
Proc. Inst. Math. Sci. Vol. xx, No. xx, ?? 2004, pp. 1–11.

Central Extensions of ap-adic Division Algebra

B. Sury

Statistics and Mathematics Unit, Indian Statistical Institute, 8th Mile Mysore Road,
Bangalore 560 059, India
e-mail: sury@isibang.ac.in

Subject Classification: 20 G 25

1. Introduction

Let k be a finite extension of the fieldQ
p

of p-adic numbers and supposeD is a finite-
dimensional central division algebra overk.

Then, the groupG = SL1(D) consisting of elements of reduced norm 1 inD

acquires a topology fromk and is a compact, totally disconnected (i.e., a profinite)
group. We are interested in finding the possible (topological) central extensions

1 → A → E → G → 1.

General nonsense tells us that the set of central extensions is determined by a group,
denotedH 2

(G, R/Z), which, in this case, is known to be finite by some deep work
of Raghunathan on the congruence subgroup problem ([R]). It is expected (although
unknown as yet) that, barring a handful of exceptions,H

2
(G, R/Z)

∼

=

µ(k)

p

, the finite
cyclic group ofp-th power roots of unity ink. In 1988, Gopal Prasad & M. S. Raghu-
nathan proved ([PR]) thatH 2

(G, R/Z) is a finite cyclic group containing an isomorphic
copy ofµ(k)

p

and is trivial ifµ(k)

p

is trivial.
These results were sufficient for their original motivation to solve the so-called

metaplectic problem which comes up in the congruence subgroup problem. However,
the general computation ofH 2 is still open.

Our aim here is to stretch the method of [PR] and study thep

2-torsion inH 2
(G, R/Z)

with a view to proving that ifH 2 has an element of orderp

2, thenk contains a primitive
p

2-th root of unity. The computations are rather cumbersome, and we carry them out
fully only in a special case whenp = 3 andD is the quaternion division algebra
although we have partial results in more generality.

One probably needs new ideas along with the work of [PR] if one wants to compute
H

2 in general. Perhaps, on the other hand, the seminal work of Lazard ([L]) on compact
p-adic Lie groups has not been exploited sufficiently enough.

2. Basic structure ofD

The structure ofp-adic division algebras had been investigated by C. Riehm in [Ri].
Let us briefly recall some details.
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D containsR, its maximal compact subring which, in turn, contains a unique (two-
sided) maximal idealP . The groupG = SL(1, D) of elements of reduced norm 1 in
D, is a profinite group which is normal inD∗.

G admits a filtrationG
i

= {g ∈ G : g ≡ 1 modP

i

} for i ≥ 1. In fact,G
i

are all
normal inD

∗.G1 is a pro-p group andG/G1 is a finite, cyclic group of order prime top.
For i, j ≥ 1, we have [G

i

, G

j

] ⊆ G

i+j

. In particular,G
i

/G

i+1 is an abelian group
for i ≥ 1.

By local class field theory, there exists a uniformising parameterπ in P which nor-
malises the maximal unramified extensionK of degreed overk. Also, the automor-
phism ofK given by the conjugation byπ generates the Galois group Gal(K/k)

∼

=

Gal (F/f ) whereF, f are the residue fields ofK, k respectively.
Moreover, the non-zero elementsF

∗ can be identified withµ(K)tame, the cyclic
group of prime-to-p roots of unity inK.

Each elementg ∈ R can be uniquely expressed asg = g0 +

∑

n≥1 g

n

π

n with
g

n

∈ µ(K)tame∪ {0}.
A little computation shows also that the abelian groupG

i

/G

i+1 can be identified
via the mapρ

i

: 1 +

∑

n≥i

g

n

π

n

7→ g

i

with F(i) which is eitherE := {x ∈ F :
T r

F/f

(x) = 0} or the whole ofF according asd|i or d 6 |i.
It is also quite easy to show thatG = G1(G ∩ µ(K)tame).
Note that eachF(i) is a module forG ∩ µ(K)tame under the actionφ · x =

φ

σ

i

(φ)

x

where we have identifiedµ(K)tamewith F \ {0}. A consequence of Hilbert’s theorem
90 is that there is a nontrivial homomorphism (of modules) fromF(i) to F(j) if, and
only if, i ≡ j modd.

