Is $e^{\pi \sqrt{163}}$ odd or even?

(Workshop on ‘Harmonic Analysis on symmetric spaces’
I.S.I. Bangalore : 9th July 2004)

B.Sury

$e^{\pi \sqrt{163}} = 262537412640768743.9999999999992\ldots$

The object of this talk is to ‘explain’ this amazing fact. The explanation
involves $SL(2, \mathbb{Z})$, elliptic curves, modular forms, class field theory and Artin’s
reciprocity, among other things.

1 Quadratic forms

We shall consider only positive definite, binary quadratic forms over \mathbb{Z}. Any
such form looks like $f(x, y) = ax^2 + bxy + cy^2$ with $a, b, c \in \mathbb{Z}$; it takes only
values > 0 except when $x = y = 0$.

Two forms f and g are said to be equivalent (according to Gauss) if \(\exists A = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in SL(2, \mathbb{Z}) \) such that $f(x, y) = g(px + qy, rx + sy)$. Obviously, equivalent forms represent the same values. Indeed, this is the reason for the
definition of equivalence. One defines the discriminant of f to be disc(f) = $b^2 - 4ac$. Further, f is said to be primitive if $(a, b, c) = 1$.

Note that if f is +ve-definite, the discriminant D must be < 0 (because
$4a(ax^2 + bxy + cy^2) = (2ax + by)^2 - Dy^2$ represents +ve as well as -ve
numbers if $D > 0$.)

One has:

Theorem 1.1 For any $D < 0$, there are only finitely many classes of primi-
tive, +ve definite forms of discriminant D. [This is the class number $h(D)$ of the field $Q(\sqrt{D})$; an isomorphism is obtained by sending $f(x, y)$ to the ideal $a\mathbb{Z} + \frac{-b+\sqrt{D}}{2}\mathbb{Z}$].

This is proved by means of reduction theory. The idea is to show that each form is equivalent to a unique ‘reduced’ form. ‘Reduced’ forms can be computed - there are even algorithms which can be implemented in a computer which can determine $h(D)$ and even the $h(D)$ reduced forms of discriminant D.

A primitive, +ve definite, binary quadratic form $f(x, y) = ax^2 + bxy + cy^2$ is said to be reduced if $|b| \leq a \leq c$ and $b \geq 0$ if either $a = c$ or $|b| = a$. These clearly imply

$$0 < a \leq \sqrt{\frac{|D|}{3}}.$$

For example, the only reduced form of discriminant $D = -4$ is $x^2 + y^2$.

The only two reduced forms of discriminant $D = -20$ are $x^2 + 5y^2$ and $2x^2 + 2xy + 3y^2$.

The group $SL(2, \mathbb{Z})$ is a discrete subgroup of $SL(2, \mathbb{R})$ such that the quotient space $SL(2, \mathbb{Z}) \backslash SL(2, \mathbb{R})$ is non-compact, but has a finite $SL(2, \mathbb{R})$-invariant measure. Reduction theory for $SL(2, \mathbb{Z})$ is (roughly) to find a complement to $SL(2, \mathbb{Z})$ in $SL(2, \mathbb{R})$; a ‘nice’ complement is called a fundamental domain. Viewing the upper half-plane h as the quotient space $SL(2, \mathbb{R})/SO(2)$,

$$\{ z \in h : \text{Im}(z) \geq \sqrt{3}/2, \ |Re(z)| \leq 1/2 \}$$

is (the image in h) of a fundamental domain (see the accompanying figure):
Fundamental domains can be very useful in many ways; for example, they give even a presentation for $SL(2, \mathbb{Z})$. In this case, such a domain is written in terms of the Iwasawa decomposition of $SL(2, \mathbb{R})$. One has $SL(2, \mathbb{R}) = \mathcal{KAN}$ in the usual way. The, reduction theory for $SL(2, \mathbb{Z})$ says $SL(2, \mathbb{R}) = \mathcal{KAN}/_2\mathcal{N}_2 SL(2, \mathbb{Z})$. Here $A_i = \{diag(a_1, a_2) \in SL(2, \mathbb{R}): a_i > 0 \text{ and } \frac{a_1}{a_2} \leq t\}$ and $N_u = \{(\begin{array}{cc} 1 & x \\ 0 & 1 \end{array}) \in N : |x| \leq u\}$.

