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1. Introduction

Letk be a finite extension of the field,, of p-adic numbers and suppogkeis a finite-
dimensional central division algebra over

Then, the groupG = SL1(D) consisting of elements of reduced norm 17n
acquires a topology fromk and is a compact, totally disconnected (i.e., a profinite)
group. We are interested in finding the possible (topological) central extensions

1-A—-E—G— 1

General nonsense tells us that the set of central extensions is determined by a group,
denotedH?(G, R/Z), which, in this case, is known to be finite by some deep work
of Raghunathan on the congruence subgroup problem ([R]). It is expected (although
unknown as yet) that, barring a handful of exceptidt&(G, R/Z) = u(k) ,, the finite
cyclic group ofp-th power roots of unity irk. In 1988, Gopal Prasad & M. S. Raghu-
nathan proved ([PR]) th& ?(G, R/Z) is a finite cyclic group containing an isomorphic
copy of u(k), and is trivial if (k) , is trivial.

These results were sufficient for their original motivation to solve the so-called
metaplectic problem which comes up in the congruence subgroup problem. However,
the general computation @12 is still open.

Our aim here is to stretch the method of [PR] and studytatorsion inH?(G, R /Z)
with a view to proving that i#7? has an element of orde?, thenk contains a primitive
p2-th root of unity. The computations are rather cumbersome, and we carry them out
fully only in a special case whep = 3 and D is the quaternion division algebra
although we have partial results in more generality.

One probably needs new ideas along with the work of [PR] if one wants to compute
H?ingeneral. Perhaps, on the other hand, the seminal work of Lazard ([L]) on compact
p-adic Lie groups has not been exploited sufficiently enough.

2. Basic structure of D

The structure op-adic division algebras had been investigated by C. Riehm in [Ri].
Let us briefly recall some details.
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D containsR, its maximal compact subring which, in turn, contains a unique (two-
sided) maximal ideaP. The groupG = SL(1, D) of elements of reduced norm 1 in
D, is a profinite group which is normal iB*.

G admits a filtrationG; = {g € G : g = 1 mod P} fori > 1. In fact,G; are all
normalinD*. G is aprop group ands /G is afinite, cyclic group of order prime @

Fori, j > 1, we have {;, G;] € G,4;. In particular,G;/ G;,1 is an abelian group
fori > 1.

By local class field theory, there exists a uniformising parameier P which nor-
malises the maximal unramified extensikinof degreed overk. Also, the automor-
phism of K given by the conjugation by generates the Galois group G&l/ k) =
Gal (F/f) whereF, f are the residue fields &, k respectively.

Moreover, the non-zero elemenks can be identified withu(K)iwame the cyclic
group of prime-top roots of unity inkK.

Each elemeng € R can be uniquely expressed gs= go + ) _,-; g&.r" with
gn € u(K)tameU {0}.

A little computation shows also that the abelian graky G;,1 can be identified
viathe mapp; : 1+ ) ., g.t" +— g with F(i) which is eitherE := {x € F :
Trr s (x) = 0} or the whole ofF according agl|i ord fi.

It is also quite easy to show that= G1(G N w(K)iame)-

Note that eaclF (i) is a module forG N (K )iame Under the actio - x = %x
where we have identified (K )wmeWith F \ {0}. A consequence of Hilbert’s theorem
90 is that there is a nontrivial homomorphism (of modules) fle() to F () if, and
onlyif, i = j modd.

3. Conditions for roots of unity

Itis easy to write down necessary and sufficient condition forcontain a primitive
p?-th root of unity.

Recall thatt ¢ K C D andr is a uniformising parameter i normalisingk .
Let e denote the ramification index éfoverQ, andd denote the degree @ overk.
Thenr? is a uniformising parameter fdrand, one can expanaoverk as

p=0n% 4 Gyt 4 ...

for somefd’sin f.

Now, well-known properties of thg-th power map (see [M], P. 167-168) tells us
thatk has a primitivep?-th root of unity if, and only if,p(p — 1) dividese and there
existssomg =1+ Yde/p(p_]_)ﬁde/p(pil) + Yde/p(p_l)_,_dﬂde/p(pil)*»d + ... such that
Yae/p(p—1) # 0 @and such thar?* = 1 mod g %/p(p-D+detd,

This gives (using the expression gf certain polynomial equations in th&’s with
coefficients as som@s. We get finitely many polynomials ovef.

