# Alternating Sums of the Reciprocals of Binomial Coefficients 

Hacène Belbachir and Mourad Rahmani<br>University of Sciences and Technology Houari Boumediene<br>Faculty of Mathematics<br>Po. Box 32, El Alia, Bab-Ezzouar 16111, Algiers<br>Algeria<br>hacenebelbachir@gmail.com<br>mrahmani@usthb.dz<br>B. Sury<br>Statistics \& Mathematics Unit Indian Statistical Institute<br>8th Mile Mysore Road<br>Bangalore 560059<br>India<br>sury@isibang.ac.in


#### Abstract

In this paper, our aim is to investigate the summations of the form $\sum_{0 \leq k \leq n}(-1)^{k} k^{m}\binom{n}{k}^{-1}$. We give closed formulae in terms of Akiyama-Tanigawa matrix. Recurrence formulae, ordinary generating functions and some other results are also given.


## 1 Introduction and Notations

Binomial coefficients play an important role in many areas of mathematics, such as combinatorics, number theory and special functions. In 1993, Sury [16] connected the inverse of the binomial coefficients to the beta function as follows

$$
\begin{equation*}
\binom{n}{k}^{-1}=(n+1) \int_{0}^{1} x^{k}(1-x)^{n-k} d x . \tag{1}
\end{equation*}
$$

There are many papers dealing with sums involving inverses of binomial coefficients, see for instance $[2,7,11,13,14,15,16,19,20]$. For nonnegative integers $n, m$ and $p$ we consider
the sums

$$
\begin{equation*}
T_{n}^{(m, p)}:=\sum_{k=0}^{n}(-1)^{k} k^{m}\binom{p+n}{p+k}^{-1} . \tag{2}
\end{equation*}
$$

These sums have been studied by many authors. Trif [18], using (1) proved for $m=0$ that

$$
\begin{equation*}
T_{n}^{(0, p)}=\left((-1)^{n}+\binom{p+n+1}{p}^{-1}\right) \frac{p+n+1}{p+n+2} \tag{3}
\end{equation*}
$$

Sury, Wang and Zhao [17], studied (2) for $m=1$ and $m=2$, they obtain

$$
\begin{gather*}
T_{n}^{(1, p)}=\frac{p+n+1}{p+n+3}\left(\frac{(-1)^{n}(n+1)(p+n+3)}{p+n+2}-\right. \\
\left.\binom{p+n+2}{p+1}^{-1}-(-1)^{n}\right) \tag{4}
\end{gather*}
$$

and

$$
\begin{align*}
T_{n}^{(2, p)} & =(p+n+1)\left(\frac{(-1)^{n}(n+1)^{2}}{p+n+2}-\frac{(-1)^{n}(2 n+3)}{p+n+3}\right. \\
& +\frac{2}{p+n+4}\left(\binom{p+n+3}{p+2}^{-1}+(-1)^{n}\right) \\
& \left.-\frac{1}{p+n+3}\binom{p+n+2}{p+1}^{-1}\right) . \tag{5}
\end{align*}
$$

Our aim is to give a closed form and recurrence relation for the sums (2). In order to investigate the summation of the form $S_{n}^{(m)}:=T_{n}^{(m, 0)}$ and $T_{n}^{(m, p)}$, we shall use the following tools [5]:

- The Stirling numbers of the first kind (signed) $\left[\begin{array}{l}n \\ k\end{array}\right]$ (see A008275 in [12]), are defined by the generating function

$$
x(x-1) \cdots(x-n+1)=\sum_{k \geq 0}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k}
$$

and satisfy the recurrence relation

$$
\left[\begin{array}{c}
n+1 \\
k
\end{array}\right]=\left[\begin{array}{c}
n \\
k-1
\end{array}\right]-n\left[\begin{array}{l}
n \\
k
\end{array}\right], \quad(1 \leq k \leq n)
$$

with $\left[\begin{array}{l}n \\ n\end{array}\right]=1,\left[\begin{array}{l}n \\ 0\end{array}\right]=0$ for $n \geq 1$ and $\left[\begin{array}{l}n \\ k\end{array}\right]=0$ for $k<0$ or $k>n$.

- The Stirling numbers of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ (see A008277 in [12]), are defined by the generating function

$$
\prod_{j=1}^{k} \frac{x}{1-j x}=\sum_{n \geq k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{n}
$$

and satisfy the recurrence relation

$$
\left\{\begin{array}{c}
n+1 \\
k
\end{array}\right\}=\left\{\begin{array}{c}
n \\
k-1
\end{array}\right\}+k\left\{\begin{array}{l}
n \\
k
\end{array}\right\}
$$

with $\left\{\begin{array}{l}n \\ 1\end{array}\right\}=\left\{\begin{array}{l}n \\ n\end{array}\right\}=1$.
They also verify the following important identity

$$
x^{n}=\sum_{k=0}^{n}(-1)^{n+k}\left\{\begin{array}{l}
n  \tag{6}\\
k
\end{array}\right\} x(x+1) \cdots(x+k-1) \text {. }
$$

