
ELLIPTIC COMPLEXES AND INDEX THEORY

VISHWAMBHAR PATI

1. Sobolev Theory on Rn

As general references for this section, see the books [Nar], Ch.3, [Gil], Ch.1, [Hor], Ch I, II and [Rud], Ch.
6,7.

1.1. Test functions and distributions. We introduce some standard notation. For a multi-index α =
(α1, .., αn) of length n, the symbol | α |:=∑i αi, and α! := α1!, .., αn!.

For derivatives, we denote:

dαx =

(
∂

∂x1

)α1

......

(
∂

∂xn

)αn

, ∂j =

(
∂

∂xj

)
, Dj =

1√
−1

∂j

Finally xα1
1 xα2

2 ...xαn
n will be denoted simply by xα.

We can define some standard function spaces on Rn. For us, functions will always be complex valued.

Definition 1.1.1 (Standard function spaces on Rn). . The function spaces defined below are all complex
vector spaces, and to define a topology on them, it is enough to define convergence to zero.

(i):

C∞(Rn) = {smooth functions on Rn}
Define fn → 0 if dαxfn → 0 uniformly on compact sets for all | α |≥ 0. This space is also sometimes
denoted E by analysts.

(ii):

C∞
0 (Rn) = {f ∈ C∞(Rn) : lim

x→∞
dαxf = 0 for all | α |≥ 0}

This is the space of all smooth functions whose derivatives of all orders vanish at infinity. The topology
in this space is the subspace topology from C∞(Rn). It is often denoted E0.

(iii):

C∞
c (Rn) = {f ∈ C∞(Rn) : support f is compact}

Its topology is defined by fn → 0 if there exists a compact set K such that suppfn ⊂ K for all n and
dαxfn → 0 uniformly on K for all | α |≥ 0. Note that this is not the subspace topology from C∞(Rn), for if
we define a take a non-zero function ψ on R with compact support [−1, 1] say, and let fn(x) = ψ(x− n),
(which has support [n − 1, n + 1] ), then fn → 0 in C∞(R), but not in C∞

c (R). It is, in fact easily seen
to be strictly finer than the subspace topology. This space is denoted D by analysts, and also called the
space of test functions.

(iv):

S(Rn) = {f ∈ C∞(Rn) : sup
x∈Rn

| xαdβxf(x) |≤ Cαβ for all | α |, | β |≥ 0}

This is called the Schwartz space of rapidly decreasing functions. Define the topology by declaring fn → 0
if

sup
x∈Rn

| xαdβxfn(x) |→ 0

for each | α |, | β |≥ 0.

1
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It is an easy exercise to see that there are natural inclusions:

C∞
c (Rn) ⊂ S(Rn) ⊂ C∞

0 (Rn) ⊂ C∞(Rn)

all of which are continuous, and all of which are strict. The reader may also check that the inclusion C∞
c ⊂ C∞

is dense, (by using multiplication with cutoff functions φn which are identically 1 on a ball of radius n and
identically zero outside a ball of radius say 2n), and hence all the inclusions above are dense.

On S or C∞
c , we may introduce the Lp-norm defined by:

‖f‖Lp
:=

(∫

Rn

| f |p dx
) 1

p

for 1 ≤ p < ∞. Upon completing either of these two spaces with respect to this norm, one gets the Banach
space Lp(R

n). For p = ∞, this is false, as can be seen by looking at the non-zero constant functions. L∞(Rn)
is got by taking all measurable functions on Rn which are essentially bounded.

1.2. The Fourier Transform and Plancherel Theorem. In the sequel we will simply write C∞ for
C∞(Rn), and so on, if no confusion is likely. Also, to eliminate annoying powers of 2π, we introduce the
measure (volume element) dx on Rn by the formula:

dx := (2π)−n/2dx1...dxn

Definition 1.2.1. For f ∈ S, define the Fourier Transform of f by the formula

f̂(ξ) :=

∫

Rn

f(x)e−iξ.xdx

which makes sense for any f ∈ L1, and in particular for f ∈ S. Here ξ.x =
∑
i ξixi is the usual Euclidean inner

product of vectors in Rn. Similarly, for f ∈ S, define the Inverse Fourier Transform of f by the formula:

f∨(ξ) := f̂(−ξ) =

∫

Rn

f(x)eiξ.xdx

Finally, for f, g ∈ S, define the convolution product

f ∗ g(x) :=

∫

Rn

f(x− y)g(y)dy =

∫

Rn

f(−z)g(z + x)dz

It is easy to verify (taking limits inside the integral sign after appealing to Lebesgue’s Dominated Convergence
Theorem) that f ∗ g is also in S, and that f ∗ g = g ∗ f .

Before proving the main proposition of this section, we need a couple of useful lemmas. Note that the
Gaussian function

ψ(x) = e− |x|2

2

is in S. Also its integral
∫

Rn ψ(x)dx = 1.

Lemma 1.2.2. For the Gaussian ψ above, we have ψ̂ = ψ.

Proof: We have:

ψ̂(ξ) =

∫
e−iξ.xe− |x|2

2 dx

= e− |ξ|2

2

∫
e

(x+iξ).(x+iξ)
2 dx

Let x = (x1, .., xn) and ξ = (ξ1, .., ξn). By choosing a rectangular contour in C with vertices −a, a,−a+ iξ1, a+

iξ1, noting that the integral of the holomorphic function e−z21/2 around this contour is zero, and also that the
contributions along the vertical edges (−a+ it) and (a+ it) for 0 ≤ t ≤ ξ1 (if ξ1 ≥ 0) (resp. ξ1 ≤ t ≤ 0 if ξ ≤ 0)
converge to zero as a1 → ∞, we see that:∫

R

e−(x1+iξ1)
2/2dx1 =

∫

R

e−x2
1/2dx1 =

√
2π
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apply the argument variable by variable to conclude that:∫

Rn

e−(x+iξ).(x+iξ)/2dx = (2π)− n
2

∫

R

∫

R

...