Our aim is, therefore, to deduce the simultaneous solvability of these equations by
somehow getting information ovefthat can be derived from the assumption tHat
hasp?-torsion.

It should be pointed out that the corresponding calculation it place ofp? is
much easier and was carried out in [PR].



Central Extensions of a-adic Division Algebra 3

4. Strategy of studyingH? (after [PR])

Inthis section, we recall the basic method as well as the results of Prasad & Raghunathan
from [PR] which we shall be using.

Fact 1. Using the fact tha& is profinite, it is easy to deduce that
H?(G,R/Z) = H?(G, J) where/J is the subgroup of)/Z) consisting ofp-power
order (considered with the discrete topology).

We shall be using the Hochschild-Serre spectral sequence for the situation
Gl‘,]_/G,‘ < G/G, fori > 1.

A very useful property is that given a central extenstorc E — A whereA is
abelianis that one has a lifted ‘commutator’ maj;,ib € A, thenfor arbitrary liftsc, y
of a, b € E, the commutatory, y] = xyx~1y~! lands insideC and, is independent
of the lifts. One often writesd], b] for this element oiC. WhenC is a divisible group
(like our J), the extension is ‘trivial’ if, and only ifE itself is abelian.

In our case, we shall use it f@¥; /G ; which is abelian if 2 > ;.

Fact2. HX(G, J) =% H?(G/G;, J) and, the ‘inflation’ maps infi) : H*(G/G;, J)
— H?(G, J) are injective if, and only ifd fi. Moreover,H?(G, J) is the union of the
imagesH?(G); over alli under the inflation mapg72(G); is an increasing filtration.

If d|i, then there is a natural identification of Ker if(vith the vector spacé& of
elements of trace zero iA over f.

Thus, one needs to compat (G); and H%(G);_1 for variousi.
Fact3.1f d fi, H*(G); = H*(G);_1.

In fact, one can show that the same equality holdwif}i; this uses some commu-
tator identities due to P. Hall which are valid in any group.

(P. Hall) In any groups, for elements:, b, ¢ one has

[la, b].” ¢l b, ). allll ¢, a],“ B]] = 1.
Look at the inflation maps
H%(G/G,_1,J) — H*G/G,,J) — H*G, J).

If d|r, since the inflation infr) is notinjective, itis necessary to know when sane
H?(G/G,, J)inflates inH?(G, J) to an element which comes frof?(G/G,_1, J).
This happens it restricts to the trivial extension over the subgraiip 1/G,. More
precisely, using the Hochschild-Serre sequence correspondig tg G, < G/Gy,,
we see that:

Fact4. ¢ comes fromH?(G/G,_1, J) if, and only if, it is in
Ker(H*(G/G,,J) — H*G,_1/G,, J)) N ELL.

This is understood better as follows.

For anyc in H*(G/G,, J), letJ € E — G/G, denote the corresponding central
extension. TheEy'-term is

HYG/G,-1, H'(G,1/G,, J)) = H(G1/[G1, G, Hom (F (r — 1), J))¥/%!
= Hom (F (1), Hom (F(r — 1), J))C " K)ame,
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As we noted, this is nontrivial only if|r. If d|r, this is just the set of all (equivariant)
bimultiplicative maps fromF (1) x F(r — 1) to fo where we shall writef, for the
prime fieldZ/ p.

Infact, itis easy towrite down all its elements. These are the lAgbs< F (r—1) —
fo, X, Y) = Trg;,(AXo(Y)) for somex e F. With this identification, it follows
thatc comes from the previous level if, and only if, the correspondifigs trace zero
over f i.e., we get:

Fact5. cin H*(G/G,, J) is the inflation of an element d1%(G/G._1, J) if, and only
if, there exists\ € F of trace zero over such that can be ‘regarded’ as (this is the
image in theE *-term) the map fron¥ (1) x F(r — 1) to fo = Z/p given by

AX,Y) =Trp,(AXo(Y)V X € F(1),Y € F(r — 1).

It should be noted that the map above is induced by the ‘commutator’ map from
E1 x E,._3t0 J whereE; is the inverse image af; /G, in E.

More generally, from P. Hall's identity, one can easily show thatommutes with
E,._;11 Vi < r. Thus the central extension splits o¥er/ G, whenever 2 > r. Thus:

Fact6. If r > 2ande < 5 thentherestrictionmai?(G/G,, J) > H*(G,—/G,, J)
is the zero map.

