Set Theory Revisited

As easy as PIE

The Principle of Inclusion and Exclusion — Part 1

B SURY

Recall the old story of two frogs from Osaka and Kyoto whichetrauring their
travels. They want to share a pie. An opportunistic cat effethelp and divides the
pie into two pieces. On finding one piece to be larger, shekisrefi a bit from the
larger one and gobbles it up. Now, she finds that the otheepseslightly larger; so
she proceeds to break off a bit from that piece and gobbleésifhanly to find that
the first piece is now bigger. And so on; you can guess theTastfrogs are left flat]

We are going to discuss a simple but basic guiding principlevgoes under the

nameprinciple of inclusion and exclusigwr PIE for short. Was it inspired by the

above tale? Who knows .... The principle is very useful imldéecause counting
precisely, contrary to intuition, can be very challenging!

AN OLD FORMULA RECALLED

Here is a formula which you surely would have seen many tinieg andB are two
finite, overlapping sets, then

|AUB| = |A|+ |B| - |ANB]. 1)

Here, of course, the vertical bars indicatedinality: |A| is the cardinality of (or number of
elements in)A, and so on. The formula is rather obvious but may be justifieddpealing
to the Venn diagram (see Figure 1).

Figure 1

Once one has the basic idea, it is easy to generalize the fotothreeoverlapping finite
setsA, B, C. In order to find the cardinality oAU BUC we start naturally enough with an
addition: |A| + |B| + |C|. But now several items have been counted twice, and some have
even been counted thrice (those that lie in all three setsjveéScompensate by subtracting
the quantitiedANB|, IBNC| and|CNA|. But now we have bitten off too much: the items
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originally in ANBNC have been left out entirely (see Figure 2). So we compensate b
putting these items back in, and now we have the correct flarmu

|JAUBUC| = |A|+ |B| + |C| — |JANB| — [BNC| — |CNA| + |ANBNC]. (2)

C

Figure 2

GENERALIZING THE FORMULA

How shall we generalize these formulas? We do so by consglére following problem.
Suppose there amd students in a class and a humber of subjects which they al/.stu
Denote byN; the number of students who like subject #1, Nythe number of students
who like subject #2, and so on. Likewise, denoteNby, the number of students who
simultaneously like the subjects 1 and 2,Nys the number of students who simultaneously
like subjects 2 and 3, and so on. Similarly, denoteNay 3 the number of students who
simultaneously like subjects 2,3; and so on. Now we ask: Can we express, in terms of
these symbols, the number of students who do no#ikeof the subjects? (There may well
be a few students in this category!) We shall show that thislyer is given by

N—(Ng+Na+--) 4 (N2 +Nog+---) = (Npag+--) +---. 3

Note the minus-plus-minus pattern of signs: we alternatahtract to avoid over counting,
then add to compensate as we have taken away too much, thiensabaact, and so on.
The formula follows from a reasoning known as trénciple of inclusion and exclusion
commonly abbreviated to ‘PIE’.

Here is how we justify the formula. We start, naturally, byosactingN; + N, + - --
from N. Now study the expressiad — (N1 + N2+ - - ). The subtraction oN; + N, means
that we havawice subtracted the number of students who like the 1st and 2rjdctabTo
compensate for this, we must aig,. Similarly we must addN; 3, N> 3, and so on.

However, when we adN; > + N> 3+ Nj 3+ -+, we have included those who like the first
three subjects (numberirgy 5 3) twice. So we must subtradt; » 3. Similarly for other such
terms. Proceeding this way, we get the right number by atelyn adding and subtracting.



DIVIDE AND CONQUER COUNTING

The PIE allows us to solve the following problem in whibhis any positive integer.
Among the numberk 2,3, ...,N, how many are not divisible by eith2mor by 3?

Here’s how we solve this problem. Among the given numberstimber of multiples
of 2is[N/2]. Here the square brackets indicate ¢heatest integer functiqralso called the
floor function The meaning is this: ik is a real number, thefx] is the largest integer not
greater tharx. For example{5] =5, [2.3] = 2,[10.7] = 10,+/10= 3, [-2.3] = -3, and so
on. (Note the way the definition applies to negative numbpers.

Similarly, the number of multiples of 3 in the sgt,2,3,... N} is [N/3]. So we subtract
both these quantities frofd. But the numbers divisible by both 2 and 3 (i.e., the numbers
divisible by 6) have been subtracted twice, so we add backuahngber of multiples of 6,
which is[N/6]. Hence the answer to the question is:

-] [5 5

We solve the following in the same way:et N be any positive integer. Among the
numbersl, 2,3,...,N, how many are not divisible by any of the numtiizig 5?

