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Polynomials Satisfied by Square Matrices: A 
Converse to the Cayley-Hamilton Theorem 

Anandam B~nerjee 

S o m e  L i n e a r  A l g e b r a  

Given a ma t r ix  A C M,~(R),  the  po lynomia l  XA(X) = 
de t (A  - xI )  is called the  characteristic polynomial of 
A. We can also definc it for matr ices  over C or more  
general ly for any a rb i t ra ry  field K ,  or even for any com- 
m u t a t i v e  ring 1. Now, if A = (aij) E M,~(K), we have 

A - x I =  

a l l  - -  x a 1 2  � 9  �9 a l n  

a 2 1  a 2 2 - - x  . � 9 1 4 9  a2n  
�9 . �9 " 

an1  an2  . . .  a n n - -  X 

T h u s  :~A(X) = de t (A  - xI )  = ao + alx  + . . .  + a,~x n, a 
polynomia l  of degree n wi th  coefficients f rom K.  Note  
t ha t  ai 's  can be t r ea ted  as polynomials  in n 2 variables 

over K.  

We will deno te  a po lynomia l  f over K in n 2 variables, 

say x11,x12, . . .  ,Xnn by f ( X ) ,  where X = (Xij) E J~fn(K). 
T h a t  is, we may  wri te  f ( X )  E K[xij]. 

Also, for any po lynomia l  f ( X )  C K[xij] and for A e K ,  
we can write, 

f ( A  - A . I)  = fo(A) + f l (A )A  + . . .  + fd(A)A d, 

where  f i ' s  are po lynomia ls  in n 2 variables,A E M,~(K), 
and  d is some non-negat ive  integer�9 Note t ha t  fo(A) = 
I ( A ) .  (Pu t  A = 0). 

Thus ,  we can wri te  

XA(X) = co (A)+  c l (A)x  + . . .  + cn(A)x n. 
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1 Recall that a ring is a set, which 

is an Abelian group under ad- 
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Every polynomial 

identity satisfied by 

the set of all n x n 
matrices, is a 

consequence of the 
Cayley-Hamilton 

theorem. 

Recall t ha t  )~ E K is called an eigenvalue of A E M,~(K), 
i f A . v  = )~ .v  for s o m e 0 - ~  v c K '~. Note  t ha t  any 
eigenvalue of the  mat r ix  A is a root  of XA(X) since (A - 
A. I ) .  v = 0 '.- de t (A - )~. I )  = 0, i.e. XA()~) = O. 

We now s ta te  the  Cay ley -Hami l ton  Theorem,  a well- 
known theo rem in linear algebra concerning character-  
istic po lynomia ls  of matrices.  

Cayley-Hamilton Theorem: Let A be a n • n matrix 
with entries in a field K and let XA(X)  : d e t ( A -  xI)  
be its characteristic polynomial. Then XA(A) = 0 as an 
n • n matrix. 

In fact, the  t heo rem is valid for mat r ices  over any com- 
muta t ive  r ing which has a mul t ip l ica t ive  un i ty  1. t tow- 
ever, we will concent ra te  on  fields only. We will prove 
a slightly generalised version of the  above theorem.  We 
also draw a t t en t ion  to the  fact tha t ,  in a sense - m a d e  
precise at the  end of this article - every po lynomia l  iden- 
t i ty satisfied by the  set of all n • n matr ices,  is a conse- 

quence of the  Cay ley -Hami l ton  theorem.  

Theorem: Let A, B E M,~(K) be such that A B  = BA.  
Then, XA(B) = ( B -  A)C /or some C C M,~(K). In 
particular, XA(A) -= O. 