- The Eulerian numbers $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ (see A008292 in [12]) are defined by

$$
\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle=\sum_{i=0}^{k}(-1)^{i}(k-i)^{n}\binom{n+1}{i}, \quad(1 \leq k \leq n),
$$

and satisfy the recursive identity

$$
\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle=k\left\langle\begin{array}{c}
n-1 \\
k
\end{array}\right\rangle+(n-k+1)\left\langle\begin{array}{l}
n-1 \\
k-1
\end{array}\right\rangle,
$$

with $\left\langle\begin{array}{l}1 \\ 1\end{array}\right\rangle=1$.

- The Worpitzky numbers $W_{n, k}$ (see A028246 in [12]), are defined by

$$
W_{n, k}=\sum_{i=0}^{k}(-1)^{i+k}(i+1)^{n}\binom{k}{i} .
$$

They can also be expressed through the Stirling numbers of the second kind as follows

$$
W_{n, k}=k!\left\{\begin{array}{l}
n+1  \tag{7}\\
k+1
\end{array}\right\} .
$$

The Worpitzky numbers satisfy the recursive relation

$$
\begin{equation*}
W_{n, k}=(k+1) W_{n-1, k}+k W_{n-1, k-1} \quad(n \geq 1, k \geq 1) . \tag{8}
\end{equation*}
$$

Some simple properties are given

$$
\begin{gather*}
\sum_{k=0}^{n}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle x^{k}=\sum_{k=0}^{n}(x-1)^{n-k} k W_{n-1, k-1}  \tag{9}\\
\sum_{k=0}^{n}\binom{n}{k}\left\{\begin{array}{l}
k \\
t
\end{array}\right\}=\left\{\begin{array}{c}
n+1 \\
t+1
\end{array}\right\}, \tag{10}
\end{gather*}
$$

and

$$
\sum_{k=0}^{n}\left\langle\begin{array}{l}
n  \tag{11}\\
k
\end{array}\right\rangle\binom{ k+1}{t}=W_{n, n-t}
$$

- The Bernoulli numbers $B_{n}$ are defined by the exponential generating function

$$
\frac{x}{1-e^{-x}}=\sum_{n \geq 0} B_{n} \frac{x^{n}}{n!}
$$

The recursive relation is

$$
\begin{aligned}
& B_{0}=1 \\
& B_{n}=1-\sum_{k=0}^{n-1}\binom{n}{k} \frac{B_{k}}{n-k+1}, \quad(n \geq 1) .
\end{aligned}
$$

Thus we have $B_{1}=\frac{1}{2}, B_{2}=\frac{1}{6}, B_{3}=0$, and so on, they can also be expressed through the Worpitzky numbers

$$
B_{n}=\sum_{k=0}^{n}(-1)^{k} \frac{W_{n, k}}{k+1}
$$

- The Akiyama-Tanigawa matrix $\left(A_{n, k}\right)_{n, k \geq 0}$ associated with initial sequence $A_{0, k}=\frac{1}{k+1}$ is defined by (see [1, 4, 8, 10])

$$
A_{n, k}=(k+1)\left(A_{n-1, k}-A_{n-1, k+1}\right),
$$

or equivalently by [6]

$$
\begin{align*}
A_{n, k} & =\frac{1}{k!} \sum_{i=0}^{k}(-1)^{k}\left[\begin{array}{c}
k+1 \\
i+1
\end{array}\right] B_{n+i} \\
& =\sum_{i=1}^{n}(-1)^{i-1}\binom{k+i+1}{k+1}^{-1} W_{n, i} \tag{12}
\end{align*}
$$

The Akiyama-Tanigawa matrix $A_{n, k}$ is then

$$
A_{n, k}=\left(\begin{array}{cccccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \cdots \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \cdots \\
\frac{1}{6} & \frac{1}{6} & \frac{3}{20} & \frac{2}{15} & \frac{5}{42} & \cdots \\
0 & \frac{1}{30} & \frac{1}{20} & \frac{2}{35} & \frac{5}{84} & \cdots \\
-\frac{1}{30} & -\frac{1}{30} & -\frac{3}{140} & -\frac{1}{105} & 0 & \cdots \\
0 & -\frac{1}{42} & -\frac{1}{28} & -\frac{4}{105} & -\frac{1}{28} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right) .
$$

## 2 Explicit formula for $\mathbf{S}_{n}^{(m)}$

For any nonnegative integer $m$, we consider the sums

$$
\begin{equation*}
S_{n}^{(m)}:=\sum_{k=0}^{n}(-1)^{k} k^{m}\binom{n}{k}^{-1} \tag{13}
\end{equation*}
$$

