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§ 1 Cartan and Iwasawa decompositions for GL(n,R) and GL(n,C)

Theorem (Polar decomposition)
Suppose M € GL(n,R). Then, M can be written in a unique manner as a
product K - S of an orthogonal matriz K and a positive definite symmetric

matriz S. Moreover, the polar decomposition
(K,S)~ K-8
is a homeomorphism of O(n) x P onto GL(n,R), where P denotes the space

of symmetric, positive-definite matrices.

Proof : We start with the proof of the existence. If we had M = K S as
required, then *M = SK~1 5o that we would have had *MM = S2? ie. §
would be a ‘square root’ of tM M. Therefore, we start with M and consider

!M M which is a positive-definite symmetric matrix. As such,
'MM = K - diag(\1,---Ay) - K1

with K; € O(n) and the eigenvalues ); are real and positive.

Recall briefly how a matriz S € P may be diagonalised by an orthogonal

matriz. If A,--- )\, are the distinct eigenvalues of a matriz S € P, then




we define V; = {v : Sv = A\v}. Now < V;,V; >= 0 for i # j, since
< Svi,v5 >=< v;,8v; >= A < v;,v; >= Aj < v;,v; > which gives <
v;,v5 >= 0 for v;inV; and v; € V;. Now, we can easily see that R™ = D1V

We can choose orthonormal bases for each V;, and we are through.

If we define S = K1v/ DK where D = diag()y, - -- \y), then S € P. Final-
ly, if we put K = M S~1, then clearly K € O(n). Thus, the existence of the
decomposition is assured. The uniqueness can be seen from the uniqueness
of the positive-definite ‘square root’ of *M M, as follows:

Suppose P is a polynomial such that P(\;) = VA (i = 1,---n) - for e.g.

the Lagrange (interpolation) polynomial.

Briefly recall how to get such a polynomial. If we are given n distinct points
ai, -, an and we want a polynomial which takes the values B1,- - -, Bn, we
proceed in this way. First, we get for each i, a polynomial P; of degree n — 1
with P;(a;) = Bif;,;. Then, the required polynomial would be the polynomial
P = 3" P; again of degree n — 1. It is clear how to get each P;. We merely
take P; = ¢; [];.;4;(X — a;) where ¢; is to be determined so that P;y(c;) = ;.
In fact, we get B; = Pi(a;) = ¢; I1;.;4:(@i — @;). Thus, we get
e X —a;
P(X)=> 8] a,-—aj'

i=l  jijAi

So, we can get a polynomial P such that P()\;) = +/A; (i =1,---n). Then
PCMM)=S.IfS; € P and §? = *MM, then S; commutes with tM M
and, therefore, with S which is a polynomial in M M. The matrices S and
S1 are simultaneously diagonalisable and since their eigen values are positive
and their squares are the same, S = S;.

Aliter (for uniqueness) $? = 52 =t MM,S = kDk™1,5, = k'D'(k')"1.




Then hD? = (D’)?h, where h = (k')~*k. Comparing the (i,j)-th terms, we
get (42 — d;’hi; = 0. Since d;j, d. > 0, we get S = 5.

Finally, note that the continuity of the function (K, S) — K S is evident and,
it remains to prove that if {M,} = {K,S,} converges to M = K S, then
{Kn} - K and {S,} — S. Since O(n) is compact (see lemma below), {K,.}
has a limit point K'; say {K,,} is a subsequence converging to K’. Then
{Sn,} = (K')'M = S, which is in P, and M = K'S’. The uniqueness of
the polar decompositionshows thwn that K’ = K and §' = S.

Remark The set P is homeomorphic to a Euclidean space (see Proposition
below). It is a convex semi-cone i.e. 51,52 € P = AS1+uS2 € P VA, 1> 0
and so the topological properties of GL(n,R) are deduced from those of
O(n).

Lemma

O(n) is compact.

Proof: O(n) is the inverse image of the identity, under the continuous map
M —* M M; it is therefore closed in M (n,R).

If we define || M ||=tr (*MM)'/2, then || K ||= v/n VK € O(n), and so
O(n) is a bounded subset of M(n,R).