P r o o f :  We know tha t ,  for any ma t r i x  A, de t (A)  �9 [ = 
A .  Adj(A) , where  Adj(A) is t he  adjoint  of the  m a t r i x  
A. Since Ad j (A  - xI)  can be wr i t t en  as 

Adj (A - xI)  = go(A) + g~(A)x + . . .  + g~_i(A)x n-l ,  

where gi(A) are matr ix-valued funct ions  of A and,  since 
XA(X) : de t (A - xI) ,  we have 

xA(x)I -- (A - :r,I)Adj(A - xI )  

= ( A -  xI)(go(A) + g l ( A ) x + . . .  
+g,~_l(A)x n-l) 

= co(A) ~-c~(A)x + . . . + c n ( A ) x " .  
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Hence, 

)tA(B) = co(A)I + c l (A)B + . . .  + c , (A)B  n 

: go(A)A+ ( g t ( A ) A - g o ( A ) ) B  + . . . +  

(9~_:(A)A - g,~_2(A))B "-~ - 9,~_:(A)B '~ 

= ( m -  B)(.qo(A) + gl (A)B + . . .  + g~_I(A)B '~-~. 

Thus,  )/A(A) = 0. 6 

Hence, if f ( X )  = g ( X ) .  de t (X)  �9 K[xij], we have 

f ( A -  xI)  = .q (A-  xI)(co(A) + cl(A)x + . . .  + cn(A)x'~). 

Therefore,  

fo(A) " I § f~(A) . A + . . .  + re(A).  A d = p(A)(co(A)I+ 

c~(A)A+. . .+c,~(A)A'~) ,  

where p(A) is some polynomial  in A. Thus, we get, 

f o ( A ) . I +  f ~ ( A ) . A + . . . + f d ( A ) . A d = O  �9 M,~(K). (1) 

A na tura l  question tha t  arises now is whether  the con- 
verse is true. Tha t  is, if f ( X )  E K[xi3] satisfies (1) for 
every mat r ix  A, then  is f ( X )  a multiple of de t (X)?  Let 
us try to check this for some finite fields first. 

E x a m p l e :  Consider the matr ix  X = (xij) E M2(Fp) 
and let 

f ( X )  = xP2 - x12. 

Here, Fp is the field with p elements, where p is a prime. 

Then  f ( m -  AI) = 0 VA e M2(Fp). But de t (X)  = 
xux22 - x12x21 does not divide f ( X ) ,  since f ( X )  does 
not involve X~l, x22, x21. Hence, the converse is not t rue 

f o r F  v & 

Let us give a slightly more non-trivial  example for ma- 

trices in F2. 
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Every polynomial 

identity satisfied 

by the set of all n x n 

matrices, is a 

consequence of the 

Cayley-Hamilton 

theorem. 

E x a m p l e :  Let f ( X )  = (x12 + x21)xllx22. Let A E 
M2 (F2). Then  

f ( A -  A- I)  = (a12 + a21)(a~ - A)(a2~ - A) 

= (a12+a21)alla22-(a12+a21)(all+a22).A+(a12+a21).A 2 

We claim tha t  

(a12 + a21)al la22I-  (a12 + a21)(a11 + a22)A+ 

(a12+a21)A 2 = 0  (2) 

V A c M2(F2). To see this, suppose (a,2 + a21) # 0 in 
F2 (for otherwise our claim is true).  Now there may be 

three cases. 

a l l  = a2~ = 0: Here, we must  have A 2 = 0. 

all  = a22 = 1: It is easily checked tha t  A 2 = I in 
this case. Hence, I + A 2 -- I + I = 0. 

al l  + a22 = 1: Here again, one can check tha t  
A 2 = A. 

Thus, in all cases, (2) is satisfied. 

But de t (X)  = xllx22 - x12x21 does not  divide f ( X )  = 
(xl2 + x21)XllX22, since f ( X )  does not involve the te rm 
x12x21, while de t (X)  does. & 

We shall now consider the field of complex numbers  or, 
more generally, the following kind of fields. 

D e f i n i t i o n :  A field K is said to be algebraically closed, 
if any non-constant  polynomial f ( x )  E K[x] has a root  
in K.  Tha t  is 3 a C K,  such tha t  f ( a )  = O. 