∫

R

e
−
∑

j
(xj+iξj)

2/2
dx1...dxn = 1

which proves our assertion. 2

Lemma 1.2.3 (Approximate identities). Let φ ∈ S, such that φ(x) ≥ 0 for all x and
∫
φ(x)dx = 1. For ε > 0,

define the approximate identity or mollifier:

φε(x) = ε−nφ(x/ε)

Then for any f ∈ S, we have f ∗ φε converges uniformly to f as ε → 0.

Proof: Since
∫

Rn φεdx = 1 for each ε > 0, we have:

| (f ∗ φε)(x) − f(x) | =

∣∣∣∣
∫
φε(y) (f(x− y) − f(x)) dy

∣∣∣∣

≤
∫

| φε(y) (f(x− y) − f(x)) | dy

Let C > 0 be such that
∫

| f(x) | dx ≤ C. Now let η > 0 be any positive number. Choose a δ > 0 (by uniform
continuity of f) such that | f(x− y) − f(x) |≤ η for all | y |≤ δ, and all x. Then∫

|y|≤δ
| φε(y) (f(x− y) − f(x)) | dy ≤ η

∫

|y|≤δ
φε(y)dy ≤ η

∫

Rn

φε(y)dy = η

for all ε > 0.

Now choose an ε0 > 0 small enough so that
∫

|y|>δ φε(y)dy < η/2C for ε ≤ ε0. Then, we have:

∫

|y|>δ
| φε(y) (f(x− y) − f(x)) | dy ≤

∫

|y|>δ
φε(y)(2C)dy ≤ η

for ε < ε0. Combining the integrals for |y| ≤ δ and |y| > δ, we get:

| f ∗ φε(x) − f(x) |≤ 2η for all ε < ε0

independent of x. That is, f ∗ φε → f uniformly as ε → 0. 2

Remark 1.2.4. It follows from the above that one can take any non-negative compactly supported function
φ and define the approximate identities φε. Similarly, by starting with the Gaussian ψ defined above, we get
that the functions:

ψε(x) = ε−ne−|x|2/2ε2

are approximate identities.

Proposition 1.2.5. We have the following facts about the Fourier transform on the Schwartz class S.

(i): The map f 7→ f̂ is an isomorphism of S with itself, of order 4. In fact,
(
f̂
)∧

(x) = f(−x),
(
f̂
)∨

(x) = f(x) for all f ∈ S
(The second formula is called the Fourier Inversion Formula.)

(ii): For all multi-indices α,

(Dα
xf)

∧
(ξ) = ξαf̂ ; Dα

ξ f̂(ξ) = (−1)|α| (xαf)
∧

In particular, by the first formula, if P is an n-variable polynomial with complex coefficients, then for
the constant coefficient differential operator P (D) we have:

(P (D)f)
∧

= P (ξ)f̂
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(iii):

f̂ ĝ = (f ∗ g)∧
, f̂ ∗ ĝ = (fg)

∧

(iv): (Plancherel Theorem) The map f 7→ f̂ is a unitary isomorphism of S to itself with respect to L2-norm.
Thus (in view of (i) above), it extends to a unitary isomorphism of L2(R

n) to itself.

(v): (Riemann-Lebesgue Lemma) There is an inclusion:

(L1(R
n))

∧ ⊂ C0(R
n)

where the space on the right is the space of all continuous functions vanishing at ∞, with the topology
of uniform convergence on compact sets.

Proof: We first prove (ii). Since all derivatives of f ∈ S are also in S, and hence Lebesgue integrable, one can
use the Lebesgue Dominated Convergence Theorem, and differentiate under the integral sign to get:

Dα
ξ f̂(ξ) =

∫

Rn

Dα
ξ

(
e−iξ.xf(x)

)
dx

=

∫

Rn

(−1)|α|xαe−iξ.xf(x)dx = (−1)|α| (xαf)
∧

In particular, we have that f̂ is a smooth function. This proves the second part of (ii). To prove the first part,
one uses repeated integration by parts and the fact that all derivatives of f vanish at ∞ to conclude that:

(Dα
xf)∧ =

∫

Rn

e−iξ.xDα
xf(x)dx = (−1)|α|

∫

Rn

(
Dα
x e

−iξ.x) f(x)dx

= ξαf̂(ξ)

This proves (ii). Thus we also have (P (D)f)∧ = P (ξ)f̂ . From (ii) it also follows that

ξαDβ
ξ f̂ = ±ξα(xβf)∧ = ±(Dα

x (xβf))∧

and since the function on the right is bounded by the L1 norm of Dα
x (xβf) (a Schwartz class function), it

follows that f̂ ∈ S as well.

(v) is easy by noting that for an L1 function f , we have:
∥∥∥f̂
∥∥∥

∞
= supξ∈Rn |f̂(ξ)| ≤ ‖f‖1, and that for any

L1 function f , there is a sequence of fn ∈ S with ‖f − fn‖1 → 0. Which implies that f̂n → f̂ uniformly, so

that since f̂n ∈ S, we have limξ→∞ f̂(ξ) = 0. This proves (v).