3. Conditions for roots of unity

It is easy to write down necessary and sufficient conditions fork to contain a primitive
p

2-th root of unity.
Recall thatk ⊂ K ⊂ D andπ is a uniformising parameter inD normalisingK.

Let e denote the ramification index ofk overQ
p

andd denote the degree ofD overk.
Thenπ

d is a uniformising parameter fork and, one can expandp overk as

p = θπ

de

+ θ

d

π

de+d

+ · · ·

for someθ ’s in f .
Now, well-known properties of thep-th power map (see [M], P. 167–168) tells us

thatk has a primitivep2-th root of unity if, and only if,p(p − 1) dividese and there
exists someY = 1+ Y

de/p(p−1)

π

de/p(p−1)

+ Y

de/p(p−1)+d

π

de/p(p−1)+d

+ · · · such that
Y

de/p(p−1)

6= 0 and such thatYp

2
≡ 1 modπ

de/p(p−1)+de+d .
This gives (using the expression ofp) certain polynomial equations in theY

i

’s with
coefficients as someθ ’s. We get finitely many polynomials overf .

Our aim is, therefore, to deduce the simultaneous solvability of these equations by
somehow getting information overf that can be derived from the assumption thatH

2

hasp2-torsion.
It should be pointed out that the corresponding calculation withp in place ofp2 is

much easier and was carried out in [PR].
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4. Strategy of studyingH

2 (after [PR])

In this section, we recall the basic method as well as the results of Prasad & Raghunathan
from [PR] which we shall be using.

Fact1. Using the fact thatG is profinite, it is easy to deduce that
H

2
(G, R/Z)

∼

=

H

2
(G, J ) whereJ is the subgroup ofQ/Z) consisting ofp-power

order (considered with the discrete topology).

We shall be using the Hochschild-Serre spectral sequence for the situation
G

i−1/G

i

≤ G/G

i

for i > 1.
A very useful property is that given a central extensionC ⊆ E → A whereA is

abelian is that one has a lifted ‘commutator’ map; ifa, b ∈ A, then for arbitrary liftsx, y

of a, b ∈ E, the commutator [x, y] = xyx

−1
y

−1 lands insideC and, is independent
of the lifts. One often writes [a, b] for this element ofC. WhenC is a divisible group
(like ourJ ), the extension is ‘trivial’ if, and only if,E itself is abelian.

In our case, we shall use it forG
i

/G

j

which is abelian if 2i ≥ j .

Fact2. H

2
(G, J ) =

lim
→ H

2
(G/G

i

, J ) and, the ‘inflation’ maps inf(i) : H

2
(G/G

i

, J )

→ H

2
(G, J ) are injective if, and only if,d 6 |i. Moreover,H 2

(G, J ) is the union of the
imagesH 2

(G)

i

over alli under the inflation maps;H 2
(G)

i

is an increasing filtration.
If d|i, then there is a natural identification of Ker inf(i) with the vector spaceE of

elements of trace zero inF overf .
Thus, one needs to compareH

2
(G)

i

andH

2
(G)

i−1 for variousi.

Fact3. If d 6 |i, H

2
(G)

i

= H

2
(G)

i−1.
In fact, one can show that the same equality holds ifdp 6 |i; this uses some commu-

tator identities due to P. Hall which are valid in any group.
(P. Hall) In any groupG, for elementsa, b, c one has

[[a, b],b c]][[ b, c],c a]][[ c, a],a b]] = 1.

Look at the inflation maps

H

2
(G/G

r−1, J ) → H

2
(G/G

r

, J ) → H

2
(G, J ).