The following result holds
Theorem 1. For any nonnegative integers $n$ and $m$, we have

$$
\begin{equation*}
S_{n}^{(m)}=(n+1) \sum_{j=0}^{m} \frac{(-1)^{m+j}}{n+j+2}\left(1+(-1)^{n}\binom{n+j+1}{j}\right) W_{m, j} . \tag{14}
\end{equation*}
$$

Proof. We can write $S_{n}^{(m)}$ as follows

$$
\begin{aligned}
S_{n}^{(m)} & =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{-1}((k+1)-1)^{m} \\
& =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{-1} \sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i}(k+1)^{i},
\end{aligned}
$$

and with (6), we obtain

$$
\begin{aligned}
S_{n}^{(m)} & =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{-1} \sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} \sum_{j=0}^{i}(-1)^{i+j}\left\{\begin{array}{l}
i \\
j
\end{array}\right\}(k+1) \cdots(k+j) \\
& =\sum_{k=0}^{n} \sum_{i=0}^{m} \sum_{j=0}^{i} \frac{(-1)^{k}}{n!}(-1)^{m+j}\binom{m}{i}\left\{\begin{array}{l}
i \\
j
\end{array}\right\} k!(k+1) \cdots(k+j)(n-k)! \\
& =\sum_{i=0}^{m} \sum_{j=0}^{i}(-1)^{m+j}\binom{m}{i}\left\{\begin{array}{l}
i \\
j
\end{array}\right\}(n+1) \cdots(n+j) \sum_{k=0}^{n}(-1)^{k}\binom{n+j}{k+j}^{-1} .
\end{aligned}
$$

Now, from (3) and after some rearrangement, we get

$$
S_{n}^{(m)}=(n+1) \sum_{j=0}^{m} \frac{(-1)^{m+j}}{n+j+2}\left(1+(-1)^{n}\binom{n+j+1}{j}\right) j!\sum_{i=0}^{m}\binom{m}{i}\left\{\begin{array}{l}
i \\
j
\end{array}\right\} .
$$

From (7) and (10), the result holds.

## 3 Recurrence relation for $S_{n}^{(m)}$

Theorem 2. For any nonnegative integers $m$ and $n$, we have

$$
\begin{equation*}
S_{n+1}^{(m)}=\delta_{0 m}-\frac{1}{n+1} \sum_{i=0}^{m+1}\binom{m+1}{i} S_{n}^{(i)}, \tag{15}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker symbol.

Proof. Recall that $\binom{n+1}{k}=\frac{n+1}{k}\binom{n}{k-1}$, we have

$$
\begin{aligned}
S_{n+1}^{(m)} & =\delta_{0 m}+\sum_{k=1}^{n+1}(-1)^{k} k^{m}\binom{n+1}{k}^{-1} \\
& =\delta_{0 m}-\frac{1}{n+1} \sum_{k=0}^{n}(-1)^{k}(k+1)^{m+1}\binom{n}{k}^{-1} \\
& =\delta_{0 m}-\frac{1}{n+1} \sum_{i=0}^{m+1}\binom{m+1}{i} \sum_{k=0}^{n}(-1)^{k} k^{i}\binom{n}{k}^{-1} .
\end{aligned}
$$

This proves the theorem.
The recurrence relation for $S_{n}^{(m)}$ is given in the following
Theorem 3. For any nonnegative integers $m$ and $n$, we have

$$
\begin{align*}
S_{n+1}^{(m)} & =\delta_{0 m}-\frac{m+1}{n+1} S_{n}^{(m)}+\sum_{j=0}^{m+1} \frac{(-1)^{m+j}}{n+j+2}\left(1+(-1)^{n}\binom{n+j+1}{j}\right) W_{m+1, j}  \tag{16}\\
& -\sum_{0 \leq i \leq j \leq m-1}\binom{m+1}{i} \frac{(-1)^{i+j}}{n+j+2}\left(1+(-1)^{n}\binom{n+j+1}{j}\right) W_{i, j} .
\end{align*}
$$

Proof. This follows immediately from (14) and (15).
Setting $m=1$ in (16), we have the following
Corollary 4. If $n$ is nonnegative integer, then

$$
S_{n+1}^{(1)}=-\frac{2}{n+1} S_{n}^{(1)}-\frac{(-1)^{n}\left(n^{4}+7 n^{3}+15 n^{2}+14 n+12\right)+\left(n^{2}+6 n+12\right)}{(n+2)(n+3)(n+4)}
$$

Our next goal is to calculate the ordinary generating functions of $S_{n}^{(m)}$.

## 4 Ordinary generating functions of $S_{n}^{(m)}$

In 2002, Mansour [9], generalized the idea of Sury [16] and gave an approach based on calculus to obtain the generating function for some combinatorial identities.

