
Alternating Sums of the Reciprocals

of Binomial Coefficients

Hacène Belbachir and Mourad Rahmani
University of Sciences and Technology Houari Boumediene

Faculty of Mathematics
Po. Box 32, El Alia, Bab-Ezzouar 16111, Algiers

Algeria
hacenebelbachir@gmail.com

mrahmani@usthb.dz

B. Sury
Statistics & Mathematics Unit

Indian Statistical Institute
8th Mile Mysore Road

Bangalore 560059
India

sury@isibang.ac.in

Abstract

In this paper, our aim is to investigate the summations of the form
∑

0≤k≤n (−1)
k km

(
n
k

)−1
.

We give closed formulae in terms of Akiyama-Tanigawa matrix. Recurrence formulae,
ordinary generating functions and some other results are also given.

1 Introduction and Notations

Binomial coefficients play an important role in many areas of mathematics, such as combi-
natorics, number theory and special functions. In 1993, Sury [16] connected the inverse of
the binomial coefficients to the beta function as follows(

n

k

)−1
= (n+ 1)

1∫
0

xk (1− x)n−k dx. (1)

There are many papers dealing with sums involving inverses of binomial coefficients, see
for instance [2, 7, 11, 13, 14, 15, 16, 19, 20]. For nonnegative integers n,m and p we consider
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the sums

T (m,p)
n :=

n∑
k=0

(−1)k km
(
p+ n

p+ k

)−1
. (2)

These sums have been studied by many authors. Trif [18], using (1) proved for m = 0
that

T (0,p)
n =

(
(−1)n +

(
p+ n+ 1

p

)−1)
p+ n+ 1

p+ n+ 2
. (3)

Sury, Wang and Zhao [17], studied (2) for m = 1 and m = 2, they obtain

T (1,p)
n =

p+ n+ 1

p+ n+ 3

(
(−1)n(n+ 1)(p+ n+ 3)

p+ n+ 2
−(

p+ n+ 2

p+ 1

)−1
− (−1)n

)
, (4)

and

T (2,p)
n = (p+ n+ 1)

(
(−1)n(n+ 1)2

p+ n+ 2
− (−1)n(2n+ 3)

p+ n+ 3

+
2

p+ n+ 4

((
p+ n+ 3

p+ 2

)−1
+ (−1)n

)
− 1

p+ n+ 3

(
p+ n+ 2

p+ 1

)−1)
. (5)

Our aim is to give a closed form and recurrence relation for the sums (2). In order to

investigate the summation of the form S
(m)
n := T

(m,0)
n and T

(m,p)
n , we shall use the following

tools [5]:

• The Stirling numbers of the first kind (signed)
[
n
k

]
(see A008275 in [12]), are defined

by the generating function

x (x− 1) · · · (x− n+ 1) =
∑
k≥0

[
n

k

]
xk,

and satisfy the recurrence relation[
n+ 1

k

]
=

[
n

k − 1

]
− n

[
n

k

]
, (1 ≤ k ≤ n) ,

with
[
n
n

]
= 1,

[
n
0

]
= 0 for n ≥ 1 and

[
n
k

]
= 0 for k < 0 or k > n.

• The Stirling numbers of the second kind
{
n
k

}
(see A008277 in [12]), are defined by the

generating function
k∏

j=1

x

1− jx
=
∑
n≥k

{
n

k

}
xn,
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and satisfy the recurrence relation{
n+ 1

k

}
=

{
n

k − 1

}
+ k

{
n

k

}
,

with
{
n
1

}
=
{
n
n

}
= 1.

They also verify the following important identity

xn =
n∑

k=0

(−1)n+k

{
n

k

}
x (x+ 1) · · · (x+ k − 1) . (6)

• The Eulerian numbers
〈
n
k

〉
(see A008292 in [12]) are defined by〈

n

k

〉
=

k∑
i=0

(−1)i (k − i)n
(
n+ 1

i

)
, (1 ≤ k ≤ n) ,

and satisfy the recursive identity〈
n

k

〉
= k

〈
n− 1

k

〉
+ (n− k + 1)

〈
n− 1

k − 1

〉
,

with
〈
1
1

〉
= 1.