What does this have to with quadratic forms? Well, $GL(2, \mathbb{R})$ acts on the space \mathcal{S} of $+ve$-definite, binary quadratic forms as follows: Each $P \in \mathcal{S}$ can be represented by a $+ve$-definite, symmetric matrix. For $g \in GL(2, \mathbb{R})$, $^tgp \in \mathcal{S}$. This action is transitive and the isotropy at $I \in \mathcal{S}$ is $O(2)$. In other words, \mathcal{S} can be identified with $GL(2, \mathbb{R})/O(2)$ i.e. $\mathcal{S} = \{^tgg : g \in GL(2, \mathbb{R})\}$. In general, this works for $+ve$-definite quadratic forms in n variables.

It is easy to use the above identification and the reduction theory statement for $SL(2, \mathbb{Z})$ to show that each $+ve$ definite, binary quadratic form is equivalent to a unique reduced form.

Indeed, writing $f = ^tgg$ and $g = kan\gamma$, $^tgg = ^t\gamma^ta^2n\gamma$ with $n \in U_{1/2}$ and $a^2 \in A_{4/3}$; so $^t\gamma an^2\gamma$ is a reduced form equivalent to f.

To see how useful this is, let us prove a beautiful discovery of Fermat, viz., that any prime number $p \equiv 1 \mod 4$ is expressible as a sum of two squares. Since $(p - 1)! \equiv -1 \mod p$ and since $(p - 1)/2$ is even, it follows that

$$((\frac{p-1}{2})!)^2 + 1 = pq$$

for some natural number q. Now the form $px^2 + 2(\frac{p-1}{2})!xy + qy^2$ is $+ve$ definite and has discriminant -4. Now, the only reduced form of discriminant -4 is $x^2 + y^2$ as it is trivial to see. Since each form is equivalent to a reduced form (by reduction theory), the forms $px^2 + 2(\frac{p-1}{2})!xy + qy^2$ and $x^2 + y^2$ must be equivalent. As the former form has p as the value at $(1,0)$, the latter also takes the value p for some integers x, y.

3
2 Class field theory/Reciprocity

One way to motivate reciprocity is as follows.

A prime $p \neq 2$ is of the form $x^2 + y^2 \Leftrightarrow (-\frac{1}{p}) = 1$ (i.e., -1 is a square mod p).

A prime $p \neq 2$ is of the form $x^2 + 27y^2 \Leftrightarrow 2$ is a cube mod p and $p \equiv 1 \mod 3$.

A prime $p \neq 2$ is of the form $x^2 + 64y^2 \Leftrightarrow 2$ is a 4th power mod p and -1 is a square mod p.

The point of quadratic reciprocity is that one can express a condition of the form $(\frac{a}{p}) = 1$ in terms of congruences for p. For instance,

\[
\left(\frac{3}{p}\right) = 1 \Leftrightarrow p \equiv \pm 1 \mod 12.
\]
\[
\left(\frac{5}{p}\right) = 1 \Leftrightarrow p \equiv \pm 1, \pm 11 \mod 20.
\]
\[
\left(\frac{7}{p}\right) = 1 \Leftrightarrow p \equiv \pm 1, \pm 3, \pm 9 \mod 28.
\]

The quadratic reciprocity law (QRL) says:

$p \neq q$ odd primes \(\Rightarrow\)

\[
\left(\frac{p}{q}\right) = 1 \Leftrightarrow q \equiv \pm d^2 \mod 4p \text{ for some odd } d.
\]

Abelian class field theory and Artin’s reciprocity law in particular - QRL corresponds to the special case of quadratic extensions - tells us when a prime p splits completely in a finite abelian extension of \mathbb{Q}, in terms of congruences. Here p splits completely in $Q(\alpha)$ if the minimal polynomial of α over Q splits into linear factors when viewed modulo p.

