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The focus of these notes is on the uses of inner product spaces in mathematics.
There is more material here than what we would be able to discuss during
the workshop; it has been added for the sake of completeness and with the
hope that it could be useful in teaching. Let me add that the subject is
quite geometric and, though we have not been able to draw pictures here,
while lecturing one ought to draw pictures and show clearly what the various
algebraic formulae really mean geometrically; the books [A] and [K] are good
references. As an appendix, we have added a few simple applications of basic
linear algebra to some other subjects and it may be worthwhile to motivate
students by means of such examples.
Let us start with simple well-known observations. I recall them in order to
naturally lead to the later discussions. It is generally seen that the more the
entries of a matrix are zero, the easier it is. Diagonal (square) matrices have
several zero entries and also commute among themselves; they are just as easy
to work with as if they were numbers. So, if a matrix can be ‘reduced’ to a
diagonal matrix in some natural algebraic fashion, it ought to be useful. One
such natural reduction might be re-writing the matrix in terms of a changed
basis; this amounts to conjugating the matrix by an invertible matrix. That
is to say, given a matrix A, we look for an invertible matrix P so that PAP−1

is a diagonal matrix. The word ‘conjugate’ used here should not be confused
with complex conjugates; in the old days, one used to call our ‘conjugation’
of matrices as ‘similarity’. The modern notation here is consistent with group
theory.

The key point about conjugating into a diagonal matrix is that there is at
most one diagonal matrix (upto permuting the entries) to which A can be
conjugate although there may be several conjugating matrices P . Often it is
not necessary to actually find a P but only ‘the’ diagonalization of A. Here
is a situation where it is useful to find a diagonalizing matrix P also.
If dY/dt = AY is a system of ordinary differential equations to be solved,
one tries to diagonalize A if possible. If A = PDP−1 with D diagonal, then
Y = PX gives the new system dX/dt = DX. This is easy to solve, and one
can get back Y as Y = PX.

The first simple observation is that not every complex matrix can be di-

agonalized; an example is
(

0 1
0 0

)
. The proof follows basically from the

easy observations that conjugate matrices have the same eigenvalues and the
eigenvalues of an upper triangular (or similarly lower triangular) matrix are
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its diagonal entries. Note that this also shows that a diagonalization of a
matrix (if one exists at all) is unique (upto permuting the entries). So, if the
above matrix were conjugate to a diagonal matrix, that diagonal matrix must
be the zero matrix. But, evidently the only conjugate of the zero matrix is
the zero itself and our matrix is not the zero matrix.

Notice also that if we start with a real matrix A which can be diagonal-
ized, the diagonal matrix may only be a (non-real) complex matrix since the
eigenvalues of a real matrix may be non-real. For example, the real matrix(

Cos(θ) Sin(θ)
−Sin(θ) Cos(θ)

)
is conjugate to the diagonal matrix

(
exp(iθ) 0

0 exp(−iθ)

)

which is not real for θ 6= nπ.

The importance of eigenvalues in the above discussion and the fact that upper
(or lower) triangular matrices advertise their eigenvalues clearly begs that
next question as to whether each matrix can be conjugated to a (complex)
triangular matrix. This is true in a stronger form as shown by Schur in the
theorem below.

Before stating Schur’s result, we remark on another use of knowing that
matrices can be triangularised. Let us say, we need to compute the matrix
obtainable as a polynomial expression f(t) evaluated on A. If PAP−1 were
a diagonal matrix with entries a1, · · · , an, then

Pf(A)P−1 = f(PAP−1) = diag(f(a1), · · · , f(an)).

Even if PAP−1 were only a triangular matrix with diagonal entries a1, · · · , an,
the eigenvalues of f(A) are f(a1), · · · , f(an). In fact, if we introduce a notion
of size/norm for a matrix, then one can talk about convergent power series.
A typical example is that for any matrix A, there is a well-defined matrix
called its exponential exp(A). The triangularisability shows that the eigen-
values of exp(A) are eλi for various eigenvalues λi of A. In particular, the
determinant of exp(A) is

∏
i exp(λi) = exp(

∑
i λi) = etr(A), where tr(A) is the

trace of A. The exponential mapping on matrices plays a crucial role in Lie
group theory. Later, we will see some density results follow easily because of
triangularisation.

Theorem (Issai Schur) :
Every complex square matrix can be conjugated by means of a unitary matrix
to an upper triangular matrix.
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Recall that an n×n unitary matrix U is one for which tU = U−1. A standard
notation is to write B∗ for tB. Thus, a unitary matrix satisfies U∗ = U−1.
Note that (BC)∗ = C∗B∗.
Proof.
We will postpone reading this proof until after we have
properly introduced the inner product spaces.
If A is any n×n matrix and U is any invertible n×n matrix, then UAU−1 is
the matrix (for the same linear transformation given by A) with respect to the
new ordered basis Ue1, · · · , Uen, viz., the columns of U . Note that a matrix
U is unitary if, and only if, its columns form an orthonormal basis of Cn

with respect to the canonical inner product x.y =
∑n

i=1 xiȳi. In other words,
the columns C1, · · · , Cn ∈ Cn satisfy Ci.Ci = 1 and Ci.Cj = 0 for i 6= j.
Therefore, given A, the assertion of the theorem is equivalent to choosing an
orthonormal basis v1, · · · , vn of Cn such that Tvi is a linear combination of
v1, · · · vi; here, we have written T for the linear transformation corresponding
to A. One advantage of phrasing the assertion in this form is one can easily
apply induction on n. To start with, for n = 1, the assertion of the theorem
is a tautology. So, assume n > 1 and that the assertion holds for n − 1.
Choose an eigenvalue of T and let w1 be a corresponding eigenvector. A
non-zero multiple of w1 is again an eigenvector and we take v1 = w1√

w1.w1
so

that we have v1.v1 = 1 and Tv1 = λ1v1. If M = Cv1 is the one-dimensional
subspace generated by v1, then N = {x ∈ Cn : v1.x = 0} is the orthogonal
complement to M ; in particular, it is a subspace of Cn such that M+N = Cn

and M ∩N = (0). Let us call PN the projection map

tv1 + x 7→ x

from Cn = M ⊕ N → N . The transformation x 7→ PNT (x) is linear and
maps N into N . By the induction hypothesis, there is an orthonormal basis
v2, · · · , vn of N such that PNT (vi) is a linear combination of v2, · · · , vi for
each i ≥ 2. Since the projection map PN has precisely the one-dimensional
space generated by v1 as its kernel, and since it is the identity map on N , this
means that for i ≥ 2, the vector T (vi) is a linear combination of v1, · · · , vi.
As T (v1) is a multiple of v1, and, as evidently the vectors v1, v2, · · · , vn form
an orthonormal basis of Cn, we are done. The result follows by induction.

