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Polynomials Satisfied by Square Matrices: A
Converse to the Cayley—-Hamilton Theorem

Anandam Banerjee

Some Linear Algebra

Given a matrix A € M,( R), the polynomial y4(z) =
det(A — zI) is called the characteristic polynomial of
A. We can also define it for matrices over C' or more
generally for any arbitrary field K, or even for any com-
mutative ring 1. Now, if A = (a;;) € M,(K), we have

an — 2z Q12 . Qin
921 oo — T ... Aon
A—zxzl = )
Qnl Ano e Qpup — T

Thus x4(z) = det(A — zI) = ag + a1 + - - - + a2, &
polynomial of degree n with coefficients from K. Note
that a;’s can be treated as polynomials in n? variables
over K.

We will denote a polynomial f over K in n? variables,

$8Y T11, T12, - - - » Tnn Dy f(X), where X = (z;;) € M,(K).

That is, we may write f(X) € K[z;;].

Also, for any polynomial f(X) € K{z;;] and for A € K,
we can write,

FIAA=X-I) = folA) + fil A+ -+ + fa(A)NY,

where f;’s are polynomials in n? variables,A € M,(K),
and d is some non-negative integer. Note that fo(A) =
f(A). (Put A =0).

Thus, we can write

xa(z) = co(A) + c(A)z + -+ c (A)z™.
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Every polynomial
identity satisfied by
the setofallnxn
matrices, is a
consequence of the
Cayley—Hamilton
theorem.

Recall that A € K is called an eigenvalue of A € M, (K),
if A-v = A.v for some 0 # v € K*. Note that any

eigenvalue of the matrix A is a root of x(z) since (A —
M-I} -v=0 = det(A—A-I)=0,ie xa(A)=0.

We now state the Cayley-Hamilton Theorem, a well-
known theorem in linear algebra concerning character-
istic polynomials of matrices.

Cayley—Hamilton Theorem: Let A be a n xn matriz
with entries in a field K and iet xa(z) = det(A — zI)
be its characteristic polynomial. Then xa(A) =0 as an
n X n matri.

In fact, the theorem is valid for matrices over any com-
mutative ring which has a multiplicative unity 1. How-
ever, we will concentrate on fields only. We will prove
a slightly generalised version of the above theorem. We
also draw attention to the fact that, in a sense - made
precise at the end of this article — every polynomial iden-
tity satisfied by the set of all n x n matrices, is a conse-
quence of the Cayley—Hamilton theorem.

Theorem: Let A, B € M,(K) be such that AB = BA.
Then, xa(B) = (B — A)C for some C € M,(K). In
particular, x4(A) = 0.

Proof: We know that, for any matrix A, det(A) - I =
A - Adj(A) , where Adj(A) is the adjoint of the matrix
A. Since Adj(A — zI) can be written as

Adj(A—zI) = go(A) + g1(A)z + -+ + g1 (A)z™ 1,

where g;(A) are matrix-valued functions of A and, since
xa(z) = det(A — zI), we have

xalz)I = (A-—xI)Adj(A - zI)
= (A—zI)(go(A) + g1(A)z + -
+ gn—l(A)zn—l)
= ¢o(A) +(A)x + -+ c,(A)z™.
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Hence,
xa(B) =co(A)L+c1(A)B+ -+ c,(A)B"
= go(A)A+ (91(A)A — go(A))B +--- +
(gn-1(A)A — gn2(A))B" ! — g, 1(A)B"
= (A— B)(9(A) + g:1(A)B + -+ go 1 (A)B™.

Thus, xa(A)=0. &

Hence, if f(X) = g(X) - det(X) € K|z;;], we have

flA—zI) = g(A—zI)(co(A)+cr(A)z+- - +ca(A)™).

Therefore,

fo(A) - I+ fi(A)- A+ + fa(A4) - A* = p(A)(co(A)+
ci(A)A+ -+ c,(A)A"),

where p(A) is some polynomial in A. Thus, we get,

fo(A)- T+ fi(A)-At- -+ fa(A)- A = 0 € My(K). (1)

A natural question that arises now is whether the con-
verse is true. That is, if f(X) € K|z;;] satisfies (1) for
every matrix A, then is f(X) a multiple of det(X)? Let
us try to check this for some finite fields first.