Theorem 5 (Mansour [9]). Let $r, n \geq k$ be any nonnegative integer numbers, and let $f(n, k)$ be given by

$$
\begin{equation*}
f(n, k)=\frac{(n+r)!}{n!} \int_{u_{1}}^{u_{2}} p^{k}(t) q^{n-k}(t) d t \tag{17}
\end{equation*}
$$

where $p(t)$ and $q(t)$ are two functions defined on $\left[u_{1}, u_{2}\right]$. Let $\left\{a_{n}\right\}_{n \geq 0}$ and $\left\{b_{n}\right\}_{n \geq 0}$ be any two sequences, and let $A(x), B(x)$ be the corresponding ordinary generating functions. Then

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left[\sum_{k=0}^{n} f(n, k) a_{k} b_{n-k}\right] x^{n}=\frac{d^{r}}{d x^{r}}\left[x^{r} \int_{u_{1}}^{u_{2}} A(x p(t)) B(x q(t)) d t\right] \tag{18}
\end{equation*}
$$

We apply Theorem 5 , for $a_{n}=(-1)^{n} n^{m}(m \geq 1)$ and $b_{n}=1$, we have for $|x|<1$

$$
\begin{aligned}
A(x) & =\frac{1}{(1+x)^{m+1}} \sum_{k=0}^{m}\left\langle\begin{array}{c}
m \\
k
\end{array}\right\rangle(-x)^{k+1} \\
& =\sum_{k=0}^{m} \frac{(-1)^{m+k}}{(1+x)^{k+1}} W_{m, k} \\
B(x) & =\sum_{n \geq 0} x^{n}=\frac{1}{1-x}
\end{aligned}
$$

From (18) we get

$$
\sum_{n \geq 0} S_{n}^{(m)} x^{n}=\frac{d}{d x}\left[x \int_{0}^{1} \frac{\sum_{k=0}^{m}\left\langle\begin{array}{l}
m  \tag{19}\\
k
\end{array}\right\rangle(-x t)^{k+1}}{(1+x t)^{m+1}(1-x+x t)} d t\right]
$$

Making the substitution $x t=y$ in the right-hand side of (19), we obtain

$$
\sum_{n \geq 0} S_{n}^{(m)} x^{n}=\frac{d}{d x}\left[\int_{0}^{x} \frac{\sum_{k=0}^{m}\left\langle\begin{array}{l}
m \\
k
\end{array}\right\rangle(-y)^{k+1}}{(1+y)^{m+1}(1-x+y)} d y\right]
$$

Since the degree of the denominator is at least one higher than that of the numerator, this fraction decomposes into partial fractions of the form

$$
\frac{\sum_{k=0}^{m}\left\langle\begin{array}{l}
m  \tag{20}\\
k
\end{array}\right\rangle(-y)^{k+1}}{(1+y)^{m+1}(1-x+y)}=\frac{\alpha^{(m)}(x)}{1-x+y}+\sum_{s=0}^{m} \frac{\alpha_{s}^{(m)}(x)}{(1+y)^{m-s+1}}
$$

We note in passing that (20) is equivalent to

$$
\begin{align*}
\sum_{k=0}^{m}\left\langle\begin{array}{c}
m \\
k
\end{array}\right\rangle(-y)^{k+1} & =(1+y)^{m+1} \alpha^{(m)}(x)+(1-x+y) \sum_{s=0}^{m}(1+y)^{s} \alpha_{s}^{(m)}(x)  \tag{21}\\
& =\sum_{k=0}^{m}(-1)^{m+k+1} y(1+y)^{m-k} W_{m-1, k-1}
\end{align*}
$$

For $y=-1$ and using the fact that $W_{p, p}=p!$ for $p \geq 0$, we immediately obtain the wellknown identity

$$
\sum_{k=0}^{m}\left\langle\begin{array}{c}
m \\
k
\end{array}\right\rangle=m!
$$

Next, if we set $y=0$ in (21) then we obtain a relation between $\alpha^{(m)}(x)$ and $\alpha_{s}^{(m)}(x)$ for $|x|<1$

$$
\begin{equation*}
\sum_{s=0}^{m} \alpha_{s}^{(m)}(x)=\frac{\alpha^{(m)}(x)}{x-1} \tag{22}
\end{equation*}
$$

Proposition 6. For $m \geq 1$, we have

$$
\begin{align*}
\alpha_{s}^{(m)}(x) & =\sum_{i=0}^{s} \frac{(-1)^{i+s+1}}{x^{i+1}} \sum_{k=0}^{m}\left\langle\begin{array}{c}
m \\
k
\end{array}\right\rangle\binom{ k+1}{s-i}  \tag{23}\\
& =\sum_{j=m-s}^{m} \frac{(-1)^{m+j+1}}{x^{s-m+1+j}} W_{m, j}
\end{align*}
$$

and

$$
\begin{align*}
\alpha^{(m)}(x) & =\frac{1}{x^{m+1}} \sum_{k=0}^{m}\left\langle\begin{array}{c}
m \\
k
\end{array}\right\rangle(1-x)^{k+1}  \tag{24}\\
& =\sum_{j=0}^{m} \frac{(-1)^{m+j}}{x^{j+1}} W_{m, j}, \\
& =-\alpha_{m}^{(m)}(x) .
\end{align*}
$$

