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Abstract

In this paper, our aim is to investigate the summations of the form ), -, (=1)F km () -
We give closed formulae in terms of Akiyama-Tanigawa matrix. Recurrence formulae,
ordinary generating functions and some other results are also given.

1 Introduction and Notations

Binomial coefficients play an important role in many areas of mathematics, such as combi-
natorics, number theory and special functions. In 1993, Sury [16] connected the inverse of
the binomial coefficients to the beta function as follows

(Z) L (n+1) /lxk (1—2)" " dz. (1)

There are many papers dealing with sums involving inverses of binomial coefficients, see
for instance [2, 7, 11, 13, 14, 15, 16, 19, 20]. For nonnegative integers n, m and p we consider
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the sums
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These sums have been studied by many authors. Trif [18], using (1) proved for m = 0
that )
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Sury, Wang and Zhao [17], studied (2) for m = 1 and m = 2, they obtain
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Our aim is to give a closed form and recurrence relation for the sums (2). In order to
investigate the summation of the form SU™ := T\™ and T\™"), we shall use the following
tools [5]:

e The Stirling numbers of the first kind (signed) [}] (see A008275 in [12]), are defined
by the generating function

x(m—l)---(m—n+1)=2[2]xk,

k>0

and satisfy the recurrence relation
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with m:l, m:()forn21and [Z]zOfork<00rk:>n.

e The Stirling numbers of the second kind {7} (see A008277 in [12]), are defined by the
generating function




and satisfy the recurrence relation
n+1 n n
R e
with {1} = {"} =1.

They also verify the following important identity

n

x”:Z(—l)"+k{Z}x(m+1)---(m+k—1).

k=0

The Eulerian numbers (}) (see A008292 in [12]) are defined by

(g (7). ozt

with <}> =1.
The Worpitzky numbers W, ;, (see A028246 in [12]), are defined by

Wor = zk: (=) (i +1)" <’j>

=0

They can also be expressed through the Stirling numbers of the second kind as follows

n+1
W = k! .
ok {k:+1}

The Worpitzky numbers satisfy the recursive relation

Wn,k: = (k + 1) Wn—l,k + kWn—l,k—l (n > 17 k> 1) .

Some simple properties are given

and
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e The Bernoulli numbers B,, are defined by the exponential generating function

n
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The recursive relation is
Zgo == 1,
n—1
n Bk
B,=1- , > 1
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Thus we have B, = %, By = %, B3 = 0, and so on, they can also be expressed through

the Worpitzky numbers

e The Akiyama-Tanigawa matrix (A ), ,~, associated with initial sequence Agj =

is defined by (see [1, 4, 8, 10])

1
k+1

Ap=(+1) (A1 — Ans1 1)

or equivalently by [6]
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The Akiyama-Tanigawa matrix A, is then

1 1
L3 3
111
2 3 4
11 3
6 6 20

App=1 o9 L L
30 20
1 1 3
30 30 140

1 1
0 T

E+1 (12)

1 1
1 5
1 1
5 6
2 5
15 42
2 5
35 84
1
5 U
4 _1
105 28




2 Explicit formula for S£Z">

For any nonnegative integer m, we consider the sums
n —1
S =N (ke () 1
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k=0
The following result holds
Theorem 1. For any nonnegative integers n and m, we have
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Proof. We can write S5 as follows
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Now, from (3) and after some rearrangement, we get
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From (7) and (10), the result holds.

O
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3 Recurrence relation for ST(L )
Theorem 2. For any nonnegative integers m and n, we have
m+1
1 m+1 4
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n+1 0 n—+1 prs ( i ) n ( )

where 0;; is the Kronecker symbol.



Proof. Recall that ("Zl) = ”Tﬂ(kfl), we have
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This proves the theorem. O]

The recurrence relation for S is given in the following

Theorem 3. For any nonnegative integers m and n, we have
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Proof. This follows immediately from (14) and (15). O

Setting m = 1 in (16), we have the following
Corollary 4. If n is nonnegative integer, then

2 gy (21" (0! + 70 +150% + 14n +12) + (n” + 6n + 12)
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Our next goal is to calculate the ordinary generating functions of Sim).