Corollary (spectral theorem for normal operators) :
A is unitarily conjugate to a diagonal matrix if, and only if, it is normal
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(that is, A and A∗ commute).
We will recall it again later in a different notation after discussing the notion
of an inner product space.
Proof.
The proof is simple. Observe that a matrix B is normal if, and only if, UBU∗

is normal for any unitary U :

(UBU∗)(UBU∗)∗ = UBU∗(U∗)∗B∗U∗

= UBB∗U∗ = UB∗BU∗ = (UBU∗)∗(UBU∗).

As an upper triangular matrix is normal if, and only if, it is diagonal, the
result follows.

To prove Schur’s triangularisation on conjugation by unitary matrices, if
we prove only triangularisation via conjugation by some arbitrary invertible
matrix (by some other method, say), we can deduce Schur’s theorem from
that result using the Gram-Schmidt process which we will be recalling below.

Various applications of Schur’s theorem :

(I) Define a notion of distance between matrices as d(A,B) = |A−B|2 where

|M |2 := (tr(M∗M))1/2 = (
∑

i,j

|mij|2)1/2.

This makes it clear that |M |2 = |U∗MU |2 for any unitary matrix U . This
notion makes the set M(n) of all n× n matrices over C into a metric space.
It is easy to see that the triangle inequality holds. Let us deduce now using
Schur’s theorem that the set of invertible matrices is ‘dense’ in M(n). We
start with any matrix A and show that for any ε > 0, there is an invertible
matrix B such that |A−B|2 < ε. Write A = UTU∗ where T is upper trian-
gular and U is unitary. Replace those diagonal entries of T (= eigenvalues of
A) which are zero by non-zero complex numbers which have small absolute
values. Let the other entries of T remain as they are. We get an invertible,
upper triangular matrix T1 with |T − T1|2 as small as we want. Therefore,
UT1U

∗ is an invertible matrix as well. Moreover,

|A− UT1U
∗|2 = |U(T − T1)U

∗|2 = |T − T1|2.
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This is as small as we please. Therefore,
invertible matrices are dense in all matrices.
Similarly, one can prove :
matrices with distinct eigenvalues are dense.

(II) The Cayley-Hamilton theorem asserts that for a polynomial A ∈ M(n),
if χA(T ) := det(TIn−A) = c0+c1T +· · ·+T n is its characteristic polynomial,
then the matrix χA(A) := c0In +c1A+ · · ·+cn−1A

n−1+An is the zero matrix.
Once again, this can be easily proved using Schur’s theorem as we indicate
now. If A is not invertible, get an invertible matrix B close to it and note that
the coefficients of χA(T ) and χB(T ) are close. Also, then the matrices χA(A)
and χB(B) are as close as we want. Thus, it suffices to prove the Cayley-
Hamilton theorem for invertible matrices A. Also, one can take an invertible
matrix with distinct eigenvalues which is close to A and it suffices to assume
A has distinct eigenvalues. But then Schur’s theorem allows us to diagonalize
A by conjugation. Since χA(T ) does not change under conjugation, it suffices
to verify Cayley-Hamilton for diagonal matrices, where it is obvious !

We will now discuss the theory of inner product spaces and return again to
the spectral theorem for normal operators, thereby understanding it better
and putting it in perspective. The theme we wish to bring out is that the ge-
ometry of real/complex vector spaces is dramatically revealed by the notions
of inner product and operators on them. One can prevail upon the inner
product spaces to do a lot of work for us. This is especially so in infinite-
dimensional spaces but their importance in finite-dimensional spaces cannot
be undermined. We start with the definitions first.

Definition and examples of inner product spaces :
Let K stand for R or C. If V is a vector space over K, an inner product on
V is an association V × V → K,

(v, w) 7→< v,w >

which is additive in both variables, satisfies < v,w >= < w, v >, < v, v > is
real and ≥ 0 with equality only for v = 0, and has the property < av, w >=
a < v, w > for all a ∈ K.
It is understood clearly that the map a 7→ ā is just the identity map when
K is R. Note that even for complex K, the numbers < v, v > are real. The
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above definition is modelled after the canonical inner product on Kn :

< (v1, · · · , vn), (w1, · · · , wn) >=
n∑

i=1

viw̄i.

Once we have chosen an inner product, we call the space an inner product
space. Note that a subspace of an inner product space is again an inner prod-
uct space under the same inner product. There are other natural interesting
inner product spaces, one of which we recall now.
On the space C([0, 1],K) of all continuous K-valued functions, define

< f, g >=
∫ 1

0
f(t)g(t)dt.

Of course, this vector space is infinite-dimensional but for a finite-dimensional
example, one merely has to take the same definition on polynomial functions
of degree bounded by a fixed N .
Also, one can give other inner products on the same space; for example, on
C([0, 1],R), one could define

< f, g >=
∫ 1

0
t2f(t)g(t)dt.

We will consider only finite-dimensional inner product spaces most of the
time unless we say otherwise explicitly.
Inner products allow us to define the notion of length and angle. If v, w are
vectors in an inner product space (V, <, >), then the length of v is defined to
be
√

< v, v >; one writes it as ||v||. If V is a real inner product space, one
defines the angle θ between v and w by < v, w >= ||v||||w||Cos(θ). Thus,
v, w are orthogonal to each other if < v, w >= 0. The familiar Pythagoras
theorem which was also known in the Sulvasutras (and probably in other old
civilizations as well) can be generalized to the statement :
If v1, · · · , vn are pairwise orthogonal, then ||v1 + v2 + · · · vn||2 =

∑n
i=1 ||vi||2.