Proof. We verify that (23) and (24) satisfy (21). Denote the right-hand side of (21) by $R^{(m)}(y)$ After some rearrangement, we get

$$
\begin{aligned}
R^{(m)}(y)=\sum_{k=0}^{m}\left\langle\begin{array}{c}
m \\
k
\end{array}\right\rangle\left[\frac{(1+y)^{m+1}}{x^{m+1}}(1-x)^{k+1}\right. & \\
& \left.+(1-x+y) \sum_{s=0}^{m}(1+y)^{s} \sum_{j=0}^{s} \frac{(-1)^{j+1}}{x^{s-j+1}}\binom{k+1}{j}\right]
\end{aligned}
$$

using binomial formula and for $k \leq m$, we obtain

$$
\begin{aligned}
R^{(m)}(y)=\sum_{k=0}^{m}\left\langle\begin{array}{c}
m \\
k
\end{array}\right\rangle\left[\sum_{s=m+1}^{m+1} \frac{(1+y)^{s}}{x^{s}} \sum_{j=0}^{s}\right. & \binom{k+1}{j}(-1)^{j} x^{j} \\
& \left.-\frac{(1-x+y)}{x} \sum_{s=0}^{m} \frac{(1+y)^{s}}{x^{s}} \sum_{j=0}^{s}(-1)^{j} x^{j}\binom{k+1}{j}\right]
\end{aligned}
$$

$$
\begin{aligned}
&=\sum_{k=0}^{m}\left\langle\begin{array}{c}
m \\
k
\end{array}\right\rangle\left[\sum_{s=m+1}^{m+1} \frac{(1+y)^{s}}{x^{s}} \sum_{j=0}^{s}\binom{k+1}{j}(-1)^{j} x^{j}\right. \\
&+ \sum_{s=0}^{m} \frac{(1+y)^{s}}{x^{s}} \sum_{j=0}^{s}(-1)^{j} x^{j}\binom{k+1}{j} \\
&\left.-\sum_{s=0}^{m} \frac{(1+y)^{s+1}}{x^{s+1}} \sum_{j=0}^{s}(-1)^{j} x^{j}\binom{k+1}{j}\right]
\end{aligned}
$$

$=\sum_{k=0}^{m}\left\langle\begin{array}{c}m \\ k\end{array}\right\rangle\left[\sum_{s=0}^{m+1} \frac{(1+y)^{s}}{x^{s}} \sum_{j=0}^{s}(-1)^{j} x^{j}\binom{k+1}{j}\right.$ $\left.-\sum_{s=0}^{m} \frac{(1+y)^{s+1}}{x^{s+1}} \sum_{j=0}^{s}(-1)^{j} x^{j}\binom{k+1}{j}\right]$
$=\sum_{k=0}^{m}\left\langle\begin{array}{c}m \\ k\end{array}\right\rangle\left[\sum_{s=0}^{m+1} \frac{(1+y)^{s}}{x^{s}}\left(\sum_{j=0}^{s}(-1)^{j} x^{j}\binom{k+1}{j}\right.\right.$

$$
\left.\left.-\sum_{j=0}^{s-1}(-1)^{j} x^{j}\binom{k+1}{j}\right)\right] .
$$

Finally,

$$
\begin{aligned}
R^{(m)}(y) & =\sum_{k=0}^{m}\left\langle\begin{array}{c}
m \\
k
\end{array}\right\rangle\left[\sum_{s=0}^{k+1}(1+y)^{s}\left((-1)^{s}\binom{k+1}{s}\right)\right] \\
& =\sum_{k=0}^{m}\left\langle\begin{array}{c}
m \\
k
\end{array}\right\rangle(-y)^{k+1} .
\end{aligned}
$$

According to (7) and (11), we have

$$
\begin{aligned}
\alpha_{s}^{(m)}(x) & =\sum_{i=0}^{s} \frac{(-1)^{i+s+1}}{x^{i+1}} \sum_{k=0}^{m}\left\langle\begin{array}{c}
m \\
k
\end{array}\right\rangle\binom{ k+1}{s-i} \\
& =\sum_{i=0}^{s} \frac{(-1)^{i+s+1}(m-s+i)!}{x^{i+1}}\left\{\begin{array}{c}
m+1 \\
m-s+i+1
\end{array}\right\} \\
& =\sum_{i=0}^{s} \frac{(-1)^{i+s+1}}{(x)^{i+1}} W_{m, m-s+i} \\
& =\sum_{j=m-s}^{m} \frac{(-1)^{m+j+1}}{x^{s-m+1+j}} W_{m, j} .
\end{aligned}
$$