To prove (i), define the operator T : S → S by Tf(x) = (f̂)∧(−x). We need to show that Tf(x) = f(x) for
all x. First suppose f ∈ S with f(0) = 0. Then, by the first order Taylor formula we may write:

f(x) =

n∑

j=1

xjgj(x)

where gj are some smooth functions. Let φ be a non-negative compactly supported function which is identically
=1 in a neighbourhood of the origin. Then

f(x) = φ(x)f(x) + (1 − φ(x))f(x) =
∑

j

xjφgj +
∑

j

xj

(
xj(1 − φ)f

|x|2
)

Since φ has compact support, the functions φgj ∈ S. On the other hand, since φ ≡ 1 near the origin, the

functions
(
xj(1−φ)f

|x|2
)

∈ S as well. Thus:

f =

n∑

j=1

xjhj

where hj ∈ S. However, by (ii) proved above, we have

(̂xjhj) = i
∂ĥj
∂ξj
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so that f̂ = i
∑
j
∂ĥj

∂ξj
. Thus:

Tf(0) = (f̂)∧(0) =

∫

Rn

∑

j

∂ĥj
∂ξj

dξ

But by the divergence theorem, the last integral is the limit:

lim
R→∞

∫

S(R)

h.νdµ

where S(R) is the sphere of radius R, and ν is the unit normal to S(R), and h = (ĥ1, .., ĥn), and dµ is the
suitably normalised measure on the sphere. Since ‖h‖ decreases faster than all powers of R, and the volume
of S(R) grows as Rn−1, the limit above is zero. This proves that Tf(0) = f(0) for f(0) = 0.

Now for f ∈ S arbitrary, we write:

f = f(0)ψ + (f − f(0)ψ) = f(0)ψ + g

where ψ is the Gaussian. Clearly, g ∈ S, with g(0) = 0. Thus Tf(0) = f(0)(Tψ)(0) + (Tg)(0). But since ψ is
its own Fourier transform, have Tψ(0) = ψ(0) = 1, and Tg(0) = 0 by the case done in the last para, we have
Tf(0) = f(0) for all f ∈ S. Finally, to deduce the result for all points, we just translate coordinates. That is,
for f ∈ S, and a ∈ Rn, define g(x) = f(x+ a), so that g(0) = f(a), and g is also in S. Then

cccf(a) = g(0) = (Tg)(0) =

∫ ∫
e−iξ.xf(x+ a)dxdξ

=

∫ ∫
e−iξ.xeiξ.af(x)dxdξ

=

∫
eiξ.af̂(ξ)dξ

= (f̂)∧(−a) = Tf(a)

This proves the first part of (i). The second part (about the inverse Fourier transform) follows immediately.
Thus (i) is proved.

To see (iii), note that:

(f̂ ĝ)(ξ) =

∫ ∫
e−iξ.xf(x)e−iξ.yg(y)dxdy

=

∫ ∫
e−iξ.(x−y)f(x− y)e−iξ.yg(y)dxdy

=

∫ ∫
e−iξ.xf(x− y)g(y)dxdy = f̂ ∗ g(ξ)

where we have used Fubini to get the last line, because the double integral is absolutely convergent (since
f, g ∈ S), and a change of variables in the second line. The second part of (iii) follows immediately from (i) by

replacing f and g by f̂ and ĝ respectively.

It finally remains to prove (iv), the Plancherel Theorem. We denote the L2 inner product of f and g by
(f, g) =

∫
f(x)g(x)dx, which is C-linear in the first slot, and C-antilinear in the second. We compute for

f, g ∈ S:

(f, ĝ) =

∫
f(x)ĝ(x)dx =

∫ ∫
f(x)eix.yg(y)dydx

=

∫ (∫
f(x)eix.ydx

)
g(y)dy

= (f̂(−x), g)
where Fubini is used to interchange the order integration in an absolutely convergent double integral. Replacing

f̂(−y) by g(y), we have ĝ = f by (i) above, so that:

(ĝ, ĝ) = (g, g)
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which shows (using (i)) that the Fourier transform is a unitary map on S with respect to L2-norm. Thus it
extends to a unitary isomorphism of L2(Rn), since S is dense in it. This proves the proposition. 2

1.3. Distributions.

Definition 1.3.1 (Distributions). We define a distribution T on Rn to be an element of the topological vector
space dual of C∞

c = D. That is, T is a linear functional on C∞
c and continuous with respect to the topology on

it. The space of all distributions on Rn is clearly a complex vector space, and denoted D′. Distributions T ∈ D′

which extend to a continuous linear functional on the larger space S are called tempered distributions, and the
vector space of tempered distributions is denoted S ′. Finally, distributions which extend as a continuous linear
functional on all of C∞ = E are called compactly supported distributions, and their vector space is denoted by
E ′. Clearly, we have the inclusions of vector spaces:

E ′ ⊂ S ′ ⊂ D′

Here are some basic examples:

Example 1.3.2. Let f be a measurable and locally L1 function on Rn. Then f defines the distribution Tf ∈ D′

by the formula:

Tf (g) =

∫

Rn

f(x)g(x)dx for g ∈ C∞
c

which makes sense since g is compactly supported. By the way the topology is defined on C∞
c and the dominated

convergence theorem, it follows that Tf (gn) → 0 in C if gn → 0 in C∞
c .

Example 1.3.3. Let f be a measurable function on Rn such that (1+ | x |)−Nf(x) is in L1(R
n), for some

N ∈ N. Such functions are called tempered functions. Then defining Tf by the same formula as in the example
above, and letting g ∈ S, we get a tempered distribution. The formula makes sense because, for the N as above:

∫

Rn

f(x)g(x)dx =

∫

Rn

(1+ | x |)−Nf(x)(1+ | x |)Ng(x)dx

and we have that the function (1 + x|)Ng(x) is bounded since g ∈ S, and (1+ | x |)−Nf(x) is L1. Again,
the proof of its continuity is a consequence of the Dominated Convergence Theorem, and the topology defined
earlier on S. In particular, since (1+ | x |)−n−1 is integrable on Rn, all polynomials, bounded continuous
functions, or continuous functions with at most polynomial growth define tempered distributions.