Note tha t  if K is algebraically closed, all roots of f ( x )  
are in K.  This follows from the remainder  theorem, on 
using induction. 
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In fact, we will prove tha t  the converse s ta tement  to the 
Cayley-Hami l ton  theorem, as asserted above, is indeed 
true for any algebraically closed field. For proving this, 
we will usc some commutat ive algebra; in particular,  we 
shall make use of a fundamental  theorem of Hilbert. 

Some Conunutative Algebra 

Recall tha t  an ideal I of a ring R is defined to be an 
addit ive subgroup of the ring, such tha t  r I  C_ I Vr E R.  

For example, n Z  is an ideal of Z for any n E Z. In the 
ring of polynomials,  the polynomials with constant  term 
0 is an ideal. The whole ring is an ideal in any ring. In 
a ring R containing a multiplicative uni ty  1, an ideal is 
proper (i.e. not the whole) if, and only if, 1 is not in it. 

Definition: Let J be a proper ideal of K[x l , . . . , x~ . ] .  
The  variety V ( J )  of J is defined to be the set of n- 
tuples a = ( a l , . . . ,  as)  C K ~, where every polynomial  
contained in J vanishes. Tha t  is, 

v ( J )  = (a e gn l f ( a )  = 0 V f C J}. 

D e f i n i t i o n :  The radical of an ideal J in a ring R is 
dcfined to be tile set 

r ad(J )  -- ( f  E R l f  n E J for some n}. 

Note tha t  r ad(J )  is an ideal of R. This  follows, because if 
x ~ C J and ym E J ,  then  (x4 y)m+,~ E J ,  and (ax) '~ C J.  

If f C t ad ( J )  C K [ x l , . . . ,  x,~], then for some k, we have 
f k (a )  -~O V a  C V ( J ) .  

Hence, f ( a )  = 0 Va E V ( J ) .  The following fundamental  
theorem of Hilbert, called the Nullstellensatz 2 asserts 
t ha t  the converse is also true for if K is algebraically 
closed. 

H i l b e r t ' s  N u l l s t e l l e n s a t z :  Given an algebraically 
closed field K ,  a non-zero proper ideal J C K [ x l ,  . . . , x,~], 
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A w e a k e r  vers ion o f  

the nul ls te l lensatz  is 

the s ta tement  that  

for any ideal J 

K [x 1 . . . . .  Xn], the 
variety V(J)is non- 

empty. For n=l,  this 

is evidently the 

property of being 

algebraically closed 

that was defined. 

3 An integral domain is a ring in 

which the product of two non- 
zero elements is never zero. 

In any integral 

domain, it is very 

easy to see that 

prime elements are 

irreducible. The 

converse is not 

true, in general. 
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and f E K[xl,...,xn], 

f ( a ) = O  V a C V ( J )  ,'. .: f c r a d ( J ) .  

A weaker version of the nullstellensatz is the  s ta tement  
that  for any ideal J ~ g [ x x , . . .  ,xn], the variety V ( J )  
is non-empty. For n = 1, this is evidently the property 
of being algebraically closed that  was defined. 

A detailed account of Hilbert 's nullstellensatz is given 
in [2]. One may also refer to [1]. 

D e f i n i t i o n :  An ideal J C R is called a prime ideal of 
R, if a b c  J :::~ a E J, o r b E  J. 

For example, pZ  is a prime ideal of Z for any prime 
p C Z. The only other prime ideal in Z is {0}. 

In Z, any prime number p is characterized by either of 
the two properties : 

(a) pl ab ::, pl a or pl b. 

(b) p = u v  ~ p = :ku or p = =t=v. 

In a general integral domain 3, one has to make a distinc- 
tion between these properties. For example, as shown 
below, the two properties are not equivalent in the com- 
mutat ive ring A = {a 4 bv/3i �9 a, b c Z} .  

D e f i n i t i o n :  Let R be an integral domain. 

An element p C R is called a prime element, if it is not 
a unit and p lab ~ p ]a or p lb. 

An element d E R is called irreducible, if it is not  a unit  
and any expression d = pq implies tha t  either p or q is 
a unit in R. 

