ)(t1 + t2 + t3 + t4), where

t1 =
{

21−δ if c ≡ ±3 (mod 8);
0 otherwise,

, t2 =
{

2−δ if 3 ≤ γ;
0 otherwise,

t3 =
{

2−δ − 22−δ−min(γ,δ) if 3 ≤ min(γ, δ);
0 otherwise,

and t4 =
{

22−2δ/3 if δ ≤ γ;
0 otherwise,
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where t1, t2, t3, t4 correspond, respectively, to the terms in (5) with j = 1, j = 2,1

3 ≤ j ≤ δ and j ≥ max(3, δ + 1). This yields us Table 6.

8. Extremal Densities3

We have 0 ≤ ϕ(d)δa,b(c, d) ≤ 1. In this section, we are interested when δa,b(c, d) = 0
and when δa,b(c, d) = 1/ϕ(d). The following elementary result shows that if c �≡5

1(mod (d, 2λ+1)), then δa,b(c, d) = 0.

Lemma 9. If p � (a, b) and p|Sa,b, then p ≡ 1 (mod 2λ+1).7

Proof. For a prime p put τ(p) = (p − 1)/(p − 1, h). If p � (a, b) and p|ab, then
p � Sa,b, so we may assume that p � ab. Since rτ(p) = (rh

0 )τ(p) ≡ 1 (mod p) by9

Fermat’s little theorem, it follows that ordp(r)|τ(p). If p is to divide Sa,b, then τ(p)
must be even and so ν2(p − 1) ≥ λ + 1.11

Theorem 2. (a) Suppose that δa,b(c, d) = 0. This happens if and only if

(i) λ ≥ γ and δ > γ; or13

(ii) λ = γ − 1, δ > γ, D(r0)|d and (D(r0)
c ) = 1.

Moreover, if δa,b(c, d) = 0, then there are at most finitely primes p ≡ c (mod d)15

dividing the sequence Sa,b.

(b) Suppose that δa,b(c, d) = 1/ϕ(d). This happens if and only if17

(i) λ = 0, δ = 0, D(r0)|d and (D(r0)
c ) = −1; or

(ii) min(γ, δ) > λ, D(r0)|d and (D(r0)
c ) = −1.19

Moreover, if δa,b(c, d) = 1/ϕ(d), then there are at most finitely primes p ≡ c (mod d)
not dividing the sequence Sa,b.21

Proof. For a prime p put τ(p) = (p−1)/(p−1, h). The first parts of both (a) and (b)
follow on inspection of the tables. Let us prove the second part of (a) now. If λ ≥ γ

and δ > γ, we claim that τ(p) is odd. Indeed, writing p = c + qd, and c − 1 = 2γc0

with c0 odd, we have p − 1 = 2γc0 + 2δqd′. Therefore, v2(p − 1) = γ since δ > γ.
Now, (p − 1, h) = (p − 1, 2λh′) which has 2-adic valuation γ since λ ≥ γ. Therefore
τ(p) is odd in the Case (i) of (a) of the theorem. Since clearly ordp(r)|τ(p), it then
follows that p � Sa,b. Finally suppose we are in Case (ii). Suppose that p > 2 is a
prime satisfying p ≡ c (mod d) and such that p does not divide ab. Then, by the
properties of the Kronecker symbol,(

r0

p

)
=
(

D(r0)
p

)
=
(

D(r0)
c

)
= 1,

where the first symbol is the Legendre symbol and r0 denotes the reduction of r0

modulo p. It follows that

r
h(p−1)

2(p−1,h)
0 ≡ 1 (mod p),
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and so ordp(r)|τ(p)/2. We claim that τ(p)/2 is odd. Now p − 1 = 2γc0 + 2δqd′1

which has 2-adic valuation γ because δ > γ. On the other hand, 2(p − 1, h) =
2(p − 1, 2λh′) = 2(p − 1, 2γ−1h′) which has 2-adic valuation 1 + (γ − 1) = γ. Thus,3

τ(p)/2 is odd and so p � Sa,b.