For e.g. in $Q(e^{2\pi i/n})$, a prime p splits completely $\Leftrightarrow p \equiv 1 \mod n$. In any finite extension field K of Q, one can do algebra as in \mathbb{Z} and Q, excepting the fact that unique factorisation is absent, in general. Fortunately, a finite
group (called the class group of \(K \)) measures the deviation from this property holding good.

For \(K = \mathbb{Q}(\sqrt{D}) \) with \(D < 0 \), the order \(h(D) \) of the class group of \(K \) gives the number of +ve-definite, primitive, reduced, binary, quadratic forms.

Class Field Theory has two parts - one consists of the reciprocity law and the other is an existence theorem of a certain field called the Hilbert class field corresponding to any field \(K \). The latter is the maximal, unramified, abelian extension of \(K \). For example, the Hilbert class field of \(\mathbb{Q}(\sqrt{-14}) \) is \(\mathbb{Q}(\sqrt{-14})(\sqrt{2\sqrt{2} - 1}) \). One has:

Theorem 2.1 Let \(n > 0 \) be square-free and \(\equiv 3 \mod 4 \). Then, an odd prime \(p \) can be expressed as \(x^2 + ny^2 \) if, and only if, \(p \) splits completely in the Hilbert class field of \(\mathbb{Q}(\sqrt{-n}) \).

Remark There is an analogous version when \(n \equiv 3(4) \). In that case one looks at primes \(p \) expressible as \(x^2 + xy + (1+n)4y^2 \) and one considers the so-called ring class field of \(\mathbb{Z}[(\sqrt{-n})] \).

Of course, \((\frac{-n}{p}) = 1 \) implies that \(p \) divides \(x^2 + ny^2 \) for some integers \(x, y \). Unlike the case of \(n = 1 \) (and the cases \(n = 2, 3, 4, 7 \)), there are many (as many as \(h(-4n) \)) reduced forms (among which is the form \(x^2 + ny^2 \)) and the condition \((\frac{-n}{p}) = 1 \) only implies that \(p \) is represented by one of these forms.

When do we know that \(p \) is represented by \(x^2 + ny^2 \) itself?

Now, the previous theorem can be used to determine the primes expressible in the form \(x^2 + ny^2 \) provided one can determine the Hilbert class field of \(\mathbb{Q}(\sqrt{-n}) \). Indeed, if \(L = \mathbb{Q}(\sqrt{-n})(\alpha) \) is the Hilbert class field (actually the ring class field of \(\mathbb{Z}[\sqrt{-n}] \) and \(f_n(X) \) is the minimal polynomial of \(\alpha \) (where \(\alpha \in \mathcal{O}_L \)), then for a prime \(p \neq 2 \) with \(p \nmid n, p \nmid \text{disc} f_n \), we have:

\[
p = x^2 + ny^2 \iff (\frac{-n}{p}) = 1 \text{ and } f_n(x) \equiv 0 \mod p \text{ for some } x \in \mathbb{Z}.
\]

As before, there is an analogous version for \(n \equiv 3 \pmod 4 \).
3 The modular function

For \(\tau \in h \), the upper half-plane, consider the lattice \(\mathbb{Z} + \mathbb{Z} \tau \) and the functions

\[
g_2(\tau) = 60 \sum_{m,n} \frac{1}{(m+n\tau)^4} \left(\frac{(2\pi)^4}{12} \left(1 + \sum_{n=1}^{\infty} \sigma_3(n) e^{2\pi i n\tau} \right) \right)
\]

\[
g_3(\tau) = 140 \sum_{m,n} \frac{1}{(m+n\tau)^6} \left(\frac{(2\pi)^6}{12} \left(1 + \sum_{n=1}^{\infty} \sigma_5(n) e^{2\pi i n\tau} \right) \right).
\]

[Note that \(p'(z)^2 = 4p(z)^3 - g_2(\tau) p(z) - g_3(\tau) \) where the Weierstrass \(p \)-function on \(\mathbb{Z} + \mathbb{Z} \tau \) is given by \(p(z) = \frac{1}{z^2} + \sum \frac{1}{(z-w)^2} - \frac{1}{w^2} \).]