• The Worpitzky numbers Wn,k (see A028246 in [12]), are defined by

Wn,k =
k∑

i=0

(−1)i+k (i+ 1)n
(
k

i

)
.

They can also be expressed through the Stirling numbers of the second kind as follows

Wn,k = k!

{
n+ 1

k + 1

}
. (7)

The Worpitzky numbers satisfy the recursive relation

Wn,k = (k + 1)Wn−1,k + kWn−1,k−1 (n ≥ 1, k ≥ 1) . (8)

Some simple properties are given

n∑
k=0

〈
n

k

〉
xk =

n∑
k=0

(x− 1)n−k kWn−1,k−1, (9)

n∑
k=0

(
n

k

){
k

t

}
=

{
n+ 1

t+ 1

}
, (10)

and
n∑

k=0

〈
n

k

〉(
k + 1

t

)
= Wn,n−t. (11)
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• The Bernoulli numbers Bn are defined by the exponential generating function

x

1− e−x
=
∑
n≥0

Bn
xn

n!
.

The recursive relation is

B0 = 1,

Bn = 1−
n−1∑
k=0

(
n

k

)
Bk

n− k + 1
, (n ≥ 1) .

Thus we have B1 = 1
2
, B2 = 1

6
, B3 = 0, and so on, they can also be expressed through

the Worpitzky numbers

Bn =
n∑

k=0

(−1)k
Wn,k

k + 1
.

• The Akiyama-Tanigawa matrix (An,k)n,k≥0 associated with initial sequence A0,k = 1
k+1

is defined by (see [1, 4, 8, 10])

An,k = (k + 1) (An−1,k − An−1,k+1) ,

or equivalently by [6]

An,k =
1

k!

k∑
i=0

(−1)k
[
k + 1

i+ 1

]
Bn+i,

=
n∑

i=1

(−1)i−1
(
k + i+ 1

k + 1

)−1
Wn,i. (12)

The Akiyama-Tanigawa matrix An,k is then

An,k =



1 1
2

1
3

1
4

1
5
· · ·

1
2

1
3

1
4

1
5

1
6
· · ·

1
6

1
6

3
20

2
15

5
42

· · ·

0 1
30

1
20

2
35

5
84

· · ·

− 1
30
− 1

30
− 3

140
− 1

105
0 · · ·

0 − 1
42
− 1

28
− 4

105
− 1

28
· · ·

...
...

...
...

...



.
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2 Explicit formula for S
(m)
n

For any nonnegative integer m, we consider the sums

S(m)
n :=

n∑
k=0

(−1)k km
(
n

k

)−1
. (13)

The following result holds

Theorem 1. For any nonnegative integers n and m, we have

S(m)
n = (n+ 1)

m∑
j=0

(−1)m+j

n+ j + 2

(
1 + (−1)n

(
n+ j + 1

j

))
Wm,j. (14)

Proof. We can write S
(m)
n as follows

S(m)
n =

n∑
k=0

(−1)k
(
n

k

)−1
((k + 1)− 1)m

=
n∑

k=0

(−1)k
(
n

k

)−1 m∑
i=0

(−1)m−i
(
m

i

)
(k + 1)i ,

and with (6), we obtain

S(m)
n =

n∑
k=0

(−1)k
(
n

k

)−1 m∑
i=0

(−1)m−i
(
m

i

) i∑
j=0

(−1)i+j

{
i

j

}
(k + 1) · · · (k + j)

=
n∑

k=0

m∑
i=0

i∑
j=0

(−1)k

n!
(−1)m+j

(
m

i

){
i

j

}
k! (k + 1) · · · (k + j) (n− k)!

=
m∑
i=0

i∑
j=0

(−1)m+j

(
m

i

){
i

j

}
(n+ 1) · · · (n+ j)

n∑
k=0

(−1)k
(
n+ j

k + j

)−1
.