Note that if we take a function like f(x) = ex, it can be checked that this is a distribution which is not
tempered, so the inclusion S ′ ⊂ D′ is strict.

Example 1.3.4. Let f be a compactly supported function, and define an element Tf of E ′ via the same formula
as in the above two examples, but g ∈ E . It is checked easily that this is a compactly supported distribution.

If one wants to see a distribution which is not defined by a function, it is the very celebrated Dirac distribution
of the next example.

Example 1.3.5 (Dirac distribution). Define the distribution δa by the formula:

δa(g) = g(a) for g ∈ C∞

Again, it is trivial to check continuity, so that δa ∈ E ′.

Exercise 1.3.6. Show that the inclusion E ′ ⊂ S ′ is also strict.
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Remark 1.3.7. A locally L1-function f which defines a tempered distribution (via integration against g ∈ S)
need not be a tempered function in the sense of Example 1.3.3 above. For example, the locally L1 function
ex sin ex defines a tempered distribution on R, (because it is the derivative of the bounded continuous function
− cos ex, which is therefore a tempered distribution by 1.3.3 above, and the fact proved in the next subsection
that all derivatives of tempered distributions are tempered distributions). However, it is not a tempered
function, as we check below. For each N , we have a CN > 0 such that:

(1+ | x |)−N | ex |≥ CNe
x/2

for all x ∈ [0,∞), and thus we have an inequality of the integrals:
∫

R

(1+ | x |)−N | ex sin ex | dx ≥ CN

∫ ∞

1

ex/2 | sin ex | dx ≥ CN

∫ ∞

0

∣∣∣∣
sin y√
y

∣∣∣∣ dy

by a change of variables y = ex. The right hand integral is infinite by comparing with the infinite series∑
n n

−1/2. Some authors (e.g. Folland) define a tempered function to be a locally L1 function which is a
tempered distribution, to avoid this inconsistency.

We will see later after defining convolutions that if f is a real-valued non-negative locally integrable function
on Rn, then it is a tempered function in our sense if it is a tempered distribution. The rapid oscillation of say
ex sin ex which causes the problem above is thereby eliminated.

As a final example of a distribution which is not a function, we have:

Example 1.3.8. Fix a multi-index α, and a point a ∈ Rn. Then the higher derivative Dα
x|a at a clearly maps

E → C in a continuous fashion with respect to the given topology, and defines a compactly supported distri-
bution. For α = (0, 0, ..0), we recover the Dirac distribution. When we later define derivatives of distributions,
we will see that this distribution is nothing but ±Dα

x δa.

Definition 1.3.9 (Support of a distribution). For an open subset U ⊂ Rn, we say that the distribution T ∈ D′

vanishes on U if T (f) = 0 for all f with compact support in U . For example, the Dirac distribution δa vanishes
on Rn \ {a}. Similarly the distribution Dα

x|a vanishes on Rn \ {a}. By using a partition of unity subordinate to

an open covering {Ui}i∈Λ, one easily sees that if a distribution T vanishes on Ui for each i ∈ Λ, then it vanishes
on the union U = ∪i∈ΛUi. Hence there is a largest open set U (possibly empty) on which a distribution T
vanishes. The complement of this open set is called support of T , and denoted suppT .

Lemma 1.3.10 (E ′ and distributions of compact support). A distribution T ∈ D′ is in E ′ iff suppT is com-
pact. (Hence the terminology “compactly supported distribution” for elements of E ′.)

Proof: Suppose suppT = K a compact set. Let ψ ∈ D be a compactly supported smooth real-valued function
with 0 ≤ ψ ≤ 1 and ψ ≡ 1 on K. For a function φ ∈ E , define:

T (φ) = T (ψφ)

Note that this definition is independent of the cut-off function ψ chosen above, for if ψ1 is another cut-off
function satisfying the same properties as ψ above, then ψφ − ψ1φ will be a smooth compactly supported
function whose support lies in Kc, so that suppT = K will imply that T (ψφ) = T (ψ1φ). Now if φn → 0 in
E , we have (on applying Leibniz formula for derivatives of products) that ψφn are compactly supported with
support contained in the fixed compact set L := suppψ for all n, and that Dα(ψφn) → 0 uniformly on L. Thus
ψφn → 0 in D, and hence T (φn) = T (ψφn) → 0 since T ∈ D′. Thus T ∈ E ′.

Conversely, suppose suppT is not compact, so T does not vanish on Rn \ B(0, n) for each ball B(0, n) of

radius n = 1, 2, , , ,. Thus there exists a function φn with compact support Kn ⊂ Rn \B(0, n) with

T (φn) = λn 6= 0 for n = 1, 2, ...

Then it is trivial to verify that the functions fn := λ−1
n φn converge to 0 in E , since on each compact set L ⊂ Rn,

we have fn ≡ 0 on L for n large enough. On the other hand T (fn) = λ−1
n T (φn) = 1 for all n, so that T is not

continuous on E , and hence T 6∈ E ′. The lemma follows. 2
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More examples of distributions will emerge as soon as we define some basic operations on distributions.
Since tempered distributions are the ones of interest to us, we will concentrate mainly on them.

1.4. New distributions out of old. The most important operation on distributions is that of differentiation.
Historically, distributions were invented by Dirac, to differentiate functions which had singularities, i.e. points
of non-differentiability. Dirac realised that these are not going to be functions, but it was possible to do some
self-consistent manipulations with them, so he called them “generalised functions”. It took another thirty
years for Laurent Schwartz to rigorise these ideas mathematically, and thanks to him, every distribution can
be differentiated to get another distribution.

