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1 Introduction

Erdős and Selfridge [7] proved that a product of consecutive integers can never be a perfect power.
That is, the equation x(x + 1) · · · (x + (m− 1)) = yn has no solutions in positive integers x, y, m, n
with m,n > 1. A natural problem is to study the equation

x(x + 1)(x + 2)...(x + (m− 1)) + r = yn (1)

with a nonzero integral (or rational) parameter r. M.J. Cohen [6] proved that (1) has finitely
many solutions with m = n, and Yuan Ping-zhi [13] used the classical theorems of Baker and
Schinzel-Tijdeman to show that, with some obvious exceptions, there are at most finitely many
solutions with a fixed m. (See Theorem 1.2 below). Some special cases were completely solved by
Abe [1] and Alemu [2].

In this paper we use prove that (1) has finitely many solutions (x, y,m, n) when r is not a
perfect power.

Theorem 1.1 Let r be a non-zero rational number which is not a perfect power in Q. Then (1)
has at most finitely many solutions (x, y,m, n) satisfying

x,m, n ∈ Z, y ∈ Q, m, n > 1. (2)

Moreover, all the solutions can be explicitly determined.

We deduce Theorem 1.1 from three more particular results, one of which is the above-mentioned
result of Yuan. First of all, let us display two infinite series of solutions which occur for two special
values of r. For r = 1/4 we have the solutions

x ∈ Z, y = ±(x + 1/2), m = n = 2. (3)

For r = 1 we have infinitely many solutions

x ∈ Z, y = ±(x2 + 3x + 1), m = 4, n = 2. (4)

In the following theorem m is fixed, and we solve (1) in x, y, n.

Theorem 1.2 (Yuan) Let r be a non-zero rational number and m > 1 an integer.

1. Assume that (m, r) /∈ {(2, 1/4), (4, 1)}. Then (1) has at most finitely many solutions
(x, y, n) satisfying

x, n ∈ Z, y ∈ Q, n > 1, (5)

and all the solutions can be explicitly determined.

2. Assume that (m, r) = (2, 1/4) or (m, r) = (4, 1). Then, besides the solutions from (3),
respectively (4), equation (1) has at most finitely many solutions (x, y, n) satisfying (5),
and all these solutions can be explicitly determined.
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Yuan formulates his result in a slightly different (and non-equivalent) form, and his proof is
about three pages long. For the convenience of the reader, we give in Section 2 a concise proof of
Theorem 1.2, following Yuan’s argument with some changes.

Theorem 1.2 implies that n is bounded in terms of m and r. It turns out that, when r 6= ±1,
it is bounded in terms of r only.

Theorem 1.3 Let r be a rational number distinct from 0 and ±1. Then there exists an effective
constant C(r) with the following property. If (x, y, m, n) is a solution of (1) satisfying (2) then
n ≤ C(r).

Now change the roles: n is fixed, m is variable.

Theorem 1.4 Let r be a non-zero rational number and n > 1 an integer. Assume that r is not
an n-th power in Q. Then (1) has at most finitely many solutions (x, y, m) satisfying

x,m ∈ Z, y ∈ Q, m > 1, (6)

and all the solutions can be explicitly determined.

In [8] this theorem is extended (non-effectively) to the equation x(x + 1) · · · (x + (m− 1)) =
g(y), where g(y) is an arbitrary irreducible polynomial.

Theorem 1.1 is an immediate consequence of Theorems 1.3 and 1.4. Indeed, assume that r is
not a perfect power. Theorem 1.3 implies that n is effectively bounded in terms of r. In particular,
we have finitely many possible n. Theorem 1.4 implies that for each n there are at most finitely
many possibilities of (x, y,m). This proves Theorem 1.1.

Remark 1.5 It is interesting to compare (1) with the classical equation of Catalan xm − yn = 1.
This equation has been effectively solved by Tijdeman [12], and recently Mihăilescu [9] (see also [5])
solved it completely. However, much less is known about the equation xm − yn = r for r 6= ±1.
Just to the contrary, for equation (1) the case r = ±1 seems to be the most difficult.