It can be shown that \(\Delta(\tau) \overset{d}{=} g_2(\tau)^3 - 27g_3(\tau)^2 \neq 0 \). The elliptic modular function \(j : h \to \mathbb{C} \) is defined by

\[
j(\tau) = 12^3 \cdot \frac{g_2(\tau)^3}{\Delta(\tau)}.
\]

The adjective ‘modular’ accompanies the \(j \)-function because of the invariance property:

\[
j(\tau) = j(\tau') \Leftrightarrow \tau' \in SL(2, \mathbb{Z})(\tau) \overset{d}{=} \left\{ \frac{a\tau + b}{c\tau + d} : \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL(2, \mathbb{Z}) \right\}.
\]

In fact, we have:

Theorem 3.1 (i) \(j \) is holomorphic on \(h \).
(ii) \(j \) has the invariance property above.
(iii) \(j : h \to \mathbb{C} \) is onto.

The proof of (iii) needs the fundamental domain of \(SL(2, \mathbb{Z}) \) we referred to earlier.
That fact that \(p \) satisfies the equation \((p')^2 = 4p^3 - g_2p - g_3 \) implies, by the above theorem, that the \(j \)-function, gives an isomorphism from the set \(SL(2, \mathbb{Z}) \backslash h \) to the set all ‘complex elliptic curves’ \(\mathbb{C}/\mathbb{Z} + \mathbb{Z} \tau \).
In fact, one has bijective correspondences between:

(i) lattices \(L = \mathbb{Z} + \mathbb{Z}\tau \subset \mathbb{C} \) upto scalar multiplication,
(ii) complex elliptic curves \(\mathbb{C}/L \) upto isomorphism,
(iii) the numbers \(j(\tau) \), and
(iv) Riemann surfaces of genus 1 upto complex analytic isomorphism.

As a matter of fact, \(SL(2, \mathbb{Z})\backslash h \) is the (coarse) moduli space of elliptic curves over \(\mathbb{C} \).

In general, various subgroups of \(SL(2, \mathbb{Z}) \) describe other moduli problems for elliptic curves. This description has been vastly exploited by Shimura et al. in modern number theory.

For instance, complex spaces like \(\Gamma_0(N)\backslash h \) have algebraic models over \(\mathbb{Q} \) called Shimura varieties. The Taniyama-Shimura-Weil conjecture (which implies Fermat’s Last Theorem) says that any elliptic curve over \(\mathbb{Q} \) admits a surjective, algebraic map defined over \(\mathbb{Q} \) from a projectivised model of \(\Gamma_0(N)\backslash h \) onto it. The point of this is that functions on \(\Gamma_0(N)\backslash h \) or even on \(SL(2, \mathbb{Z})\backslash h \) with nice analytic properties are essentially modular forms and conjectures like Taniyama-Shimura-Weil and, more generally, those which come under the so-called Langlands Program say essentially that ‘geometric objects over \(\mathbb{Q} \) come from modular forms’.

As \(j : h \to \mathbb{C} \) is \(SL(2, \mathbb{Z}) \) - invariant, one has \(j(\tau + 1) = j(\tau) \). So \(j(\tau) \) is a holomorphic function in the variable \(q = e^{2\pi i\tau} \), in the region \(0 < |q| < 1 \).

Thus, \(j(\tau) = \sum_{n=-\infty}^{\infty} c_n q^n \) is a Laurent expansion i.e., all but finitely many \(c_n (n < 0) \) vanish.