(b) The proof is similar; let us consider (i) first.5

As δ = λ = 0, we have h is odd and r = rh
0 . If p > 2 is a prime not dividing ab, then(

r0

p

)
=
(

D(r0)
p

)
=
(

D(r0)
c

)
= −1

by assumption. Thus, r
(p−1)/2
0 ≡ −1 (modp), which implies that r(p−1)/2 ≡

−1 (mod p) and therefore, that p|Sa,b. Finally suppose we are in Case (ii). Writ-
ing p = c + qd, and c − 1 = 2γc0 with c0 odd, we have p − 1 = 2γc0 + 2δqd′.
Therefore, v2(p − 1) ≥ min(δ, γ). Now, v2(p − 1, h) = v2(p − 1, 2λh′) = λ, since
v2(p − 1) ≥ min(γ, δ) > λ. Therefore, we have that h

(p−1,h) is odd while τ(p) is
even; that is, p−1

2(p−1,h) is a positive integer. Once again, we have for each prime not
dividing 2ab that (

r0

p

)
=
(

D(r0)
p

)
=
(

D(r0)
c

)
= −1.

Thus, (r(p−1)/2
0 )

h
(p−1,h) ≡ −1 (mod p). But then r

p−1
2(p−1,h) = (r(p−1)/2

0 )
h

(p−1,h) ≡
−1 (mod p), which means that p|Sa,b.7

Example. (1) By Case (ii) of (a) we infer that δ3,1(11, 12) = 0 (cf. Conjecture 1.1
of Fermat).9

(2) By Case (ii) of (b) we infer that ϕ(8)δ2,1(±3, 8) = 1 (easily proved using (2/p) =
(−1)(p

2−1)/8), cf. the paper by Sierpiński [21].11

Perhaps a more illuminating phrasing of the above theorem is the following:

Theorem 3. For a prime p put τ(p) = (p − 1)/(p − 1, h).13

(a) We have δa,b(c, d) = 0 if and only if τ(p) is odd or 2||τ(p) and ( r0
p ) = 1, for all

but finitely many primes p ≡ c (mod d).15

(b) We have δa,b(c, d) = 1/ϕ(d) if and only if for all but finitely many primes
p ≡ c (mod d) we have that τ(p) is even and ( r0

p ) = −1.17

Conclusion. if the density is extremal, then this can always be explained by el-
ementary arguments not using more than quadratic reciprocity and, furthermore,19

the associated set of exceptional primes is at most finite.

Remark 5 (Uniform Distribution). It is generally not true that the primes21

dividing Sa,b are uniformly distributed over the residue classes modulo d. However,
there are some cases where we have uniform distribution. For example, if d is odd23

and D(r0) � d, then the primes in any residue class mod d which divide Sa,b have
the same density.25
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9. Some Numerical Experiments1

For each entry in Tables 1–6 an example with parameters a and b = 1 was choosen
and below we give the value of δa,1(c, d) according to the tables on the one hand,
and an approximation to this that consists of the first six decimals of the ratio

#{p ≤ pm : p ≡ c (mod d), p|Sa,1}
#{p ≤ pm : p ≡ c (mod d)} ,

where pm denotes the mth prime and m = 2097152000 ≈ 2 ·109. As a rule of thumb,
an approximation of δa,1(c, d) obtained in this way by looking for prime divisors3
amongs the primes should have an accuracy of about π(pm; d, c)−1/2. We clearly
observed in our experiments that for larger d the accuracy tends to be less (and the5
same holds for the run time).

Test cases for Table 1.

Residue Class a φ(d)δa,1(c, d) Experimental Value

17 mod 56 32 5

6
0.833200 · · ·

17 mod 56 38 1

3
0.333317 · · ·

1 mod 21 5
2

3
0.666592 · · ·

7 mod 20 34 0 0

7 mod 20 33 1

2
0.500015 · · ·

Test cases for Table 2.

Residue Class a φ(d)δa,1(c, d) Experimental Value

9 mod 28 72 1

3
0.333312 · · ·

5 mod 12 32 1 1

1 mod 15 5
1

3
0.333257 · · ·

7 mod 15 5 1 1

1 mod 12 3
2

3
0.666657 · · ·

5 mod 12 3 1 1

11 mod 20 54 0 0

13 mod 24 3
1

2
0.500006 · · ·

13 mod 56 7 1 1

7 mod 20 52 0 0
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Test cases for Table 3.