The exponential map

For A € M(n,K);(K = RorC), the exponential of A4 is the matrix defined

by the convergent series
o0 An
ezp (A) = _S_ T

n=0




Properties

(1)If A-B = B A, then ezp (A + B) = ezp (A) - ezp (B). In particular,
exp (A)~! = exp (—A).

(2) P-ezp (A)- P~' = exp (PAP'). (3) The eigenvalues of exp (A) are
the exponentials of those of A. Consequently, det (exp 4) = exp (tr A).

The first two properties are readily verified. The third one can seen by

triagonalising any matrix.

Proposition
Let S (respectively P) denote the space of n x n symmetric (respectively
positive-definite symmetric) matrices over R.. Then, ezp : S — P is bijec-

tive.

Proof : Let s € P. Then, as we saw, 3k € O(n) such that s = k-d-k~! for
some d = diag(Aq,--- A,). Since )\; are real and positive, we can consider log
(d) := diag (log A1, -+ - A,). Clearly, S = k-log(d)-k~1 € S satisfies exp (8)=
s. To show injectivity, we take any S1,S2 € S such that exp (81) = exp (S2)
= 8. Writing S; = kdk™"! with d = diag (A1, --- \,), we see by (3) that the
eigenvalues of S, are also \;(1 < i < n). As before we choose a polynomial
P which takes the value )\; at exp (Ai). Then, P(s) = S1. So, S5 commutes
with P(exp (S2)) = S1. So, we can again simultaneously diagonalise S; and
S2; and as their eigenvalues are the same, we get S = Ss. (We can verify

the injectivity also just as we did uniqueness in the polar decomposition).

Theorem (Cartan decomposition)

Writing A for the group of diagonal matrices with positive, real entries and

£



K for O(n), we have
GL(n,R) = KAK

Proof : Let ¢ € G. By the polar decomposition, g = kh, where k € K
and h € P. Since b € P, h = kiak" for some k; € K, a € A. Thus,
g= Iclclalcl‘1 € KAK.

Remarks

1. Cartan decomposition is not unique; nevertheless it can be seen that the
entries of a are the positive square roots of the eigenvalues of *gg.

2. The interest of this decomposition, apart from gaining a hold on the struc-
ture of GL(n,R), is that it permits us to analyse the functions on GL(n,R)
which are sufficiently invariant, completely in terms of their restrictions to
A, where we may bring classical analysis into play. Thus, we can show that
the space L! of functions on GL(n,R) biinvariant by the action of K, forms

a commutative algebra.

Theorem (Iwasawa decomposition)

The product map (k,a,n) — kan is a homeomorphism of K x A x N onto
GL(n,R).

Proof : The existence of this decomposition is just the Gram-Schmidt

orthogonalisation process, which we recall now.

Given a basis {f1,---, f.} of R™, the Gram-Schmidt process finds a unique
orthonormal basis {di,---,d,} for which f; = Bridy + -+ + Bid; (i =
1,---,n) and all B;; > 0 and such that d; and the 8; ; depend continuously
on fi,---, fn. This is done as follows. Suppose E; = Rf; + -- -Rf; which
is of dimension i. Suppose v; € E; \ {0}, v,-. L Fy g and < 5% >=1. By



recurrence on ¢, we see that {vy, - -, v;} is an orthonormal basis of E;. In par-
ticular, {v1,---,v,} is an orthonormal basis of R™. Write \; =< vi, fi >.
Since f; ¢ E;_1, we have \; # 0. Put d; = vili—jl. Then < d;,d; >=<
v;,¥; >= 1. Thus, {d,---,d;} is again an orthonormal basis of E;. If we
write f; = ¥.%_, Bj:d;, then B;; =< fi,d; > and Bi; =| X; |> 0. To show
the continuity of the dependence, we assume that d; and B;: depend con-
tinuously on fi,---, f, for i < 4g.

Now < fig, fio >=| Brig 2+ + ? i, and so Bi i, depends continuously
oI Fyovie s s

Also diy = (fig = Buigdr -+ = Big—1,0pdig—1)B, ;, s0 that di, depends contin-

uously on fi,---, fa.