Now, from (3) and after some rearrangement, we get

S(m)
n = (n+ 1)

m∑
j=0

(−1)m+j

n+ j + 2

(
1 + (−1)n

(
n+ j + 1

j

))
j!

m∑
i=0

(
m

i

){
i

j

}
.

From (7) and (10), the result holds.

3 Recurrence relation for S
(m)
n

Theorem 2. For any nonnegative integers m and n, we have

S
(m)
n+1 = δ0m −

1

n+ 1

m+1∑
i=0

(
m+ 1

i

)
S(i)
n , (15)

where δij is the Kronecker symbol.
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Proof. Recall that
(
n+1
k

)
= n+1

k

(
n

k−1

)
, we have

S
(m)
n+1 = δ0m +

n+1∑
k=1

(−1)k km
(
n+ 1

k

)−1
= δ0m −

1

n+ 1

n∑
k=0

(−1)k (k + 1)m+1

(
n

k

)−1
= δ0m −

1

n+ 1

m+1∑
i=0

(
m+ 1

i

) n∑
k=0

(−1)k ki
(
n

k

)−1
.

This proves the theorem.

The recurrence relation for S
(m)
n is given in the following

Theorem 3. For any nonnegative integers m and n, we have

S
(m)
n+1 = δ0m −

m+ 1

n+ 1
S(m)
n +

m+1∑
j=0

(−1)m+j

n+ j + 2

(
1 + (−1)n

(
n+ j + 1

j

))
Wm+1,j (16)

−
∑

0≤i≤j≤m−1

(
m+ 1

i

)
(−1)i+j

n+ j + 2

(
1 + (−1)n

(
n+ j + 1

j

))
Wi,j.

Proof. This follows immediately from (14) and (15).

Setting m = 1 in (16), we have the following

Corollary 4. If n is nonnegative integer, then

S
(1)
n+1 = − 2

n+ 1
S(1)
n −

(−1)n (n4 + 7n3 + 15n2 + 14n+ 12) + (n2 + 6n+ 12)

(n+ 2) (n+ 3) (n+ 4)
.

Our next goal is to calculate the ordinary generating functions of S
(m)
n .

4 Ordinary generating functions of S
(m)
n

In 2002, Mansour [9], generalized the idea of Sury [16] and gave an approach based on
calculus to obtain the generating function for some combinatorial identities.

Theorem 5 (Mansour [9]). Let r, n ≥ k be any nonnegative integer numbers, and let f (n, k)
be given by

f (n, k) =
(n+ r)!

n!

u2∫
u1

pk (t) qn−k (t) dt, (17)
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where p (t) and q (t) are two functions defined on [u1, u2] . Let {an}n≥0 and {bn}n≥0 be any
two sequences, and let A (x) , B (x) be the corresponding ordinary generating functions. Then

∞∑
n=0

[
n∑

k=0

f (n, k) akbn−k

]
xn =

dr

dxr

xr u2∫
u1

A (xp (t))B (xq (t)) dt

 . (18)

We apply Theorem 5, for an = (−1)n nm (m ≥ 1) and bn = 1, we have for |x| < 1

A (x) =
1

(1 + x)m+1

m∑
k=0

〈
m

k

〉
(−x)k+1

=
m∑
k=0

(−1)m+k

(1 + x)k+1
Wm,k,

B (x) =
∑
n≥0

xn =
1

1− x
.

From (18) we get

∑
n≥0

S(m)
n xn =

d

dx

x
1∫

0

m∑
k=0

〈
m
k

〉
(−xt)k+1

(1 + xt)m+1 (1− x+ xt)
dt

 . (19)

Making the substitution xt = y in the right-hand side of (19), we obtain

∑
n≥0

S(m)
n xn =

d

dx


x∫

0

m∑
k=0

〈
m
k

〉
(−y)k+1

(1 + y)m+1 (1− x+ y)
dy

 ,
Since the degree of the denominator is at least one higher than that of the numerator, this
fraction decomposes into partial fractions of the form

m∑
k=0

〈
m
k

〉
(−y)k+1

(1 + y)m+1 (1− x+ y)
=

α(m) (x)

