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The aim of these two lectures is to discuss the main ideas involved in the
approach towards the so-called Fermat's last theorem (FLT). The discussion
leads to the point where recent work by A.Wiles starts and we do not discuss
his work here-The organisation of our lectures is as follows.
* Mathematical history of the FLT .
4> Present approach - in short.
4> Elliptic curves.
4) Modular forms.
6 Relations between elliptic curves and modular forms.
4> Taniyama-Shimura-Weil conjecture and FLT.

1 History of FLT

P. Fermat (1601-1665) asserted that the equation

Xn + Yn = Z"

has no integer solutions X, Y, Z (other than X, Y or Z = 0) if n > 3. In
1847, E.Kummer made the first important breakthrough. Earlier, C.F.Gauss
proved the quadratic reciprocity law conjectured by L.EuIer and while looking
for similar laws for higher powers, he discovered thatthe calculations were
easier by working over the Gaussian integers a + b.i (a,b € Z; i = i/~~l)
rather than the usual integers. He developed a theory of prime factorisation
for these numbers. It is here that the algebraic numbers entered number
theory.

An algebraic number is a complex number which is a solution of a polynomial
equation

anx* + + o0 = 0



where a, € Z and, if an = 1 it is called an algebraic integer. Examples
art; <J2, i — \/—l, ( = e "" . I n the setting of algebraic integers, a solu-
tion of Fermat's equation J " + y" — z" (if one exists), can be factorised by

introducing an nth root of 1, ( = e

(y) •zn = (x +

This factorisation takes place in the ring Z[f], of algebraic integers of the
form

ao + ai( + + a r( ' ; Ok 6 Z.

In 1847, Lame' announced a 'proof of the FLT. His proposal was to show that
(only the case where x, y have no common factors needs to be considered)
x + y, x + (jf, • • •, x + C~ty have no common factors. Implicitly assuming
that unique factorisation holds among these numbers, he 'deduced' that each
x + ('y is an n-th power, and derived a contradiction from this. But, Kummer
pointed out that unique factorisation can fail; e.g. n = 23. Kummer went on
to develop the theory of 'ideal' numbers to restore unique factorisation. By
these means he was able to give a proof of FLT for a class of primes called
regular primes. Let us briefly describe this.
In Z[Q (or similarly, in 'integers' in extension fields of Q), every nonzero
ideal is uniquely a product of prime ideals but the ideals may not be principal
(i.e. generated by one element) unlike the usual integers. The set of ideals,
modulo, the principal ideals forms a finite group, the class group, under
multiplication of ideals. The problem with the above argument of Lame is
that each i + Cy >s a t l "-th power of an ideal / and not of an element,
in general. Thus, the ideal I, considered as an element of the class group
satisfies /" = Identity which implies that if n happens to be a prime number
not dividing the order of the class group, 7 itself will be principal and Lame's
argument goes through perfectly. The primes n which don't divide the class
number (= order of class group) of the corresponding Z[£], are called regular
primes.
So, the theory of ideals, and in some sense, the subject of algebraic number
theory itself was born out of these attempts to solve FLT. The solution of
FLT itself would have no application, even in number theory, but the general
ideas which have risen out of these attempts to solve the FLT are very rich
and have many applications.

2 The present approach - in brief

In the modern approach, essentially three objects and their interrelation-
ships are involved. These objects are (i) Elliptic curves, (ii) Modular forms;
and (iii) Galois representations. The relationships alluded to are very spe-
cial cases of what is known as Langlands's program. G.Frey had the idea
of associating an elliptic curve £OijiC to every solution (a, 4, c) of the Fermat
equation in such a way that this curve would exhibit remarkable proper-
ties which would contradict the so-called Taniyama-Shimura-Weil (T-S-W)
conjecture which says, in essence, that elliptic curves over Q 'come from'
modular forms. Frey's curve is the following. Consider (a,b,c) relatively
prime such that

a! + b' + c' = 0

where / > 5 is a prime. After permuting, we may suppose that b is even and
that a = 1 mod 4. Then EiibiC is the curve given by the equation

y2 = x(x - a')(x + b>)

It turns out that there are serious difficulties in carrying out this idea, having
to do with the Galois representation on points of finite order of the curve.
K.Ribet succeeded in proving a result on such representations which was
strong enough to show that T-S-W conjecture =S> FLT. Our purpose, in these
lectures is to introduce the relevant objects and study them in brief and finally
indicating the proof of the implication T-S-W => FLT. The announcement
of A.Wiles is the proof of T-S-W in the particular case of semistable elliptic
curves (this suffices for FLT).