Note as a consequence that such a set of pairwise orthogonal, non-zero vectors
as above is linearly independent.

The following two simple properties are the most-used in mathematical sit-
uations where an inner product appears.
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Cauchy-Schwarz inequality :
| < v,w > | ≤ ||v|| ||w|| where equality holds exactly in the case when the
vectors v, w are linearly dependent.

Triangle inequality :
||v + w|| ≤ ||v|| + ||w|| where equality holds exactly in the case when one of
the vectors is a non-negative multiple of the other.

One calls an orthonormal set, a set of vectors v1, · · · , vn which are pairwise
orthogonal and each of which has unit length. If the set is a vector space basis
too, then it is called an orthonormal basis. The canonical basis e1, · · · , en of
Kn is an orthonormal basis. Just as one has in this space, v = (a1, · · · , an) =∑n

i=1 aiei and ||v||2 =
∑n

i=1 |ai|2, one has in any inner product space :

If v1, · · · , vn is an orthonormal basis, then for each v, we have
v =

∑n
i=1 < v, vi > vi and ||v||2 =

∑n
i=1 | < v, vi > |2.

It would be well to know that every inner product space does have an or-
thonormal basis. Even better, it would be nice if one started with an ar-
bitrary finite, linearly independent set S (in a possiblt infinite-dimensional
inner product space) and produced an orthonormal set by some procedure
which generates the same subspace which is generated by S. The following
famous result showed how to do this by means of an algorithm.

Gram-Schmidt process :
Let < V, <,>) be a (possibly infinite-dimensional) inner product space. If
{v1, v2, · · · , vn} is any set of linearly independent vectors, the following algo-
rithm produces an orthonormal set {w1, w2, · · · , wn} of vectors such that the
subspace generated by v1, · · · , vr equals that generated by w1, · · · , wr, for all
r = 1, · · · , n :

w1 = v1

||v1|| , wr+1 =
vr+1−

∑r

i=1
<vr,wi>wi

||vr+1−
∑r

i=1
<vr,wi>wi|| .

In particular, when V has finite dimension, then any basis can be reduced to
an orthonormal basis.

The Gram-Schmidt process actually shows that there is a homeomorphism

GL(n,R) ≡ O(n)×B

where O(n) denotes the set of orthogonal matrices and B is the set of real
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upper triangular invertible matrices having positive diagonal entries. In other
words, the topology of GL(n,R) is determined by the topology of a maximal
compact subgroup since B is just homeomorphic to a Euclidean space. A
similar theorem holds for many other groups of matrices.

Let us note :
A matrix is unitary (respectively, orthogonal) if and only if its columns/rows
form an orthonormal basis of Cn (respectively, Rn).

Corollary to Gram-Schmidt :
If T is a linear transformation on an inner product space < V, <, >) and
if T can be represented by an upper triangular matrix with respect to some
ordered basis, then T can also be represented by an upper triangular matrix
with respect to an orthonormal basis.
Proof.
Let {v1, · · · , vn} be an ordered basis with respect to which T is represented
by an upper triangular matrix. By Gram-Schmidt algorithm, we get an or-
thonormal basis {w1, · · · , wn} such that, for every r = 1, · · · , n, the subspace
spanned by v1, · · · , vr is the same as that spanned by w1, · · · , wr. As T trans-
forms into itself the subspace spanned by v1, · · · , vr for each r ≤ n, which is
the same as that spanned by w1, · · · , wr, the matrix of T with respect to the
latter basis is upper triangular too.

Definition :
The orthogonal complement of a subset S of V is S⊥ := {v ∈ V :< s, v >=
0 ∀ s ∈ S}. Note that S⊥ is always a vector subspace of V even if S is just
a set. Indeed, S⊥ = W⊥, where W is the subspace of V spanned by S. The
following simple result is extremely useful :

Proposition (orthogonal projection) :
Let (V, <,>) be an inner product space (possibly infinite-dimensional). Then,
for any finite-dimensional subspace W of V , we have V = W ⊕W⊥.
One calls the canonical map from V to W given by the above decomposition
as the orthogonal projection onto W .
Proof.
Let {w1, · · · , wm} be an orthonormal basis of W . Clearly, for any v ∈ V we
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have

v =
m∑

i=1

< v, wi > wi + (v −
m∑

i=1

< v, wi > wi).

Since the second summand is orthogonal to each wi, it is in W⊥. Hence
V = W + W⊥. If there is a vector w ∈ W ∩W⊥, then < w, w >= 0 which
gives w = 0.

Now is an appropriate point to read Schur’s proof.

Corollary to proposition above :
Any subspace W of V satisfies W ⊆ (W⊥)⊥. Further, this is an equality
when W has finite dimension.
Proof.
Let W be arbitrary, let w ∈ W . As w and W⊥ are orthogonal, the vector w
is in the orthogonal complement of W⊥, which is the first assertion.
Conversely, assume W has finite dimension; the proposition is applicable. Let
w ∈ (W⊥)⊥; writing w = w1 +w2 ∈ W ⊕W⊥, we have w−w1 ∈ W ⊆ (W⊥)⊥

whereas w2 ∈ W⊥. Thus, this must be the zero vector; so w = w1 ∈ W .

Proposition (projection gives closest vector) :
If W is a subspace of (V, <,>), then the vector in W closest to a given vector
v of V is PW v where PW : V → W is the projection onto W .
Proof.
Let w ∈ W be arbitrary. Now,

||v − PW v||2 ≤ ||v − PW v||2 + ||PW v − w||2 = ||v − w||2

since v − PW v is orthogonal to W and, therefore, to PW v − w.
Note that equality occurs then and only then, when the triangle inequality
used is an equality, which gives PW v = w. This justifies the word ‘the’ in
the phrase ‘the closest vector’.

One way to compute the projection map onto W is to take an orthonormal
basis {w1, · · · , wr} of W ; then for any v ∈ V , it is evident that

PW v =
r∑

i=1

< v, wi > ei.