The starting point is to note that if f ∈ E and g ∈ D, then we have
∫

Rn

Dα
xf(x)g(x)dx = (−1)|α|

∫

Rn

f(x)Dα
x g(x)dx

by using integration by parts, and noting that lim|x|→∞ fg = 0 because of compact support of g. The same
identity holds if f ∈ E and of slow (at most polynomial, for all derivatives) growth in x, and g ∈ S. Thus it
makes sense to make the:

Definition 1.4.1 (Derivative of a distribution). For T ∈ D′, define the distribution Dα
xT by:

Dα
xT (g) = (−1)|α|T (Dα

x g) g ∈ D
If gn → 0 in D, then by definition, Dα

x gn → 0 in D as well, and hence Dα
xT defined as above is a continuous

linear functional on D. Hence it is also in D′. The factor (−1)|α| has been chosen for consistency with
derivatives of smooth functions, i.e. if f ∈ E = C∞, the distribution Tf defined by f will satisfy Dα

xTf = TDα
x f ,

viz. it is the distribution defined by Dα
xf in view of the last paragraph. The derivative of a distribution is

often called a distributional derivative.

Exercise 1.4.2. For a fixed a ∈ R, consider the distribution defined by the locally L1 Heaviside function:

f : R → R

x 7→ 0 for x < a

x 7→ 1 for x ≥ a

(This is just the indicator (or characteristic) function χ[a,∞) of [a,∞).) Show that the distributional derivative
df
dx is the Dirac distribution δa.

Exercise 1.4.3. For T ∈ S ′ a tempered distribution, Dα
xT is also tempered. If T ∈ E ′ is any compactly

supported distribution, then so is Dα
xT . For any distribution T ∈ D′, the support of the derivative obeys

suppDα
xT ⊂ suppT

Definition 1.4.4 (Multiplication by a smooth function). If f ∈ E , then the linear multiplication mapping
D → D defined by g 7→ fg is clearly continuous. Thus we may define for a distribution T ∈ D′ the product fT
by the formula:

fT (g) = T (fg) for g ∈ D
By the remark above, fT is also a distribution. Likewise for E , the mapping E → E defined by g 7→ fg
is continuous, and we can again define fT as a compactly supported distribution for T ∈ E ′ a compactly
supported distribution by the same procedure as above.

The story for tempered distributions is different. Multiplication by an arbitrary smooth function f does not
send the Schwartz space S to itself. The best we can do is to observe that if f is a smooth function of slow
growth (i.e. | Dβ

xf |< Cβ(1+ | x |)Nβ for each β), then g 7→ fg is a continuous linear operator S → S. Hence,
by the procedure above, we can define fT for T ∈ S ′ and f a smooth function of slow growth.
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Finally, we come to convolution of functions and distributions. For a function g, we define:

gx(y) := g(x− y)

so that for smooth functions f, g, their convolution (whenever it is defined) maybe expressed as

(f ∗ g)(x) =

∫

Rn

f(y)gx(y)dy

By a change of variables, f ∗ g = g ∗ f . It is clear that the linear mapping g 7→ gx is a continuous map which
takes E to E , D to D and S to S. Taking our cue from this, it is natural to make the following definition:

Definition 1.4.5 (Convolution of a distribution with a function). Let T ∈ D be a distribution, and f a smooth
function of compact support. Then define the function f ∗ T by the formula:

(f ∗ T )(x) = T (fx) for f ∈ E
Similarly, if T ∈ S ′ is a tempered distribution and f ∈ S, or if T ∈ E ′ is a compactly supported distribution
and f ∈ E is any smooth function. These restrictions are natural, in view of the fact that even functions f, g
need to obey some decay conditions in order to be convolved.

Example 1.4.6 (Convolution with the Dirac distribution). Let g ∈ E be any smooth function, and δ0 be the
Dirac distribution. Then the convolution g ∗ δ0 is the function g. (This shows that the identity element for the
convolution product is a distribution). For, by definition,

(g ∗ δ0)(x) = δ0(g
x) = gx(0) = g(x)

Lemma 1.4.7. Whenever it makes sense by the definition above, the convolution f ∗ T is a smooth function.
Furthermore, we have the identities:

Dα(f ∗ T ) = f ∗DαT = Dαf ∗ T

Proof: We just prove it for the first partial derivative with respect to x1, viz. ∂1 = iD1. Let e1 denote the
unit vector (1, 0, .., 0), and the case of f ∈ D and T ∈ D′. For a smooth function f ∈ E , we have the Taylor
formula:

fx+he1(y) − fx(y) = f(x+ he1 − y) − f(x− y) = hg(x, h, y) + h2r(x, h, y)

where g and r are smooth in all the variables, and g(x, 0, y) = (∂1f)(x−y) = (∂1f)x(y). Because the supremum
norm

sup
y∈K, |h|≤ε

| r(x, h, y) |≤ C(K)

for any compact set K ⊂ Rn, it follows that, for a fixed x, and as a function of y:

lim
h→0

(
fx+he1 − fx

h

)
→ g(x, 0,−) = (∂1f)x

uniformly on compact sets. Similarly all y-derivatives of the functions gh := fx+he1−fx

h converge uniformly to
the corresponding derivatives of (∂1f)x on all compact sets as h → 0. If the function f is in D, and compactly
supported in K say, then it is easy to check that for all | h |< 1, the functions gh are all supported in the

fixed compact set K ′ = x−K +B(0, 1), and gh → (∂1f)x as h → 0 in D as well. Thus by the continuity and
linearity of T ∈ D′ we have:

∂1(f ∗ T ) = lim
h→0

(
T (fx+he1) − T (fx)

h

)
= T

[
lim
h→0

(
fx+he1 − fx

h

)]
= T ((∂1f)x) = ∂1f ∗ T

Also note that we have:

(∂1f)x(y) = (∂y1f)
x

(y) = (∂y1f)(x− y) = −∂y1(fx)(y)
so that:

∂1f ∗ T = T ((∂1f)x) = −T (∂1f
x) = (∂1T )(fx) = f ∗ ∂1T
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by the definition of derivative of a distribution. This proves the lemma. 2

Exercise 1.4.8.