Returning to the proof of the theorem, let g € GL(n,R) be arbitrary. If
e1, - -,en is the usual basis of R™, let f; = g-e; Vi = 1,-,n. Applying
the Gram-Schmidt process, get an orthonormal basis {d;} such that f; =
B1:dy + - - - B;id;. There is a unique k € K such that k - e; = d; Vi. Then,
if b is the matrix (f;; € A- N, then f; = gk~ 'k -e; = gk~1d; = b-d; Vi
so that g = bk. Thus the map is surjective. Uniqueness follows easily from
the fact that if z € K (] AN, then all its eigenvalues are of absolute value
1 by virtue of being in K and hence are all equal to 1 by the definition of
Abut KN = {Id} (for, if g € K, then *g = g=1 € K while g, ig €
N = g = Id). Continuity of the product map is obvious; and the fact that
it is a homeomorphism follows exactly as in the polar decomposition. The

theorem is proved.

Theorem (Polar decomposition for GL(n,C))

Denote by H, the space of Hermitian, positive-definite matrices. Then, the

N,




product map (U, H) — U-H is a homeomorphism of U(n)xH onto GL(n,C).

Proof : It is the same as in the case of R except for replacing the transpose

by the conjugate-transpose and the inner product on R™ by that on C™.

Theorem (Cartan decomposition for GL(n,C))
If k denotes U(n), then GL(n,C) = K AK.

Theorem (Iwasawa decomposition for GL(n, C))

The product map (k,a,n) — kan is a homeomorphism of K x A X N onto
GL(n, C).

Again, the proofs are exactly as in the real case, except for replacing the

inner product on R™ by that on C™.

FEzercise: Prove an Iwasawa decomposition for GL(n, H), where H denotes

the quaternions of Hamilton.




§ 2 On Haar measures

In this section, we first recall some basic facts about the Haar measure on
a locally compact group, and later find out the relation between the Haar

measures of GL(n) and its subgroups K,A,N in the Iwasawa decomposition.

Basics on Haar measures

Let G be a locally compact topological group.

(1) Let s € G, f afunction on G. Then sf and fs are defined, respectively,
as (sf)(z) = f(s7'2) and (fs)(z) = f(zs71).

(2) A measure p on G is left-invariant, if p(sf) = u(f) ie.

JEGOICE [ 1@yinte) vs 6

From (3) onwards, we suppose p is a left invariant measure on G.

(3) The right modulus of y is the function A, : G — R defined by

[ #et™dute) = 84 [ f(e)dute)
It is a continuous homomorphism,; it is independent of the choice of p.
(4)
[ 1eaute) = [ Lduia)
(5) Let o € Aut(G). Then, there exists a unique §(c) € R such that

/ o™\ (2))du(z) = 6(0) / f(z)du(z)

o




6 : Aut(G) — R gives a continuous homomorphism. Moreover, the same
formula holds (i.e. with the same number §(¢)) if p is replaced by a right
invariant mesure.
(6) 6(Int 8) = A.(s)"?VseG.
(7) Ar(o(s)) = Ar(s).
(8) Let B =T -U be a semi-direct product where ¢ € T acts on U by o;. If
dt,du are bi-invariant Haar measures on 7', U respectively, then dt du is a
left Haar measure on B, and a right invariant measure on B is §(o¢) dt du,
ie. AB(t,u) = 6Y(o) .
(9) If B,T,U etc. are as in Iwasawa decomposition, we have for ¢ =
diag(t1,---,tn),

%(or) = A7 (L) =[]

t;
i<j ti

Proofs
(3) Define 7(f) = u(ft) i.e.
(9= [ fet)dutz)

7 is also left invariant, since 7(sf) = wp((sf)t) = p(s(ft)) = u(ft) =
7(f). So, we get some number A.(t) as written. Choosing f such that

[ f(z)dp(z) = 1, we see that

8.()= [ fet™)du(a)

from which we can see that A, is continuous. To show it is a homomorphism,

we consider

Ar(st) [ £(a)dutz) = [ fattsauo) = [ stet™)aute)



(where g(z) = f(as~"))
= 8.00) [ gteiutz) = 8.0) [ fas)aite) = Au(8(0) [ Foiuta)
(4) We show that both sides define rightinvariant functionals. First, define
n(f) = J f(z)du(z). Then
n(f) = [ fesMau(a) = [ Foz)auta)
(where £(z) = f(z~1))
= [ #@aute) = n(1)
Now, we define 73(f) = [ £ du(z). Then,
()= [ L) = a0 [ L8 aue) = antoy [ ates)aute

A (zs~1)
(where g(z) = Kff%%)

— A A / o(2)du(z) = 72(f)

So, there is some constant ¢ > 0 such that T1 = c12. Evaluating on a function
f which is symmetric about  and z~! i.e. for which f(z) = f(z~1), and

noting that A, is continuous, it is easy to see that ¢ = 1.
(8) First, we check that dt du is left invariant.