2 Proof of Theorem 1.2

In this section m > 1 is an integer and fm(x) = x(x + 1) · · · (x + m− 1).

Proposition 2.1 Let λ be a complex number. Then the polynomial fm(x)− λ has at least 2
simple roots if (m,λ) /∈

{
(2,−1/4) ,

(
3, ±2

3
√

3

)
, (4,−1)

}
. It has at least three simple roots if m > 2

and (m, λ) /∈ {(
3,±4/3

√
3
)
, (4,−1), (4, 9/16) ,

(
6, 16(10± 7

√
7)/27

)}
.

Proof By the Theorem of Rolle, f ′m(x) has m− 1 distinct real roots. Hence fm(x)− λ may
have roots of order at most 2. Beukers, Shorey and Tijdeman [4, Proposition 3.4] proved that for
even m at most 2 double roots are possible, and for odd m only one double root may occur. It
follows that for m /∈ {2, 3, 4, 6} the polynomial f(x)− λ has at least 3 simple roots.

We are left with m ∈ {2, 3, 4, 6}. Since the polynomial f(x)− λ has multiple roots if and only
if λ is a stationary value of the polynomial f(x) (that is, λ = f(α) where α is a root of f ′(x)), it
remains to determine the stationary values of each of the polynomials f2, f3, f4 f6 and count the
simple roots of corresponding translates. The details are routine and we omit them. ¥

Corollary 2.2 Let r be a non-zero rational number. The polynomial fm(x) + r has at least 2
simple roots if (m, r) /∈ {(2, 1/4), (4, 1)}. It has at least three simple roots if m > 2 and (m, r) /∈
{(4, 1), (4,−9/16)}. ¥
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We shall use the classical results of Baker [3] and of Schinzel-Tijdeman [10] on the superelliptic
equation

f(x) = yn. (7)

In Baker’s theorem n ∈ Z is fixed.

Theorem 2.3 (A. Baker) Assume that f(x) ∈ Q[x] has at least 3 simple roots and n > 1, or f(x)
has at least 2 simple roots and n > 2. Then (7) has only finitely many solutions in x ∈ Z and
y ∈ Q, and the solutions can be effectively computed.

(A non-effective version of this theorem goes back to Siegel [11].)

In the theorem of Schinzel and Tijdeman n becomes a variable.

Theorem 2.4 (Schinzel and Tijdeman) Let f(x) ∈ Q[x] be a polynomial having at least 2
distinct roots. Then there exists an effective constant N(f) such that any solution of (7) in
x, n ∈ Z, y ∈ Q satisfies n ≤ N(f).

Corollary 2.5 Let f(x) ∈ Q[x] be a polynomial having at least 3 simple roots. Then (7) has
at most finitely many solutions in x, n ∈ Z, y ∈ Q satisfying n > 1. If f(x) has 2 simple roots
then (7) has only finitely many solutions with n > 2. In both cases the solutions can be explicitly
determined.

Proof of Theorem 1.2 Corollaries 2.2 and 2.5 imply that the theorem is true if m > 2
and (m, r) /∈ {(4, 1), (4,−9/16)}. It remains to consider the cases m = 2 and (m, r) ∈
{(4, 1), (4,−9/16)}.
Case 1: m = 2, r 6= 1/4 In this case f2(x) + r has two simple roots, and Corollary 2.5 implies
that f2(x) + r = yn has at most finitely many solutions with n > 2 (and these solutions can be
explicitly determined). We are left with the equation x(x + 1) + r = y2, which is equivalent to the
equation (x + 1/2 + y)(x + 1/2− y) = 1/4− r, having finitely many solutions.

Case 2: m = 2, r = 1/4 In this case we have the equation (x + 1/2)2 = yn. It has infinitely many
solutions given by (3) and no other solutions. Indeed, if (x, y, n) is a solution with n > 2 then
x + 1/2 is a perfect power, which is impossible because its denominator is 2.