Once again, it < 5, we can consider the Hochschild-Serre sequence corresponding
t0G,_./G, < G/G,. By the above, £%2 - term is zero and so) we have a homomor-
phism

H*G/G,.J) » EX' € E;' = HY(G/G,—.. Hom(G,_./G,. J)).
One can show that the above-mentioned image im:‘ﬁ’ljeterm actually comes from
(HYG/Gey1, Hom(G,_./G,, J)). More precisely, :
Fact7. With € < r/2, the image inf5" is contained in the image of
infl: HY(G/Gey1, Hom(G,_./G,, J)) — E3™.
A key point (discovered in [PR]) is that one can describe these 1-cocycles very
explicitly. We describe this now.

Fact8. Let ¢, s, t be positive integers s.t < min.(de, 3dr) ands > ¢ + 1. Let
f=[52] For(ho, ... . Ap) € F/HL,

Zipor.ap(@)(b) = Trryy, Z Z M (©)aga (@, ) " (bas—gu—t-m)

O<u<f {+m=<e—du

(herea = > aynt € D1/Dg,b = > b,n™ € Dy _/Dy,) is a F-invariant 1-cocycle

on D;/D, with values in Hom(Dy;_./Dy;); these restricted t61/ Gy x Gyi—e/ Gy

and then extended 16/ G, x Gg,_./ G4 by defining them to be zero oitG N F) x

Gai—</Ga:, give all the cohomology classes ' (G/ Gy, Hom (Gyi—c/Gas, J)).
Also, herexr(!) stands fot. + o (1) + - - - + o/ 7L().

We shall be using this only fer=de, s = de + 1 andr =

ep
-1 +e.
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Finally, let us note:

Fact9. H%(G), = Oforr < % andH?(G) 4ep/(p—1) CONStitutes the elements of order
at mostp in H?(G, R/Z).

Moreover, if H?(G, R/Z) has an element of order?, thenr = IfL_”l + de where
H?(G), is the earliest where an element of orgérshows up.

This is because the-th power givesGﬂ1 = Gﬂﬁde and an element of

. P L .
H2(G)ﬂl+,. is of orderp/ < ¢?in H2(G)ﬂl+l._de is of orderp/~1. Also, we have
P— P—

ple because cohomology ‘pops up’ at stages which are multipleg oThus, pd /de
i.e.ple.

5. Outline of proof

Here is how we obtain conditions ovgrusing the assumption th&t? hasp?-torsion.
We look at the corresponding element in

HYG/G1rae HYGaep(p-1y/ Gaep)(p—1y+des J))-

We consider the abelian subgrodp= K N G of G and, as elements of the above
cohomology group, we may write down the equatioXs Y”z] =0V X,Y € A,
whereA is the image ofd in G/G‘L”l—b—de' These commutators are computed with the

help of the above explicit expressions for= de, dt = j%”l +de,s = de+ 1 as
written down in fact 8.

We note that the triviality of these commutators is due to their bilinearity. Thus we
get equations ovef from which we try to deduce the required equations fféth root
to existink) in f. Note thatin the computation of commutators in the central extension
corresponding t@, the iy which figures is such thaf,,,. (Ag) # 0 since;’%"1 +deis

the smallest level wherg?-torsion occurs.

F/f

6. The primep =3

We carry out the computations only in the following special case.

We assume@ =3,d =2,¢e = p(p — 1) =6.

As mr2 is a uniformising parameter far we can write-3; = 6 + 6w 2 4+ 04 + . ..
whered, 6,, --- € f.

For ap?-th root of 1 to exist irk, it is necessary and sufficient that
3Y € U_u_ such that”’ e Uit gers @nd such thall ¢ U ue

p(p=1)

i.e.Y is not ap-th root.
In our case, we warit € Us \ Ug such that’® = 1 modz3%. Then,

0Y3+ Y, =0
6, =0
02=0
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O(Ya+ Y23+ 65Y3 =0

02Y, + 6gY5 = 0

02(Ys+ Y2) + 010Y3 = 0

02Ys + OY3 + 2(0%Y2Ys + 0Y3Y2) + 06(Y2 + Y2) + 61,75 = 0.