The proposition above is often used for approximation problems. We have
used it in the analysis lectures to show mean square convergence of the Fourier
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series of a continuous function. To see how the least squares approximation
is the best in terms of having minimal variance (and for several other facts
also), please see Meyer’s book [M ] available online. Let us see another type
of example now.

A typical application to polynomial approximation :
Let us try to find the real polynomial of degree ≤ 5 which is closest to
Sin(x) on the interval [−π, π] where the inner product on C([−π, π],R) is
< f, g >:=

∫ π
−π f(x)g(x)dx. Therefore, we let V = C([−π, π],R), W the

subspace of polynomials. Note that V is infinite-dimensional but W has
dimension 6 and the proposition on closest vectors, is applicable. To compute
the projection map onto W , we need an orthonormal basis of W . For this, we
start with the basis {1, x, x2, x3, x4, x5} and apply the Gram-Schmidt process.
After some computation, it turns out that the closest polynomial in W to
Sin(x) is

0.98786x− 0.155271x3 + 0.00564312x5

where the coefficients are written approximately after replacing π etc. ap-
proximately.
It is interesting to compare this approximation with the Taylor polynomial
approximation x− x3

6
+ x5

120
. It turns out that the former is much better than

this one when |x| > 2.

Finite-dimensional Riesz representation theorem.
Let (V, <,>) be a finite-dimensional inner product space. Let T : V → K
be linear (T is called a linear functional). Then, there exists a unique v0 ∈
V such that T (v) =< v, v0 >. In other words, each linear functional is
represented by a vector.
Proof.
Start with an orthonormal basis {v1, · · · , vn} of V . Any v can be written as∑n

i=1 < v, vi > vi; so

T (v) =
n∑

i=1

< v, vi > T (vi) =
n∑

i=1

< v, T (vi)vi > .

Clearly, v0 :=
∑n

i=1 T (vi)vi does the job.
To prove uniqueness of v0, note that if there are two such vectors v0, w then
< v, v0 − w >= 0 for all v ∈ V . Applying this to v = v0 − w yields v0 = w.
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We remark that the Riesz representation theorem above can fail for infinite-
dimensional inner product spaces. For instance, on C([0, 1],R), for any fixed
point x0 ∈ [0, 1], the linear functional evaluation at x0 : f 7→ f(x0) is not
representable by a vector as above.

Definition :
If V, W are two finite-dimensional inner product spaces, and T ∈ Hom(V,W )
a linear transformation, the adjoint of T is defined to be the linear transfor-
mation T ∗ ∈ Hom(W,V ) so that

< Tv, w >=< v, T ∗w > ∀ v ∈ V, w ∈ W · · · · · · (A)

The existence of a map from W to V with this latter property is guaranteed
by the previous theorem applied to the linear functional

Tw : V → K , v 7→< Tv, w > .

That T ∗ so defined is linear is easily seen from the properties of the inner
products. It should be noted that the two sides of (A) involve inner products
from two different spaces although we have not explicitly indicated.
The adjoint also has the following properties verified by first principles :
(T ∗)∗ = T , (S + T )∗ = S∗ + T ∗, (cT )∗ = c̄T ∗, (ST )∗ = T ∗S∗.
KerT ∗ = (ImT )⊥, ImT ∗ = (KerT )⊥.

Lemma (matrix of adjoint) :
Let {v1, · · · , vn} and {w1, · · · , wm} be ordered orthonormal bases of V and W
respectively. If T ∈ Hom(V,W ) is represented by a matrix A with respect to
these ordered bases, then the adjoint T ∗ is represented by the matrix A∗ = Āt.
Proof.
Now, since Tvi =

∑
j < Tvi, wj > wj, the matrix A is given by aji =<

Tvi, wj >. Similarly, the matrix B of T ∗ is bij =
∑

j < T ∗wj, vi >. But

aji =< Tvi, wj >=< vi, T
∗wj >= < T ∗wj, vi > = bij.

So Āt = B.

On infinite-dimensional inner product spaces, adjoints may not exist. For
instance, on C([0, 1],R), the endomorphism f(t) 7→ tf(t) does not have an
adjoint.
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Definitions :
For inner product spaces V, W , and a linear transformation T ∈ Hom(V,W ),
the norm of T - denoted by ||T || - is defined as

||T || = Sup{||Tv|| : ||v|| = 1}.

This is always finite as the unit ball is compact and linear transformations
are continuous.
One calls T ∈ Hom(V, W ) an isometry into W , if < Tv1, T v2 >=< v1, v2 >
for arbitrary v1, v2 ∈ V . If T is also an isomorphism onto W , then one calls
it an isometric isomorphism. Note that T is an isometry if, and only if,
it preserves norms - for the ‘if’ part, just apply to the vectors of the form
v1 + v2.

Proposition (norm-preserving implies unitary) :
For V,W are inner product spaces, a transformation T ∈ Hom(V, W ) is
norm-preserving if, and only if, it is unitary (that is, T ∗T = IV ).
Proof.
If T ∗T = I, then clearly T preserves norms because

||Tv||2 =< Tv, Tv >=< v, T ∗Tv >=< v, v >= ||v||2.

Conversely, if T preserves norms, then as we observed, it is an isometry.
Therefore, for every v1, v2 ∈ V , we get

< v1, v2 >=< Tv1, T v2 >=< v1, T
∗Tv2 >,

which gives < v1, (I − T ∗T )v2 >= 0. Taking v2 arbitrary and v1 to be the
vector (I − T ∗T )v2, we have T ∗T = I.

Remark:
Note that a matrix A ∈ Mn(C) is unitary if, and only if, ||Av|| = ||v|| for all
v; that is, columns of A form an orthonormal basis of Cn for the canonical
inner product.