(i): Let T ∈ D′ be a distribution, and let

ρ(x, y) : Rn × Rn → C

be a smooth function of compact support in R2n, say supp ρ ⊂ K ×K for some compact K ⊂ Rn. Thus,
the function

∫
x∈Rn ρ(x, y)dx is a smooth function (of y) in C∞

c (Rn), which is supported in K. Then show
that

T

(∫

x∈Rn

ρ(x, y)dx

)
=

∫

Rn

T (ρ(x, y))dx

where on the right hand side, T is operating on the function ρ(x, y) considered as a function of y, and
thus T (ρ(x, y)) is a function of x. (Hint: Find a sequence of Riemann sums, which are functions of y, say
Sn(y) :=

∑
j ρ(xj , y)∆j where the ∆j ’s are the volumes of cubes of side 1

n covering the compact set K,

xj the centre of ∆j , and show that Sn →
∫
ρ(x,−)dx inside D(Rn), and use the continuity and linearity

of T .)

(ii): If f and g are compactly supported functions in D, show that ρ(x, y) := f(x)g(y−x) is in C∞
c (Rn×Rn),

and conclude that f ∗ g is a smooth compactly supported function, and by (i) above, we further have:

T (f ∗ g) =

∫

x

f(x)T (g̃x)dx = (g̃ ∗ T )(f)

where g̃(z) := g(−z) and g̃ ∗ T is a function being regarded as a distribution.

Here is an important application of convolutions of functions with distributions. We can use compactly
supported approximate identities (see the Lemma 1.2.3) to approximate any distribution T ∈ D′ by smooth
functions of compact support. First we need a topology on D′ to make sense of the notion of approximation.

Definition 1.4.9 (Weak-star topology on D′). Say that a sequence of distributions Tn → 0 in D′ if for each
φ ∈ D, the sequence Tn(φ) → 0. This is the topology of pointwise convergence in any dual vector space, and is
usually called the weak-star topology. On the subspaces S ′ (resp. E ′) of tempered (resp. compactly supported)
distributions, we induce the subspace topology from this weak star topology on D′.

Proposition 1.4.10 (Approximation of distributions by compactly supported functions). The space of smooth
compactly supported functions D = C∞

c (Rn) is dense in the topological vector space D′ of distributions on Rn.

Proof: We first make a remark about convolution with approximate identities (see the Lemma 1.2.3). Take

a real-valued φ ∈ C∞
c , with φ(x) ≥ 0 all x ∈ Rn and

∫
φ(x)dx = 1, suppφ ⊂ B(0, 1) and φ(x) = φ(−x)

(even function). Then suppφε ⊂ B(0, ε), and for a compactly supported function g ∈ C∞
c with supp g = K a

compact set, we have:
supp(g ∗ φε) ⊂ Kε := {x : d(x,K) ≤ ε}

This is because if x is outside the set Kε on the right, (x− y) will lie outside K for all y ∈ B(0, ε), and hence

g(x − y) will be zero. For y 6∈ B(0, ε), φε(y) will be zero. Thus the product g(x − y)φε(y) will be identically
zero, and hence

g ∗ φε(x) =

∫

Rn

g(x− y)φε(y) = 0

for x 6∈ Kε.

Now let T ∈ D′ be a distribution. Let ψj ≥ 0 be compactly supported cutoff functions which are identically

1 on B(0, j) and identically zero outside Vj := B(0, j + 1), say. We claim that the distributions ψjT converge
to T in D′. Indeed, for a fixed g ∈ D

ψjT (g) = T (ψjg) → T (g)
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because ψjg ≡ g for j large enough, g being compactly supported. So by the definition of the weak star
topology, we have ψjT → T .

Now we claim that the function φε ∗ (ψjT ) is a smooth function compactly supported in V εj . We already
know by the Lemma 1.4.7 above that the convolution φε ∗ (ψjT ) is a smooth function. Clearly, it is a com-
pactly supported function iff it is a compactly supported distribution. To show that φε ∗ ψjT vanishes on the
complement of V εj , let g ∈ D be a smooth function with supp g = L a compact set, and satisfying L ∩ V εj = φ.
Then, by (ii) of Exercise 1.4.8 above:

(φε ∗ ψjT )(g) = (φ̃ε ∗ ψjT )(g) = ψjT (φε ∗ g) = T (ψj(φε ∗ g)) (1)

By the first para above, supp (φε ∗ g) = Lε. The support of ψj is contained in Vj . Since L∩V εj = φ, we have
Lε ∩ Vj = φ, so the function of y given by ψj(φε ∗ g) above is the identically zero function, and so T applied to
it is therefore zero. This shows that φε ∗ψjT is a distribution compactly supported in V εj , and hence a smooth
function of compact support.

We now claim that for a fixed j, the family of distributions (compactly supported smooth functions by the
above) φε ∗ψjT converge to ψjT in D′ as ε → 0. By the Lemma 1.2.3 and the fact that suppψj = Vj a compact
set, we have ψj(φε ∗ g) → ψjg uniformly on Vj as ε → 0. Hence the right hand side of the equation (1) above
converges to T (ψjg) as ε → 0 by the continuity of T , and the claim follows.