Residue Class a φ(d)δa,1(c, d) Experimental Value

1 mod 12 6
11

12
0.916693 · · ·

5 mod 12 6
3

4
0.749989 · · ·

1 mod 12 62 5

6
0.833362 · · ·

5 mod 12 62 1

2
0.499996 · · ·

7 mod 12 6
1

2
0.500038 · · ·

11 mod 28 142 0 0

7 mod 12 64 0 0

7 mod 30 62 5

12
0.416679 · · ·

11 mod 30 62 1

4
0.250055 · · ·

7 mod 30 64 1

12
0.083321 · · ·

11 mod 30 64 1

4
0.250055 · · ·

7 mod 15 6
17

24
0.708336 · · ·

11 mod 15 6
5

8
0.624999 · · ·

7 mod 15 64 1

12
0.083321 · · ·

11 mod 15 64 1

4
0.250055 · · ·

10. Connection with the Level (Stufe) of Certain Fields1

The level (Stufe) of a field F , s(F ), is the smallest integer s (if it exists) such
that −1 = α2

1 + · · · + α2
s with αi in F . In case −1 cannot be written as a sum of3

squares from K we put s(K) = ∞. Pfister proved that in case s(F ) is finite we have
s(F ) = 2j for some j ≥ 0. Hilbert proved that if F is an algebraic number field,5

then s(F ) ≤ 4. It follows that s(F ) ∈ {1, 2, 4} in this case. Note that S(F ) = 1 iff
i ∈ F .7

Let us put Kn = Q(ζn). If 4|n, then s(Kn) = 1. If n is odd, then clearly s(K2n) =
s(Kn) since Kn = K2n. Thus we may assume that n is odd. Chowla [3] proved that9

s(Kp) = 2 when p ≡ 3 (mod 8) is a prime. In later unpublished papers, Smith and
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Test cases for Table 4.

Residue Class a φ(d)δa,1(c, d) Experimental Value

5 mod 14 2
17

24
0.708327 · · ·

5 mod 12 2
11

12
0.916652 · · ·

7 mod 12 2
1

2
0.499961 · · ·

7 mod 12 22 0 0

5 mod 6 22 5

12
0.416673 · · ·

5 mod 12 22 5

6
0.833331 · · ·

5 mod 6 28 1

24
0.041672 · · ·

5 mod 12 24 1

6
0.166685 · · ·

7 mod 12 24 0 0

Test cases for Table 5.

Residue Class a φ(d)δa,1(c, d) Experimental Value

5 mod 24 24 0 0

17 mod 24 24 1

3
0.333372 · · ·

17 mod 48 24 2

3
0.666740 · · ·

17 mod 96 24 1

2
0.500145 · · ·

41 mod 48 24 0 0

17 mod 24 22 2

3
0.666659 · · ·

7 mod 24 22 0 0

5 mod 24 22 1 1

17 mod 32 22 3

4
0.750049 · · ·

Chowla have proved independently that s(Kp) = 2 also when p ≡ 5 (mod 8). In1

1970, Chowla and Chowla [4] proved that s(Kp) = 4 when p ≡ 7 (mod 8). Fein et al.
[6] proved that for an odd prime p we have s(Kp) = 2 iff p|S2,1 (and so s(Kp) = 4 iff3

p � S2,1). Now the Chowla results follow from this on invoking the results on primes
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Test cases for Table 6.

Residue Class a φ(d)δa,1(c, d) Experimental Value

9 mod 40 2
5

6
0.833411 · · ·

7 mod 8 2 0 0

5 mod 8 2 1 1

9 mod 16 2
3

4
0.749983 · · ·

dividing S2,1 due to Sierpiński mentioned in Sec. 2. Moree [9, Theorem 7] gave an1

asymptotic for the number of integers m ≤ x such that s(Km) = 4.
Recently Nassirou [16] considered the level of Qp(ζn) with p odd, where Qp3

denotes the p-adic field. Since s(Qp) = 1 when p ≡ 1 (mod 4), we may assume that
p ≡ 3 (mod 4). Let q �= p be an odd prime. The results of Nassirou imply that5

s(Qp(ζq)) = 1 iff q|Sp,1 and s(Qp(ζq)) = 2 iff q � Sp,1.
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