If d|r, since the inflation inf(r) is not injective, it is necessary to know when somec ∈

H

2
(G/G

r

, J ) inflates inH 2
(G, J ) to an element which comes fromH 2

(G/G

r−1, J ).
This happens ifc restricts to the trivial extension over the subgroupG

r−1/G

r

. More
precisely, using the Hochschild-Serre sequence corresponding toG

r−1/G

r

C G/G

r

,
we see that:

Fact4. c comes fromH

2
(G/G

r−1, J ) if, and only if, it is in
Ker(H 2

(G/G

r

, J ) → H

2
(G

r−1/G

r

, J )) ∩ E

1,1
∞

.
This is understood better as follows.
For anyc in H

2
(G/G

r

, J ), let J ⊆ E → G/G

r

denote the corresponding central
extension. TheE1,1

2 -term is

H

1
(G/G

r−1, H
1
(G

r−1/G

r

, J )) = H

1
(G1/[G1, G1], Hom (F (r − 1), J ))

G/G1

= Hom (F (1), Hom (F (r − 1), J ))

G∩µ(K)tame
.
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As we noted, this is nontrivial only ifd|r. If d|r, this is just the set of all (equivariant)
bimultiplicative maps fromF(1) × F(r − 1) to f0 where we shall writef0 for the
prime fieldZ/p.

In fact, it is easy to write down all its elements. These are the mapsF(1)×F(r−1) →

f0; (X, Y ) 7→ T r

F/f0(λXσ(Y )) for someλ ∈ F . With this identification, it follows
thatc comes from the previous level if, and only if, the correspondingλ has trace zero
overf i.e., we get:

Fact5. c in H

2
(G/G

r

, J ) is the inflation of an element ofH 2
(G/G

r−1, J ) if, and only
if, there existsλ ∈ F of trace zero overf such thatc can be ‘regarded’ as (this is the
image in theE1,1

2 -term) the map fromF(1) × F(r − 1) to f0 = Z/p given by

∧

c

(X, Y ) = T r

F/f0(λXσ(Y )) ∀ X ∈ F(1), Y ∈ F(r − 1).

It should be noted that the map above is induced by the ‘commutator’ map from
E1 × E

r−1 to J whereE

i

is the inverse image ofG
i

/G

r

in E.
More generally, from P. Hall’s identity, one can easily show thatE

i

commutes with
E

r−i+1 ∀ i ≤ r. Thus the central extension splits overG

i

/G

r

whenever 2i > r. Thus:

Fact6. If r > 2 andε <

r

2 then the restriction mapH 2
(G/G

r

, J ) → H

2
(G

r−ε

/G

r

, J )

is the zero map.
Once again, ifε <

r

2, we can consider the Hochschild-Serre sequence corresponding
to G

r−ε

/G

r

C G/G

r

. By the above, (E0,2
∞

- term is zero and so) we have a homomor-
phism

H

2
(G/G

r

, J ) → E

1,1
∞

⊆ E

1,1
2 = H

1
(G/G

r−ε

, Hom (G

r−ε

/G

r

, J )).

One can show that the above-mentioned image in theE

1,1
2 -term actually comes from

(H

1
(G/G

ε+1, Hom (G

r−ε

/G

r

, J )). More precisely, :

Fact7. With ε < r/2, the image inE1,1
2 is contained in the image of

inf l : H

1
(G/G

ε+1, Hom (G

r−ε

/G

r

, J )) → E

1,1
2 .

A key point (discovered in [PR]) is that one can describe these 1-cocycles very
explicitly. We describe this now.

Fact8. Let ε, s, t be positive integers s.t.ε ≤ min.(de,

1
2dt) and s ≥ ε + 1. Let

f =

[

ε−1
d

]

. For(λ0, . . . , λ

f

) ∈ F

f +1,

Z

(λ0,... ,λf

)

(a)(b) = T r

F/f0

{

∑

0≤u≤f

∑

`+m≤ε−du

λ

u

(`)a

`

σ

`

(a

′

m

)σ

`+m

(b

dt−du−`−m

)

}

(herea =

∑

a

`

π

`

∈ D1/Ds

, b =

∑

b

m

π

m

∈ D

dt−ε

/D

dt

) is aF -invariant 1-cocycle
onD1/Ds

with values in Hom(D

dt−ε

/D

dt

); these restricted toG1/G

s

× G

dt−ε

/G

dt

and then extended toG/G

s

× G

dt−ε

/G

dt

by defining them to be zero on(G ∩ F) ×

G

dt−ε

/G

dt

, give all the cohomology classes inH 1
(G/G

s

, Hom (G

dt−ε

/G

dt

, J )).
Also, hereλ(l) stands forλ + σ(λ) + · · · + σ

l−1
(λ).