It follows from (9) that

$$
\begin{aligned}
\alpha^{(m)}(x) & =\frac{1}{x^{m+1}} \sum_{k=0}^{m}\left\langle\begin{array}{c}
m \\
k
\end{array}\right\rangle(1-x)^{k+1} \\
& =\frac{1-x}{x^{m+1}} \sum_{k=1}^{m}(-1)^{m+k} x^{m-k} k W_{m-1, k-1} \\
& =(1-x) \sum_{k=0}^{m}(-1)^{m+k} \frac{k}{x^{k+1}} W_{m-1, k-1} \\
& =\sum_{k=0}^{m}(-1)^{m+k} \frac{k}{x^{k+1}} W_{m-1, k-1}-\sum_{k=0}^{m}(-1)^{m+k} \frac{k}{x^{k}} W_{m-1, k-1} \\
& =\sum_{k=0}^{m}(-1)^{m+k} \frac{k}{x^{k+1}} W_{m-1, k-1}+\sum_{k=0}^{m-1}(-1)^{m+k} \frac{k+1}{x^{k+1}} W_{m-1, k}
\end{aligned}
$$

Using (8), we get $\alpha^{(m)}(x)$ as desired. This completes the proof.
Now, integrating the right-hand side of (20) over $y$, we obtain

$$
\int_{0}^{x} \frac{\sum_{k=0}^{m}\left\langle\begin{array}{l}
m  \tag{25}\\
k
\end{array}\right\rangle(-y)^{k+1}}{(1+y)^{m+1}(1-x+y)} d y=\alpha_{m}^{(m)}(x) \ln \left(1-x^{2}\right)+\sum_{s=0}^{m-1} \frac{\alpha_{s}^{(m)}(x)}{m-s}\left[1-(1+x)^{s-m}\right] .
$$

By differentiating (25) we get the ordinary generating function of $S_{n}^{(m)}$

$$
\begin{align*}
\sum_{n \geq 0} S_{n}^{(m)} x^{n} & =\ln \left(1-x^{2}\right) \frac{d}{d x} \alpha_{m}^{(m)}(x)+\sum_{s=0}^{m-1} \frac{\frac{d}{d x} \alpha_{s}^{(m)}(x)}{m-s}\left(\left[1-(1+x)^{s-m}\right]\right) \\
& +\sum_{s=0}^{m-1}\left((1+x)^{s-m-1} \alpha_{s}^{(m)}(x)\right)-\frac{2 x}{1-x^{2}} \alpha_{m}^{(m)}(x) \tag{26}
\end{align*}
$$

with

$$
\frac{d}{d x} \alpha_{s}^{(m)}(x)=\sum_{j=m-s}^{m} \frac{(s-m+1+j)(-1)^{m+j}}{x^{s-m+2+j}} W_{m, j} .
$$

With Proposition 6, we can now rewrite (26) as follows
Theorem 7. For any real numbers $x$ such that $|x|<1$ and for all nonnegative integer $m$, we have

$$
\begin{align*}
\sum_{n \geq 0} S_{n}^{(m)} x^{n}= & \left(\sum_{j=0}^{m} \frac{(1+j)(-1)^{m+j}}{x^{2+j}} W_{m, j}\right) \ln \left(1-x^{2}\right) \\
+ & \sum_{0 \leq j \leq s \leq m-1} \frac{(-1)^{j}}{x^{s-j+2}} W_{m, m-j}\left(\frac{s-j+1}{m-s}\left(1-(1+x)^{s-m}\right)-x(1+x)^{s-m-1}\right) \\
& +\frac{2}{1-x^{2}} \sum_{j=0}^{m} \frac{(-1)^{m+j}}{x^{j}} W_{m, j} \tag{27}
\end{align*}
$$

In particular for $m=0$ and $m=1$, we get

$$
\sum_{n \geq 0} S_{n}^{(0)} x^{n}=\frac{2}{1-x^{2}}+\frac{\ln \left(1-x^{2}\right)}{x^{2}}
$$

and

$$
\sum_{n \geq 0} S_{n}^{(1)} x^{n}=\frac{2+3 x}{x(1+x)^{2}}+\frac{2-x}{x^{3}} \ln \left(1-x^{2}\right)
$$

## 5 The asymptotic expansion

In the previous sections, $S_{n}^{(m)}$ becomes more complex when, $m$ grows, so it is important to have asymptotic expansion of $S_{n}^{(m)}$.

