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Abstract. We address three questions posed by K.Bibak (2020), and generalize some
results of K.Bibak, D.N. Lehmer and K.G.Ramanathan on solutions of linear congruences
k∑

i=1
aixi ≡ b (mod n). In particular, we obtain explicit expressions for the number of

solutions, where xi’s are squares modulo n. In addition, we obtain expressions for the
number of solutions with order restrictions x1 > . . . > xk or with strict order restrictions
x1 > . . . > xk in some special cases. In these results, the expressions for the number of
solutions involve Ramanujan sums and are obtained using their properties.
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1. Introduction and statements of main results

Let a1, . . . , ak, b be integers and n be a positive integer. A linear congruence in k

unknowns x1, . . . , xk is a congruence of the form

(1.1) a1x1 + . . .+ akxk ≡ b (mod n).

More than a century ago, Lehmer in [19] proved that a linear congruence represented

by (1.1) has a solution 〈x1, . . . , xk〉 ∈ Zk
n if and only if l | b, where l = (a1, . . . , ak, n).

Here and henceforth the notation (u1, . . . , uk) denotes the GCD of integers u1, . . . , uk.

Further, if this condition is satisfied, then there are lnk−1 solutions. Over the years,

solutions of the linear congruence (1.1), which are subject to different types of re-

strictions such as GCD restrictions (xi, n) = ti (1 6 i 6 k) for prescribed divisors

t1, . . . , tk of n, have been extensively investigated.
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In a different direction, order-restricted solutions x1 > . . . > xk of the linear

congruence represented by (1.1) seem to have been studied for cryptographic ap-

plications. In 1962, Riordan in [27] derived an explicit formula for order-restricted

solutions when ai = 1 for all i, b = 0 and n = k. More recently, Bibak in [1] extended

Riordan’s result; specifically to the case, where ai = 1 for all i as before, but allowing

arbitrary integers k and b. The vast literature (see [5], [8], [11], [24], [25]) on these

topics bears witness to their applicability in diverse fields such as cryptography, cod-

ing theory, combinatorics, and computer science. For a comprehensive overview of

these applications and further insights, one can refer to [2], [3], [5], [6], [18].

In this paper, we answer some questions posed by Bibak, and generalize some

results of Bibak, Lehmer and Ramanathan (see Theorems 1.1, 1.3, 1.4 and Corol-

lary 1.2). The expressions naturally involve Ramanujan sums.

In the last section of [1], Bibak posed the following three interesting problems.

The first one asks for solutions xi that are squares modulo n for (1.1). We solve this

problem (see Theorems 1.1). We say that (x1, . . . , xk) is a square solution of (1.1)

if xi’s are squares modulo n, for 1 6 i 6 k. Thus, we are looking at the set

{
(x1, . . . , xk) ∈ Zk

n :
k∑

i=1

aixi ≡ b (mod n), xi = y2i , yi ∈ Zn

}
.

We point out that square solutions cannot simply be counted by enumerating the set

{
(y1, . . . , yk) ∈ Zk

n :

k∑

i=1

aiy
2
i ≡ b (mod n)

}
.

Subtleties about square solutions are explained in Section 2. A second problem posed

by Bibak is to study the general case of strictly ordered solutions x1 > . . . > xk

of (1.1) for which a special case is addressed by us in Theorem 1.3 stated below.

Another problem asks for an explicit formula for the number of order-restricted

solutions x1 > . . . > xk. Theorem 1.4 below can be considered a partial answer

towards that, and is a mild generalization of Bibak’s result.

Theorem 1.1. Let Sn(b; a1, . . . , ak) denote the number of square solutions

of (1.1). Assume n is an odd positive integer, having a prime factorization

n = pl11 . . . plrr . Then we have

Sn(b; a1, . . . , ak) =
1

n

r∏

q=1

( plq∑

m=1

e
(−bm

plq

)
+

∑

K⊂{1,...,k}
K 6=φ

1

2|K|
SK

)
,
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where

SK =

plq∑

m=1

e
(−bm

plq

) ∏

i∈K

( lq−1∑

ji=0
ji≡0 (mod 2)

(
Cplq−ji (aim) + εp

(aim/plq−ji−1

p

)
(1.2)

× ̺ji(aim)plq−ji−1/2
))

,

̺ji(x) =

{
1 if (x, plq−ji) = plq−ji−1,

0 otherwise.
(1.3)

Here Cn(b) denotes the Ramanujan sum as before, and the other notations ap-

pearing are
(
·
p

)
, the Legendre symbol modulo p, e(x) = e2iπx and εn is the sign of

the Gauss sum given by

(1.4) εn =

{
1 if n ≡ 1 (mod 4),

i if n ≡ 3 (mod 4).

In the special case when n = pl, (ai, n) = 1 = (b, n) for all i we have the following

simplified expression for SK ’s in Sn(b; a1, . . . , ak):

Corollary 1.2. We have

SK =

( l−1∑

j=0
j≡0 (mod 2)

φ(pl−j)

)|K|

+

p−1∑

m=1

e
(−bm

p

)(
− pl−1 +

l−1∑

j=2
j≡0 (mod 2)

φ(pl−j) + εp

(m
p

)
pl−1/2

)|K|

.