We shall be using this only forε = de, s = de + 1 andt =

ep

p−1 + e.
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Finally, let us note:

Fact9. H

2
(G)

r

= 0 for r <

dep

p−1 andH

2
(G)

dep/(p−1)

constitutes the elements of order

at mostp in H

2
(G, R/Z).

Moreover, ifH 2
(G, R/Z) has an element of orderp2, thenr =

dep

p−1 + de where

H

2
(G)

r

is the earliest where an element of orderp

2 shows up.
This is because thep-th power givesG dep

p−1

∼

=

G

dep

p−1+de

and an elementc of

H

2
(G)

dep

p−1+i

is of orderpj

⇔ c

p in H

2
(G)

dep

p−1+i−de

is of orderpj−1. Also, we have

p|e because cohomology ‘pops up’ at stages which are multiples ofpd. Thus,pd/de

i.e.p|e.

5. Outline of proof

Here is how we obtain conditions overf using the assumption thatH

2 hasp2-torsion.
We look at the corresponding element in

H

1
(G/G1+de

, H

1
(G

dep/(p−1)

/G

dep/(p−1)+de

, J )).

We consider the abelian subgroupA = K ∩ G of G and, as elements of the above
cohomology group, we may write down the equations [X, Y

p

2
] = 0 ∀ X, Y ∈ A,

whereA is the image ofA in G/G

dep

p−1+de

. These commutators are computed with the

help of the above explicit expressions forε = de, dt =

dep

p−1 + de, s = de + 1 as
written down in fact 8.

We note that the triviality of these commutators is due to their bilinearity. Thus we
get equations overf from which we try to deduce the required equations (forp

2th root
to exist ink) in f . Note that in the computation of commutators in the central extension
corresponding toc, theλ0 which figures is such thatT

r

F/f

(λ0) 6= 0 since dep

p−1 + de is

the smallest level wherep2-torsion occurs.

6. The prime p = 3

We carry out the computations only in the following special case.
We assumep = 3, d = 2, e = p(p − 1) = 6.
As π

2 is a uniformising parameter fork, we can write 3
π

12 = θ + θ2π
2
+ θ4π

4
+ . . .

whereθ, θ2, · · · ∈ f .
For ap

2-th root of 1 to exist ink, it is necessary and sufficient that
∃Y ∈ U

de

p(p−1)

such thatYp

2
∈ U

dep

p−1+de+1 and such thatY 6∈ U

de

p−1

i.e.Y is not ap-th root.
In our case, we wantY ∈ U2 \ U6 such thatY 9

≡ 1 modπ

31. Then,

θY

3
2 + Y

9
2 = 0

θ2 = 0

θ4 = 0
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θ(Y4 + Y

2
2 )

3
+ θ6Y

3
2 = 0

θ

2
Y2 + θ8Y

3
2 = 0

θ

2
(Y4 + Y

2
2 ) + θ10Y

3
2 = 0

θ

2
Y6 + θY

3
6 + 2(θ

2
Y2Y4 + θY

3
2 Y

3
4 ) + θ6(Y

3
4 + Y

6
2 ) + θ12Y

3
2 = 0.

We can find such aY if, and only if, the following ‘compatibility’ conditions hold

θ2 = 0

θ4 = 0

θ + X

2
= 0 has a solutionµ in f

θ

3
8 = θ

5

θ

3
10 + θ

4
θ6 = 0

X

9
+ θ

3
X

3
= θ

3
6 + θ

6
6µ

−9
− θ6µ

6
+ θ

3
12µ

−3 has a solution overf.

If these hold, then the solutions forY are:

Y2 = A solution ofY 6
2 + θ = 0

Y4 = A solution ofY 3
4 = θ6Y

−3
2 − Y

6
2

Y6 = A solution ofY 9
6 + θ

3
Y

3
6 = θ

3
6 +

θ

6
6

Y

27
2

+ θ

3
θ6 +

θ12

Y

9
2

.

Let us expand the relevant powers ofY now using the expression ofp in k.