Example: Consider the matrix X = (z;;) € My(F,)
and let
f(X) =2 — 2.

Here, F, is the ficld with p elements, where p is a prime.

Then f(A — AI) = 0 VA € My(F,). But det(X) =
Z11Z92 — T12T21 does not divide f(X), since f(X) does
not involve xy1, Tgg, To;. Hence, the converse is not true
for F,. &

Let us give a slightly more non-trivial example for ma-
trices in Fy.
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Every polynomial
identity satisfied

by the setofalln xn
matrices, is a
consequence of the
Cayley—Hamilton
theorem.

Example: Let f(X) = (12 + Z91)Z11220- Let A €
MQ(FQ). Then

F(A=X-I) = (a2 + an)(an — A){ag — A)
= (a12+a21)a11a22—(a12+an1) (@11 +a2)-A+(a12+0a21)- X’
We claim that

(a12 + an)anagxnl — (a2 + az)(an + az2) A+

(@12 + az1)A* =0 (2)

YV A € My(F;). To see this, suppose (a12 + a9;) # 0 in
F, (for otherwise our claim is true). Now there may be
three cases.

e aj; = asp = 0: Here, we must have A2 = 0.

e a;; = ayp = 1: It is easily checked that A2 = I in
this case. Hence, I + A2 =1+ 1=0.

e a;; + ayp = 1: Here again, one can check that

A=A -

Thus, in all cases, (2) is satisfied.

But det(X) = 11729 — T12T91 does not divide f(X) =
(212 + T91)T11T22, since f(X) does not involve the term
T12Z91, while det(X) does. &

We shall now consider the field of complex numbers or,
more generally, the following kind of fields.

Definition: A field K is said to be algebraically closed,
if any non-constant polynomial f(z) € K[z] has a root
in K. That is 3« € K, such that f(a) = 0.

Note that if K is algebraically closed, all roots of f(x)
are in K. This follows from the remainder theorem, on
using induction.

50
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In fact, we will prove that the converse statement to the
Cayley-Hamilton theorem, as asserted above, is indeed
true for any algebraically closed field. For proving this,
we will use some commutative algebra; in particular, we
shall make use of a fundamental theorem of Hilbert.

Some Commutative Algebra

Recall that an ideal I of a ring R is defined to be an
additive subgroup of the ring, such that r1 C I Vr € R.

For example, nZ is an ideal of Z for any n € Z. In the
ring of polynoruials, the polynomials with constant term
0 is an ideal. The whole ring is an ideal in any ring. In
a ring R containing a multiplicative unity 1, an ideal is
proper (i.e. not the whole) if, and only if, 1 is not in it.

Definition: Let J be a proper ideal of K[zy,...,z,].
The variety V(J) of J is defined to be the set of n-
tuples a = (ay,...,a,) € K", where every polynomial
contained in J vanishes. That is,

V(J)={aec K"|f(a) =0V f e J}

Definition: The radical of an ideal J in a ring R is
defined to be the set

rad(J) = {f € R|f" € J for some n}.

Note that rad(J) is an ideal of R. This follows, because if
" € Jand y™ € J, then (z+y)™™ € J, and (az)" € J.

If f erad(J) C K{zy,...,z,), then for some k, we have
f¥a) =0 VaeV(J).

Hence, f(a) = 0 Va € V(J). The following fundamental
theorem of Hilbert, called the Nullstellensatz 2 asserts
that the converse is also true for if K is algebraically
closed.

Hilbert’s Nulistellensatz: Given an algebraically
closed field K, a non-zero proper ideal J C K|z, ..., Z,),

2|tis a German word, meaning
‘Theorem on position of Zeroes'.
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A weaker version of
the nulistellensatz is
the statement that
for any ideal J #
K[x, ..., x ], the
variety V(J) is non-
empty. For n=1, this
is evidently the
property of being
algebraically closed
that was defined.