Definitions and observations :
If T is a linear transformation from V to itself, then it is said to be self-adjoint
if T = T ∗. In terms of a fixed choice of ordered basis, the corresponding
matrix A of T must satisfy A = A∗.
More generally, one calls T normal, if TT ∗ = T ∗T . Note that self-adjointness
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implies normality.
It can be checked that :

Lemma :
(a) Eigenvalues of a self-adjoint T are all real; eigenvectors corresponding to
distinct eigenvalues are orthogonal.
(b) T is normal if and only if ||Tv|| = ||T ∗v|| for all v.
Proof.
(a) If Tv = λv with v 6= 0 and T = T ∗, then

< Tv, v >= λ < v, v >

and
< v, Tv >=< v, λv >= λ < v, v > .

Selfadjointness of T implies these are equal; that is, λ is real.
Also, if Tv1 = λ1v1 and Tv2 = λ2v2 with v1, v2 6= 0 and λ1 6= λ2, then

λ1 < v1, v2 >=< Tv1, v2 >=< v1, T v2 >= λ2 < v1, v2 >

which gives < v1, v2 >= 0.
(b) We have

||Tv||2 =< Tv, Tv >=< v, T ∗Tv >

and
< v, TT ∗v >=< T ∗v, T ∗v >= ||T ∗v||2

where we have used the fact that (T ∗)∗ = T . This proves (b).

Rephrasing normal spectral theorem :
We saw earlier that Schur’s unitary triangularisation theorem implied the
spectral theorem for normal matrices; this can be rephrased as :
Given a normal operator on a finite-dimensional complex inner product space,
there is an orthonormal basis of eigenvectors.

Caveat on real inner product spaces
We stress that the above spectral theorem for normal operators is for a
complex inner product space. It is not true in real inner product spaces.
Over a complex inner product space, normality is equivalent to the existence
of an orthonormal basis consisting of eigenvectors. Over a real inner product

14



space, it turns out (the proof is on similar lines to the complex case) that self-
adjointness is equivalent to the existence of an orthonormal basis consisting of
eigenvectors. In real inner product spaces, there are normal operators which
are not self-adjoint. A typical example in a 2-dimensional inner product space

is one we introduced right in the beginning; namely,
(

Cos(θ) Sin(θ)
−Sin(θ) Cos(θ)

)

where Sin(θ) 6= 0.

Here are two interesting consequences of the normal spectral theorem rephrased
above :
Lemma :
(a) T is normal if, and only if, T ∗ = f(T ) for some polynomial f .
(b) For any T with eigenvalues λ1, · · · , λn, we have

n∑

i=1

|λi|2 ≤
n∑

i,j=1

|aij|2

with equality if and only if T is normal.
Proof.
(a) If T ∗ is a polynomial in T , it evidently commutes with T .
Conversely, assuming that T s normal, take an orthonormal basis {v1, · · · , vn}
consisting of eigenvectors for T . Let λi be the eigenvalue corresponding to
vi. It is evident that the polynomial f which interpolates the values λi at
the points λi satisfies

f(T )vi = f(λi)vi = λivi = T ∗(vi).

Thus, T ∗ = f(T ).
(b) Note that if T = (aij)i,j, then Tei =

∑n
j=1 ajiej implies

< Tei, T ei >=
∑

j

|aji|2.

Hence
∑n

i=1 ||Tei||2 =
∑n

i,j=1 |aij|2.
If U is unitary with U∗TU = S, which is upper triangular, then

∑

i

||Sei||2 =
∑

i

||U∗TUei||2 =
∑

i

||Tei||2.

The right side is
∑

i,j |aij|2 whereas the left side is ≥ ∑
i |λi|2 as the diagonal

entries of S are the λi’s.
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Finally, note that equality is precisely when S is diagonal in which case T is
normal.

Locating zeroes of polynomials :
We would like to briefly discuss a very good application of the theory of inner
product spaces to locating zeroes of a polynomial. Recall that one connection
between polynomials and matrices arises while finding the rational canonical
form of a matrix A - the basic idea is to regard V as a module over the
polynomial ring C[X] by means of f(X)v := f(A)v. The fact that C[X] is a
Euclidean domain allows a very nice structure theorem for finitely generated
modules. Thus, polynomials and matrices are intimately related. Let us see
how this can be exploited for zero location.

Let us first ask the interesting question as to what the best way is, to view the
dual space of the complex vector space C[X]. This is given by the following
lemma. Recall that C[[X]] denotes the set of formal power series in X and
its quotient field is C((X)), the set of formal sums of the form

∑∞
n=−r anX

n

for some r ∈ Z. Note that the field C(X) can be thought of as a subfield
of the field of truncated Laurent series C((X−1)) := {∑r

n=−∞ anXn : an ∈
C, r ∈ Z}, which is the quotient field of C((X−1)).

Lemma (dual of C(X)) :
The dual space of C(X) is X−1C[[X−1]].
Proof.
For any g =

∑r
n=−∞ bnXn ∈ X−1C[[X−1]], we have a linear functional on

C[X] :
k∑

n=0

anX
n 7→

∞∑

n=−∞
anb−n−1.

Conversely, let T be a any linear functional on C[X]. For each i ≥ 0, this
induces linear functionals on C as :

Ti : a 7→ T (aX i).

We may consider Ti as complex numbers by the identification via the canon-
ical inner product. If we take g(X) =

∑∞
n=0 TiX

−i−1 ∈ X−1C[[X−1]], then
we have

T (
k∑

n=0

anXn) =
∞∑

n=−∞
anTn.
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Definition :
Since C((X−1)) = C[X]⊕X−1C[[X−1]], the second projection

p− :
r∑

n=−∞
anX

n 7→
−1∑

n=−∞
anX

n

is a well-defined linear transformation. For any g ∈ C((X−1)), the Hankel
operator is defined as the map

Hg : C[X] → X−1C[[X−1]]; f 7→ p−(gf).

We do not go into details here but the Hankel operators have several nice
properties one of which we mention. For instance, Kronecker had proved
that Hg has finite rank if and only if g is a rational function. We finish by
stating a result on zeroes of polynomials. We do not give the proof here but
it is not difficult and one can refer to Fuhrmann’s book [F ] referred to at the
end.

Theorem (zero location) :
Let p(X) be any polynomial in C[X]. If g = p′

p
, then the number of distinct

roots of p(X) equals the rank of the Hankel matrix Hg.