We can find such & if, and only if, the following ‘compatibility’ conditions hold
6, =0
0,=0
6 + X? = 0 has a solutiop in f
08 = 6°
63+ 6% =0

X%+ 603x3 =63 + 081 — O511° + 62,172 has a solution ovef.
If these hold, then the solutions f@rare:

Y> = A solution of Y2 +6 =0

Y, = A solution of Y2 = 6s¥, % — ¥$

: 68 0
Ys = A solution of Y§ + 63Y3 = 63 + Y_g7 + 030 + ﬁ
2 2

Let us expand the relevant powersiohow using the expression gfin k.

Y =14 Yor? + Yan* + Yen® +...... e U,
Y3=1+ On2 4 0™ 4 04+ . ) (Yorr? 4 Yan* + Yer® +...)
+ (072 4+ Ot (Y2 4 2VoYar® + (Y2 + 2YaYe)mB + .. )
+ (Vb + Vi vEnt8 )
=14+ V38 4+ V2n 2 4 0Yon ™ + (OYZ + 0V + 62Y)'®
+ (Y + 20Y2Y4 + 0Y6 + 02Y5 + 02Ya + 0aY2)m ™ 4. .
Y9 =14 O™+ 0™ + . W30+ Y2r 2+ 0Yor ™ + 0V + 0V + 62Y2) 7 ™®
+ (Y + 20YoYa + 0Ye + 0,YZ + 02Y4 + 04Y)w B+ )
+ O+ G+ .. .)(YZGJT]'Z + 2Y23Y437118 +...)+ (Y297118 mod 7 36)
=1+ @Y+ YD) a8+ 073720 + 0,Y37%2 + (0Y2 + Y2 + 06V
+ (%2 + 023 + 0275 + Y m?®
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+ (02YZ + 02Y4 + 2002Y + 04Y5 + 0477 + O10Y3) w28
+ (0%Ys + Y3 4 2(0%Y2Y4 + 0Y3Y2) + 0(Y4 + Y2)3
+ 012Y5 + 200,Y2 4 200,Y 4 + 20042 + 02Y)m30 4 ...

Now HY(G/G1yae, HoM(G e / G sy 14,0 J)) = HY(G/ G 13, HOM(G 15/ Go, /).

ConsiderX, Y € K such that'® € G1g/ Go.
One knows then that{, Y°] = [X, Y]° = 1 and
[X, Y°] can be calculated from our knowledge Bf(G /G 13, Hom (G1g/ G0, J)).
Infact, if X = 1+ Y S Xpn% andY = 14+ Y Yo 2, if Yo = 1+ Y & byn?,
then

XY =Trepnd Y. Y 2@©XeXubso 2utm - 1)
O0<u<5 ¢+m<12—-2u

Here Xt = 1+ Y Xyn?. SinceY® € Gig/Gso, We haveb, = 0 fori #
18, 20, 22, 24, 26 or 28.

Contributions to the right side of (1) are as follows:

Foru =5, itis

Trrs, (A5(2) Xob1gl = Trrpyp, {Trr r(hs)X2(0Y5 + Y3)} .
Foru =4, itis
Trr/f {14(2)(X2boo + X2X2b18) + Aa(4) Xab1s)
= Trrygo {Trr) Oa) [Xa02Y3 + 2Xa+ XoXo) 077 + Y3) ]}
Foru =3, itis
Trr/f {13(2)(X2b2o + X2Xoboo + X2Xab1s)
+ A3(4)(Xab2o + XaXob1g) + 13(6)X6b18}

= Trrp, [Trr s (03) {X20aY3 + (2Xa + X2X2)02Y3
F(2Xa X2+ X2X2)(0Y5 + YD))].

Note thati3(6) = 37;,,(13) = 0.
Foru =2, itis

X2(0YS 4+ 0Y2 + 06Y3) + (2X4+ X2X2)04Y3 } }

Tr Tre/r(A2) - 5 v %
Flfo { F/f L(ZX“XZ + X2X0)02Y3 + (Xg+2X4 X4+ X2X6) (OY3+Y5)
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Foru =1,itis
X2(0%Y2 + 02V + 0215 + 6gY3)
+(2X4 + X2X2) (Y2 + 0Y2 + 65Y3)

+(2XaX2 + X2X2)0aY3 + (X + 2XaX4 + X2X6)02Y3
+(2X 10+ XsX2 + 2X4X6 + X2Xs)(0Y3 + Y5)