/ Filas) Yot du= / Flotu)dt du = / o((t~ vt) " u)du dt
(where g(u) = f(tu))

= /g(u)du dt = /f(tu)du dt



The right modulus is given as follows:

/ F(tu(sv) V) du dt = / fltuvts ) du dt = / fts suv~ts ™ )du dt = / Fltsuv=ts™ ) du dt =

(where g(u) = f(tsus™!))

= /f(tsus‘l)du dlt = /h(sus‘l)du dt =% (o) /h(u)du dt

(where h(u) = f(tu))

= () / f(tu)du dt

Therefore AB(s,v) = 6§Y(o,)~'. The proof is complete, since we know a

right invariant measure from (4).

(9) If we identify U — F~ 7 via the map 0 : u = (uij — (uij; ¢ < j), the
Lebesgue measure pulls back to a Haar measure on U, which we can choose
to be du. Since oy takes u;; to %;:'Uij, by the change of variable formula in

n(n—1

F‘(TZ, we get

/---/f(tut‘l)dt dusj :g:—;—/.../f(Uij)dUij

(recall [ f(Av)dv = det(A)~! [ f(v)dv). Thus, §(c¢) = [[,; &, and we

i>j ;0

get that J[;; %’:dt du is a right Haar measure on B.



Let F = R or C. Write K = O(n) or U(n) accordingly as F = R or C.
Let BT = AN be the subgroup of GL(n,F) consisting of all those upper
triangular matrices over F which have real, positive diagonal entries. Now,
we will give a Haar measure on G = GL(n,F) in terms of the measures on
K,A,and N.

Fact: The groups GL(n,F),K,A, N are unimodular. In fact, all abelian
groups, compact groups, semisimple and nilpotent Lie groups are unimodu-
lar.

Let dg, dk, da, dn denote Haar measures (necessarily biinvariant) on G, K, A, N
respectively. Let k € K (resp. b € B*) operate on GL(n, F) and on K x B*
by left translation by & (resp. right translation by 5~!). Then, the product
defines a homeomorphism of K x B* onto GL(n, F) which commutes with
the K x B* -actions. The inverse image of dg is a measure invariant on the
left by K and on the right by B; therefore equals dk d,b where d.b is a
right Haar measure on B*. By (9), we may write a right Haar measure on
Bt as p(a)da dn, and a right Haar measure on GL(n,F) is p(a)dk da dn,
where

p(a)=H%

i<j




& Consequently, for G = SL(2,R), if we write K = SO(2), A ={diag(a,a™1) :
a > 0}, and dk , dt , dn for Haar measures on K , A, N respectively, then
a right Haar measure on G is given as a? dk %‘1 dn = a dk da dn where we
have used dt = % for ¢ =diag(a,a!).

Another way to derive this is as follows.

Ty

Write X = ( € G; we can assume that ¢ # 0 as the comple-
-

ment has measure zero. Now, ¢t = 1—':35. We will determine f(X) so

that w = f(X) dz A dy A dz is a left invariant differential form. For

a b z
A= € G, we have AX = X' = , where
c d s A

z' = az + bz

14+ yz

Pt
¥ =ay+b( .

)

2 =cz+dz

For left invariance, we should have
f(X)dz Ady Adz= f(X')de’ A dy Ad7

This gives f(X')%&t?2 = f(X) ie. f(X")z' = f(X)z. So, we can take
f(X)=1ie w=1dz Ady A dz. Writing

cosfd  sind a O 1 u
X =ktn =
—sinf cosf 0 a! 0 1



we have £ = a-cosf, y = au -cosd —a~! -sinf, z = a - sind, so that

w=adf A da A du.

Ezercise : Prove from G = SL(2,R) = K AK, that

a2

-2 e & c
e — dk % dn is an invariant measure on G.
Ezercise : From its Iwasawa decomposition, deduce that SL(n,R) is con-

nected.