4 Ordinary generating functions of st

In 2002, Mansour [9], generalized the idea of Sury [16] and gave an approach based on
calculus to obtain the generating function for some combinatorial identities.

Theorem 5 (Mansour [9]). Let r,n > k be any nonnegative integer numbers, and let f (n, k)
be given by

(n+r)! :

f(n k) = BT / P () " (1) dt, (17)
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where p (t) and q(t) are two functions defined on [uy, us]. Let {an}, - and {b,}, -, be any
two sequences, and let A (x), B (x) be the corresponding ordinary generating functions. Then

Z [Zf n, k) agb,— k] "t = de /A xp (t zq(t))dt]| . (18)

n=0

We apply Theorem 5, for a, = (—1)"n™ (m > 1) and b, = 1, we have for |z| < 1
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From (18) we get
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Making the substitution xt = y in the right-hand side of (19), we obtain
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Since the degree of the denominator is at least one higher than that of the numerator, this
fraction decomposes into partial fractions of the form
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We note in passing that (20) is equivalent to
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For y = —1 and using the fact that W), = p! for p > 0, we immediately obtain the well-

known identity
E "y ml.
k
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Next, if we set y = 0 in (21) then we obtain a relation between a(™ () and al™ (x) for
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Proof. We verify that (23) and (24) satisfy (21). Denote the right-hand side of (21) by
R (y)After some rearrangement, we get
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using binomial formula and for £ < m, we obtain
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Finally,
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It follows from (9) that
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Using (8), we get o™ (z) as desired. This completes the proof. O

Now, integrating the right-hand side of (20) over y, we obtain
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By differentiating (25) we get the ordinary generating function of Shm
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With Proposition 6, we can now rewrite (26) as follows

Theorem 7. For any real numbers x such that |z| < 1 and for all nonnegative integer m,
we have

10



1)m+j

S L
ZS 'z :<Z ]x2+g

n>0 7=0

Wm,j> In(1 — %)

N T

) m—S
0<5<s<m—1

42 Qi(_l)wwm,j. (27)

In particular for m =0 and m = 1, we get
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5 The asymptotic expansion

In the previous sections, Sﬁm) becomes more complex when, m grows, so it is important to
have asymptotic expansion of Shm

Theorem 8. For m > 0, we have

S~ (2n)™ and Sé;n}rl ~—(2n+1)"
Proof. Write
K" =co+c(k+1)+ek+1)(k+2)---4+cn(k+1)---(k+m),

where ¢;’s depnd on m (¢, = 1). we immediately have
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After some rearrangement, we have
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Since T2(2’ ?) 51 and T2n '+1 — —1, the result holds. [
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6 A connection to Akiyama-Tanigawa matrix

In this section we consider ™. The following lemma will be useful in the proof of the

main theorem of this section.

Lemma 9. For m > 1, we have
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as desired. ]

For an alternative proof see Boyadzhiev [3]. The main result of this section is to prove
the following theorem which expresses explicitly the alternating sums of the reciprocals of
binomial coefficients, T7\™", in terms of Akiyama-Tanigawa matrix Ak

Theorem 10. For nonnegative integers n,m and p, we have

-1 m
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where A; ; is the Akiyama-Tanigawa matriz.
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Proof. By the Beta function we can write

n
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As desired, this completes the proof.

Setting p = 0 in (28) we can rewrite (14) as follows
Corollary 11.

ST(lm) = 50m — m+1 n + Z n+5 ( ) (n + 1)m_5+1 As,n+1.

7 Recurrence Relation For 7"

Theorem 12. For any nonnegative integers m,n and p

-1 m+1
+p+1 1 m+1 m -
pmp) _ (7 Som — i)
D) e () (7)) 7

Proof. The proof is similar to that of Theorem 2.
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