Moreover, when n = p2, k = 2, and (ai, p) = 1, Theorem 1.1 reduces to the

following formula for any b ∈ Zp2 :

Sp2(b; a1, a2) =





1
4p(p− 5) + 2 if p ≡ 1 (mod 4), p ∤ b and ( bp ) = 1,

1
4 (p(p− 1)) if p ≡ 1 (mod 4), p ∤ b and ( bp ) = −1,

1
2p(p− 1) if p ≡ 1 (mod 4) and p ‖ b,

1
2p(p− 1) + 1 if p ≡ 1 (mod 4) and p2 | b,
1
4p(p+ 1) if p ≡ −1 (mod 4), p ∤ b and ( bp ) = −1,

1
4p(p− 3) + 2 if p ≡ −1 (mod 4), p ∤ b and ( bp ) = 1,

0 if p ≡ −1 (mod 4) and p ‖ b,

1 if p ≡ −1 (mod 4) and p2 | b.
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Note that if k = 2, a1 = a2 = 1, b = 2, p = 3, n = p2, the corollary above gives the

value 1
4p(p+ 1) = 3, which counts all the square solutions

{(1, 1), (4, 7), (7, 4)}

of x1 + x2 ≡ 2 (mod 9).

For the number Nn(k, a, b) of solutions x1 > x2 > . . . > xk of ax1 + ax2 + . . . +

axk ≡ b (mod n), we obtain the following expression. More precisely, we prove:

Theorem 1.3. Let n be a positive integer and b ∈ Zn. Then for any given

integer a with f = (a, n) and f | b we have

Nn(k, a, b) =
(−1)kf

n

∑

d|(n/f,k)

(−1)k/d
(
n/d

k/d

)
Cd(b).

The special case when a = 1 is due to Ramanathan, see [26], Theorem 4. Of

course, in the special case (a, n) = 1, Theorem 1.3 reduces to Ramanathan’s theorem

with a−1b in place of b, using a basic property of Ramanujan sums. Another special

case of Theorem 1.3 partially answers another question (see [4], Problem) posed by

Bibak, Kapron and Srinivasan; this is described at the end of this section.

Surprisingly, Bibak does not seem to be aware of Ramanathan’s result. We also

became aware of it only after we proved Theorem 1.3 and found that the specific case

where ai = 1 for all i had already been handled in this almost 80-year old paper.

The general case of order-restricted solutions x1 > . . . > xk of (1.1) posed by Bibak

is still open, but we obtain the following partial result. Let k = k1 + k2 + . . .+ kt be

a partition of k, and we consider (1.1), where

(1.5) a1 = a2 = . . . = ak1
, ak1+1 = . . . = ak1+k2

, . . . ak1+...+kt−1+1 = . . . = ak1+...+kt

modulo n. Let Mn(k1, . . . , kt, a1, . . . , at, b) be the number of solutions of the congru-

ence
k∑

i=1

aixi ≡ b (mod n)

satisfying x1 > x2 > . . . > xk1
, xk1+1 > . . . > xk1+k2

, . . ., xk1+...+kt−1+1 > . . . >

xk1+...+kt
. We prove:
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Theorem 1.4. Let k = k1 + . . . + kt and a1, . . . , ak be integers modulo n, as

above. Then

Mn(k1, . . . , kt, a1, . . . , at, b)

=
1

n

∑

d1|n

. . .
∑

dt|n

d1
d1 + k1d1/n

. . .
dt

dt + ktdt/n

×
(
d1 + k1d1/n

k1d1/n

)
. . .

(
dt + ktdt/n

ktdt/n

) n∑

m=1
(aim,n)=di

i=1,...,t

e
(−bm

n

)
.

Suppose that (ai, n) = f for all i. Then we have

Mn(k1, . . . , kt, a1, . . . , at, b)

=
f

n

∑

d|(n/f,k1,...,kt)

nt

(n+ k1) . . . (n+ kt)

(
n+ k1/d

k1/d

)
. . .

(
n+ kt/d

kt/d

)
Cd(b),

where Cd(b) denotes the Ramanujan sum.

Here, some of the ai’s (i 6 t) may be equal; note, for instance, that if a1 = a2, the

solutions counted by the theorem correspond to separate orderings x1 > . . . > xk1

and xk1+1 > . . . > xk1+k2
. The special case of the first statement when t = 1 and

ai = 1 for all i, is due to Bibak, see [1]. Moreover, when k1 = . . . = kt = 1, the

formula forMn(1, . . . , 1, a1, . . . , ak, b) simplifies to fn
k−1, which aligns with Lehmer’s

theorem (see [19]), as it accounts for all possible solutions of (1.1) when a1, . . . , ak

are distinct.

Theorem 1.3 can be interpreted as a subset sum problem in the abelian group Zn.

More generally, let A be any abelian group and let D be a finite subset of A con-

taining n elements. For a positive integer 1 6 k 6 n and an element b ∈ A, let

ND(k, b) denote the number of k-element subsets S ⊆ D such that
∑
a∈S

a = b. In

particular, when A is a finite cyclic group Zn, the formula for ND(k, b) is the same as

the formula for Nn(k, 1, b) discussed earlier. In fact, for any finite abelian group A,

Li and Wan in [21] obtained an explicit formula for ND(k, b) when D = A. Also,

an analogous problem has been investigated in the context of the finite field Fq of

characteristic p, see [20].

The decision version of the subset sum problem overD is to determineND(k, b) > 0

for some 1 6 k 6 n. This problem has significant applications in coding theory and

cryptography. It is a well-known NP-complete problem even when A is cyclic (finite

or infinite) or the additive group of a finite field Fq. In particular, when A = Z, the

subset sum problem forms the basis of the knapsack cryptosystem. The case A = Fq

is related to the deep hole problem of extended Reed-Solomon codes, see [10].
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1.1. Distinct solutions and Schönemann’s theorem. Another interesting

problem related to the linear congruences that has been considered in the literature

is counting distinct solutions. This problem was first addressed in a special case by

Schönemann (see [28]) almost two centuries ago. Let Dn(b; a1, . . . , ak) denote the

number of solutions of the linear congruence a1x1 + . . . + akxk ≡ b (mod n), with

all xi distinct. Schönemann in [28] proved the following result.