1− x+ y
+

m∑
s=0

α
(m)
s (x)

(1 + y)m−s+1 , (20)

We note in passing that (20) is equivalent to

m∑
k=0

〈
m

k

〉
(−y)k+1 = (1 + y)m+1 α(m) (x) + (1− x+ y)

m∑
s=0

(1 + y)s α(m)
s (x) (21)

=
m∑
k=0

(−1)m+k+1 y (1 + y)m−kWm−1,k−1.
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For y = −1 and using the fact that Wp,p = p! for p ≥ 0, we immediately obtain the well-
known identity

m∑
k=0

〈
m

k

〉
= m!.

Next, if we set y = 0 in (21) then we obtain a relation between α(m) (x) and α
(m)
s (x) for

|x| < 1
m∑
s=0

α(m)
s (x) =

α(m) (x)

x− 1
. (22)

Proposition 6. For m ≥ 1, we have

α(m)
s (x) =

s∑
i=0

(−1)i+s+1

xi+1

m∑
k=0

〈
m

k

〉(
k + 1

s− i

)
(23)

=
m∑

j=m−s

(−1)m+j+1

xs−m+1+j
Wm,j,

and

α(m) (x) =
1

xm+1

m∑
k=0

〈
m

k

〉
(1− x)k+1 (24)

=
m∑
j=0

(−1)m+j

xj+1
Wm,j,

= −α(m)
m (x) .

Proof. We verify that (23) and (24) satisfy (21). Denote the right-hand side of (21) by
R(m)(y)After some rearrangement, we get

R(m)(y) =
m∑
k=0

〈
m

k

〉[
(1 + y)m+1

xm+1
(1− x)k+1

+ (1− x+ y)
m∑
s=0

(1 + y)s
s∑

j=0

(−1)j+1

xs−j+1

(
k + 1

j

)]
,

using binomial formula and for k ≤ m, we obtain

R(m)(y) =
m∑
k=0

〈
m

k

〉[ m+1∑
s=m+1

(1 + y)s

xs

s∑
j=0

(
k + 1

j

)
(−1)j xj

− (1− x+ y)

x

m∑
s=0

(1 + y)s

xs

s∑
j=0

(−1)j xj
(
k + 1

j

)]
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=
m∑
k=0

〈
m

k

〉[ m+1∑
s=m+1

(1 + y)s

xs

s∑
j=0

(
k + 1

j

)
(−1)j xj

+
m∑
s=0

(1 + y)s

xs

s∑
j=0

(−1)j xj
(
k + 1

j

)

−
m∑
s=0

(1 + y)s+1

xs+1

s∑
j=0

(−1)j xj
(
k + 1

j

)]

=
m∑
k=0

〈
m

k

〉[m+1∑
s=0

(1 + y)s

xs

s∑
j=0

(−1)j xj
(
k + 1

j

)

−
m∑
s=0

(1 + y)s+1

xs+1

s∑
j=0

(−1)j xj
(
k + 1

j

)]

=
m∑
k=0

〈
m

k

〉[m+1∑
s=0

(1 + y)s

xs

(
s∑

j=0

(−1)j xj
(
k + 1

j

)

−
s−1∑
j=0

(−1)j xj
(
k + 1

j

))]
.

Finally,

R(m)(y) =
m∑
k=0

〈
m

k

〉[k+1∑
s=0

(1 + y)s
(

(−1)s
(
k + 1

s

))]

=
m∑
k=0

〈
m

k

〉
(−y)k+1 .