Here, a unit is an element u E R which has a multiplica- 
rive inverse in R, i.e. 3 v C R, such tha t  uv = 1 in R. 
The only units in Z are +1. 
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In any integral domain,  it is very easy to see that  prime 
elements are irreducible. As remarked above, the con- 
verse is not true, in general. For instance, in the ring 
A = {a + b v ~ i :  a,b E Z},  the element 1 + v ~ i  is easily 
shown to be irreducible. However, it is not prime since 
it divides 2.2 = 4 = (1 + x/3i)(1 - x/~i) but does not 
divide 2, which can also be verified easily. 

Definition: An integral domain A is called an unique 
factorisation domain (abbreviated UFD), if every ele- 
ment  a c A can be expressed as a product of irre- 
ducibles, up to units, that  is a = up1...Pk, where u 
is unit  and p~'s are irreducibles in A and the expression 
is unique in the  following sense. 

If a = up l . . . pk  = vql . . .q l ,  then k = l, and Pi = w~qj, 
where w~ is a unit. For example, Z is a UFD, since any 
integer can be wri t ten uniquely as a product  of primes 
(or irreducibles) upto sign. 

The importance of UFD's  stems from the following fact. 
Consider ~ = e 2i~/p, where p is a prime number. Look at 
the  commutat ive  ring R consisting of all complex num- 
bers of the form ~r>_0 ar~ r. If this ring were a UFD, 
then  Fermat 's  last theorem would follow for this prime 
p quite easily. The  fact that  this ring is not a UFD for 
many  p is the basic reason behind Fermat 's  last theorem 
being a deep problem. 

Let us look at the polynomial  ring K[x] , K is any field. 
As K is a field, one can easily see tha t  any element 
f ( x )  E K[x] can be wri t ten as f (x )  = u f l ( x ) f2 (x ) . . .  
fk(x), where u �9 K and f~'s are irreducibles in K[x]. 
To see this, note that  any polynomial of degree 1 is 
irreducible. We assume that  all polynomials of degree 
less than  n can be wri t ten as a product  of irreducibles. 
Now, if a polynomial  of degree n is not itself irreducible, 
then it can be wri t ten as a product  of two polynomials 
of lesser degree. Hence, by induction on degree, any 
polynomial  can be wri t ten  as a product  of irreducible 
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polynomials in K[x]. Also, note that  any ideal of K[x] 
is generated by a single element. This can be seen by 
observing that  the element of smallest degree in any 
ideal must divide all other elements in that  ideal. Now, 
if .fi is an irreducible polynomial in K[x], note tha t  the 
ideal (fi) cannot be contained in any proper ideal of 
K[x]. This follows, because 

(f/) C_ (c~) => fi = ag => g is constant ==> (c~) = (fi). 

Now, suppose for some irreducible polynomial f C K[x], 
we have f lab, a,b e g[x]. That  is, a b e  (f) .  If 
a ~ (f), we have (f ,a) = K[x]. Hence, we can write 
1 = fgl  +ag2. Thus, b = fbgl +abg2 E (f).  There- 
fore, f i b .  Hence, f is a prime in K[x]. Now, given 
some polynomial f C K[x], if it has two expansions into 
irreducibles, say 

f = uplP2...p,. = qlq2...qs , where pi's and qj's are 
irreducibles in K[x] and u C K. We saw above that  
all irreducible polynomials in K[x] are primes. Hence, 
each pi divide qj for some j .  Since q3.'s are irreducible, it 
follows that  qj = api, where a is a unit. Thus, we must 
have that  the expansion of f into irreducibles is unique. 
Hence, K[x] is a UFD. 

A famous theorem of Gauss implies that  K[xl, x 2 , . . . ,  xn] 
is also an UFD. 

G a u s s ' s  Theorem: R[x] is a UFD, if and only if R 
is a UFD. 

For a proof of Gauss's theorem and a detailed proof of 
the fact that  K[x] is a UFD, look at [3]. 

Corollary: Let K be a field. Then K[x l , . . . , xn]  is a 
UFD. 