Theorem (Schönemann (1839)). Let p be a prime, a1, . . . , ak be arbitrary inte-

gers, and
k∑

i=1

ai ≡ 0 (mod p) and
∑
i∈I

ai 6≡ 0 (mod p) for all φ 6= I ( {1, . . . , k}. Then

the number Dp(k, 0) is independent of the coefficients a1, . . . , ak and is equal to

Dp(0; a1, . . . , ak) = (−1)k−1(k − 1)! (p− 1) + (p− 1) . . . (p− k + 1).

Recently, in 2013, Grynkiewicz et al. in [14] in obtained the necessary and sufficient

condition to determine Dn(b; a1, . . . , ak) > 0. In 2019, Bibak et al. in [4] generalized

Schönemann’s theorem using a graph theoretic method. They proved the following

result:

Theorem 1.5 ([4], Theorem 2.3). Let a1, . . . , ak, b be arbitrary integers and n be

a positive integer, and
(∑
i∈I

ai, n
)
= 1 for all φ 6= I ( {1, . . . , k}. Then we have

Dn(b; a1, . . . , ak)

=





(−1)k(k − 1)! + (n− 1) . . . (n− k + 1) if

( k∑

i=1

ai, n

)
∤ b,

(−1)k−1(k − 1)!

(( k∑

i=1

ai, n

)
− 1

)
+ (n− 1) . . . (n− k + 1) if

( k∑

i=1

ai, n

)
| b.

Furthermore, they also asked for an explicit formula for Dn(b; a1, . . . , ak) without

restricting the gcd of the ai’s and n, see [4], Problem 1. When a1 = . . . = ak = a, the

problem of counting solutions of strict order-restricted linear congruence is equivalent

to counting the distinct solutions of the linear congruence up to permutations. As

a consequence of Theorem 1.3, we have the following corollary:

Corollary 1.6. Let n be a positive integer and b ∈ Zn. Then for any given

integer a with f = (a, n) and f | b, we have

(1.6) Dn(a, b) = Dn(b; a, . . . , a) =
k!f(−1)k

n

∑

d|(n/f,k)

(−1)k/d
(
n/d

k/d

)
Cd(b),

where Cd(b) denotes the Ramanujan sum.
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Since all the coefficients are a, the gcd conditions mentioned in Theorem 1.5 are the

same as the conditions (a · i, n) = 1 for all 1 6 i 6 k−1. Thus, assuming these condi-

tions on n implies that f = (a, n) = 1 and either (k, n) = 1 or k is the smallest prime

divisor of n. Suppose k is the smallest prime divisor of n. Then by (1.6), we have

Dn(a, b) =
k! (−1)k

n

(
(−1)k

(
n

k

)
C1(b)−

(
n/k

1

)
Ck(b)

)
,

=

{
(−1)k(k − 1)! + (n− 1) . . . (n− k + 1) if k ∤ b,

(−1)k−1(k − 1)! (k − 1) + (n− 1) . . . (n− k + 1) if k | b.

Suppose (k, n) = 1. Then from (1.6) it follows that

Dn(b) = (n− 1) . . . (n− k + 1).

Therefore, the obtained formula (1.6) provides a proof of Theorem 1.5 in the special

case when all coefficients a1 = . . . = ak = a. Moreover, this formula also addresses

the problem posed in [4] for the specific case where a1, . . . , ak are all equal to a.

2. Square solutions—some subtleties

We say that (x1, . . . , xk) is a square solution of (1.1) if xi’s are squares modulo n

for 1 6 i 6 k. Given integers a1, . . . , ak, b and a positive integer n, it is an interesting

problem to determine the necessary and sufficient conditions that guarantee the

existence of a square solution to the congruence represented by (1.1). Thus, we are

looking at the set

{
(x1, . . . , xk) ∈ Zk

n :

k∑

i=1

aixi ≡ b (mod n), xi = y2i , yi ∈ Zn

}
.

We point out that square solutions cannot simply be counted by enumerating the set

{
(y1, . . . , yk) ∈ Zk

n :
k∑

i=1

aiy
2
i ≡ b (mod n)

}
.

For instance, if we consider the congruence x1 + x2 ≡ 1 (mod 27), there are four

square solutions

{(1, 0), (0, 1), (9, 19), (19, 9)},
whereas in the latter set

{(y1, y2) : y21 + y22 ≡ 1 (mod 27)},

6 elements correspond to (1, 0) and 12 elements correspond to (9, 19). Indeed, the

six solutions (1, 0), (1, 9), (1, 18), (26, 0), (26, 9), (26, 18) of {(y1, y2) : y21 + y22 ≡ 1

(mod 27)} correspond to the single solution (1, 0) of {x1 + x2 ≡ 1 (mod 27): x1, x2
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squares}. Similarly,

(3, 10), (6, 10), (12, 10), (3, 17), (6, 17), (12, 17),

(24, 10), (21, 10), (15, 10), (24, 17), (21, 17), (15, 17)

are the twelve solutions of {(y1, y2) : y21 + y22 ≡ 1 (mod 27)} corresponding to the
single solution (9, 19). Thus, the complexity of this problem can vary significantly,

depending on the specific values of ai, b, and n. However, a necessary condition for

the latter set to be nonempty also gives a necessary condition for a square solution

to exist. One can easily see that when n = pl, if (b, p) = 1 and there exists a subset S

of {a1, . . . , ak} such that

s =
∑

ai∈S

ai ∈ Z∗
pl and

(s
p

)
=

( b

p

)
,

then (1.1) has a square solution (x1, . . . , xk), namely

xi =

{
s−1b if ai ∈ S,

0 otherwise.

But then, due to Lemma 4.3, the above observation holds for any odd positive n.