Since ψjT → T in D′ as j → ∞, and the compactly supported smooth functions φε ∗ ψjT → ψjT as ε → 0,
it follows that C∞

c (Rn) is dense in D′. 2

Now we come to one of the chief reasons why the Schwartz space S and tempered distributions were
introduced. We have already observed in (ii) of the Proposition 1.2.5 that

ξαDβ
ξ f̂ = ±(Dα

x (xβf))∧ for f ∈ S
Hence if fn → 0 as n → ∞ in S, xβDα

xfn → 0 uniformly on Rn, for all α, β. By Leibnitz’s rule for the
derivatives of products, it follows that Dα

x (xβfn) → 0 uniformly on Rn. Thus
∥∥Dα

x (xβfn)
∥∥

1
→ 0. By the fact

that ‖ĝ‖∞ ≤ ‖g‖1 for g ∈ S and the equation above it follows that
∥∥∥ξαDβ

ξ f̂n

∥∥∥
∞

=
∥∥Dα

x (xβf))∧∥∥
∞ =

∥∥Dα
x (xβfn)

∥∥
1

→ 0 as n → ∞

That is, f̂n → 0 in S as n → ∞. Thus, with the topology introduced earlier on S, we have:

̂: S → S
is a continuous linear map of topological vector spaces. Hence it makes sense to make the following:

Definition 1.4.11 (Fourier transform of a tempered distribution). Let T ∈ S ′ be a tempered distribution.

Define the Fourier transform T̂ by the formula:

T̂ (g) = T (ĝ) for g ∈ S
By the remarks above, T̂ is also a tempered distribution. We leave it as an easy exercise to check that this

definition is consistent with the definition for functions, i.e. for an L1-function (which defines the tempered

distribution Tf via integration as indicated in the Example 1.3.3), then we have T
f̂

= T̂f . (Just mimic the

proof of (iv) of Proposition 1.2.5 without the complex conjugation).

Analogously, since the inverse Fourier transform and transform differ by reflection of the function, we define
the inverse Fourier transform T∨ of a tempered distribution T by the formula:

T∨(g) = T (g∨) for g ∈ S

We have the following proposition about the distributional Fourier transform. .
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Proposition 1.4.12. Let T ∈ S ′ be a tempered distribution. Then the Fourier transform̂: S ′ → S ′ satisfies:

(i): The map ̂ is a continuous linear isomorphism of S ′ of period 4, and we have

(T̂ )∨ = T for all T ∈ S ′

(ii): For a polynomial P = P (X1, .., Xn), we have:

(P (D)T )
∧

= P (ξ)T̂ , (P (x)T )∧ = P (−D)T̂

(iii): If f ∈ L1(R
n), then T

f̂
= T̂f .

(iv): (φ ∗ T )∧ = φ̂T̂ for φ ∈ S.

Proof: If Tn → T in S ′, we have by definition that Tn(ĝ) → T (ĝ) for each g ∈ S. That is, T̂n(g) → T̂ (g),

for each g ∈ S, which again, by definition, implies T̂n → T̂ in S ′. This shows that the Fourier transform
is a continuous map. The rest of (i),(ii) and (iii) follow immediately by applying the relevant parts of the
Proposition 1.2.5.

To see (iv), note that:

(φ ∗ T )∧(g) = (φ ∗ T )(ĝ) = T (φ̃ ∗ ĝ)

by (ii) of Exercise 1.4.8. But by (iii) of Proposition 1.2.5, we have φ̃ ∗ ĝ =
̂̂
φ ∗ ĝ = (φ̂g)∧, so the last expression

above is precisely (T̂ )(φ̂ĝ) = (φ̂T̂ )(g). The proposition follows. 2

To deduce some more crucial facts about T̂ , we need an elementary but very useful lemma about “locally
convex topological vector spaces”.

Lemma 1.4.13. Let V be a topological vector spaces whose topology is defined by a “family of seminorms”
{pα}α∈Λ, viz., a sequence xn ∈ V converges to zero iff pα(xn) → 0 for all α ∈ Λ. Then a linear map T : V → C

is continuous iff there exists a constant C > 0 and a finite subfamily pα1 , .., pαk
of seminorms such that:

| Tx |≤ C

k∑

i=1

pαj
(x) for all x ∈ V

Proof: We define the “semiball” (?) in V around 0 with respect to the seminorm pα in the obvious manner:

Bα(0, ε) = {x ∈ V : pα(x) < ε}
and note that by the definition of a seminorm all of these are convex sets, and since each pα is continuous,
they are open. Hence their finite intersections are also convex, open, and contain x. Define a new topology T
on V by declaring a neighbourhood base of 0 to be the family of finite intersections:

N (0) := {∩ki=1Bαi
(0, εi) : εi > 0, {α1, .., αk} ⊂ Λ, k = 1, 2, ..., }

and the neighbourhood base around x by N (x) := x + N (0). It is clear that if pα(xn) → 0 for all α ∈ Λ,
then xn → 0 in the topology T , because xn will eventually lie in every basic neighbourhood. On the other
hand, if there exists an α ∈ Λ such that pα(xn) does not converge to zero, then there exists an ε > 0 and some
subsequence xnk

such that pα(xnk
) > ε for all k. That is, xnk

6∈ Bα(x, ε) for all k, so the sequence {xn} will
fail to eventually belong to this open neighbourhood Bα(0, ε), and hence does not converge to 0 in the topology
T . Thus T is exactly the topology defined by the family of seminorms {pα}α∈Λ.