3 Anintegral domainis aringin
which the product of two non-

zero elements is never zero.

In any integral
domain, itis very
easy to see that
prime elements are
irreducible. The
converse is not
true, in general.

and f € K[z, ...,z,),
fla)=0VaeV(J) < ferad(J).

A weaker version of the nullstellensatz is the statement
that for any ideal J # Klzy,...,z,], the variety V' (J)
is non-empty. For n = 1, this is evidently the property
of being algebraically closed that was defined.

A detailed account of Hilbert’s nullstellensatz is given
in [2]. One may also refer to [1].

Definition: An ideal J C R is called a prime ideal of
R, ifabe J =a€ Jorbe J.

For example, pZ is a prime ideal of Z for any prime
p € Z. The only other prime ideal in Z is {0}.

In Z, any prime number p is characterized by either of
the two properties :

(a) p|ab = plaorp|b.
(b) p=uv = p=Zuorp=tv.

In a general integral domain 3, one has to make a distinc-
tion between these properties. For example, as shown
below, the two properties are not equivalent in the com-
mutative ring A = {a 4 bv/3i : a,b € Z}.

Definition: Let R be an integral domain.

An element p € R is called a prime element, if it is not
a unit and plab = pla or p|d.

An element d € R is called irreducible, if it is not a unit
and any expression d = pq implies that either p or ¢ is
a unit in R.

Here, a unit is an element v € R which has a multiplica-
tive inverse in R, i.e. dv € R, such that uv =1 in R.
The only units in Z are +1.
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In any integral domain, it is very easy to see that prime
elements are irreducible. As remarked above, the con-
verse is not true, in general. For instance, in the ring
A= {a+b/3i:a,bec Z}, the element 1 +/3i is easily
shown to be irreducible. However, it is not prime since
it divides 2.2 = 4 = (1 + v/3i)(1 — /31) but does not
divide 2, which can also be verified easily.

Definition: An integral domain A is called an unique
factorisation domain (abbreviated UFD), if every ele-
ment a € A can be expressed as a product of irre-
ducibles, up to units, that is a = up; ...ps, where u
is unit and p;’s are irreducibles in A and the expression
is unique in the following sense.

Ifa=up,...px = vq;...q, then k =1, and p; = wiq;,
where w; is a unit. For example, Z is a U F' D, since any
integer can be written uniquely as a product of primes
(or irreducibles) upto sign.

The importance of UFD’s stems from the following fact.
Consider ¢ = e¥™/? where p is a prime number. Look at
the commutative ring R consisting of all complex num-
bers of the form Y ,5¢a,¢". If this ring were a UFD,
then Fermat’s last theorem would follow for this prime
p quite easily. The fact that this ring is not a UFD for
many p is the basic reason behind Fermat’s last theorem
being a deep problem.

Let us look at the polynomial ring K[z] , K is any field.
As K is a field, one can easily see that any element
f(z) € K[z] can be written as f(z) = ufi(z)fo(z)...
fi(z), where u € K and f;’s are irreducibles in K/[z].
To see this, note that any polynomial of degree 1 is
irreducible. We assume that all polynomials of degree
less than n can be written as a product of irreducibles.
Now, if a polynomial of degree n is not itself irreducible,
then it can be written as a product of two polynomials
of lesser degree. Hence, by induction on degree, any
polynomial can be written as a product of irreducible

RESONANCE | November 2002 W



GENERAL | ARTICLE

polynomials in K[z]. Also, note that any ideal of K|z]
is generated by a single element. This can be seen by
observing that the element of smallest degree in any
ideal must divide all other elements in that ideal. Now,
if f; is an irreducible polynomial in K{z], note that the
ideal (f;) cannot be contained in any proper ideal of
K|z]. This follows, because

(fi) € (@) = fi=ag = gis constant = () = (f;).