A related problem explored in the literature is the counting of representations of an

integer b as a sum of squares modulo n, where b is any given integer. More generally,

for given integers a1, . . . , ak, b and positive integers t1, . . . , tk and n counting the

number of solutions of the congruence

(2.1) a1x
t1
1 + . . .+ akx

tk
k ≡ b (mod n)

has also been studied in the literature; for example (see [9], [13], [16], [22], [30] and

Section 8.6 of [17]). When n is an odd prime, t is any positive integer and t1 = . . . =

tk = t, the solutions of (2.1) were first studied by Lebesgue in 1837, see [12], Chap-

ter X. In 1932, Hull in [16] proved a formula for counting the solutions to (2.1) when t

is any positive integer such that t1 = . . . = tk = t and a1 = . . . = ak = 1. Recently,

Tóth in [30] investigated the solutions of (2.1) under various conditions on the ai’s,

depending on the modulus n when t1 = . . . = tk = 2. More recently, Li and Ouyang

in [22] have provided an algorithm for computing the number of solutions of (2.1)

under the additional restriction that xi is a unit for every i ∈ J ⊆ {1, . . . , k}.
Along with the other results, Hull in Theorem 23 of [16] discussed a sufficient

condition on k in order to (2.1) has a solution when t > 2 is a fixed integer, t1 = . . . =

tk = t and a1 = . . . = ak = 1. Specifically for the case when t = 2 and n = pl,

where p is an odd prime, the provided sufficient condition is as follows:

(1) If (b, p) = 1, then there is a solution whenever k > 2.

(2) If p | b, then there is a solution whenever k > 3.
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Notice that this sufficient condition also guarantees the existence of a square so-

lution to the congruence represented by (1.1). This is because x2
1 + . . . + x2

k ≡ b

(mod n) is equivalent to y1 + . . . + yn ≡ b (mod n), where yi ≡ x2
i (mod n). As

a result, (1.1) has a square solution whenever k > 3 and a1 = . . . = ak = 1.

Furthermore, in the case of k = 1, the congruence (1.1) has a square solution

if and only if b is a square. Also, for k = 2, there exist linear congruences with

a1 = a2 = 1 and (b, n) > 1 that do not have square solutions. For example, consider

the congruence x1 + x2 ≡ 3 (mod 9), which lacks square solutions as the squares

modulo 9 are 0, 1, 4, 7.

Unlike the case of existence, the question of counting the number of square solu-

tions for (1.1) is not equivalent to the question of counting the number of representa-

tions as a sum of squares. This happens because the number of solutions to all solv-

able congruences of the form x2 ≡ a (mod n)may not be the same for every integer a,

although it is the same for every coprime a. As a result, determining the number of

representations that correspond to the same square solution is rather difficult.

For example, consider the square solutions of the congruence x1+x2 ≡ 1 (mod 27),

which are given by (1, 0), (0, 1), (19, 9), (9, 19). In this case, the number of representa-

tions corresponding to (1, 0) is 6, while the number of representations corresponding

to (19, 9) is 12. This discrepancy arises because the congruence x2 ≡ 0 (mod 27)

has 3 solutions, and x2 ≡ 9 (mod 27) has 6 solutions. Hence, our aim is to count

the number of square solutions for (1.1). Let Sn(b; a1, . . . , ak) denote the number of

square solutions of (1.1). Theorem 1.1 provides a formula for Sn(b; a1, . . . , ak). The

proof of the theorem and its corollary stated in the introduction are given in Section 4.

3. Preliminaries

3.1. Discrete Fourier transform. An arithmetic function f : Z → C is said

to be periodic with period n (or n-periodic) for some n ∈ N if for every b ∈ Z,

f(b + n) = f(b). From definition (3.1), it is clear that Cn(b) is a periodic function

of b with period n. For an n-periodic arithmetic function f , its discrete (finite)

Fourier transform (DFT) is defined to be the function

f̂(b) =

n∑

j=1

f(j)e
(−bj

n

)
for b ∈ Z.

A Fourier representation of f is given by

f(b) =
1

n

n∑

j=1

f̂(j)e

(
bj

n

)
for b ∈ Z,

which is the inverse discrete Fourier transform.
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3.2. Gauss sums and Ramanujan sums. Let n be a positive integer. A Dirich-

let character χ modulo n is an arithmetic function χ : Z → C with period n which

is an extension of a group homomorphism from the multiplicative group (Z/nZ)∗ to

the set of complex numbers C via

χ(m) =

{
χ(m (mod n)) if (m,n) = 1,

0 if (m,n) > 1.

Indeed, the extension of the trivial homomorphism χ0 is known as the principal

character modulo n. This particular Dirichlet character, denoted as χ0, is defined as

follows:

χ0(m) =

{
1 if (m,n) = 1,

0 if (m,n) > 1.

The conductor of a Dirichlet character χ modulo n is the smallest divisor of n for

which χ is periodic. We say that a Dirichlet character χ modulo n is primitive if the

conductor of χ is n. Otherwise, we say that χ is imprimitive.

For any Dirichlet character χ(m) to the modulus n, the Gauss sum τ(χ) is de-

fined by

τ(χ) =

n∑

m=1

χ(m)e
(m
n

)
,

where e(x) denote e2πix. Further, the more general Gauss sum is the discrete Fourier

transform of a Dirichlet character χ modulo n, namely

τb(χ) = χ̂(−b) =

n∑

m=1

χ(m)e
(bm

n

)
for b ∈ Z.

For a Dirichlet character χ modulo n induced by a primitive character χ⋆ modulo n⋆,

the following lemma reduces the computation of the general Gauss sum τb(χ) to the

Gauss sum τ(χ⋆).