Y = 1 + Y2π
2
+ Y4π

4
+ Y6π

6
+ . . . . . . ∈ U2

Y

3
= 1 + (θπ

12
+ θ2π

14
+ θ4π

16
+ . . . )(Y2π

2
+ Y4π

4
+ Y6π

6
+ . . . )

+ (θπ

12
+ θ2π

14
+ . . . )(Y

2
2 π

4
+ 2Y2Y4π

6
+ (Y

2
4 + 2Y2Y6)π

8
+ . . . )

+ (Y

3
2 π

6
+ Y

3
4 π

12
+ Y

3
6 π

18
+ . . . )

= 1 + Y

3
2 π

6
+ Y

3
4 π

12
+ θY2π

14
+ (θY

2
2 + θY4 + θ2Y2)π

16

+ (Y

3
6 + 2θY2Y4 + θY6 + θ2Y

2
2 + θ2Y4 + θ4Y2)π

18
+ . . .

Y

9
= 1 + (θπ

12
+ θ2π

14
+ . . . )(Y

3
2 π

6
+ Y

3
4 π

12
+ θY2π

14
+ (θY

2
2 + θY4 + θ2Y2)π

16

+ (Y

3
6 + 2θY2Y4 + θY6 + θ2Y

2
2 + θ2Y4 + θ4Y2)π

18
+ . . . )

+ (θπ

12
+ θ2π

14
+ . . . )(Y

6
2 π

12
+ 2Y

3
2 Y

3
4 π

18
+ . . . ) + (Y

9
2 π

18 modπ

36
)

= 1 + (θY

3
2 + Y

9
2 )π

18
+ θ2Y

3
2 π

20
+ θ4Y

3
2 π

22
+ (θY

6
2 + θY

3
4 + θ6Y

3
2 )π

24

+ (θ

2
Y2 + θ2Y

3
4 + θ2Y

6
2 + θ8Y

3
2 )π

26
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+ (θ

2
Y

2
2 + θ

2
Y4 + 2θθ2Y2 + θ4Y

6
2 + θ4Y

3
4 + θ10Y

3
2 )π

28

+ (θ

2
Y6 + θY

3
6 + 2(θ

2
Y2Y4 + θY

3
2 Y

3
4 ) + θ6(Y4 + Y

2
2 )

3

+ θ12Y
3
2 + 2θθ2Y

2
2 + 2θθ2Y4 + 2θθ4Y2 + θ

2
2Y2)π

30
+ . . . .

NowH

1
(

G/G1+de

, Hom
(

G

dep

p−1
/G

dep

p−1+de

, J

))

= H

1
(

G/G13, Hom(G18/G30, J )

)

.

ConsiderX, Y ∈ K

1 such thatY 9
∈ G18/G30.

One knows then that [X, Y

9] = [X, Y ]9
= 1 and

[X, Y

9] can be calculated from our knowledge ofH

1
(G/G13, Hom (G18/G30, J )).

In fact, if X = 1 +

∑6
1 X2i

π

2i andY = 1 +

∑

Y2i

π

2i , if Y

9
= 1 +

∑14
9 b2i

π

2i ,
then

[X, Y

9] = T r

F/f0

{

∑

0≤u≤5

∑

`+m≤12−2u

λ

u

(`)X

`

¯

X

m

b30−2u−`−m

}

. (1)

Here X

−1
= 1 +

∑

¯

X2i

π

2i . SinceY

9
∈ G18/G30, we haveb

i

= 0 for i 6=

18, 20, 22, 24, 26 or 28.
Contributions to the right side of (1) are as follows:
Foru = 5, it is

T r

F/f0 {

λ5(2)X2b18} = T r

F/f0

{

T r

F/f

(λ5)X2(θY

3
2 + Y

9
2 )

}

.

Foru = 4, it is

T r

F/f0

{

λ4(2)(X2b20 + X2 ¯

X2b18) + λ4(4)X4b18
}

= T r

F/f0

{

T r

F/f

(λ4)
[

X2θ2Y
3
2 + (2X4 + X2 ¯

X2)(θY

3
2 + Y

9
2 )

]}

.