Case 3: m = 4, r = 1 In this case we have the equation
(
x2 + 3x + 1

)2 = yn. It has infinitely
many solutions given by (4) and only finitely many other solutions, all of which can be explicitly
determined.

Indeed, let (x, y, n) be a solution with n > 2. If n is odd, then y is a perfect square: y = z2

and x2 + 3x + 1 = ±zn. Since x2 + 3x + 1 has two simple roots, the latter equation has, by
Corollary 2.5, only finitely many solutions with n ≥ 3.

If n = 2n1 is even then x2 + 3x + 1 = ±yn1 , which has finitely many solutions with n1 ≥ 3. We
are left with n = 4, in which case x2 + 3x + 1 = ±y2. Equation x2 + 3x + 1 = y2 is equivalent to
(2x + 3 + 2y)(2x + 3− 2y) = 5, which has finitely many solutions. Equation x2 + 3x + 1 = −y2

is equivalent to (2x + 3)2 + 4y2 = 5, which has finitely many solutions as well.

Case 4: m = 4, r = −9/16 In this case we have the equation (x + 3/2)2(x2 + 3x− 1/4) = yn.
Since its left-hand side has 2 simple roots, this equation has, by Corollary 2.5, only finitely many
solutions with n > 2. We are left with the equation (x + 3/2)2(x2 + 3x− 1/4) = y2, which is
equivalent to the equation 16(x2 + 3x + 1− y)(x2 + 3x + 1 + y) = 25, having only finitely many
solutions.

Theorem 1.2 is proved. ¥
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3 Proof of Theorems 1.3 and 1.4

Let α be a non-zero rational number and p a prime number. Recall that ordp(α) is the integer t such
that p−tα is a p-adic unit. The proofs of both theorems rely on the following simple observation.

Proposition 3.1 Let p be a prime number and t = ordp(r). Then for any solution (x, y, m, n)
of (1), satisfying (2), one has either m < (t + 1)p or n|t.

Proof Assume that m ≥ (t + 1)p. Then ordp

(
x(x + 1)(x + 2)...(x + (m− 1))

) ≥ t + 1. Hence

ordp

(
x(x + 1)(x + 2)...(x + (m− 1)) + r

)
= t,

that is, ordp(yn) = t, which implies that n|t. ¥

Proof of Theorem 1.3 Since r 6= ±1, there exists a prime number p such that t = ordp(r) 6= 0.
Theorem 1.2 implies that for every m > 1 there exists an effective constant N(m) such that for
any solution of (1) satisfying (2) we have n ≤ N(m). Put C ′(r) = max{N(m) : 2 ≤ m < (t + 1)p}
if t > 0 and C ′(r) = 0 if t < 0. Then n ≤ C ′(r) when m < (t + 1)p, and n ≤ |t| by Proposition 3.1
when m ≥ (t + 1)p. Thus, in any case n ≤ C(r) := max{C ′(r), t}. ¥

Proof of Theorem 1.4 The proof splits into two cases.

Case 1: there is a prime p such that n does not divide t = ordp(r) In this case Proposition 3.1
implies that m ≤ (t + 1)p. Also, (n, r) /∈ {(2, 1/4), (4, 1)}, because in both these cases r is an n-th
power. Now Theorem 1.2 implies that we may have only finitely many solutions.

Case 2: n is even and r = −rn
1 , where r1 ∈ Q Write z = (y/r1)n/2. Let p be prime number

congruent to 3 mod 4 and such that ordp(r) = 0. If m ≥ p then

ordp

(
1 + z2

)
= ordp

(
r−1x(x + 1) · · · (x + m− 1)

)
> 0,

which implies that −1 is a quadratic residue mod p, a contradiction. Thus, m < p and Theorem 1.2
again implies that we may have only finitely many solutions. ¥
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