Lemma 3.1 ([23], Theorems 9.7 and 9.12). Let χ modulo n be a nonprincipal

character induced by the primitive character χ⋆ modulo n⋆. Put r = n/(m,n⋆). If

n⋆ ∤ r, then τm(χ) = 0, while if n⋆ | r, then

τm(χ) = χ̄⋆
( m

(n,m)

)
µ(r/n⋆)χ⋆

( r

n⋆

)ϕ(n)
ϕ(r)

τ(χ⋆).

In particular,

τm(χ) = χ̄(m)µ
( n

n⋆

)
χ⋆

( n

n⋆

)
τ(χ⋆) if (m,n) = 1.

Furthermore, we have

|τm(χ⋆)| =
√
n⋆.
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Though, we know that |τ(χ)| = √
n holds for any primitive character χ modulo n,

the determination of the argument of the |τ(χ)| is a difficult problem. In the case of
real primitive characters, τ(χ) were evaluated completely by Gauss.

Lemma 3.2 (Gauss). Let n > 1 be an odd squarefree integer and let χ be a real

primitive character modulo n. Then we have

τ(χ) = εn
√
n,

where εn is defined as in (1.4).

When χ0 is the principal character modulo n, the general Gauss sum τb(χ0) is

called the Ramanujan sum, i.e.,

(3.1) τb(χ0) = Cn(b) =

n∑

j=1
(j,n)=1

e
(jb
n

)
.

Now, we list some properties of the Ramanujan sums:

(i) Cn(b) is integer-valued.

(ii) For fixed b ∈ Z the function b → Cn(b) is multiplicative, i.e., if (n1, n2) = 1,

then Cn1n2
(b) = Cn1

(b)Cn2
(b).

(iii) The function b → Cn(b) is multiplicative for a fixed n if and only if µ(n) = 1,

where µ denotes the Möbius function.

(iv) Cn(b) is an even function of b, that is, Cn(b) = Cn((b, n)) for every b, n.

(v) For integers b and n > 1 we have

Cn(b) =
ϕ(n)

ϕ(n/(b, n))
µ
( n

(b, n)

)
.

3.3. Generating functions of partition with certain conditions. For a pos-

itive integer n, a partition of n is a nonincreasing sequence of positive integers

p1, p2, . . . , pk whose sum is n. Each pi is called a part of the partition. Let the

function p(n) denote the number of partitions of the integer n. It is well-known that

the generating function of the sequence {p(n)}∞n=0 is

(3.2)∑

n>0

p(n)qn = (1 + q + q2 + q3 + . . .)(1 + q + q2 + q3 + . . .)(1 + q3 + q6 + . . .) . . .

=
1

1− q
· 1

1− q2
· 1

1− q3
. . . =

∞∏

i=1

1

1− qi
for |q| < 1.

From a combinatorial perspective, the monomial chosen from the ith parenthesis

1 + qi + q2i + q3i + . . . in (3.2) represents the number of times the part i appears in
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the partition. In particular, if we choose the monomial qnii from the ith parenthesis,

then the value i will appear ni times in the partition. Each selection of monomials

makes one contribution to the coefficient of qn in the expression. More precisely,

each contribution must be of the form q1n1 · q2n2 · q3n3 . . . = qn1+2n2+3n3+.... Thus,

the coefficient of qn is the number of ways of writing n = n1 + 2n2 + 3n3 + . . .,

where n1, n2, n3, . . . are nonnegative integers representing the total count of parts of

size 1, 2, 3, . . . in the partition, respectively.

Suppose A = {a1, a2, a3, . . .} is a set of positive integers. In general, the generating
function for the number of partitions of n into members of set A is

fA(q) =
∏

aj∈A

1

1− qaj
.

Moreover, the following lemma gives the generating function of the number of

partitions of n into k parts, each taken from the given set A.

Lemma 3.3 ([15]). Let A be a set of positive integers. Let k be a positive integer

and b be a nonnegative integer. The number of partitions of b into k parts, each

taken from the set A, is the coefficient of qbzk in

∏

aj∈A

1

1− zqaj
.

Furthermore, if we multiply the coefficient of qbzk in the expression

∏

aj∈A

(1 − zqaj)

by (−1)k, then we obtain the number of distinct partitions of b into exactly k parts,

with each taken from the set A.

4. Square solutions—proof of Theorem 1

It is convenient to use the characteristic function for squares in our proofs. Using

this and Hensel’s lemma, we prove multiplicativity for square solutions.

Recall that an element a ∈ Zn is a square in Zn (or square modulo n) if and only

if x2 ≡ a (mod n) has a solution. The units (elements of Zn that are relatively prime

to n) that are squares are called quadratic residues modulo n. We define a function

�n : Zn → Zn by

(4.1) �n(b) =

{
1 if b is a square modulo n,

0 otherwise.
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The following statement is a version of Hensel’s lemma.

Lemma 4.1. Suppose f(x) ∈ Z[x] and f(a)≡ 0 (mod pm) and f ′(a) 6≡ 0 (mod p).

Then there is a unique t ∈ {0, 1, . . . , p− 1} such that f(a+ tpm) ≡ 0 (mod pm+1).

We use the following observations in the next lemma.

Let s(n) and q(n) denote the number of squares in Zn and the number of quadratic

residues in Zn, respectively. Equivalently,

s(n) =

n∑

b=1

�n(b) and q(n) =

n∑

b=1
(b,n)=1

�n(b).

It is well known that q(n) is a multiplicative function. Stangl in [29] showed that s(n)

is a multiplicative function. Furthermore, for any odd prime p, he derived the fol-

lowing recursion formula for s(pr):

(4.2) s(pr) = q(pr) + s(pr−2) for r > 3

and s(p) = q(p) + 1 = 1
2 (p + 1), s(p2) = q(p2) + 1 = 1

2 (p
2 − p + 2). This recursion

formula follows from the observation that an element b is a square in Zpr−2 if and

only if bp2 is a square in Zpr . As a consequence of this recursion formula, we have

the following lemma.