3 Elliptic curves

Elliptic curves are non-singular algebraic curves of genus 1 having a specified
basepoint. Any such curve can be written as the locus in P 2 of a cubic
equation of the form

where the point (0,1,0] in P2 is the base point. If K is a field such that all
the <2,'s belong to K, we say that E is defined over K. If Char./V / 2,3 we



can change variables and write the equation as

y2 = i 3 + ax + 6

always remembering there is the extra point [0,1,0] at infinity. The non-
singularity of the curve is equivalent to the discriminant condition 4a3 +
21b2 / 0 viz. that the polynomial i 3 + ax + b have distinct roots. Moreover,
if the curve is singular i.e. if the discriminant is 0, there is exactly one
singular point. The singular point is called a node if there are two tangents
at the singular point and called a cusp, if there is a single tangent at the
singular point.

= X.

Associated to E are the two quantities

A = -l6(4a3+2762)

Two elliptic curves are isomorphic over the algebraic closure K iff they have
the same j - invariant.

Group Law
The points of E satisfy a group law. Let P,Q € E and let L C P2 be the
line joining them. Since the equation for £ is a cubic, L intersects E at a
third point R. Let U be the line joining ft and O = [0,1,0]. Then P + Q is
the third point of intersection of V with E. This makes E into an abelian
group with 0 as the identity.



If E is defined over A', then the set

E(K) = {0} U {(x,y) (= K2 : y2 = x3 + ax + 6}

is a subgroup of £\ Over the field C of complex numbers, E(C) is juct
a complex torus of dimension 1 i.e. C/A where A is a lattice in C. This
follows from the classical theory of elliptic functions. Over arithmetic fields
like number fields A', E(K) is more subtle. If K is a number field (i.e. a finite
extension of Q), the theorem of Mordell-Weil states that E(K) is a finitely
generated abelian group i.e. E(K) S Z ' © f for some finite abelian group
F. The possible torsion subgroups F have been determined by Mazur but
the rank r of the Mordell-Weil group is more subtle. The conjecture of Birch
and Swinnerton • Dyer states that this rank r is also the order at 5 = 1 of
the (so-called) L-function L(s, E) of E. At the present time, the conjecture
is known to be true for r < 2.

Isogenies
Since there is a group law on E, Vm, there is a morphism [m] : E —* E, the
multiplication-by-m map. If m ^ 0, this is surjective, as E is a curve, and
hence it is a finite map. In fact, [m] is a homomorphism of groups and has
a finite kernel. These maps are examples of isogenies.
An isogeny <p : E —> E is, by definition, a morphism which preserves O. It can
be shown that isogenies are necessarily group hoinomorphisms. Hom(£'i, E2),
the set of isogenies from Ei to E7, forms a free abelian group. (The freeness
is not obvious). In the case Et = E2 = E, End(£) = Hom{E, E) is, indeed,
an integral domain of characteristic 0. [f End(E) contains isogenies other
than the [m], then End(£) D Z ; End(£) j£ Z. In this case, E is said to have
complex multiplication. If m € Z , m ^ 0 and E is an elliptic curve over an
algebraically closed field A', then the group E[m] := Ker [m] of m-division
points has the following structure.
If, either Char./V = 0 or (m,Char.A') = 1, then

E[m] = Z/mZ x Z/mZ

If Char. K = p> 0, then either

E\pn] =* Z/p"2 V n > 1

E\p"] = {0} V n > I

Tate Module
Let E be an elliptic curve over a field A', and let / be a prime number not
dividing the characteristic of K. Note that the natural action of Gal(A'/A")
on E gives an action on each E[ln] = Z//"Z x Z/CZ. So, we have represen-
tations

Gal(K/K) - Aut E{in] ^ GZ,2(Z//"Z)

Since it is easier to study representations on a ring of char. 0, we construct
the Tate module

T,(E) = hm^E[ln]

the protective limit with respect to the maps

In other words, T\{E) consists of sequences {ai,a2, ) of points a,- £ E
such that laj = 0 and /a!+] = a,. In fact, Ti(E) = Z/ x Zj as a Z; - module.
Since the Galois action commutes with the maps

£[/"+'] E[ln

we have an action of Gal(KjK) on Ti(E) i.e. the so-called /-adic represen-
tation

pi : Gal (KIK) -+ AutT,(E) S GL(2,Z,)

