Sum of the Reciprocals of the Binomial Coefficients

B. SURY

1. Introduction

The sum in the title will be shown to satisfy the following identities. For any natural number n,

$$\sum_{k=0}^{n} {n \choose k}^{-1} = (n+1)/2^{n} \sum_{i=0}^{n} 2^{i}/(i+1)$$

$$= (n+1)/2^{n} \sum_{j \text{ odd, } j \le n+1}^{n+1} C_{j} 1/j.$$

The sum on the right-hand side of the first equality involves n only at the upper limit. Thus, we are able to find a recurrence for the sum of the reciprocals of the binomial coefficients.

The proof of \spadesuit is extremely easy: we will give it and make a few remarks on some consequences.

Proof of :

$$\sum_{k=0}^{n} {n \choose k}^{-1} = \sum_{k=0}^{n} \Gamma(k+1)\Gamma(n-k+1)/\Gamma(n+1)$$

$$= (n+1) \sum_{k=0}^{n} \beta(k+1, n-k+1)$$

$$= (n+1) \int_{0}^{1} \left(\sum_{k=0}^{n} t^{k} (1-t)^{n-k} \right) dt$$

$$= (n+1) \int_{0}^{1} (t^{n+1} - (1-t)^{n+1} dt/((t-(1-t)))$$

$$= (n+1)/2^{n+1} \int_{0}^{1} ((s+1)^{n+1} - (1-s)^{n+1}) ds/s$$

$$= (n+1)/2^{n+1} \int_{0}^{1} \sum_{j=0}^{n} {n+1 \choose j} (1-(-1)^{j}) s^{j} ds/s$$

$$= (n+1)/2^{n} \sum_{j \text{ odd}, j \leqslant n+1} {n+1 \choose j} C_{j} 1/j.$$

This proves one of the equalities.

352 B. Sury

Moreover, the intermediary step

$$(n+1)/2^{n+1} \int_0^1 ((s+1)^{n+1} - (1-s)^{n+1}) \, ds/s$$

$$= (n+1)/2^{n+1} \left(\int_0^1 ((s+1)^{n+1} - 1) \, ds/s + \int_0^1 (1 - (1-s)^{n+1}) \, ds/s \right)$$

$$= (n+1)/2^{n+1} \sum_{i=0}^n \left(\int_0^1 (1+s)^i \, ds + \int_0^1 (1-s)^i \, ds \right)$$

$$= (n+1)/2^{n+1} \sum_{i=0}^n \left((2^{i+1} - 1)/(i+1) + 1/(i+1) \right)$$

$$= (n+1)/2^n \sum_{i=0}^n 2^i/(i+1),$$

which proves .

2. Remarks

Let S_n be the sum $\sum_{k=0}^n {n \choose k}^{-1}$ and let $\sigma_n = \sum_{i=0}^n 2^i / (i+1) = 2^n / (n+1) + \sigma_{n-1}$. Then, $S_n = (n+1)\sigma_n/2^n$ and, consequently,

$$S_n = S_{n-1}(n+1)/2n + 1. (1)$$

This shows at once that

$$\lim_{n \to \infty} S_n = 2. \tag{2}$$

If we set $T_n = n! S_n$ so that T_n is a positive integer, then we find that the recurrence is

$$T_n = T_{n-1}(n+1)/2 + n! (3)$$

We are thus enabled to calculate the following modest table of T_n :

n	T_n
1	.2
2	.5
3	.16
4	.64
5	.312
6	.1812
7	.12288
8	.95616
9	.840960
10	.8254080
11	.89441280
12	.1060369920
13	.13784808960
14	.191094543360
15	.28240773120000

The recurrence (3) gives a number of theorems of the following type:

THEOREM 1. If p is a prime, $S_{p-1} \equiv 1 \mod p$.

THEOREM 2. If p is a prime, $T_{p-1} \equiv -1 \mod p$.

THEOREM 3. If p is a prime, p divides T_n for $n \ge 2p - 1$.

ACKNOWLEDGEMENTS

Two years ago, I wrote to Professor D. H. Lehmer mentioning the identities . He very kindly made some interesting comments. I would like to dedicate this little note to his memory.

Received 11 April 1991 and accepted 18 December 1992 B. Sury

> School of Mathematics, T.I.F.R., Homi Bhabha Road, Bombay 400005, India