Now, suppose for some irreducible polynomial f € K|z],
we have f |ab, a,b € Klz]. That is, ab € (f). If
a € (f), we have (f,a) = K[z]. Hence, we can write
1 = fg: +ago. Thus, b = fbg, + abgs € (f). There-
fore, f |b. Hence, f is a prime in K[z]. Now, given
some polynomial f € K|z], if it has two expansions into
irreducibles, say

f =upipa...0r = 1¢2...qs , where p;’s and g¢;’s are
irreducibles in K[z] and u € K. We saw above that
all irreducible polynomials in K|[z| are primes. Hence,
each p; divide g; for some j. Since g;’s are irreducible, it
follows that g; = ap; , where a is a unit. Thus, we must
have that the expansion of f into irreducibles is unique.
Hence, K|[z] is a UFD.

A famous theorem of Gauss implies that K[z;, z,, ..., z,]
is also an UF'D.

Gauss’s Theorem: Rz] is a UFD, if and only if R
s a UFD.

For a proof of Gauss’s theorem and a detailed proof of
the fact that K[z] is a UFD, look at [3].

Corollary: Let K be a field. Then K|z,,...,z,] is a
UFD.

Proof : We have already seen that, for any field K, K|[z]
is a UFD. The rest follows by induction and the fact
that if Risa UF D, then so is R[z]. Thus, assuming that
K[zy,...,2,_1) is a UFD, we get that K[z,,...,1,] =
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Klzy,...,zn1][z,]) isa UFD. &
Converse to Cayley—Hamilton Theorem

We now proceed to prove the converse of Cayley-Hamil-
ton theorem for an algebraically closed field. The re-
sult is known even for infinite integral domains and the
reader who wants to investigate further may consult [4].

Main Theorem: Let K be an algebraically closed field,
f € K(z11, 12, .- Tpp)|. Let A € M,(K) and let f;’s be
defined as

FAA=X-I) = fo(A) + fl(A)A + - - + fa(A)N.
Now, if, for all A € M,(K), we have the relation
fo(AT + flA) A+ + fa(A)A* = 0 € Mo(K),

then f(X) = g(X) - det(X) VX € My(K) for some
[ € K[I11,$12,- . .:z:,m].

Proof: Let I = (det(X)) be the ideal of K[zy, 210, ...
Tnn] generated by det(X). Then,

V() = {X € Mu(K) | det(X) = 0}.

Hence, any matrix A € V(I) is singular. That is, 3 0 #
v € K™, such that A-v = 0. Thus, we have

fo(A)T-v=0= fo(A)=0.

But we saw earlier that f(A) = fo(A). Hence, f(A) =
0 VYA € V(I). Thus, by Hilbert’s nullstellensatz,

f € rad(I).
We shall show that f itself is in I.
Claim: I = (det(X)) is a prime ideal of K[z11, %12, - -

Tnn)-

Note that, it follows from the definition of a prime ideal,
that for any prime ideal P C R, rad(P) = P. (Since
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If one considers
the polynomial
g(x.y) = (xy-yx)"

in noncommuting
variables x,y, then
g(U,V) = 0 for any
two upper
triangular matrices
UV e M(C).

Similarly, if one
considers the
polynomial g(x,y) =
(xy-yx)’

in noncommuting
variables x,y, then
g(U,V) = 0 for any
two upper
triangular matrices
UVeM(C).

fr€ P = f € P). Thus, if we prove the above claim,
we have f € I = (det(X)), and hence, we are done.

Proof of Claim: Since, by Gauss’s theorem, K|z,;, z;,,
«..Znn) 18 a UFD, it is enough to show that det(X) is
an irreducible element. Suppose, on the contrary, that
det(X) = a(X) - B(X), for some o,8 € Klz11,Z12, - --
Tnn) \ K. As « is not constant, it involves z;; for some
i,J. Since det(X) is row-linear, det(X) does not involve
terms of the form z;;z,; for any k. Hence, the vari-
ables z;,2,;,...,T,; cannot occur in 4. Thus, o must
involve z;; Vi. Again, since det(X) is column-linear,
we get similarly that « involves z;; Vi,j7. That is,
B3 € K, a contradiction. Hence, det(X) is irreducible in
K[z11, %12, - Tpp)-

Every Polynomial Identity is a Consequence of
C-H

Apart from its evident role as the polynomial carrying
information about the eigenvalues of a given matrix, the
Cayley—-Hamilton theorem has also another more uni-
versal role. We shall explain this, to put it in the right
perspective.