§ 3 Decompositions for GL(n,Q,))

Theorem (Iwasawa decomposition for GL(n,Qp))
Let K = GL(n,Z,) and B be the upper triangular matrices in GL(n,Q,).
Then GL(n, Qp) = K - B = KAN, where

A = {diag(p*™,---,p%) : a; € Z}
Moreover, the a; are uniquely determined.

Proof : Start with any g € GL(n,Q,). For an element k € K, let us look
at the rows of k.g. Suppose the i-th row starts with exactly a; zeroes. Then
0<a; <nmn-1 Vi. Now, let us choose k such that for the matrix k.g, the
number a; + - - - + a,, is maximal.

CLAIM : The q; are necessarily distinct i.e. they are 0,1,---,72—1 in some
order.

Let us prove the claim. Suppose not i.e. let 5 < Jj be such that a; = a;.
Let a; and a; be the first nonzero entries in the i-th and the j-th rows
respectively. Now, either u = g; or u~! is in Z,. Consider the matrix
k1 € K defined asfollows. All its diagonal entries are 1; if u € Z,, then the
(4,7)-th entry is —u and all other nondiagonal entries are zero; if u~1 € z,,
then define the (j,4)-th entry to be —u~! and other nondiagonal entries to

be zero. It is clear that k; € K. Moreover, for k;.g, > a; has increased




atleast by 1, since either a; or a; has increased by 1 and the other a, are
not decreased either. This is a contradiction of our choice of k. Thus, the
claim is proved i.e. the a; form a permutation of (0,1,---,n —1).

Further, considering the ‘permutation’ matrix n defined by n; 4,41 = 1 and
other entries zero, it is clear that n € K (indeed, its determinant is 1 or -1).
The action of n is that, on left multiplication of a matrix by n, the rows of
the given matrix are permuted accordingly. Thus, we can see that n.k.g has
its (a1,---,an) = (0,1,---,n — 1) i.e. n.k.g is upper triangular. This proves
g € K -B. Since B =T - N where T is the subgroup of diagonal matrices in
GL(n,Qp), it is clear that K - T = K - A.

We prove uniqueness of the A- part as follows. Suppose, a’ = kan for some
a = diag(p™,---,p™) , @ = diag(p,---,p") € A. Then k™' d’ = a n.
Comparing the (4,)-th terms, we have k' p* = p. Since k7! € Z,, we
have a; > aj. Interchanging the roles of a and o/, we get a; = a’, and finally

that a = d.
& For G = GL(2,Q),), here is a quick proof of the Iwasawa decomposition.

c
coprime. So, we can find w, z € Z, so that uz — wv =1 ie.

U w
k:( )EK
vz
a b U w
w= ()0 %) estan
c d v T

Theorem (Cartan decomposition for GL(n,Q,))

a b
Lety:( ' € G. Choose u,v € Z, such that cu + dv = 0 and u,v

Now, clearly

Ik




Let A be the set of diagonal matrices {diag(p™,---,p*") a1 < --- < an}
GL(n,Q,) = KAK
Moreover, the A-part is uniquely determined.

For the proof, we’ll use the following
Lemma Leta =* (a1,---,a,) € Zy be a vector (i.e. a is thought of as a

column vector). Then, Ik € K such that

E-a=t(d,0, --,0)

where
1
d=g.cd(a,--- =p = ——mmMm—
g c (ala 1an) p Ma.x I ai |p
Proof : Let n = 2. Since v = —% and § = 4 are coprime i.e. have g.c.d.
1, there exist a,8 € Z, such that a§ — By = 1. Thus,

Q ﬂ a d
v 6 az B 0
We prove the general case by induction. Assume the truth for n — 1. Let

as,--,an have g.c.d §. By the induction hypothesis, we can choose k; €
GL(n - 1,Z,) such that

k1 .t ((12,"',(111) =t (6,0,...,0)

1 Oin
k= € K
On-11 Kk

and k -* (a1,---,an) =* (@1,6,0---,0). Since d is the g.c.d of a; and §, we

ks = (a ﬂ) € GL(2,Z,)
v &

Clearly

have some matrix

;:.



such that kg ¢ (a1,6) =t (d,0). Putting
ks Oz
ko = €EK
On—22 En_o
ko - k does the job. The proof of the lemma is now complete.