The (-adic representation pi is a continuous representation. Let us suppose
now that K is a number field and let us recall the definition of a Frobenius
conjugacy class. For a finite extension L of A', corresponding to any discrete
valuation v of K (equivalently, to any prime ideal of the ring OK of integers
of A'), we have the decomposition groups G^, for the various extensions Wj
of v to K. These are the subgroups of Gal(L/A'} stabilising the w, and
are, hence, conjugate since Gal(Z//A") acts transitively on the w,. There are
natural homomorphisms from the GWs to Gal(/u,,//u), the Galois group of
the finite residue field extensions. The kernel /„,,, which is called the Inertia
group at W(, is trivial for almost alt (i.e. all but finitely many) v. For such i>
(i.e. when the Inertia groups are trivial), the decomposition groups G^t being
isomorphic to Gal(/u,,//v), have a special element Fr; viz. the inverse image
of the Frobenius homomorphism <r, € Ga\(jwJfv), defined by UJX = 1 ' where
q = Card (/„). Since the GWt are conjugate, we have a well- defined conjugacy



class Fru in Gal(L/K). In particular, Tr p((Frv) and del pi(Ftv) make sense
where pi is the /-adic representation defined above. Now, composing with
the natural map : Zj -+ F; one gets a representation

p, : Gal(K/K) -» Gi(2,r,)

We call î unramified at v if pi(I^) = {Id} for some (and hence all) extensions
w of v to finite extensions of K.

Reduction mod p and minimal model
If a cubic curve C satisfying Weierstrass's equation is singular, it is easy
to show that it has exactly one singular point which is either a node or a
cusp and the non- singular points Cn, of C satisfy the group law. If it is a
node, En, ^ K , the multiplicative group, and, if it is a cusp, En, & K ,
the additive group of K. All this was over a general algebraically closed
field K. If E is an elliptic curve denned over Q, then E can be described
by Weierstrass equations with coefficients in Z. Moreover, there is a model
over Z for which the discriminant is minimal in some sense. For E in such
a minimal form, we have the reduced curves Ep over Fp for each prime p.
These are plane cubics. We make the following definitions.
E has good reduction at p if Er is non-singular.
E has semistable (or multiplicative) reduction at p if Er has a node.
E has unstable (or additive) reduction at p if Ef has a. cusp.
In the latter two cases, E is said to have bad reduction at p. One can see easily
that if E has bad reduction at p, then p divides the minimal discriminant A.

4 Modular forms
Let H denote the upper half-plane {z : Imr > 0}. The group T = SL(2,Z)
acts as usual, by fractional linear transformations

az + b a b
d

Definition : A meromorphic function f on H is called a modular function of
weight k for V if :

(i) /(7*) = ( « + <*)V(*)V7 ( )

(ii) The Fourier expansion of / in the variable q = e2r" has the form

for some integer no.

Definition : / is a modular form of weight k for T if / is holomorphic on H and
n0 = 0 (in which case we say / is holomorphic at oo and set /(oo) = c(0)).
If further, /(oo) = 0, / is called a cusp form for F.
Example : The Eisenstein series

is a modular form of weight Ik.
Let A/* = {Space of modular forms of weight 2k};
Mk.o = {Space of cusp forms of weight 2fc}.
Mk, Mk.o are C - vector spaces and M = YlT=o^k ls a graded C - algebra
because / € Mk,g € A/, => fg G Mi+).

Proposition
Every modular form is a polynomial in Gt and G6 i.e.

Further, Mk = {0} i/ifc < 0 and, /or it > 0,
= [|](n»p[|] + 1) i/fc s 1[ | ] ( p [ | ] ) / f 0 U «< 6.

Define W - MJ P l(Q). Since 51(2, Z) acts transitively on P ' (Q). the
quotient space W / F which is a Riemann surface, can be thought of as 7i/T
to which a single point (called a cusp) has been added.



I l i i see

Modular forms for congruence subgroups
Let us consider an integer N > \ and the subgroup

of finite index in F.
The cusps of ro(/V) are the orbits of T0(N) on P'(Q) C H\
Define a modular function of weight k for F0(JV) to be one for F such that :

V 7 = ; and(\) f(1Z) = (cz + d)

(ii) / is meromorphic at each cusp of fCfro(N).
As before, / as above is a modular form if it is holomorphic everywhere and
is a cusp form if it vanishes at all cusps.

Cusp forms of weight 2
If / is a modular form of weight 2 for Fo( A'), then the differential form j{z)dz
on H is rQ(Af)-invariant (check!). If, further, / is a cusp form, then f{z)dz
therefore defines a holomorphic 1-form on H'/ro(N). In fact,
{Space of weight 2 cusp forms for F0(A')} = {Holomorphic 1-forms on
H-/ro(N)}.
Thus, we can calculate the genus of W/Fo(Ar), and thereby find the dimen-
sion of the space of weight 2 cusp forms for F0(A

r).
For instance, for N = 2, this genus = 0.