Any two diagonal matrices with complex entries evi-
dently commute. This can be viewed as saying that
when one looks at the polynomial f(z,y) = zy — yz in
noncommuting variables z,y, we have f(A, B) = 0 for
any two diagonal matrices A, B € M,(C).

Similarly, if one considers the polynomial g{z,y) = (zy—
yz)" in noncommuting variables z,y, then g(U,V) = 0
for any two upper triangular matrices U,V € M,(C).

One can think of these statements as saying that the
sets T,, of diagonal matrices and B,, of upper triangular
matrices satisfy some polynomial identities.

The set M,,(C) of n x n complex matrices and the sets
T, B,, are examples of algebras over C. In fact, they are

W
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examples of algebras satisfying a polynomial identity or We have the bilinear
Pl-algebras. form of Cayley~
Hamilton theorem for

In fact, M,(C) satisfies the standard polynomial of de-
2 x 2 matrices viz.,

gree 2n viz.,
A A+ AA -t
F(zi, -, Za) = ) $gn(0)To, -~ Ton, - (A)A,~tr (A) A +1r
€52 (A)tr (A,) —tr (A, A,)
Further, M,,(C) does not satisfy any polynomial iden- =0.

tity of lower (than 2n) degree. This is the assertion of
a famous theorem of Amitsur and Levitskii [5]. This is
rather tricky to prove but can be done by starting with
the Cayley-Hamilton theorem and using the multilin-
earization technique as indicated below ([6], p.173 for a

proof).

Given a permutation o € S, if we write its cycle decom- -
position (including all 1-cycles also) as (ay, - - -, ag, ) (b1,
-+« bg,) -+, then one can look at the function

F, : M,,(C)" — C defined by
Fy(A- o, Ar) = tr(Agy -+ Ag Jtr(Ay, - Ay )+

It is a fact that if r > n + 1, then the function F, =
Yoes, $9n(0)Fy : M,(C™) — C is identically zero. This
can be seecn as follows.

For simplicity, let us illustrate it first for n = 2.

The Cayley-Hamilton theorem gives us A% — tr(A)A +
det(A) = 0. We can rewrite the determinant as det(A) =
‘—’(é)z—;t—r(@ since det(A) = Ay = ('\1“2).;(’\%“‘%), where
A1, Ay are the eigenvalues of A. On bilinearizing this
form, we have the bilinear form of Cayley—Hamilton the-
orem for 2 x 2 matrices viz.,

A1A2 + A2A1 — tI'(Al)Ag — tI'(AQ)Al + tr(Al)tI'(Ag)—
tr(A1A2) =0.

One can multiply by any A3z on the right and take traces
to get (in our earlier notation) that Fy : M(C)3 — C
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is identically zero. One can similarly, get ¥, = 0 on
M,(C)" for all 7 > 3 and then on, show that F, = 0 on
M,(C) forallr >n+1.

An important theorem due, independently, to Procesi
and Razmyslov [7] asserts that all polynomial identities
are conscquences of the identities F. =0, r > n + 1.
In other words, all polynomial identities on n x n com-
plex matrices are consequences of the Cayley-Hamilton
theorem.
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V { ; “I was lucky to wander into evolutionary

w

| I portant of all scientific fields. [ had never

theory, one of the most exciting and im-

heard of it when I started at a rather
tender age. I was simply awed by dino-

saurs ... Then I discovered evolutionary

theory. Ever since then, the duality of
natural history — richness in particulari-
ties and potential union in underlying

explanation — has propelled me.”

Stephen Jay Gould
Prologue to ‘The Panda’s Thumb’ (1980)
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