Proof of Cartan decomposition

Let g € GL(n, Qp). Write g = p™ g1 where g; is primitive i.e.it is in M (n, Z,)

and has coprime entries. We will show that the double coset K¢, K has a

0

representative of the form ( ) with g € M(n — 1,Z,). Thereafter,

we’ll use this assertion to compﬁte the proof of the theorem. As g; is
primitive, it has a column with coprime entries. Multiplying g; on the
right by an appropriate permutation matrix, we get a matrix h; in the same
double coset but whose first column has coprime entries. So, we may assume

that g1 = h1. Now, we apply the lemma. We can multiply g; from the left

by an element of K to obtain a matrix of the form

(1 b ) (1 0 ) (1 b )
0 g2 0 g2 0 Ena
where b is 1 x n — 1 with p-adic integral entries. This proves our assertion.

Returning to the proof of the theorem, what we have shown is that the

double coset KgK = p* K¢, K contains a representative of the form

’ P 0
g = "
0 p*g.

where p* is the g.c.d. of the entries of g and g, € M(n — 1,Z,). It is clear
that ¢’ remains in KgK when g, varies in GL(n — 1,Z,) g» GL(n — 1,Z,).
So, we can apply the same arguments to the matrix p* g, and continue to

get consequently a representative in A.



We prove the uniquenessof the A part.
Let a = diag(p*,---,p*), @' = dz'ag(p“i,-w,p“:') € A be such that o’ =
k a k. Multiplying by a scalar matrix, we may assume that a; = 0 and all

a; , a; > 0. Going modulo p, we have an equality of matrices over Fp,
d=kak
Now, clearly for some 7 , s,

~ I‘I‘ 0 Ig 0
al = ; a=
0 O 0 0

Comparing ranks on both sides, r = s. Writing
k kz kll k)
k=1{" K = .
ks ks ky kj
I, 0 ki ks I 0 Bk
0 0) \ks ks 0 o) \k &
This gives k1 - ¥, = I, and &3 - k] = 0.
Therefore k?g =10

we get

Consider now the diagonal matrix

1. 0
P =
0 p I,

Multiplying the original equation on the left by P, we have the equation
Pd=Pkak'=PkP'Pak

Since this decreases the a;’s and the al’s, we would be done by arguing

inductively provided we know that P k P~! ¢ K. But, clearly

B k1 pks
p ks ks
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Since k3 = 0, we have p~lks has entries from Z,. Since PkP~! € M(n,Z,)
and its determinant is the same as that of k, it is clear that PkP~1 € K.

Therefore the uniqueness follows on applying induction.

Corollary K is a maximal compact subgroup.

Proof: Since K is the inverse image of the units Z; under the map det
:M(n,Z,) — Z, and since Z} is closed in Z, while M(n,Z,) is compact,
it follows easily that K is compact. If K3 D K, K; # K is a subgroup of
GL(n,Qp), then there is k; € K71\ K. Applying the Cartan decomposition
to k1, we get an element a = diag(p™,---,p*) € K14, a € K. But then
some a; # 0 and so the set {a™ : n € Z} is unbounded which shows that K;

is not compact.
§ 4 Bruhat decomposition for GL(n) over any field

Let F be an arbitrary field. We are interested in the group GL(n,F). Let B
denote the subgroup of all invertible upper triangular matrices with entries
from F. Consider the group N of monomial matrices over F i.e. n € N if,
and only if, exactly one entry is nonzero in each row and each column of
n. Obviously N D T, the subgroup of diagonal matrices in B. Moreover, T
is normal in N and the group W := N/T = S, the symmetric group. Let
7w : N — W be the natural map. Since T C B, for w € W, the coset wB

makes sense.

Theorem (Bruhat decomposition)

GL(n,F)= | ] BuwB
weW
where the union is disjoint.

W~
('




Proof : Let ¢ € GL(n,F). For an element k € B, let us look at the
rows of k.g. Suppose the i-th row starts with exactly a; zeroes. Then
0<a;<n-1 Vi Now, let us choose k such that for the matrix k.g, the
number a; + - - - + a, is maximal.

CLAIM : The a; are necessarily distinct i.e. they are 0,1,---,n—1 in some
order.