Lemma 4.2. For an odd prime p and a positive integer l we have

(4.3)

pl∑

x=1

�pl(x)e
(xm

pl

)
= 1 +

1

2

l−1∑

j=0
j≡0 (mod 2)

pl−j∑

x=1
(x,pl−j)=1

(
1 +

(x
p

))
e
( xm

pl−j

)
,

where
(
·
p

)
is the Legendre symbol mod p.

P r o o f. For any x ∈ Zpl with (x, pl) = 1, we can express x as

x = xl−1p
l−1 + . . .+ x1p+ x0,

where 0 6 xi 6 p − 1 for 0 6 i 6 l − 1 and x0 6= 0. If x0 is a residue modulo p,

then the congruence y2 ≡ x (mod p) has a solution. Using Lemma 4.1 with the

polynomial f(x) = y2 − x, we can lift this solution modulo pl. Alternatively, we can

define 1
2 (1 + (xp )) as a characteristic function for quadratic residues modulo p

l.

We now prove (4.3) by induction on l. If l = 1, then (4.3) follows from the definition

of the Legendre symbol. If l = 2, then we have s(p2) = q(p2) + 1. Therefore (4.3)

follows from the above observation.
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Now we assume that the claim is true if l 6 m − 1. By using (4.2) and the

hypothesis, we write

pm∑

x=1

�pm(x)e
(xm
pm

)
= 1 +

1

2

m−3∑

j=0
j≡0 (mod 2)

pm−2−j∑

x=1
(x,pm−2−j)=1

(
1 +

(x
p

))
e
( xm

pm−2−j

)

+

pm∑

x=1
(x,pm)=1

�pm(x)e
(xm
pm

)
.

By using the above observation, we write

pm∑

x=1

�pm(x)e
(xm
pm

)
= 1 +

1

2

m−3∑

j=0
j≡0 (mod 2)

pm−2−j∑

x=1
(x,pm−2−j)=1

(
1 +

(x
p

))
e
( xm

pm−2−j

)

+
1

2

pm∑

x=1
(x,pm)=1

(
1 +

(x
p

))
e
(xm
pm

)

= 1 +
1

2

m−1∑

j=0
j≡0 (mod 2)

pm−j∑

x=1
(x,pm−j)=1

(
1 +

(x
p

))
e
( xm

pm−j

)
.

This completes the proof of Lemma 4.2. �

Recall that Sn(b; a1, . . . , ak) denotes the number of square solutions of (1.1). Now,

we show that the function n → Sn(b; a1, . . . , ak) is multiplicative for any given inte-

gers a1, . . . , ak, b.

Lemma 4.3. Let a1, . . . , ak, b be integers. Then for any n and n
′ relatively prime

we have

Snn′(b; a1, . . . , ak) = Sn(b; a1, . . . , ak) · Sn′(b; a1, . . . , ak).

P r o o f. It is easy to see that every square solution of the linear congruence

a1x1+. . .+akxk ≡ b (mod nn′) corresponds to a square solution of a1x1+. . .+akxk ≡
b (mod n) and a square solution of a1x1 + . . .+ akxk ≡ b (mod n′). Thus, we have

Snn′(b; a1, . . . , ak) 6 Sn(b; a1, . . . , ak) · Sn′(b; a1, . . . , ak).

Conversely, let (x1, . . . , xk) and (x
′
1, . . . , x

′
k) be square solutions of a1x1+. . .+akxk ≡

b (mod n) and a1x
′
1 + . . . + akx

′
k ≡ b (mod n′), respectively. Since (n, n′) = 1, it
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follows from the Chinese remainder theorem that there is a unique γi modulo nn′

for each 1 6 i 6 k such that

γi ≡ xi (mod n), γi ≡ x′
i (mod n′) for 1 6 i 6 k.

Therefore, we have

a1γ1 + . . .+ akγk − b ≡ a1x1 + . . .+ akxk − b ≡ 0 (mod n),

a1γ1 + . . .+ akγk − b ≡ a1x
′
1 + . . .+ akx

′
k − b ≡ 0 (mod n′)

and hence, (n, n′) = 1 implies that a1γ1 + . . .+ akγk ≡ b (mod nn′). Also, for each

1 6 i 6 k, the congruences

y2i ≡ γi (mod n) ≡ xi (mod n), y2i ≡ γi (mod n′) ≡ x′
i (mod n′)

have solutions implying that n | (y2i −γi) and n
′ | (y2i −γi) for each 1 6 i 6 k. Since n

and n′ are relatively prime, we obtain y2i ≡ γi (mod nn′). Therefore, (γ1, . . . , γk) is

a square solution of a1x1 + . . . + akxk ≡ b (mod nn′). This completes the proof of

Lemma 4.3. �

We need one final lemma on Gauss sums that will be used in proving Theorem 3

on square solutions.

Lemma 4.4. Let p be an odd prime and l be a positive integer. Let χpl be a real

character modulo pl induced by the Legendre symbol
(
·
p

)
modulo p. Then for any

positive integer m we have

pl∑

x=1

χpl(x)e
(mx

pl

)
=





εp

(m/pl−1

p

)
pl−1/2 if (m, pl) = pl−1,

0 otherwise,

where εp is defined as in (1.4).

P r o o f. If pl | m, then it is straightforward to see that the required sum vanishes.
Suppose pl ∤ m, then by using Lemma 3.1 with n = pl, n⋆ = p and r = pl/(pl,m),

we obtain

pl∑

x=1

χpl(x)e
(mx

pl

)
=





(m/(pl,m)

p

)
µ
( r
p

)(r/p
p

)ϕ(pl)
ϕ(r)

τ
(( ·

p

))
if (m, p) | r,

0 if (m, p) ∤ r.