In fact, \(j(\tau) = \frac{1}{q} + 744 + \sum_{n \geq 1} c_n q^n \) with \(c_n \in \mathbb{Z} \) \(\forall \) \(n \). (\(c_1 = 196884, c_2 = 21493760, c_3 = 864299970 \) etc.) We shall keep this \(q \)-expansion of \(j \) in mind.
4 Complex multiplication

We defined the j-function on \mathbb{H}. One can think of j as a function on lattices $\mathbb{Z} + \mathbb{Z}\tau$. In particular, if \mathcal{O} is an order in an imaginary quadratic field $\mathbb{Q}(\sqrt{-n})$, it can be viewed as a lattice in \mathbb{C}. In fact, any proper, fractional \mathcal{O}-ideal I can be 2-generated i.e, is a free \mathbb{Z}-module of rank 2 i.e., is a lattice in \mathbb{C}. Then, it makes sense to talk about $j(I)$. Using basic properties of elliptic functions, it is quite easy to show:

Proposition: $j(I)$ is an algebraic number of degree \leq class number of \mathcal{O}. In fact, a much stronger result holds and, it is :

The First main theorem of Complex multiplication :

Let \mathcal{O} be an order in an imaginary quadratic field K. Let $I \subset \mathcal{O}$ be a factional \mathcal{O}-ideal. Then, $j(I)$ is an algebraic integer and $K(j(I))$ is the Hilbert (ring) class field of \mathcal{O}.

In particular, $K(j(\mathcal{O}_K))$ is the Hilbert class field of K. We have almost come back where we started from. Indeed, it only remains to explain the ‘za’ of things now:\footnote{A friend had confessed long ago that in his primary school, he understood the tables but it took him a long time to understand the meaning of ‘za’ in ‘two two za four’!}

A Corollary of the above theorem is:

Proposition: Let \mathcal{O}, K be as above and let I_1, \ldots, I_h be the ideal classes of \mathcal{O} (i.e., $h = [\text{Hilbert class field of } \mathcal{O} : K] = [K(j(\mathcal{O})) : K]$). Then, $\prod_{i=1}^{h} (X - j(I_i))$ is the minimal polynomial of any α such that $K(\alpha) = \text{Hilbert class field of } \mathcal{O}$. Note that α can be any $j(I_i)$.

Applying the theorem to $j(\tau)$ for τ imaginary quadratic, it follows that $j(\tau)$ is an algebraic integer of degree $= \text{class number of } Q(\tau)$ i.e, \exists integers a_0, \ldots, a_{h-1} such that $j(\tau)^h + a_{h-1}j(\tau)^{h-1} + \ldots + a_0 = 0$.

Now, there are only finitely many imaginary quadratic fields $Q(\tau) = K$ which have class number 1. The largest D such that $Q(\sqrt{-D})$ has class number...
1 is 163. Since $163 \equiv 3(4)$, the ring of integers is $\mathbb{Z} + \mathbb{Z}(-\frac{1+i\sqrt{163}}{2})$. Thus $j(-\frac{1+i\sqrt{163}}{2}) \in \mathbb{Z}$.

Now $j(\tau) = \frac{1}{q} + 744 + \sum_{n \geq 1} c_n q^n$ with $c_n \in \mathbb{Z}$ and

$$q = e^{2\pi i (-\frac{1+i\sqrt{163}}{2})} = -e^{-\pi\sqrt{163}}.$$

Thus $-e^\pi \sqrt{163} + 744 - 196884 e^{-\pi\sqrt{163}} + 21493760 e^{-2\pi\sqrt{163}} + \ldots = j(\tau) \in \mathbb{Z}$.

In other words,

$$e^{\pi\sqrt{163}} - \text{integer} = 196884 e^{-\pi\sqrt{163}} + 21493760 e^{-2\pi\sqrt{163}} \ldots \approx 0.$$

VOILA !!!