Let us prove the claim. Suppose not i.e. let i < j be such that a; = a;s
Let a; and a; be the first nonzero entries in the i-th and the j-th rows
respectively. Consider the matrix k; € B defined asfollows. All its diagonal
entries are 1; the (¢,7)-th entry is —gj'_- and all other entries are zero. It
is clear that k3 € B. Moreover, for k1.9, 3 a; has increased atleast by 1,
since a; has increased by 1 and the other a, are not decreased. This is a
contradiction of our choice of k. Thus, the claim is proved i.e. the a; form
a permutation of (0,1,---,n —1).

Further, considering the ‘permutation’ matrix n defined by mig;41 =1 and
other entries zero, it is clear that n € N. The action of 7 is that, on left
multiplication of a matrix by n, the rows of the given matrix are permuted
accordingly. Thus, we can see that n.k.g has its (a1,---,a,) = (0,1,--,n—
1) i.e. n.k.g is upper triangular. This proves g € BW B.

To prove uniqueness, suppose n; € BnB, say n; = bnb;. So b = nlbl‘ln‘l.
If we define for a matrix X = (;;), Supp(X) = {(i,§) : i; # 0}, then
Supp(b) = Supp(n1b7'n~') D Supp(nin~!). But nin~! is monomial and
b does not have any support under the diagonal; this gives nin~! € T ie.

w(n1) = n(n).

& For SL(2,F), Bruhat decomposition looks explicitly as follows. Let



z y
X:( ).Ifz:O,thenXEB.Ifz#O,then
z 1

g ap 0 1 1 tz?
X = € BWU
0 -2 -1 0 0 1
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SOME MORE DETAILS

Basics on Haar measure

G locally compact group.
(1) Let s € G, f a function on G. Then sf and fs are defined, respectively,

as (sf)(2) = f(s7"2) and (fs)(z) = f(zs™?).
(2) A measure p on G is left-invariant, if u(sf) = u(f) ie.

/f(S_liU)du(iE) =/f(m)du(:r:) Vs € G

From (3) onwards, we suppose 4 is a left invariant measure on G.

(3) The right modulus of y is the function A, : G — R defined by

/ fat™)du(@) = A, - [ @)uta)

It is a continuous homomorphism; it is independent of the choice of L.

(4)

. 7(z)
/ $adutz) = [ 4 Psdu(a)

(5) Let o € Aut(G). Then, there exists a unique 6(o) € R} such that
[ He @autz) = 50) [ s)ante)

¢ : Aut(G) — R} gives a continuous homomorphism. Moreover, the same

formula holds (i.e. with the same number §(0)) if p is replaced by a right

1




invariant mesure.
(6) 6(Int s) = A,(s)"1Vse@.
(7) Ar(o(s)) = Delta,(s).
(8) Let B =T -U be a semi-direct product where ¢ € T acts on U by 0. If
dt,du are bi-invariant Haar measures on T, U respectively, then dt du is a
left Haar measure on B, and a right invariant measure on B is §(o3) dt du,
ie. AB(t,u) = 6Y(0y)?
(9) In our case of B,T,U etc., we have

6U(ce) = AB(tiu) =TT &

i<j

where ¢ = diag(t1,---,t.).

Proofs

(3) Define 7(f) = u(ft) ie.
r(f) = [ fat)dute)

7 is also left invariant, since 7(sf) = p((sf)t) = wp(s(ft)) = u(ft) =
7(f). So, we get some number A,(t) as written. Choosing f such that
[ f(2)du(z) = 1, we see that

8,8 = [ for)aue)

from which we can see that A, is continuous. To show it is a homomorphism,

we consider
Ar(st) [ Fe)dute) = [ F(ats™)du(z) = [ stet™ydute)
(where g(z) = f(zs71))

= 8,(0) [ o(@autz) = A1) [ fas)auta) = A8, 0) [ F@)aute)

2



(4) We show that both sides define rightinvariant functionals. First, define
n(f) = J f(z~)du(z). Then
n(fs) = [ fasauta) = [ Foo)duta)
(where f(z) = f(z~))
~ [ f@)dutz) = ()
Now, we define 72(f) = [ £%)du(z). Then,

:CS—]'
Tz(fS) = fé ( ))

(238"1)

dutz) = A(o)™ [ - E2hdu(z) = Ac(6) [ glas™)au(e)

(where g(z) = AL("(”%)

r{Z

= A(s)A(s) / 9(@)du(=) = 7a(f)

So, there is some constant ¢ > 0 such that 7 = ¢7s. Evaluating on a function
f which is symmetric about ¢ and z~! i.e. for which f(z) = f(z~1), and

noting that A, is continuous, it is easy to see that ¢ = 1.
(5) Define 7(f) = [ f(0~Y(z))du(z). Then,

r(sf) = / fe™ (7 2)du(e) = [ gt~ 2)auz)

where o(s) =t and g(z) = f(o~'z).