Proof : We have already seen that,  for any field K, K[x] 
is a UFD. The rest follows by induction and the fact 
that  if R is a UFD, then so is R[x]. Thus, assuming that  
K[xl, . . . ,x ,~-l]  is a UFD, we get that  K[x l , . . .  ,x,~] = 
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K[x~,...,x~_~][x,~] is a UFD. 

Converse to Cayley-Hami l ton  Theorem 

We now proceed to prove the converse of Cayley-Hamil- 
ton theorem for an algebraically closed field. The re- 
sult is known even for infinite integral domains and the 
reader who wants to investigate further may consult [4]. 

M a i n  T h e o r e m :  Let K be an algebraically closed field, 
f �9 K[xll ,x~2,. . .xnn].  Let A �9 Mn(K) and let f~'s be 
defined as 

f ( A  - )~ . I) = fo(A) +/I(A))~ + . . .  + fa(A)A ~. 

Now, i f , /or  all A �9 Mn(K),  we have the relation 

fo(A)I  + f I (A ) A  + . . .  + fd(A)A a = 0 �9 M,~(K), 

then f ( X )  = g ( X ) .  det(X) VX �9 Mn(K)  for some 
g �9 K[Xll ,Xl2, . - -xnn] .  

Proof :  Let I = (det(X)) be the ideal of K[xl l ,x12, . . .  
xn,~] generated by det(X). Then, 

V(I)  = { X  �9 M,~(K) i det (X)  = 0}. 

Hence, any matrix A �9 V( I )  is singular. That  is, 3 0 
v �9 K ", such that A.  v = O. Thus, we have 

fo(A)I  . v = 0 =v fo(A) = O. 

But we saw earlier that  f ( A )  - fo(A). Hence, f (A )  = 
0 VA �9 V(I) .  Thus, by Hilbert's nullstellensatz, 

/ �9 rad(I). 

We shall show that  f itself is in I. 

Claim: I = (det(X)) is a prime ideal of K[xl l ,x12, . . .  

Xnn]. 
Note that, it follows from the definition of a prime ideal, 
that  for any prime ideal P C R, tad(P)  = P. (Since 
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If one considers 

the polynomial 

g(x,y) = (xy-yx)" 

in noncommuting 

variables x,y, then 

g(U,V) = 0 for any 

two upper 

triangular matrices 

u, v MAc). 

Similarly, if one 

considers the 

polynomial g(x,y) = 

(xy-yx) n 

in noncommuting 

variables x,y, then 

g(U, V) = 0 for any 

two upper 

triangular matrices 

U,V c M (C). 

f "  E P ==~ f E P).  Thus, if we prove the above claim, 
we have f C I = (det(X)), and hence, we are done. 

P r o o f  of C la im:  Since, by Gauss's theorem, K[x11, x12, 
. . .  x,,~] is a UFD, it is enough to show that det(X) is 
an irreducible element. Suppose, on the contrary, that  
det(X) = a(X)  . f l(Z),  for some a,fl  C K[xu ,x12 , . . .  
x,~,] \ K. As a is not constant, it involves xij for some 
i , j .  Since det(X) is row-linear, det(X) does not involve 
terms of the form xijxkj for any k. Hence, the vari- 
ables xlj ,x2~,. . .  ,x,~y cannot occur in ft. Thus, a must 
involve xiy Vi. Again, since det(X) is column-linear, 
we get similarly that a involves xi~ V i, j. That  is, 
~3 E K, a contradiction. Hence, det(X) is irreducible in 

K[x11, x12,... Xnn]. I~ 

E v e r y  P o l y n o m i a l  I d e n t i t y  is a C o n s e q u e n c e  of  
C - H  

Apart from its evident role as the polynomial carrying 
information about the eigenvalues of a given matrix, the 
Cayley-Hamilton theorem has also another more uni- 
versal role. We shall explain this, to put it in the right 
perspective. 