Tre/p y Trer(Ae)

Foru =0, itis

[ X2(02Y2 + 02Y4 + 2002Y5 + 04YE + 042 + 010Y3) ]
+(2Xa + X2X2)(0%Y2 + 0,Y3 + 0,Y2 + 05Y3)
+(2X4X2 + X2X4)(OYS +0Y2 + 66Y3)
+(Xs + 2XaX4 + X2X6)04Y;
+(2X 10+ XsX2 + 2X4X6 + X2X5)02Y3

| +(2X10X2 + XsXa + 2X4Xg + X2X10) (03 + Y5) |

Tresf Y Trejr(Ro)

We also see (sinc¥ is of norm 1 andp = 3) that
2X4+ X2X2 = —(Xa+ X3)
2X4 X2+ XoX4 = X3
2X10X2 + Xg X4+ 2X4Xg + X2X10 = — (X3 + X5).

We have 0= [X, Y°] = Sum of these 6 terms corresponding to the values
0,1,23,4,5.

Now, we start proving the compatibility conditions hold good.

DefineX by changingX o to X10 = X104 p for someu of trace 0. Then, we can
haveX e K!with X; = X; fori < 10. Now,

0=[X, Y% —[X, Y7
= Trr/f {Trr/r (A)200(0Y5 + Y3) + Trr p(ho)2u62Y3 }
= 4Trf/f0 {Trp/f(kl)u(HYg + Y29) + TrF/f()\.O)MQZYZQ’} .
We have used the fact that whén= 2, E - E = f.
For Y, # 0, sincenY; could be any arbitrary element gf, not depending o3,
we must have
Trr(a)(@ + Y2) + Trpjp(ho)2 =0V Y2 € E.

If we takeY, whose square is ndftzz, then we get, on subtraction,

Trep(h)(Yy — Y9) =0i.e.Trg/r(r1) = 0. 2
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Therefore (as the existence pf-torsion implies thaf'rr, (L) # 0), we obtain
6, = 0.

Then, the first compatibility condition for the existence of a primitpfeth root of
unity in k is proved.

Let us do the same withig now i.e. callX = 1+ Xom2+ Xan? + Xe78 + (Xg +
W+ X0+ uX)n%+ .. e KL

0=1[X,Y% —[X, Y
= 0= Trpyp {Trr;ODu@Y3 + Y5) + Trejp(ho)uba¥s} .
Changingu to au for anya € f, we get
0= Trrr(A2)(Ys +0Y3) + Trr)r(ho)0sY3V Yz € E.
Again, as before, we will get
Trrp(r2) =0 3
and therefore,
64 = 0. (4)

This is the 2nd compatibility condition.
Now, puttingX, = 0 in the original formula (which now consists of four terms since
Tr(A) =0=Tr(rp)),wegetforallX,Y € E

Trip ATre O X (Y +0Y%) + Trep(ho)[ X (0%Y + 057+ X3(0Y3+Y?)]} = 0.

5)
Again puttingX4 = — X3 in the original formula, we get
Try Trrjp(As)Xo(Y; J; 921/23) J; TrF/f(,\3)3X§(Y§3+ 92/23) 3 3 } _
S\ TR M0 [X2(07Y5 + 02Ya + 010Y5) + X5(0Y; + 0Y; + 66Y5)]
PuttingY, = 0 will give
Trs{Trer(ho)(0?XY +0X3Y3)) =0V X, Y € E. (6)

SinceTrr s (ko) # 0 and sinceZ — 62Z + 623 is an endomorphism of,
therefore, it follows from (6) thafZ # 0 in f such thav?Z + 672 = 0. Thus, the
3rd compatibility condition has been proved.

In the above, instead of puttinig = 0, let us, instead, puts; = —Y2 which will
gvevVX,yeE

Tre;p(As)X(OY3 4+ Y9 + Tre/r(A3) X3(0Y3 + Y9)

=0. 7
+T7rE/p(h0) (B10X Y2 + O X3Y ) (1)

Tryf,
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We shall use this later in the proof of the fifth compatibility condition.