Theorem 8. For $m>0$, we have

$$
S_{2 n}^{(m)} \sim(2 n)^{m} \text { and } S_{2 n+1}^{(m)} \sim-(2 n+1)^{m}
$$

Proof. Write

$$
k^{m}=c_{0}+c_{1}(k+1)+c_{2}(k+1)(k+2) \cdots+c_{m}(k+1) \cdots(k+m),
$$

where $c_{i}$ 's depnd on $m\left(c_{m}=1\right)$. we immediately have
$S_{n}^{(m)}=c_{0} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{-1}+c_{1} \sum_{k=0}^{n}(-1)^{k}(k+1)\binom{n}{k}^{-1}+\cdots+\sum_{k=0}^{n}(-1)^{k}(k+1) \cdots(k+m)\binom{n}{k}^{-1}$.
After some rearrangement, we have
$S_{n}^{(m)}=c_{0} T_{n}^{(0,0)}+c_{1}(n+1) T_{n}^{(0,1)}+c_{2}(n+1)(n+2) T_{n}^{(0,2)}+\cdots+(n+1) \cdots(n+m) T_{n}^{(0, m)}$.
Since $T_{2 n}^{(0, p)} \rightarrow 1$ and $T_{2 n+1}^{(0, p)} \rightarrow-1$, the result holds.

## 6 A connection to Akiyama-Tanigawa matrix

In this section we consider $T_{n}^{(m, p)}$. The following lemma will be useful in the proof of the main theorem of this section.

Lemma 9. For $m \geq 1$, we have

$$
\begin{aligned}
\sum_{k=0}^{n} k^{m} z^{k} & =\sum_{k=0}^{m} W_{m, k}\left(\frac{z}{1-z}\right)^{k+1} \\
& -z^{n+1} \sum_{s=0}^{m}\binom{m}{s}(n+1)^{m-s} \sum_{k=0}^{s}(-1)^{s+k} W_{s, k}(1-z)^{-k-1}
\end{aligned}
$$

Proof. Recall that, for $m \geq 1$

$$
\sum_{k=0}^{\infty} k^{m} z^{k}=\sum_{k=0}^{m} W_{m, k}\left(\frac{z}{1-z}\right)^{k+1}=\sum_{k=0}^{m}(-1)^{m+k} W_{m, k}(1-z)^{-k-1}
$$

we have

$$
\begin{aligned}
\sum_{k=0}^{n} k^{m} z^{k} & =\sum_{k=0}^{\infty} k^{m} z^{k}-\sum_{k=n+1}^{\infty} k^{m} z^{k} \\
& =\sum_{k=0}^{m} W_{m, k}\left(\frac{z}{1-z}\right)^{k+1}-z^{n+1} \sum_{i=0}^{\infty}(i+n+1)^{m} z^{i} \\
& =\sum_{k=0}^{m} W_{m, k}\left(\frac{z}{1-z}\right)^{k+1}-z^{n+1} \sum_{i=0}^{\infty} \sum_{s=0}^{m}\binom{m}{s}(n+1)^{m-s} i^{s} z^{i} \\
& =\sum_{k=0}^{m} W_{m, k}\left(\frac{z}{1-z}\right)^{k+1}-z^{n+1} \sum_{s=0}^{m}\binom{m}{s}(n+1)^{m-s} \sum_{i=0}^{\infty} i^{s} z^{i}
\end{aligned}
$$

as desired.
For an alternative proof see Boyadzhiev [3]. The main result of this section is to prove the following theorem which expresses explicitly the alternating sums of the reciprocals of binomial coefficients, $T_{n}^{(m, p)}$, in terms of Akiyama-Tanigawa matrix $A_{n, k}$.

Theorem 10. For nonnegative integers $n, m$ and $p$, we have

$$
\begin{align*}
T_{n}^{(m, p)}=\binom{n+p}{p}^{-1} \delta_{0 m}+(n+p+1) & \sum_{s=0}^{m}(-1)^{n+s}\binom{m}{s}(n+1)^{m-s} A_{s, n+p+1} \\
& -\frac{n+p+1}{n+1} \sum_{s=0}^{m}(-1)^{s}\binom{n+s+p+2}{p+s+1}^{-1} W_{m, s}, \tag{28}
\end{align*}
$$

where $A_{i, j}$ is the Akiyama-Tanigawa matrix.

Proof. By the Beta function we can write

$$
\begin{aligned}
T_{n}^{(m, p)} & =\sum_{k=0}^{n}(-1)^{k} k^{m}(p+n+1) \int_{0}^{1} x^{p+k}(1-x)^{n-k} d x \\
& =(p+n+1) \int_{0}^{1} x^{p}(1-x)^{n} \sum_{k=0}^{n} k^{m}\left(\frac{-x}{1-x}\right)^{k} d x
\end{aligned}
$$

Using the lemma, we get

$$
\begin{aligned}
T_{n}^{(m, p)} & =(p+n+1) \int_{0}^{1} x^{p}(1-x)^{n}\left(\sum_{k=0}^{m} W_{m, k}(-x)^{k+1}\right. \\
& \left.-\sum_{s=0}^{m}\binom{m}{s}(n+1)^{m-s} \sum_{k=0}^{s}(-1)^{s+k} W_{s, k}(-x)^{n+1}(1-x)^{k-n}\right) d x \\
& =\frac{(p+n+1)}{n+1} \sum_{k=0}^{m}(-1)^{k+1}\binom{n+k+p+2}{p+k+1}^{-1} W_{m, k} \\
& -(p+n+1) \sum_{s=0}^{m} \sum_{k=0}^{s}\binom{m}{s}(n+1)^{m-s} \frac{(-1)^{n+s+k+1}}{k+1}\binom{n+k+2+p}{k+1+p}^{-1} W_{s, k} .
\end{aligned}
$$

