Comment on:

H. N. Ramaswamy & C. R. Veena, "On the energy of the unitary Cayley graph" Volume 16, N24 (2009).

By B. Sury Stat-Math Unit, Indian Statistical Institute, 8th Mile Mysore Road, Bangalore 560059, India email:sury@isibang.ac.in

Theorems 3.1, 3.7 of the paper assert that the energy of the unitary Cayley graph $\operatorname{Cay}(\mathbf{Z}_n, \mathbf{Z}_n^*)$ is $2^{\omega(n)}\phi(n)$. We give an essentially one-sentence proof of these theorems; we do not address other results in the paper.

The Cayley graph $C_n = \text{Cay}(\mathbf{Z}_n, \mathbf{Z}_n^*)$ is a connected $\phi(n)$ -regular graph and the eigenvalues of its adjacency matrix are the Ramanujan sums $c(r, n) = \phi(n) \frac{\mu(n/(r,n))}{\phi(n/(r,n))}$ for $1 \leq r \leq n$. The energy of the graph is defined to be the sum of the absolute values of the eigenvalues. Let us prove that the energy of C_n is $2^{\omega(n)}\phi(n)$ by proving the identity: $\sum_{r=1}^n |\frac{\mu(n/(r,n))}{\phi(n/(r,n))}| = 2^{\omega(n)}$.

For each divisor d of n, call $S_d := \{r \leq n : (r, n) = d\}$. Note that $|S_d| = \phi(n/d)$ as $\{r \leq n : (r, n) = d\} = \{dR \leq n : (R, n/d) = 1\}$. Now, writing $n = p_1^{a_1} \cdots p_r^{a_r}$, we have $|\mu(n/d)| = 1$ if and only if n/d is square-free, which is so if and only if $d = p_1^{b_1} \cdots p_r^{b_r}$ with each $b_i = a_i$ or $a_i - 1$. Write T for such divisors; clearly $|T| = 2^r$. Therefore,

$$\sum_{r=1}^{n} \left| \frac{\mu(n/(r,n))}{\phi(n/(r,n))} \right| = \sum_{d|n} \frac{|S_d| |\mu(n/d)|}{\phi(n/d)} = \sum_{d \in T} 1 = |T| = 2^r.$$

This completes the proof.