5 Modular curves and the T-S-W conjecture

Consider as before the action of F = 5i(2,Z) on 7i. The group F/{±/} has
a faithful representation and the coset space has the fundamental domain

There is a classical function, holomorphic on H and T - invariant, called the
j-function, which gives a holomorphic isomorphism

} : W/r - P ' ( C ) \ { o o } = A'(C)

If one takes q — eJ ' 'T as a local parameter at infinity, then one can compactify
H/T by adjoining the point at infinity, thus obtaining a compact Riemann
surface isomorphic to P ^ C ) . In terms of q, the function j has a Laurent
expansion

jtq) = ~ + 744 + 196884? + 0{q2)
<?

In fact, j : H'/V —* P ' (C) gives an analytic isomorphism. A better way to
conceive of j is in terms of complex tori as follows. Let A = ZLJ| ® 2*^i be
a lattice in C where {CJ^WJ} is a Z-basis. We can suppose that ^ = r 6 W.
Since j is F-invariant, the value j(r) is independent of the choice of basis
{ui,(4^} and j(j) remains same also if we replace {uJ\,u>2} by {cwijCu^} for
any c G C*. Thus, we can define j(A) = J(T), and we have j'(cA) = j(A)-
Since C/A is a complex torus (of dimension 1) this shows that j is the single
invariant for isomorphism classes of such tori. Now, let N be a positive
integer and let

ro(jv)
- < ( :

6 F : c = 0 mod N]

Let CN denote the cyclic group generated by I/A1 considered as a point of
the torus C/ [T , 1]. We have :
The association T >-> ( C / [ T , 1] , Cjv) gives a bijection between lH/Fo(Ar) and
isomorphism classes of tori with a cyclic subgroup of order TV. Note that
though the map HjY —* A' is just a classification over C, A1 is defined over
Q. In fact, (from the theory of the so-called Shimura varieties) there exists an
affine curve Y0(N) defined over Q such that Y0(N)(C) = H/Ya(N), and such
that Yo(N) parametrizes isomorphism classes of pairs (E,C) algebraically
in the following sense, where E is an elliptic curve and C is a cyclic subgroup
of order N- If k D Q is a field, then a point Ya(N)(k) corresponds to such
a pair (E, C) with E defined over k and C invariant under the Galois group
Gal(Q/fc). The affine curve Y0{N) can be comp&ctified by adjoining the
cusps i.e. the points that lie over j = oo. This completion is denoted by
X0(N).

11



Consider the curve XB{N) defined over Q. Now, we state the following
(Weaker version of the) T-S-W conjecture :
Every elliptic curve over Q is parametrised by modular functions
i.e. 3/V and a surjective morpkism X0(N) —» E defined over Q.

To make it more precise, let S{N) be the C-vector space of differentials of
the first kind on X0(N). Recall that for a curve C\ a differential w is said to
be of the first kind if Ordpu; > 0 V P € C. The space of such differentials
has dimension g = Genus of C. In terms of the complex variable on Ti
covering Y0(N)(C) by the map n/T0(N) -» K0(/V)(C), such a differential
can be expressed i sw = f(r)dr, where / is holomorphic on Ti. In terms of
the parameter q = e2"'7, we can write

Note that this shows that what we are actually concerned with are cusp
forms for Po(/V). The coefficients an are called the Fourier coefficients of the
form u. We define the Hecke operators, for our purposes, as follows. (In our
situation, we are concerned only with cusp forms of weight 2 but the action
of Hecke operators can, in general, be defined on forms of any weight).
For every prime p such that N ^ 0 mod p, there is an operator Tp on S(N)
whose effect on the Fourier coefficients is given by

If p/N, there is again an operator Tp such that Tp : £
 an9" "-» "pni"- A

non-zero form in S(N) which is a common eigenvector for all the Tp is called
an eigenform. The precise form of the T-S-W conjecture is the following.

Conjecture (Taniyama-Shimura-Weil)
Let E be an elliptic curve over Q, and TV its conductor. Then, there exists an
eigenform in S(N) such that for each prime p not dividing N the eigenvalue
aT of Tp for this form satisfies |£(FP)| = 1 4- p — ap. (Thus, av is also
the trace of the Frobenius in the /-adic representations). In addition, there
exists a rational map it : Ao(JV) —» E defined over Q, such that if U>E,* is
a suitably normalised differential of the first kind on E, then x'u>E,r is the

12

above eigenform for the Hecke operators, and

where ai = 1 and ap is the eigenvalue as above.