Foru = 3, it is

T r

F/f0

{

λ3(2)(X2b22 + X2 ¯

X2b20 + X2 ¯

X4b18)

+ λ3(4)(X4b20 + X4 ¯

X2b18) + λ3(6)X6b18
}

= T r

F/f0

[

T r

F/f

(λ3)
{

X2θ4Y
3
2 + (2X4 + X2 ¯

X2)θ2Y
3
2

+(2X4 ¯

X2 + X2 ¯

X4)(θY

3
2 + Y

9
2 )

}]

.

Note thatλ3(6) = 3T

r

F/f

(λ3) = 0.
Foru = 2, it is

T r

F/f0

{

T r

F/f

(λ2)

[

X2(θY

6
2 + θY

3
4 + θ6Y

3
2 ) + (2X4 + X2 ¯

X2)θ4Y
3
2

+(2X4 ¯

X2 + X2 ¯

X4)θ2Y
3
2 + (X8+2X4 ¯

X4+X2 ¯

X6)(θY

3
2 +Y

9
2 )

]}

.
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Foru = 1, it is

T r

F/f0























T r

F/f

(λ1)













X2(θ
2
Y2 + θ2Y

3
4 + θ2Y

6
2 + θ8Y

3
2 )

+(2X4 + X2 ¯

X2)(θY

6
2 + θY

3
4 + θ6Y

3
2 )

+(2X4 ¯

X2 + X2 ¯

X4)θ4Y
3
2 + (X8 + 2X4 ¯

X4 + X2 ¯

X6)θ2Y
3
2

+(2X10 + X8 ¯

X2 + 2X4 ¯

X6 + X2 ¯

X8)(θY

3
2 + Y

9
2 )



































.

Foru = 0, it is

T r

F/f0











































T r

F/f

(λ0)























X2(θ
2
Y

2
2 + θ

2
Y4 + 2θθ2Y2 + θ4Y

6
2 + θ4Y

3
4 + θ10Y

3
2 )

+(2X4 + X2 ¯

X2)(θ
2
Y2 + θ2Y

3
4 + θ2Y

6
2 + θ8Y

3
2 )

+(2X4 ¯

X2 + X2 ¯

X4)(θY

6
2 + θY

3
4 + θ6Y

3
2 )

+(X8 + 2X4 ¯

X4 + X2 ¯

X6)θ4Y
3
2

+(2X10 + X8 ¯

X2 + 2X4 ¯

X6 + X2 ¯

X8)θ2Y
3
2

+(2X10 ¯

X2 + X8 ¯

X4 + 2X4 ¯

X8 + X2 ¯

X10)(θY

3
2 + Y

9
2 )

































































.

We also see (sinceX is of norm 1 andp = 3) that

2X4 + X2 ¯

X2 = −(X4 + X

2
2)

2X4 ¯

X2 + X2 ¯

X4 = X

3
2

2X10 ¯

X2 + X8 ¯

X4 + 2X4 ¯

X8 + X2 ¯

X10 = −(X

3
4 + X

6
2).

We have 0= [X, Y

9] = Sum of these 6 terms corresponding to the valuesu =

0, 1, 2, 3, 4, 5.
Now, we start proving the compatibility conditions hold good.

Define ˜

X by changingX10 to ˜

X10 = X10 + µ for someµ of trace 0. Then, we can
have ˜

X ∈ K

1 with ˜

X

i

= X

i

for i < 10. Now,

0 = [ ˜

X, Y

9] − [X, Y

9]

= T r

F/f0

{

T r

F/f

(λ1)2µ(θY

3
2 + Y

9
2 ) + T r

F/f

(λ0)2µθ2Y
3
2

}

= 4T r

f/f0

{

T r

F/f

(λ1)µ(θY

3
2 + Y

9
2 ) + T r

F/f

(λ0)µθ2Y
3
2

}

.

We have used the fact that whend = 2, E · E = f .
For Y2 6= 0, sinceµY

3
2 could be any arbitrary element off , not depending onY 3

2 ,
we must have

T r

F/f

(λ1)(θ + Y

6
2 ) + T r

F/f

(λ0)θ2 = 0 ∀ Y2 ∈ E.