Any two diagonal matrices with complex entries evi- 
dently commute. This can be viewed as saying that  
when one looks at the polynomial f (x ,  y) = xy - yx in 
noncommuting variables x, y, we have f (A ,  B) = 0 for 
any two diagonal matrices A, B E Mn(C). 

Similarly, if one considers the polynomial g(x, y) = ( x y -  
yx)" in noncommuting variables x, y, then g(U, V) = 0 
for any two upper triangular matrices U, V C Mn(C). 

One can think of these statements as saying that  the 
sets T, of diagonal matrices and B~ of upper triangular 
matrices satisfy some polynomial identities. 

The set Mn(C) of n x n complex matrices and the sets 
T,, B~ are examples of algebras over C. In fact, they are 
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examples of algebras satisfying a polynomial  identity or 
PI-algebras. 

In fact, M ~ ( C )  satisfies the s tandard polynomial  of de- 
gree 2n viz., 

-- X: 
o'ES2n 

Further, M ~ ( C )  does not  satisfy any polynomial  iden- 
tity of lower ( than 2n) degree. This is the assertion of 
a famous theorem of Amitsur and Levitskii [5]. This is 
rather  tricky to prove but  can be done by start ing with 
the Cayley- Hamil ton theorem and using the multilin- 
earization technique as indicated below ([6], p.173 for a 
proof). 

Given a permuta t ion  a E S~, if we write its cycle decom- �9 
posit ion (including all 1-cycles a l so)as  ( a l , . . . , a k ~ ) ( b l ,  
�9 " ,  bk~)-",  then one can look at the function 

Fa " M n ( C )  r --~ C d e f i n e d  by 

F~(A1, .  . . ,A~) = tr(A~,  " "  A ~ , ) t r ( A b ,  . "  A b k 2 ) ' "  . 

It is a fact that  if r > n + 1, then the function Fr - -  

F,~cs, sgn(a)F~  �9 M ~ ( C ' )  --+ C is identically zero. This 
can be seen as follows. 

For simplicity, let us illustrate it first for n = 2. 

The  Cayley-Hamil ton  theorem gives us A 2 - t r (A)A + 
get(A) = 0. We can rewrite the determinant  as det(A) = 
tr(A)2-tr(A2) since det(A) = A1A2 = (~1+~2)'~-(~+~) where 

2 2 
A1, A2 are the eigenvalues of A. On bilinearizing this 
form, we have the bilinear form of Cayley-Hamil ton the- 
orem for 2 • 2 matrices viz., 

A1A2 + A2A1 - tr(A1)d2 - tr(A2)A1 + t r (A1) t r (A2)-  
tr(AiA2) = 0. 

One can multiply by any A3 on the right and take traces 
to get (in our earlier notation) that  F3 : M2(C) 3 --+ C 
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form of Cayley- 

Hamilton theorem for 

2 x 2 matrices viz., 

A 1 A 2 + A 2 A 1 - tr 
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is identically zero. One can sialilarly, get Fr = 0 on 
M2(C) ~ for all r _> 3 and then on, show tha t  F~ = 0 on 
Mn(C) ~ for all r _> n + 1. 

An impor tan t  theorem due, independently,  to Proce~si 
and Razmyslov [7] asserts tha t  all polynomial identities 
are consequences of the identities F~ = 0 , r > n + 1. 
In other  words, all polynomial identities on n • n com- 

plex matrices are consequences of  the CayIey-Hamil ton 

theorem. 
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"i  ~i"  ~ ~ :  " ' "I.wa~ lucky, to wander into evolutionary 

t . ~ T t ]  portant of all scientific fielda I hadnever 
heard o f i t  when : I :~sr ted at a ra ther  

tender age. i wass~lyawed by: dino- 
saurs ... Then I discovere~ evolutionary 

theory. Ever since ~ , ! 4 ~ h e  duality of 

natural history- rieh~i~articulari-  
ties and potential unionini~ underlying 

e x p l a n a t i o n  - h a s  p r o p e l l e d  me."  

Stephen Jay Gould 

Prologue to "The Panda's Thuznb" (1980) 
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