By alternately “biting away” too much, then compensating, see that the answer is

8] 5]-[2)+ 2]+ 3] 8] &)

2 3 5 6 10 15 30

Here 30 is the LCM of 23,5 (if a number is divisible by 2, 3 and 5 then it must be divisibl
by 30; and conversely).

The general formula. From this reasoning we arrive at the following general foanuf

N is a positive integer, andihn,, ... are positive integers, any two of which are relatively
prime, then the number of elements{@f2,3,...,N} which are not divisible by any of the
numbers g, Ny, ... Is

(R ) (Rl Bl )

You should now be able to provide the formal justification tfoe formula on your own.

EULER’'S TOTIENT FUNCTION

There is a special case of the above formula which is of gréatdst in number theory.
We consider the following problem.



For a given positive integer N, what is the number of positintegers not
exceeding N which are relatively prime to N?

The numbers which are relatively prime ltbare exactly those which are not divisible by
any of the prime divisors dfl. Let us denote the primes dividing by p,q,r,.... Now we
apply the idea described in the last section. We concluddahbkaequired number is:

N N N N N N
N—(—+—+—+--->+<—+—+—+-~->—---. (5)
p g T pg ar  pr

By factoring outN we find that the resulting expression can be factorized inneaxdent
manner; we get the following:

(-2

For example, tak&l = 30. Since 3G= 2 x 3 x 5, we see that the number of positive integers
not exceeding 30 and relatively prime to 30 is

1 1 1 1214

This is easily checked. (The positive integers less tham8Qrelatively prime to 30 are 1,
7,11,13,17,19, 23 and 29.)

Formula [(6) defines the famoustient functionwhich we associate with the name of
Euler. The symbol reserved for this functiongisN). So we may write:

¢<N>:Nm(1—%), ™

the product being taken over all the primeghat divideN; that is why we have written
‘p| N’ below the product symbol. (The symbpj is used for products in the same way that
Y is used for sums.)

Corollary: a multiplicative property. The formula forg (n) gives us another property as a
bonus — the property that Euler’s totient functiomisiltiplicative if mandn are relatively
prime positive integers, thep(mn) = ¢ (m)¢(n).

Example: Taken=4,n=5, mn=20. We have® (4) = 2, ¢(5) = 4, next, by applying
formula [6) we getg (20) = 20x 1/2 x 4/5 = 8. Hence we have (20) = ¢ (4) - ¢ (5).

It is an interesting exercise to prove this multiplicativegerty without using formula
(€). (It canbe done, by looking closely at the definition of the functjon.
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In closing: relation between GCD and LCM. To demonstrate how unexpectedly useful
the PIE formula can be, we mention here a nice applicatiomeformula. However we
shall leave it as a question without stating the actual teant discuss the problem in detail
in a sequel to this article.

Here is the context. We all know the pleasing formula thadtes the GCD (“greatest
common divisor”, also known as “highest common factor”) #melLCM (“lowest common
multiple”) of any two positive integera andb:

GCD(a,b) x LCM (a,b) = ab. (8)

You may have wondered: The above formula relates the GCD &M bf two integers
a,b. What would be the corresponding formula fhreeintegersa, b,c? Forfour integers
a,b,c,d? ...

In Part Il of this article we use the PIE to find a generalizatid formula [8). Alongside
we discuss a problem about a seemingly absent-minded huligamischievous secretary
who loves mixing up job offers sent to applicants so thatyeperson gets a wrong job offer
(for which he had not even applied!), and another problenteoming placement of rooks
on a chessboard. And, venturing into deeper waters, we atstion a famous currently
unsolved problem concerning prime numbers.

Exercises.

(1) Show how the factorization in formulal (6) follows fronrfoula [3).
(2) Explain how formulal{]7) implies that the totient functi¢ (N) is multiplicative.

(3) LetN be an odd positive integer. Prove directly, using the désimiof the totient
function (i.e., with invoking the property of multiplicatty), that$ (2N) = ¢ (N).

(4) What can you say about the family of positive integdrior which ¢ (N) = N/27?
For which¢ (N) = N/3?

(5) Try to find a relation connecting LCk4, b, c) and GCO(a,b,c).

Further reading.

¢ V Balakrishnan,Combinatorics: Including Concepts Of Graph The@¢8chaum
Series)

¢ Miklos Bona,Introduction to Enumerative Combinatori¢slcGraw-Hill)
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