If we take ˜

Y2 whose square is notY 2
2 , then we get, on subtraction,

T r

F/f

(λ1)( ˜

Y

6
2 − Y

6
2 ) = 0 i.e.T r

F/f

(λ1) = 0. (2)
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Therefore (as the existence ofp

2-torsion implies thatT r

F/f

(λ0) 6= 0), we obtain

θ2 = 0.

Then, the first compatibility condition for the existence of a primitivep

2-th root of
unity in k is proved.

Let us do the same withX8 now i.e. call ˜X = 1 + X2π
2
+ X4π

4
+ X6π

6
+ (X8 +

µ)π

8
+ (X10 + µX2)π

10
+ · · · ∈ K

1.

0 = [ ˜

X, Y

9] − [X, Y

9]

⇒ 0 = T r

f/f0

{

T r

F/f

(λ2)µ(θY

3
2 + Y

9
2 ) + T r

F/f

(λ0)µθ4Y
3
2

}

.

Changingµ to αµ for anyα ∈ f , we get

0 = T r

F/f

(λ2)(Y
9
2 + θY

3
2 ) + T r

F/f

(λ0)θ4Y
3
2 ∀ Y2 ∈ E.

Again, as before, we will get

T r

F/f

(λ2) = 0 (3)

and therefore,

θ4 = 0. (4)

This is the 2nd compatibility condition.
Now, puttingX2 = 0 in the original formula (which now consists of four terms since

T r(λ1) = 0 = T r(λ2)), we get for allX, Y ∈ E

T r

f/f0

{

T r

F/f

(λ4)X(Y

9
+ θY

3
) + T r

F/f

(λ0)[X(θ

2
Y + θ8Y

3
)+X

3
(θY

3
+Y

9
)]

}

= 0.

(5)

Again puttingX4 = −X

2
2 in the original formula, we get

T r

f/f0

{

T r

F/f

(λ5)X2(Y
9
2 + θY

3
2 ) + T r

F/f

(λ3)X
3
2(Y

9
2 + θY

3
2 )

+T r

F/f

(λ0)[X2(θ
2
Y

2
2 + θ

2
Y4 + θ10Y

3
2 ) + X

3
2(θY

6
2 + θY

3
4 + θ6Y

3
2 )]

}

= 0.

PuttingY2 = 0 will give

T r

f/f0{T r

F/f

(λ0)(θ
2
XY + θX

3
Y

3
)} = 0 ∀ X, Y ∈ E. (6)

SinceT r

F/f

(λ0) 6= 0 and sinceZ 7→ θ

2
Z + θZ

3 is an endomorphism off ,
therefore, it follows from (6) that∃Z 6= 0 in f such thatθ2

Z + θZ

3
= 0. Thus, the

3rd compatibility condition has been proved.
In the above, instead of puttingY2 = 0, let us, instead, putY4 = −Y

2
2 which will

give∀ X, y ∈ E

T r

f/f0

{

T r

F/f

(λ5)X(θY

3
+ Y

9
) + T r

F/f

(λ3)X
3
(θY

3
+ Y

9
)

+T r

F/f

(λ0)(θ10XY

3
+ θ6X

3
Y

3
)

}

= 0. (7)
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We shall use this later in the proof of the fifth compatibility condition.
Next our aim is to proveθ3

8 = θ

5 which is the 4th condition. Now sinceF is a
quadratic extension off andE is the trace zero elements inF , we haveE = f · α for
someα ∈ F such thatα2

∈ f

∗

\ (f

∗

)

2. Let us expand (5) by puttingX = xα, Y = yα

wherex, y ∈ f . We get

0 = T r

f/f0

{

α

4
T r(λ4)Zy

2
(θ + y

6
α

6
) + α

2
T r(λ0)[Z(θ

2
+ θ8y

2
α

2
)

+α

4
Z

3
(θ + y

6
α

6
)]

}

(8)

where we have putZ = xy and the traces inside areT r

F/f

.
Replacingy by y + 1 and subtracting, we get

0 = T r

f/f0

{

α

4
T r(λ4)Z[(1 − y)θ + α

6
((y + 1)

8
− y

8
)]

+α

2
T r(λ0)[Zθ8α

2
(1 − y) + α

10
Z

3
(1 − y

3
))]

}

.