Finally, from (12) we obtain

$$
\begin{aligned}
T_{n}^{(m, p)} & =\frac{(p+n+1)}{n+1} \sum_{k=0}^{m}(-1)^{k+1}\binom{n+k+p+2}{p+k+1}^{-1} W_{m, k} \\
& +(n+p+1) \sum_{s=0}^{m}\binom{m}{s}(n+1)^{m-s} \frac{(-1)^{n+s}}{(n+p+1)!} \sum_{k=0}^{n+p+1}(-1)^{k}\left[\begin{array}{c}
n+p+2 \\
k+1
\end{array}\right] B_{s+k} .
\end{aligned}
$$

As desired, this completes the proof.
Setting $p=0$ in (28) we can rewrite (14) as follows
Corollary 11.

$$
S_{n}^{(m)}=\delta_{0 m}-A_{m+1, n}+\sum_{s=0}^{m}(-1)^{n+s}\binom{m}{s}(n+1)^{m-s+1} A_{s, n+1}
$$

## 7 Recurrence Relation For $T_{n}^{(m, p)}$

Theorem 12. For any nonnegative integers $m, n$ and $p$

$$
T_{n+1}^{(m, p)}=\binom{n+p+1}{p}^{-1} \delta_{0 m}-\frac{1}{n+p+1} \sum_{i=0}^{m+1}\left(\binom{m+1}{i}+p\binom{m}{i}\right) T_{n}^{(i, p)}
$$

Proof. The proof is similar to that of Theorem 2.

## References

[1] S. Akiyama and Y. Tanigawa, Multiple zeta values at non-positive integers. Ramanujan J. 5 (4) (2001), 3327-351.
[2] H. Belbachir, M. Rahmani and B. Sury, Sums involving moments of reciprocals of binomial coefficients. J. Integer Sequences 14 (2011), Article 11.6.6.
[3] K. H. Boyadzhiev, Power sum identities with generalized Stirling numbers. Fib. Quart. 46/47 4 (2008/09), 326-330.
[4] K. W. Chen, Algorithms for Bernoulli numbers and Euler numbers, J. Integer. Seq 4 (2001), Article 01.1.6.
[5] R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley Publishing Company, 1994.
[6] Y. Inaba, Hyper-sums of powers of integers and the Akiyama-Tanigawa matrix. J. Integer Sequences 8 (2005), Article 05.2.7.
[7] P. Juan, The sum of inverses of binomial coefficients revisited. Fib. Quart. 35 (1997), 342-345.
[8] M. Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer. Seq $\mathbf{3}$ (2000), Article 00.2.9.
[9] T. Mansour, Combinatorial identities and inverse binomial coefficients. Adv. in Appl. Math. 28 (2002), 196-202.
[10] D. Merlini, R. Sprugnoli, M. C. Verri, The Akiyama-Tanigawa transformation, Integers 5 (1) (2005) A5, 12 pp.
[11] M. A. Rockett, Sums of the inverses of binomial coefficients. Fib. Quart. 19 (1981), 433-437.
[12] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published electronically at http://www.research.att.com/~njas/sequences, 2011.
[13] A. Sofo, General properties involving reciprocals of binomial coefficients. J. Integer Sequences 9 (2004), Article 06.4.5.
[14] R. Sprugnoli, Sums of the reciprocals of central binomial coefficients. Integers 6 (2006), Paper A27.
[15] T. B. Staver. Om summasjon av potenser av binomialkoeffisientene. Norsk Mat. Tidssker 29 (1947), 97-103.
[16] B. Sury, Sum of the reciprocals of the binomial coefficients. European J. Combin. 14 (1993), 351-353.
[17] B. Sury, Tianming Wang, and Feng-Zhen Zhao. Some identities involving reciprocals of binomial coefficients. J. Integer Sequences 7 (2004), Article 04.2.8.
[18] T. Trif, Combinatorial sums and series involving inverses of binomial coefficients. Fib. Quart. 38 (2000), 79-84.
[19] J.-H. Yang and F.-Z. Zhao. Sums involving the inverses of binomial coefficients. J. Integer Sequences 9 (2006), Article 06.4.2.
[20] F.-Z. Zhao and T. Wang. Some results for sums of the inverses of binomial coefficients. Integers 5 (2005), Paper A22.

2000 Mathematics Subject Classification: Primary 11B65; Secondary 05A10, 05A16.
Keywords: Binomial coefficient, Akiyama-Tanigawa matrix, recurrence relation, generating function.
(Concerned with sequences A008275, A008277, A008292, and A028246.)