In the above, recall that the conductor JV of E is a measure of its bad
reduction and is a number of the form HB/AP^*' where A is the minimal
discriminant of E. Also, recall that UJE,* is chosen from a 1-dimensional
space. Finally, note that ap are integers since op = p + I - \E(FP)\. Here,
and in above, |.Y| refers to the cardinality of a set X.

6 Modular representations

Let JV 6 Z. Let T = TN be the subring of Endc5(JV) generated by the
operators Tp over Z. Then, it is known that T is a free Z-module of rank
equal to the genus g{N) of Xo(N), which is also equal to the dimension of
S(N). Let M be a maxima! ideal of T. Then the residue field TjM = kM is a
finite field, say of characteristic /. By a theorem of Deligne-Serre, there exists
a semisimple continuous homomorphism p : GQ = GW(Q/Q) —> GL(2, kj^)
such that
(i) det p = xi, the /-th cyclotomic character;
(ii) p is unramified at all primes not dividing JV; and
(iii) tr p(Frp) = Tp mod M for all p not dividing JV.

Recall that \t '• Gq —> Fj C k^ is the character such that VCT £ GQ and an
/th root C of unity, we have a( = £*'*>. Also, Frp denotes the Frobenius con-
jugacy class detyermined by p. The representation p is unique upto isomor-
phism. This follows from the Cebotarev density theorem, which implies that
all elements of Image p are conjugate to p(Frp) for some p, together with the
fact that trace and determinant determine a 2-dimensional representation.
(We remark that for an elliptic curve over Q, the corresponding /-adic repre-
sentation pi of Gq on Gi(2, F;) has for its determinant, the /th cyclotomic
character (as in (i) above!) and the trace of pr(frp) is ap — p + 1 — |£(F,,)|
which is the eigenvalue predicted in the T-S-W conjecture!)

13



Let F be a finite field, and let 7 : GQ —• Gt(2,F) be a continuous, semisim-
ple representation. 7 is said to be modular of level N if 3 a maximal ideal
M of T and an embedding i : TjM -» F such that the representations

G Q GL(2,¥)

Gq -A GL(2,TjM) A GL(2,F)

are isomorphic. Kquivalently, one requires a homomorphism a ; T —> F such
that tr f{Frp) = «(TP) and det f(frp) = p, for all but finitely many primes
p. Finally, there is the notion of a representation 7 being finite. Let p be a
prime ^ I. Then, 7 is finite at p if 7 is unramified at p. (In general, finiteness
is the following notion. Now, the decomposition group Gp = Ga/(QP/Qp).
7 is finite at p, if there exists a finite, flat group scheme Q over Zp, with an
action of F on Q making Q of rank 2 over F, such that 7 is isomorphic to the
representation of Ca/(Q^/Qp} on S(Q^)).

Remark
By the uniqueness of the Deligne-Serre representation, we can restate the
T-S-W conjecture as follows. If p is the l-adic representation on E, then p
is modular of level N (= equal to the conductor of E).

7 T-S-W =>- FLT
Proposition (Serre)
Let E be a semistable elliptic curve over Q, put in minimal model over Z.
Let p be the representation o/Gq on E[l] for some prime I. Let p be a prime.
Let A be the minimal discriminant.
Then, the representation p is finite at p ** Ora\,& = 0 mod t.

Finally, a result of Ribet shows
Theorem
Let 7 be an irreducible 2-dimensional representation O/GQ over a finite field
of characteristic I > 2. Assume that 7 is modular of square-free level N,
and that there is a prime qjN, q / / such that 7 is not finite at q. Suppose
further that pjN such that 7 is finite at p.
Then 7 is modular of level —.
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Using these results, we outline the proof of
T-S-W for semistable curves =» FLT
Suppose T-S-W is true for semistable elliptic curves. It suffices to show
that there is no triple (a, 6, c) of relatively prime non-zero integers such that.
a' + b' + c' = 0 where / > 5 is a prime. Suppose that there is such a triple.
Without loss of generality, we may assume that o, 6, c are relatively prime.
After permuting them, we may even suppose that 6 is even and that a = 1
mod 4. Consider the Frey elliptic curve

E • y1 = x(x - a'){x + b')

One can compute its conductor to be JV = abc, and the minimal discriminant
to be A = '°jf . We then obtain the representation p of GQ on E[l] which
is known to be irreducible by results of Mazur and Serre. Frey had already
noted that if p ^ I and p/N but p ^ 2, then p is unramified at p, so finite
at p. By Serre's proposition above, one sees therefore that p is not finite at
2. By T-S-W, the representation p is modular. Applying Ribet's theorem
repeatedly, we deduce that p is modular of level 2. This is impossible, because
5(2) has dimension 0. This proves the implication that T-S-W => FLT.
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