Again, puttingy + 1 for y and subtracting,

0 = T r

f/f0

{

α

4
T r(λ4)Z(−θ − α

6
(1 + y

2
+ y

4
+ y

6
)]

+α

2
T

r

(λ0)(−Zθ8α
2
− Z

3
α

10
)

}

.

Assuming that #f is large enough so that∃y1, y2 s.t. 1+ y

2
1 + y

4
1 + y

6
1 6= 1+ y

2
2 +

y

4
2 + y

6
2, we will have

0 = T r

f/f0{α
10

T r(λ4)Z(y

2
1 + y

4
1 + y

6
1 − y

2
2 − y

4
2 − y

6
2)} ∀ Z ∈ f

and so

T r

F/f

(λ4) = 0. (9)

The equation (8) becomes
0 = T r

f/f0{α
2
T r(λ0)[Z(θ

2
+ θ8y

2
α

2
) + α

4
Z

3
(θ + y

6
α

6
)]}. Puttingy + 1 for y and

subtracting,

0 = T r

f/f0{α
2
T r(λ0)[Zθ8α

2
(1 − y) + Z

3
α

10
(1 − y

3
)]}.

Putting−y for y and adding

0 = T r

f/f0{α
2
T r(λ0)[Zθ8α

2
+ Z

3
α

10]}.

This makes the previous equation

0 = T r

f/f0{α
2
T r(λ0)[Zθ8α

2
y + Z

3
α

10
y

3]}.

Replacey by y

2 and substitute in (8) to get

0 = T r

f/f0{α
2
T r(λ0)(Zθ

2
+ Z

3
α

4
θ)} ∀ Z ∈ f.

Adding the last 2 equations

0 = T r

f/f0{α
2
T r(λ0)(Zθ

2
+ Zθ8α

2
y + Z

3
α

4
θ + Z

3
α

10
y

3
)}.
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Write xZ in place ofZ and then writey = Z

2
α

−2 to get

0 = T r

f/f0{α
2
T r(λ0)[x(θ

2
Z + θ8Z

3
) + x

3
(Z

3
α

4
θ + Z

9
α

4
)]} ∀ x, Z.

For eachZ ∈ f, x 7→ x(θ

2
Z + θ8Z

3
) + x

3
(Z

3
α

4
θ + Z

9
α

4
) is an endomorphism of

f . Therefore,∀ Z ∈ f, ∃ a correspondingx 6= 0 for which it vanishes. TakeZ such
thatθZ

3
+Z

9
= 0 which is possible by the validity of the 3rd compatibility condition.

The correspondingx satisfies

x(θ

2
Z + θ8Z

3
) = 0 i.e.θ2

Z + θ8Z
3

= 0.

The 2 equationsθZ

3
+ Z

9
= 0 andθ

2
Z + θ8Z

3
= 0 giveθ

3
8 = θ

5 which is the 4th
compatibility condition.

Before proving the 5th condition, note that any other uniformising parameter ofK is
π

2 times some unitu of K and so, a uniformising parameter ofk is π

2 times the norm
of u. But, Norm(u) runs over all units ofk asK is unramified. An easy computation
shows that, by changingπ2, we may assume thatθ6 = θ12 = 0. The 6th compatibility
condition then just reduces to the 3rd one. Also, the fifth condition becomes then
θ10 = 0.

To prove this holds, we start with (7) and proceed exactly as we did with (5). We
get quite easily thatT r

F/f

(λ5) = 0 andT r

F/f

(λ3) =

−θ6
θ

T r

F/f

(λ0) = 0. Therefore,
(7) reduces to

0 = T r

f/f0{T r(λ0)(θ10XY

3
)} ∀ X, Y ∈ E

which easily givesθ10 = 0, the 5th condition.
Hence, we have proved:

Theorem. Let k be an extension ofQ3 whose ramification index is6. Also, assume
that the residue fieldf of k is so large that there exista, b ∈ f such that(1+ a

2
)(1+

a

4
) 6= (1 + b

2
)(1 + b

4
). Let D be the quaternion division algebra overk. Suppose

H

2
(SL(1, D), R/Z) has an element of order9. Thenk contains a primitive9-th root

of 1.
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