It follows from the definition of the Legendre symbol that

(r/p
p

)
=

(pl−1/(m, pl)

p

)
=

{
1 if (m, pl) = pl−1,

0 otherwise.
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Thus, the sum is possibly nonzero only when (m, pl) = pl−1. Suppose (m, pl) = pl−1,

then we have

pl∑

x=1

χpl(x)e
(mx

pl

)
=

(m/pl−1

p

)
µ(1)

(1
p

)ϕ(pl)
ϕ(p)

τ
(( ·

p

))
= pl−1

(m/pl−1

p

)
τ
(( ·

p

))
.

Since the Legendre symbol is a real primitive character modulo p, by using

Lemma 3.2, we obtain the required estimate. �

P r o o f of Theorem 1.1. Our aim is to calculate Sn(b; a1, . . . , ak). Since n =

pl11 . . . plrr , by applying Lemma 4.3, it is enough to calculate Sp
li
i

(b; a1, . . . , ak) for

1 6 i 6 r. For any p ∈ {p1, . . . , pr} we write

Spl(b; a1, . . . , ak)

=
1

pl

pl∑

m=1

( pl∑

x1=1

�pl(x1) . . .

pl∑

xk=1

�pl(xk)e
((a1x1 + . . .+ akxk − b)m

pl

))

=
1

pl

pl∑

m=1

e
(−bm

pl

) pl∑

x1=1

�pl(x1)e
(a1x1m

pl

)
. . .

pl∑

xk=1

�pl(xk)e
(akxkm

pl

)
,

where �pl is defined as in (4.1). Then by using Lemma 4.2, we obtain

Spl(b; a1, . . . , ak)

=
1

pl

pl∑

m=1

e
(−bm

pl

)(
1 +

1

2

l−1∑

j1=0
j1≡0 (mod 2)

pl−j1∑

x1=1
(x1,p

l−j1 )=1

(
1 +

(x1

p

))
e
(a1x1m

pl−j1

))

. . .

(
1 +

1

2

l−1∑

jk=0
jk≡0 (mod 2)

pl−jk∑

xk=1
(xk,p

l−jk )=1

(
1 +

(xk

p

))
e
(akxkm

pl−jk

))

=
1

pl

pl∑

m=1

e
(−bm

pl

)
J1(m) . . . Jk(m),

where

Ji(m) = 1 +
1

2

l−1∑

ji=0
ji≡0 (mod 2)

pl−ji∑

xi=1
(xi,p

l−ji )=1

(
1 +

(xi

p

))
e
(aixim

pl−ji

)
for 1 6 i 6 k.
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Now, consider

Ji(m)

= 1 +
1

2

l−1∑

ji=0
ji≡0 (mod 2)

pl−ji∑

xi=1
(xi,p

l−ji )=1

e
(aixim

pl

)
+

1

2

l−1∑

ji=0
ji≡0 (mod 2)

pl−ji∑

xi=1
(xi,p

l−ji )=1

(xi

p

)
e
(aixim

pl−ji

)

= 1 +
1

2

l−1∑

ji=0
ji≡0 (mod 2)

Cpl−ji (aim) +
1

2

l−1∑

ji=0
ji≡0 (mod 2)

pl−ji∑

xi=1
(xi,p

l−ji )=1

(xi

p

)
e
(aixim

pl−ji

)
,

where Cpl−ji (aim) is a Ramanujan’s sum defined as in (3.1). By using Lemma 4.4,

we write

Ji(m) = 1 +
1

2

l−1∑

ji=0
ji≡0 (mod 2)

(
Cpl−ji (aim) + εp

(aim/pl−ji−1

p

)
̺ji(aim)pl−ji−1/2

)
,

where ̺ji(x) is defined as in (1.3). Therefore, we have

Spl(b; a1, . . . , ak) =
1

pl

pl∑

m=1

e
(−bm

pl

) k∏

i=1

(
1 +

1

2

l−1∑

ji=0
ji≡0 (mod 2)

(
Cpl−ji (aim)

+ εp

(aim/pl−ji−1

p

)
̺ji(aim)pl−ji−1/2

))

=
1

pl

( pl∑

m=1

e
(−bm

pl

)
+

∑

K⊂{1,...,k}
K 6=φ

1

2|K|
SK

)
,

where SK is defined as in (1.2). This completes the proof of Theorem 1.1. �

P r o o f of Corollary 1.2. Since (ai, n) = 1 for all i, (1.2) can be written as

SK =

l∑

r=0

pl∑

m=1
(m,pl)=pr

e
(−bm

pl

)

×
( l−1∑

j=0
j≡0 (mod 2)

(
Cpl−j (m) + εp

(m/pl−j−1

p

)
̺j(m)pl−j−1/2

))|K|

=

( l−1∑

j=0
j≡0 (mod 2)

Cpl−j (pl)

)|K|

+ S′
K ,
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where

S′
k=

l−1∑

r=0

pl∑

m=1
(m,pl)=pr

e
(−bm

pl

)( l−1∑

j=0
j≡0 (mod 2)

(
Cpl−j (m)+εp

(m/pl−j−1

p

)
̺j(m)pl−j−1/2

))|K|

.

As we assume (b, n) = 1, by using the property (v) of the Ramanujan sum and

Lemma 3.1, we obtain that both sums

pl∑

m=1
(m,pl)=pr

e
(−bm

pl

)
and

pl∑

m=1
(m,pl)=pr

e
(−bm

pl

)(m
p

)

vanish for r 6 l − 2. So, when we apply the binomial expansion, we notice that the

inner sums of terms where r 6 l − 2 vanish. Thus, using the definition of ̺j (see

Definition 1.3) and property (v) of the Ramanujan sum, we write

S′
K =

p−1∑

m=1

e
(−bm

p

)(
− pl−1 +

l−1∑

j=2
j≡0 (mod 2)

φ(pl−j) + εp

(m
p

)
pl−1/2

)|K|

.