A dramatic application :
Though, by this time, no reader would need convincing that inner product
spaces play key roles in many places, we state here a rather stunning ‘avataar’
of it.

Look at the inner product space H consisting of all sequences a := {an} of

complex numbers which satisfy
∑∞

n=1
|an|2

n(n+1)
< ∞. Here, we take

< a, b >=
∞∑

n=1

anbn

n(n + 1)
.

All bounded sequences are in H. For k = 1, 2, 3 · · · consider the special
elements a(k) ∈ H given by a(k)n = {n

k
}, the fractional part of n

k
. Then,

Baez-Duarte (in a formulation due to B.Bagchi) has proved :

Theorem :
The following statements are equivalent :
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(a) The Riemann hypothesis.
(b) The constant sequence 1, 1, 1, · · · is in the closure of the space spanned by
the a(k)’s; k = 1, 2, · · ·.
(c) The set of finite linear combinations of the a(k)’s is dense in H.

An application to cryptography -the LLL-algorithm :

This 1982 method due to A.K.Lenstra, H.W.Lenstra Jr. and L.Lovasz broke
new ground and has proved a most influential method for computations in
number theory - especially in factorisation of polynomials over Z or even over
number fields. In simple terms, this method starts with a basis of a lattice
and reduces it to a basis which is nearly orthogonal and whose vectors are
‘shorter’ in a sense. This reduction is managed by the LLL-algorithm in
polynomial time. In some sense, the LLL method unwarps a badly warped
basis. Let us be more precise now.
The set-up is as follows. In the case of a real inner product space (V, <, >),
one has the related notion of a positive-definite quadratic form; this is the
quadratic function v 7→< v, v >. Below, we consider pairs (L.q) where L is
a lattice of rank n (that is a subgroup of the additive group Rn which con-
tains a basis and is isomorphic to Zn, and q is a positive-definite quadratic
form on Rn. One may define an equivalence (L, q) ∼ (L′, q′) if there is an
abelian group isomorphism between the lattices which respects the forms.
As a positive-definite quadratic form on Rn gives rise naturally to a positive-
definite symmetric matrix, the equivalence above can be expressed in terms
of matrices as follows.
The equivalence classes (L, q) correspond bijectively with the classes of positive-
definite symmetric matrices Q, where Q ∼ Q′ if Q′ = tMQM for some
M ∈ GL(n,Z).
Let {v1, · · · , vn} be a basis of Rn. Consider the lattice L with this as Z-basis.
One calls the positive real number |det(v1, · · · , vn)| given by the absolute value
of the determinant of the matrix with vi’s as columns to be the discriminant
of L and denotes it by disc(L). Note that a change of Z-basis does not affect
the discriminant as the determinant inside can change by ±1 only. Now, the
Gram-Schmidt process produces an orthogonal (not necessarily orthonormal)
basis of V in the usual way :
w1 = v1, wi = vi −∑

j<i µijwj where µij = <vi,wj>

<wj ,wj>
.

One defines the Z-basis {v1, · · · , vn} of L to be LLL-reduced if :
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(i) |µij| ≤ 1
2

for all i > j, and
(ii) |wi + µi,i−1wi−1|2 ≥ 3

4
|wi−1|2 for all i > 1.

In what follows, the constant 3
4

in (ii) can be replaced by any t ∈ (1
4
, 1). Note

that (ii) is equivalent to |wi|2 ≥ (3
4
−µ2

i,i−1)|wi−1|2 for i > 1 and that the vec-
tors wi + µi,i−1wi−1 and wi−1 are the projections of vi and vi−1 respectively,
on the orthogonal complement of

∑
j<i−1 Rvj.

Proposition.
Let {v1, · · · , vn} be an LLL-reduced basis of L. With wi’s defined as above,
we have :
(a) |vj|2 ≤ 2i−1|wi|2 for j ≤ i,
(b) disc(L) ≤ ∏

i |vi| ≤ 2n(n−1)/4disc(L),
(c) |v1| ≤ 2(n−1)/4disc(L)1/n, and
(d) For 0 6= x ∈ L, |v1| ≤ 2(n−1)/2max(|x|.
If the constant 3

4
in (ii) is replaced by some t ∈ (1

4
, 1), then all the powers of 2

in the proposition are replaced by the same powers of the number 4
4t−1

. Also,
the inequality disc(L) ≤ ∏

i |vi| is true for any (not necessarily LLL-reduced)
basis and is known as Hadamard’s inequality. The proof of the proposition
is simple.
The reduction of any basis to an LLL-reduced basis can be desribed by an
algorithm whose running time is O(n6(log(C)3), where C is a bound for all
|vi|. In practice, it is often seen to take even less time.
Further, if the Gram matrix of the inner products < vi, vj > of a basis {vi}
is integral, the algorithm can be given in such a way that all computations
are done in Z itself (and not go to Q as may be the case for a general basis).
The LLL algorithm does not give the shortest vector (this is a notoriously
difficult problem) but one reasonably close to it.
One can adopt the LLL-algorithm to compute the kernel and image of an
integral matrix also but the algorithm has to be modified to deal with de-
pendent vectors also.
Let us see how LLL comes into the picture when we wish to factorise monic
integral polynomials.

The basic result on which the algorithm is based is the following :
Let p be a prime, k ∈ N, f ∈ Z[X] of degree n > 0, h ∈ Z[X] monic
such that h mod p is irreducible, h mod pk divides f mod pk and (h mod
p)2 does not divide f mod p. Then, there is an irreducible factor h0 ∈ Z[X]
of f determined uniquely upto sign such that h mod p divides h0 mod p.
Furthermore, a factor g of f in Z[X] is divisible by h0 in Z[X] if, and only
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if, g mod pk is divisible by h mod pk. In particular, h0 mod pk is divisible by
h mod pk.