Next our aim is to provéds = 6° which is the 4th condition. Now sincg is a
quadratic extension of andE is the trace zero elements iy we haveE = f - « for
somex € F suchthat? € £*\ (f*)2. Let us expand (5) by putting = xa, ¥ = ya

wherex, y € f. We get
0= Tryp {* Tr(ka) Zy*(O + y®a®) + a®Tr(ho)[ Z(6% + Osy°a®)
+a*Z3(6 + y%a®)]} (8)

where we have puf = xy and the traces inside afer.
Replacingy by y + 1 and subtracting, we get

*Tr(Aa)Z[(1—y)0 +a®((y + D® - y®)]
0=Trys, 2 2 10,3 3w [
+aTr(A)[Z0ga“ (1 — y) + a°Z3(1 — y°))]
Again, puttingy + 1 for y and subtracting,
a*Tr(Ag)Z(—6 — a1+ y2 + y* + y9)]
0=Tryy 2 2 _ 7310 :
+acT, (o) (—ZOga* — Z ™)
Assuming that # is large enough so thayy, y> S.t. 1+ y2 + y? +y9 # 1+ y5 +
ys + y5, we will have
0="Tryple®TrO)ZOS +yi + =¥~y — YV Ze f
and so
Trr/p(ra) =0. )

The equation (8) becomes
0= Trypla®Tr(Mo)[Z(6? + Osy?a?) + a*Z3(0 + y5a®)]}. Puttingy + 1 for y and

subtracting,
0= Trsp{a®Tr(ho)[Z0sa?(1 — y) + Z31°(1 — y3)]).
Putting—y for y and adding
0= Tryp{a?Tr(ho)[Z6ga? + 23}
This makes the previous equation
0= Trypla®Tr(ho)[Z6ga®y + Z3a1%3).
Replacey by y? and substitute in (8) to get
0= Trpp{@®Tr(ho)(Z6% + Z3*0)} V Z € f.

Adding the last 2 equations
0= Trp{0?Tr(ho)(Z02 + Z0sa®y + Z3%a0 + Z31%)3)).
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Write x Z in place ofZ and then writey = Z%a~? to get
0 = Tryp{0®Tr(Mo)[x(0°Z + 6Z°) + x3(Z%*0 + Z°%ahH]} ¥ x, Z.

ForeachZ e f,x > x(0?Z +05Z°%) + x3(Z3%a*6 + Z%*) is an endomorphism of
f. ThereforeyY Z € f, 3 a corresponding # O for which it vanishes. Tak& such
thato Z3 + Z° = 0 which is possible by the validity of the 3rd compatibility condition.
The corresponding satisfies

x(0%°Z +605Z%) =01i.e.0°Z +052° = 0.

The 2 equation8Z® + Z° = 0 andd?Z + 6% = 0 gived3 = 6° which is the 4th
compatibility condition.

Before proving the 5th condition, note that any other uniformising parameteiof
72 times some unit of K and so, a uniformising parameteriois 72 times the norm
of u. But, Norm(u) runs over all units df asK is unramified. An easy computation
shows that, by changing?, we may assume thég = 61, = 0. The 6th compatibility
condition then just reduces to the 3rd one. Also, the fifth condition becomes then
010 = 0.

To prove this holds, we start with (7) and proceed exactly as we did with (5). We
get quite easily thal'rp/¢(As) = 0 andTrg/r(A3) = *T"eTrF/f(AO) = 0. Therefore,
(7) reduces to

0=Trpp{Tr(ho)(B10XY*)} VX, Y € E

which easily give®,o = 0, the 5th condition.
Hence, we have proved:

Theorem. Letk be an extension df);3 whose ramification index i6. Also, assume
that the residue fielg of k is so large that there exist, b € f such that(1 + a?)(1+
a®) # (1 + b?)(1 + b*. Let D be the quaternion division algebra ovir Suppose
H?(SL(1, D), R/Z) has an element of ord&:. Thenk contains a primitived-th root
of 1.

References

[L] M. Lazard, Groupes analytiqugs-adiquesPubl. Math.IHES, Vol. 26 (1965) 5-219
[M] J. Milnor, Introduction to algebraick -theory; Princeton University Press (1971)
[PR] G. Prasad and M. S. Raghunathan, Topological central extensidis(df D), Invent.
Math. Vol. 92 (1988) 645-689
[R] M. S. Raghunathan, On the congruence subgroup prolfferl. Math.IHES, Vol. 46
(1976) 107-161
[Ri] C.Riehm,Amer. J. MathVol. 92 (1970) 499-523