- / 9(@)du(z) = 7(f)

Since 7 is also left invariant, we get §(o).
(8) First, we check that dt du is left invariant.
/ F((sv) " Mu)dt du = / F(o=tu)dt du = / o((t2vt)u)du dt
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(where g(u) = f(tu))

_ / glu)du & = / F(tu)du dt

The right modulus is given as follows:

/f(tu(sv)‘l)dudt:/f(tuv‘ls_l)dudt:/f(ts‘l-suv‘ls_l)dudt:/f(tsuv_ls“l)dudt:

(where g(u) = f(tsus™!))

= /f(tsus_l)du it = /h(sus“l)du dt = §%(0,)? fh(u)du dt

(where h(u) = f(tu))

= §Y(o,) / f(tw)du dt

Therefore AP(s,v) = 6§Y(0,)~!. The proof is complete, since we know a

right invariant measure from (4).

(9) If we identify U — F5 yia the map 6 : u = (uij)— (uij; i < j), the
Lebesgue measure pulls back to a Haar measure on U, which we can choose
to be du. Since o; takes u;; to :—;U{j, by the change of variable formula in

n(n—1

Fi‘z_l, we get

/.../f(tut‘l)dt du;; :iH:—;/---/f(uu)duz'j

(recall [ f(Av)dv = det(A)™! [ f(v)dv). Thus, §(oy)~! = Hbj%, and we

get that [T, ; fj?dt du is a right Haar measure on B.

— Consequently, for G = SL(2,R), if we write K = SO(2), A ={diag(a,a™?) :
a >0}, and dk , dt , dn for Haar measures on K, A, N respectively, then




a right Haar measure on G is given as a2 dk % dn = a dk ;}; dn where we
have used dt = % for ¢ =diag(a,a?).

Another way to derive this is as follows.

z Yy
Write X = € G; we can assume that z # 0 as the comple-
z

ment has measure zero. Now, ¢t = l—tcﬁ We will determine f(X) so

that w = f(X) de A dy A dz is a left invariant differential form. For

a b z
A= € G, we have AX = X' = , Where
c d F ¥

z' = az + bz

1+yz

Yy =ay+(
T

)
2 =cz+dz

For left invariance, we should have
f(X)dz Ady Adz=f(X')de’ Ady A d7

This gives f(X')e=bz — f(X) je. f(X)2' = f(X)z. So, we can take
f(X)=zie w=1/%)de AdyA dz. Writing

B < cos(6) sin(H)) (a 0 ) (1 u)
—sin(d) cos(6) 0 at 0 1

we have z = a-cos(f), y = au-cos(d) — a~! -sin(f), z=a- sin(6), so that

w=adl A da A du.

FEzercise : Prove from G = SL(2,R) = KAK, that
“2_—2‘“2— dk Cfl—“ dn is an invariant measure on G.
Ezercise : From its Iwasawa decomposition, deduce that SL(n,R) is con-

nected.




— For SL(n,F), Bruhat decomposition looks explicitly as follows:
z oy

Let X = ( ) € SL(2,F). If z = 0,thenX € B. If 2 # 0,
z t

—gt g 0 1 1 tz?
X = € BWU
0 —2 -1 0 0 1

— For G = GL(2,Qy), here is a quick proof of the Iwasawa decomposition.

a b
Write K = SL(2,Z,). Let g = ( d) € G. We choose u,v € Z, such
c

that cu + dv = 0 and u, v are coprime. So, we can find w,z € Z, so that

ur —vw=11e.

u w
k:( )eK:suz%)
vz

a b U w
gk:( ) ( >€B(Qp)
¢ d v

Now, clearly