We would like to find a way to compute h0 efficiently. To do this, one (starts
with f, p, k, h as above and) fixes some m ≥ l := deg(h) and considers the lat-
tice L consisting of all integral polynomials of degree ≤ m which are, mod pk,
divisible by h mod pk. This is a lattice in the vector space R+RX+· · ·+RXm

which we can think of as Rm+1. Note that the Euclidean length provides the
notion of the length of a polynomial. That is, |∑m

i=0 aiX
i| = (

∑ |ai|2)1/2.
Observe that L has a basis {pk, pkX, · · · , pkX l−1, h, Xh, · · · , Xm−lh}.
Note that h0 itself belongs to L if, and only if, deg(h0) ≤ m. Now, it can be

checked that an element b ∈ L satisfying the condition |b|n < pkl

|f |m is divisible

by h0 in Z[X] (this requires proof).
In particular, such an element b gives a factor GCD(b, f) of f of degree > 1.
We choose {b1, · · · , bm+1} to be an LLL-reduced basis.
The factorisation of integral polynomials (upto factorisation of natural num-
bers) can be done in polynomial time with the LLL-algorithm.

An appendix : Some basic applications outside of mathematics

It is clear that linear algebra is central to mathematics and has an all-
pervading role in it. However, it is often not easy to motivate a student
of science as to why one should learn it. In what follows, we briefly indicate
how useful it is in various branches of science at even a basic level but appli-
cations go much deeper than what we have indicated here. We have followed
some discussions by Joseph Khoury of University of Ottawa, Canada who
has won awards for his expositions on linear algebra. I urge everyone who
has access to internet to look at a webpage maintained by Khoury for many
more applications as well as to see simulated pictures of them.

Applications to chemistry.

Here is a typical way basic linear algebra is applied to a simple problem in
chemistry.
Suppose we want to produce a certain chemical compound using 3 different
ingredients A,B,C. Usually, one needs to dissolve each of these substances
separately in water in various concentrations and then mix them so as to allow
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chemical interaction and thereby produce the compound. For example, let
us say that a certain amount of A is dissolved in water to make a solution
having 1.5 gms. per cc. Similarly, say a certain amount of B and of C
are separately dissolved in water to yield respective concentrations of 3.6
gms. per cc. and 5.3 gms. per cc. Suppose the three solutions totally give
25.07 gms. of the compound. Now, if the proportions of A,B, C (without
changing the volumes of their solutions) are changed to 2.5, 4.3, 2.4 gms. per
cc. respectively, then let us say 22.36 gms. of the chemical compound are
produced. Finally, if the proportions of A,B, C are 2.7, 5.5, 3.2 gms. per
cc. respectively, then suppose 28.14 gms. of the chemical compound are
produced. We want to find the individual volumes of the 3 solutions.
Denoting by x, y, z the volumes of solutions containing A, B, C, this data
leads to a system of linear equations

1.5x + 3.6y + 5.3z = 25.07

2.5x + 4.3y + 2.4z = 22.36

2.7x + 5.5y + 3.2z = 28.14

One can solve them (by Gaussian elimination, for example) to get

x = 1.5, y = 3.1, z = 2.2

Another typical application to chemistry is in the balancing of chemical equa-
tions. The basic scientific principle behind is the law of conservation of mass;
thus, in any chemical equation, the total number of atoms must match.
For example, look at the equation

xC2H6 + yO2 → zCO2 + tH2O.

This leads to the system of linear equations

2x = z, 6x = 2t, 2y = 2z + t

which has the general solution

y = 7x/2, z = 2x, t = 3x.

Being numbers of atoms, the solutions need to be natural numbers. One has
the balanced equation

2C2H6 + 7O2 → 4CO2 + 6H2O.
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It should be remarked that there are important applications of representing
abstract finite groups by groups of matrices to chemistry; for example, the
enumeration of isomers is made using Polya’s theory, which is on representing
finite groups by groups of symmetries.

Applications to Genetics.

The great human genome mapping project has become common knowledge
now. Suppose, we are interested in the type of genetic inheritance known as
autosomal - those governed by a single gene. Let us say there are 2 types
of genes A and a, and each individual carries a pair of genes - called his
genotype. Thus, the possible genotypes for each inheritable trait are one of
the three : AA,Aa, aa. Let us look at a specific problem. Suppose, in a
certain animal population, the eye-colour is governed by autosomal model.
Let the genotypes AA and Aa have brown eyes, while aa has black eyes. The
A gene is said to dominate the a gene and an animal is called dominant,
hybrid or recessive according as to whether it has AA,Aa or aa genes. Note
that this means the genotypes AA and Aa cannot be distinguished in terms
of eye-colour. Assume that each offspring inherits a gene from each parent
in a random manner. The experiment we discuss is of crossing an offspring
with a dominant animal (that is one with genotype AA). After repeating
the experiment many times, we would like to know the proportions of each
genotype. If AA is crossed with AA the result has to be AA. But, if AA
is crossed with Aa, each of the two possibilities AA and Aa occurs with
probability 1/2 while aa cannot occur. Finally, crossing aa with AA produces
Aa and no other genotypes. We wish to find the proportions of genotypes in
the n-th generation once the initial proportions are given. Suppose that the
initial proportions of genotypes are given as follows :

AA : 1/3, Aa : 1/3, aa : 1/3.

We will write this as a column vector X0. By the discussion above, it is clear
that the first generation has the column vector X1 = TX0, where T is the

transition matrix




1 1/2 0
0 1/2 1
0 0 0


. Indeed, the columns of T give the effects

of crossing with AA,Aa, aa respectively ad the entries are the probabilities
of obtaining AA,Aa, aa respectively.
In this manner, the vector Xn for the n-th generation is Xn = TXn−1 for all
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n ≥ 1. The first few are :

X1 =




1/2
1/2
0


 , X2 =




3/4
1/4
0


 , X3 =




7/8
1/8
0


 , · · ·

Since we have crossed offsprings of each generation only with genotype AA,
the genotype aa never appears; that is, the 3rd entry of each column is 0. It

is easy to show that the vectors Xn →



1
0
0


 as n →∞. In other words, all

the animals in the population would have brown eyes in the long run. Note
that this last vector is an eigenvector with eigenvalue 1 for the transition
matrix.
If we had always crossed with Aa, we can see that probabilities of offsprings
of the n-th generation having brown eyes will be positive and less than 1 and
so will be the case for black eyes. The best way to study these problems is
using Markov chains.