According to (7) and (11), we have

α(m)
s (x) =

s∑
i=0

(−1)i+s+1

xi+1

m∑
k=0

〈
m

k

〉(
k + 1

s− i

)
=

s∑
i=0

(−1)i+s+1 (m− s+ i)!

xi+1

{
m+ 1

m− s+ i+ 1

}
=

s∑
i=0

(−1)i+s+1

(x)i+1 Wm,m−s+i

=
m∑

j=m−s

(−1)m+j+1

xs−m+1+j
Wm,j.
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It follows from (9) that

α(m) (x) =
1

xm+1

m∑
k=0

〈
m

k

〉
(1− x)k+1

=
1− x
xm+1

m∑
k=1

(−1)m+k xm−kkWm−1,k−1

= (1− x)
m∑
k=0

(−1)m+k k

xk+1
Wm−1,k−1

=
m∑
k=0

(−1)m+k k

xk+1
Wm−1,k−1 −

m∑
k=0

(−1)m+k k

xk
Wm−1,k−1

=
m∑
k=0

(−1)m+k k

xk+1
Wm−1,k−1 +

m−1∑
k=0

(−1)m+k k + 1

xk+1
Wm−1,k.

Using (8), we get α(m) (x) as desired. This completes the proof.

Now, integrating the right-hand side of (20) over y, we obtain

x∫
0

m∑
k=0

〈
m
k

〉
(−y)k+1

(1 + y)m+1 (1− x+ y)
dy = α(m)

m (x) ln(1− x2) +
m−1∑
s=0

α
(m)
s (x)

m− s
[
1− (1 + x)s−m

]
. (25)

By differentiating (25) we get the ordinary generating function of S
(m)
n

∑
n≥0

S(m)
n xn = ln(1− x2) d

dx
α(m)
m (x) +

m−1∑
s=0

d
dx
α
(m)
s (x)

m− s
([

1− (1 + x)s−m
])

+
m−1∑
s=0

(
(1 + x)s−m−1 α(m)

s (x)
)
− 2x

1− x2
α(m)
m (x) , (26)

with
d

dx
α(m)
s (x) =

m∑
j=m−s

(s−m+ 1 + j) (−1)m+j

xs−m+2+j
Wm,j.

With Proposition 6, we can now rewrite (26) as follows

Theorem 7. For any real numbers x such that |x| < 1 and for all nonnegative integer m,
we have
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∑
n≥0

S(m)
n xn =

(
m∑
j=0

(1 + j) (−1)m+j

x2+j
Wm,j

)
ln(1− x2)

+
∑

0≤j≤s≤m−1

(−1)j

xs−j+2
Wm,m−j

(
s− j + 1

m− s
(
1− (1 + x)s−m

)
− x (1 + x)s−m−1

)

+
2

1− x2
m∑
j=0

(−1)m+j

xj
Wm,j. (27)

In particular for m = 0 and m = 1, we get∑
n≥0

S(0)
n xn =

2

1− x2
+

ln (1− x2)
x2

,

and ∑
n≥0

S(1)
n xn =

2 + 3x

x (1 + x)2
+

2− x
x3

ln
(
1− x2

)
.

5 The asymptotic expansion

In the previous sections, S
(m)
n becomes more complex when, m grows, so it is important to

have asymptotic expansion of S
(m)
n .

Theorem 8. For m > 0, we have

S
(m)
2n ∼ (2n)m and S

(m)
2n+1 ∼ − (2n+ 1)m .

Proof. Write

km = c0 + c1 (k + 1) + c2 (k + 1) (k + 2) · · ·+ cm (k + 1) · · · (k +m) ,

where ci’s depnd on m (cm = 1). we immediately have

S(m)
n = c0

n∑
k=0

(−1)k
(
n

k

)−1
+c1

n∑
k=0

(−1)k (k + 1)

(
n

k

)−1
+· · ·+

n∑
k=0

(−1)k (k + 1) · · · (k +m)

(
n

k

)−1
.

After some rearrangement, we have

S(m)
n = c0T

(0,0)
n + c1 (n+ 1)T (0,1)

n + c2 (n+ 1) (n+ 2)T (0,2)
n + · · ·+ (n+ 1) · · · (n+m)T (0,m)

n .

Since T
(0,p)
2n → 1 and T

(0,p)
2n+1 → −1, the result holds.
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6 A connection to Akiyama-Tanigawa matrix

In this section we consider T
(m,p)
n . The following lemma will be useful in the proof of the

main theorem of this section.