This completes the proof of Corollary 1.2. �

5. Order restricted congruence—Proof of Theorem 3

In this section, we discuss the proof of Theorem 1.4. We shall use the following

lemma.

Lemma 5.1 ([7], Lemma IV.6). Let n be a positive integer and a,m be nonneg-

ative integers. Then we have

n∏

j=1

(
1− ze

(jam
n

))
= (1− zn/d)d, where d = (am, n).

P r o o f of Theorem 1.4. Let k = k1+ . . .+kt be a partition of k given as in (1.5).

By using Lemma 3.3, we see that the number of partitions of b into k parts such that

exactly k1 parts taken from the set A1, exactly k2 parts taken from the set A2, and

so on, up to exactly kt parts taken from the set At, is the coefficient of q
bzk1

1 . . . zkt

t in

∏

j1∈A1

1

1− z1qj1
× . . .×

∏

jt∈At

1

1− ztqjt
.
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Taking Ai = {ai, 2ai, . . . , nai} for i = 1, . . . , t and q = e2πim/n, where m is a non-

negative integer, we observe

n∑

b=1

Mn(k1, . . . , kt, a1, . . . , at, b)e
(bm

n

)

to be the coefficient of zk1

1 . . . zkt

t in

t∏

i=1

n∏

ji=1

(
1− zie

(jim
n

))−1

.

By using Lemma 5.1, we obtain

n∑

b=1

Mn(k1, . . . , kt, a1, . . . , at, b)e
(bm

n

)

= (−1)(k1d1+...+ktdt)/n

( −d1
k1d1/n

)
. . .

( −dt
ktdt/n

)
,

where di = (aim,n) for i = 1, . . . , t. Now, by taking the inverse Fourier transform,

we write Mn(k1, . . . , kt, a1, . . . , at, b) as

1

n

n∑

m=1

(−1)(k1d1+...+ktdt)/n

( −d1
k1d1/n

)
. . .

( −dt
ktdt/n

)
e
(−bm

n

)

=
1

n

n∑

m=1

d1
d1 + k1d1/n

. . .
dt

dt + ktdt/n

(
d1 + k1d1/n

k1d1/n

)
. . .

(
dt + ktdt/n

ktdt/n

)
e
(−bm

n

)

=
1

n

∑

d1|n

. . .
∑

dt|n

d1
d1 + k1d1/n

. . .
dt

dt + ktdt/n

(
d1 + k1d1/n

k1d1/n

)
. . .

(
dt + ktdt/n

ktdt/n

)

×
n∑

m=1
(aim,n)=di

i=1,...,t

e
(−bm

n

)
.

If we assume (ai, n) = f for i = 1, . . . , t, we write di = (aim,n) = f(m,n/f) = fd

for i = 1, . . . , t. Thus, we have

f

n

∑

d|n/f

df

df + k1df/n
. . .

df

df + ktdf/n

(
df + k1df/n

k1df/n

)
. . .

(
df + ktdf/n

ktdf/n

)
Cn/df (−b)

=
f

n

∑

d|n/f

n/d

n/d+ k1/d
. . .

n/d

n/d+ kt/d

(
n/d+ k1/d

k1/d

)
. . .

(
n/d+ kt/d

kt/d

)
Cd(b)

=
f

n

∑

d|(n/f,k1,...,kt)

nt

(n+ k1) . . . (n+ kt)

(
(n+ k1)/d

k1/d

)
. . .

(
(n+ kt)/d

kt/d

)
Cd(b).

This completes the proof of Theorem 1.4. �
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As an illustration of the first statement, consider the congruence 2(x1 + x2) +

3(x3 + x4) ≡ 5 mod 6. Theorem 1.4 gives the number of solutions to be 63, which

can be seen by listing all the solutions with x1 > x2 and x3 > x4.

As an illustration of the second statement, consider the congruence x1 + x2 +

3(x3 + x4) ≡ 1 mod 4. Theorem 1.4 gives the number of solutions to be 24, which

can be seen by listing all the solutions with x1 > x2 and x3 > x4.

6. Strict order restricted congruence—Proof of Theorem 2

P r o o f of Theorem 1.3. By taking A = {a, 2a, . . . , na} and q = e2πim/n,

where m is a nonnegative integer in Lemma 3.3, we see that

n∑

b=1

(−1)kNn(a, b)e
(bm

n

)

equals to the coefficient of zk in

n∏

j=1

(
1− ze

(jm
n

))
.

By using Lemma 5.1, we obtain

n∑

b=1

(−1)kNn(a, b)e

(
bm

n

)
= (−1)kd/n

(
d

kd/n

)
,

where d = (am, n). Now, by taking the inverse Fourier transform, we write

N(a, b) =
(−1)k

n

n∑

m=1

(−1)kd/n
(

d

kd/n

)
e
(−bm

n

)

=
(−1)k

n

∑

d|n

n∑

m=1
(am,n)=d

(−1)kd/n
(

d

kd/n

)
e
(−bm

n

)

=
(−1)kf

n

∑

d|n/f

(−1)kdf/n
(

df

kdf/n

) n/f∑

m=1
(m,n/f)=d

e
(−bm

n

)

=
(−1)kf

n

∑

d|n/f

(−1)kdf/n
(

df

kdf/n

)
Cn/df (−b)

=
(−1)kf

n

∑

d|(n/f,k)

(−1)k/d
(
n/d

k/d

)
Cd(b).

This completes the proof of Theorem 1.3.
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