Applications to image compression :

More than the other applications, this discussion is likely to fire the imagina-
tion of the student. When a digital image is to be viewed from a computer
somewhere, the following technique called the Haar wavelet transform proves
very useful in compressing it for the sake of storage space. Wavelets are or-
thogonal bases in certain inner product spaces. Roughly speaking, here is
the idea. The image is treated as an array of numbers i.e., as a matrix. Each
image consists of a large number of pixels (picture elements). The matrix
corresponding to a digital image assigns a non-negative integer to each pixel;
the numbers essentially codify the shades of black. The JPEG compression
technique divides an image into 8 × 8 blocks and assigns a matrix to each
block. One can use linear algebra to maximise compression while still retain-
ing enough detail. This is how it works.
Suppose r = (420, 680448, 708, 1260, 1420, 1600, 1600) is a row of an 8 × 8
image matrix. The transformation we will do is in 3 steps

r 7→ r1 7→ r2 7→ r3

(for the 2n-size matrices, there would be n steps).
Step I :
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Divide the entries of r into 4 pairs (420, 680), (448, 708), (1260, 1420), (1600, 1600).
Find the 4 averages - these are the first 4 entries of r1 and are called approx-
imation coefficients.
Subtract each average from the first entry of the pair - these are the last 4
entries of r1 and are called detail coefficients.
Thus, in this case, r1 = (550, 578, 1340, 1600,−130,−130,−80, 0).
Note that r1 = rW1, where the columns of W1 form an orthogonal basis of
R8.
Step II :
Retain the last 4 detail coefficients of r1 as they are. To get the first 4 en-
tries of r2, divide the first 4 entries of r1 into 2 pairs and find their averages.
Subtract each average from the first entry of the pair as before; we get the
first 4 entries of r2 in this manner. In our case above,

r2 = (564, 1470,−14,−130,−130,−130,−80, 0).

Once again, there is an explicit invertible matrix W2 such that r2 = r1W2;
its columns are again orthogonal.
Step III :
Here, retain the last 6 entries of r2 as they are, for r3 too. From the first
2 entries of r2, take average and subtract from the first entry of the pair as
before to get the first two entries of r3. In the above case, we have

r3 = (1017,−453,−14,−130,−130,−130, 80, 0).

We have W3 with columns of orthogonal vectors such that r3 = r2W3.

Once these 3 steps are completed, we have W = W1W2W3 with r3 = rW .
The matrix W is :

W =




1/8 1/8 1/4 0 1/2 0 0 0
1/8 1/8 1/4 0 −1/2 0 0 0
1/8 1/8 −1/4 0 0 1/2 0 0
1/8 1/8 −1/4 0 0 −1/2 0 0
1/8 −1/8 0 1/4 0 0 1/2 0
1/8 −1/8 0 1/4 0 0 −1/2 0
1/8 −1/8 0 −1/4 0 0 0 1/2
1/8 −1/8 0 −1/4 0 0 0 −1/2




.

For the Haar wavelet transform, one starts with each row of the image matrix
A and gets AW .
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Then, one performs the same operations on the columns of this new matrix
AW to get S := W tAW .
Thus, the compressed image is represented by the matrix W tAW and one
decompresses/retrieves the image as A = (W t)−1SW−1.
The point of all this is that areas of A which contain numbers of nearly equal
size end up as zeroes in S - thus S might be a ‘sparse’ matrix. Usually, a
threshold ε > 0 is fixed and entries of S which are less than ε are reset to zero.
Every time we click an image, the source computer recalls S from memory.
It sends the overall approximation coefficients and the larger detail coeffi-
cients. A little later, it sends the smaller detail coefficients. As our computer
receives the information, it starts reconstructing the image progressively in
more and more detail.
Normally, one normalizes all the columns of each of W1,W2,W3 to get or-
thonormal bases of R8. Therefore,

A = (W t)−1SW−1 = WSW t.

Thus, orthonormalization leads to a faster process of compression.

Applications to Image Processing :

In simple terms, suppose we photograph a face from 100 different angles and
represent each of the 100 images by a vector v in a fixed large Euclidean
space RN whose entries are between 0 and 1. The aim is to ‘recognise’ or
‘reconstruct’ the face. If v1, · · · , v100 are the vectors and wi = vi − v0 where
v0 = 1

100

∑100
i=1 vi is the average, one plots the points w1, · · · , w100 in RN . This

would be a hyper-ellipsoid; finding suitable axes for it, the ellipsoid looks like

x2
1

a2
1

+ · · ·+ x2
N

a2
N

= 1.

In this notation, each axis is an eigenvector (an ‘eigenface’ !) and the first 20,
say (ordered from smallest eigenvalue onwards), may be enough to construct
through linear combinations all the 100 images. The idea is to be able to
make a reduction of consideration from a big space like R20,000 to a small
dimension like 40, and this will be accomplished through projections. One
needs also to formulate and solve the problem of how to plot those points
and how to find the suitable axes for which the hyper-ellipsoid looks like the
standard one. Let us formulate things mathematically now.
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Start with the 100×20, 000 matrix A giving the date as 100 vectors in R20,000.
Diagonalize tAA, say UD1

tU =t AA, where the columns of U are eigenvec-
tors of tAA and D1 is diagonal.
Diagonalize A tA = V D2

tV , where the columns of V are eigenvectors of
A tA, and D2 is diagonal.
Find D with D tD = D2,

t DD = D1 and A = V D tU .
The eigenfaces are the columns of U .

Applications to Economics :
The applications of linear algebra to economics and finance is manifold. For
instance, an economic model invented by Leontief (a Nobel prize winner in
1973) amounts to a system of linear equations of the form AX = X where one
looks for a non-zero solution X with all entries non-negative. This is a closed
economy system where no goods leave or enter the system. There is also a
related model which leads to an inhomogeneous system AX = X + d. Here,
the economy is open, that is, there is a certain outside demand (occurring as
the column d above) which has to be met.
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