Lemma 9. For m ≥ 1, we have

n∑
k=0

kmzk =
m∑
k=0

Wm,k

(
z

1− z

)k+1

− zn+1

m∑
s=0

(
m

s

)
(n+ 1)m−s

s∑
k=0

(−1)s+kWs,k(1− z)−k−1.

Proof. Recall that, for m ≥ 1

∞∑
k=0

kmzk =
m∑
k=0

Wm,k

(
z

1− z

)k+1

=
m∑
k=0

(−1)m+kWm,k(1− z)−k−1,

we have

n∑
k=0

kmzk =
∞∑
k=0

kmzk −
∞∑

k=n+1

kmzk

=
m∑
k=0

Wm,k

(
z

1− z

)k+1

− zn+1

∞∑
i=0

(i+ n+ 1)m zi

=
m∑
k=0

Wm,k

(
z

1− z

)k+1

− zn+1

∞∑
i=0

m∑
s=0

(
m

s

)
(n+ 1)m−s iszi

=
m∑
k=0

Wm,k

(
z

1− z

)k+1

− zn+1

m∑
s=0

(
m

s

)
(n+ 1)m−s

∞∑
i=0

iszi,

as desired.

For an alternative proof see Boyadzhiev [3]. The main result of this section is to prove
the following theorem which expresses explicitly the alternating sums of the reciprocals of
binomial coefficients, T

(m,p)
n , in terms of Akiyama-Tanigawa matrix An,k.

Theorem 10. For nonnegative integers n,m and p, we have

T (m,p)
n =

(
n+ p

p

)−1
δ0m + (n+ p+ 1)

m∑
s=0

(−1)n+s

(
m

s

)
(n+ 1)m−sAs,n+p+1

− n+ p+ 1

n+ 1

m∑
s=0

(−1)s
(
n+ s+ p+ 2

p+ s+ 1

)−1
Wm,s, (28)

where Ai,j is the Akiyama-Tanigawa matrix.

12



Proof. By the Beta function we can write

T (m,p)
n =

n∑
k=0

(−1)k km (p+ n+ 1)

1∫
0

xp+k (1− x)n−k dx

= (p+ n+ 1)

1∫
0

xp (1− x)n
n∑

k=0

km
(
−x

1− x

)k

dx.

Using the lemma, we get

T (m,p)
n = (p+ n+ 1)

1∫
0

xp (1− x)n
(

m∑
k=0

Wm,k (−x)k+1

−
m∑
s=0

(
m

s

)
(n+ 1)m−s

s∑
k=0

(−1)s+kWs,k (−x)n+1 (1− x)k−n

)
dx

=
(p+ n+ 1)

n+ 1

m∑
k=0

(−1)k+1

(
n+ k + p+ 2

p+ k + 1

)−1
Wm,k

− (p+ n+ 1)
m∑
s=0

s∑
k=0

(
m

s

)
(n+ 1)m−s

(−1)n+s+k+1

k + 1

(
n+ k + 2 + p

k + 1 + p

)−1
Ws,k.

Finally, from (12) we obtain

T (m,p)
n =

(p+ n+ 1)

n+ 1

m∑
k=0

(−1)k+1

(
n+ k + p+ 2

p+ k + 1

)−1
Wm,k

+ (n+ p+ 1)
m∑
s=0

(
m

s

)
(n+ 1)m−s

(−1)n+s

(n+ p+ 1)!

n+p+1∑
k=0

(−1)k
[
n+ p+ 2

k + 1

]
Bs+k.

As desired, this completes the proof.

Setting p = 0 in (28) we can rewrite (14) as follows

Corollary 11.

S(m)
n = δ0m − Am+1,n +

m∑
s=0

(−1)n+s

(
m

s

)
(n+ 1)m−s+1As,n+1.

7 Recurrence Relation For T
(m,p)
n

Theorem 12. For any nonnegative integers m,n and p

T
(m,p)
n+1 =

(
n+ p+ 1

p

)−1
δ0m −

1

n+ p+ 1

m+1∑
i=0

((
m+ 1

i

)
+ p

(
m

i

))
T (i,p)
n .

Proof. The proof is similar to that of Theorem 2.
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