Since T is continuous, there is an open neighbourhood U of 0 such that | Tx |< 1 for all x ∈ U . Since
N (0) is a neighbourhood basis of 0, we may assume without loss of generality that U = ∩ki=1Bαi

(0, εi). Set
ε = min1≤i≤k{εi} and C = ε−1.
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Let x ∈ V . If pαj
(x) = 0 for all j = 1, .., k, then by the definition of U , it follows that λx ∈ U for all λ > 0,

and by the choice of U it follows that | T (λx) |= λ | Tx |< 1 for all λ > 0, so that Tx = 0, and certainly

| Tx |= 0 ≤ C

k∑

i=1

pαi
(x)

for C as above. On the other hand, if pαj
(x) > 0 for some j, observe that | y |= εx/

∑k
i=1 pαi

(x) satisfies
pαj

(y) < ε for all j = 1, .., k, so that y ∈ U and | Ty |< 1. Which is the same as saying that:

| Tx |< (ε)−1
k∑

i=1

pαi
(x)

So, since C = ε−1, we have the desired inequality in both cases, i.e. for all x ∈ V , and the lemma follows. 2

Remark 1.4.14 (: Caution!). The topology of the topological vector space E is determined by the family of
seminorms

{pα,K : pα,K(f) := sup
x∈K

| Dα
xf |, α a multi-index, K a compact subset of Rn}

Similarly, the Schwartz space S is defined by the family of seminorms:

{pα,β : pα,β(f) := sup
x∈Rn

| xαDβ
xf |, α, β multi-indices}

However, the topology of D is not given by the family of seminorms which define E . As we noted in (iii) of the
Definition 1.1.1, if we take a fixed compactly supported function ψ 6= 0 supported on [−1, 1] ⊂ R, then define
fn(x) = ψ(x− n) by translating, we have pα,Kfn → 0 for each α and K, but fn 6→ 0 in D.

Proposition 1.4.15. Let T ∈ E ′ be a compactly supported distribution. For ξ ∈ Rn, denote eξ(x) := eiξ.x =

ex(ξ). Then the tempered distribution T̂ is the function:

T̂ (ξ) = T (e−ξ)

It is a smooth function of slow growth (see the Definition 1.4.4).

Proof: Let us first check the identity above, whose right side, viz the function ν(ξ) := T (e−ξ) makes sense
because T is in E ′. Then let K := suppT be the compact support of T (in view of the Lemma 1.3.10), and let
ψ(ξ) be a compactly supported function which is identically 1 on K. It is trivial to check that ψT = T . Now
let g ∈ D be a compactly supported function. Then

T̂ (g) = ψT (ĝ) = T

[
ψ(ξ)

∫
g(x)e−ξ(x)dx

]
= T

[∫
ψ(ξ)g(x)e−x(ξ)dx

]

=

∫
g(x)T (ψe−x)dx =

∫
g(x)(ψT )(e−x)dx

=

∫
g(x)T (e−x)dx =

∫
g(x)ν(x)dx = Tν(g)

by using (i) of the Exercise 1.4.8 applied to the compactly supported function ρ(x, ξ) = ψ(ξ)g(x)e−x(ξ).

Now the smoothness of the function ν(ξ) easily follows by applying continuity of T , and that T is compactly
supported so acts on all smooth functions. To check slow growth, we first note that for the family of seminorms

{pα,L : α a multi-index and L a compact subset of Rn}
which define the topology of E , we have:

pα,L(xβe−ξ) = sup
x∈L

| Dα
x (xβe−iξ.x) |≤ C(L)(1+ | ξ |)N(α,β)

By the Lemma 1.4.13, since T is continuous, there exists a finite subfamily pαj ,Lj
such that

| Dβ
ξ ν(ξ) |=| ±T (Dβ

ξ e−ξ) |=| T (xβe−ξ) |≤ C
∑k

j=1
pαj ,Lj

(xβe−ξ) ≤ C

k∑

j=1

C(Lj)(1+ | ξ |)N(αj ,β)
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which is clearly bounded by C(1+ | ξ |)N for N = maxj N(αj , β). The proposition follows. 2

Since the constant function 1 is a locally L1 function satisfying (1+ | x |)−N .1 ∈ L1(R
n) for all N > n,

by the Example 1.3.3 it is a tempered distribution. The Dirac distribution is in fact a compactly supported
distribution, and hence a tempered distribution. Thus it makes sense to take the Fourier transforms of these
distributions. Indeed we have the:

Corollary 1.4.16. The Dirac distribution δ0 and the constant function 1 are Fourier transforms of each other.

Proof: By the above Proposition 1.4.15, we have

δ̂0(ξ) = δ0(e−ξ) = 1

for all ξ. The fact that 1̂ = δ0 then follows from the Fourier inversion formula in (i) of the Proposition 1.4.12,
since δ and 1 are invariant under the reflection x 7→ −x. One can check it directly as well, for if g ∈ S, we
have:

1̂(g) = 1(ĝ) =

∫
ĝdx = ̂̂g(0) = g(−0) = g(0) = δ0(g)

2

Exercise 1.4.17. Using (ii) of the Proposition 1.4.12, show that polynomials in ξ = (ξ1, .., ξn) are exactly the
Fourier transforms of tempered distribution defined as finite linear combinations of derivatives of the Dirac
distribution δ0, namely distributions T of the form:

T =

k∑

i=1

ckD
αi
x δ0

where αi are some multi-indices, and ci ∈ C.

Indeed, we have the following interesting characterisation of distributions whose support is a point.

Proposition 1.4.18 (Distributions with point support). Let a ∈ Rn, and let T ∈ D′ with suppT = {a}.
Then

T =

k∑

i=1

ckD
αi
x δa

where δa is the Dirac distribution at a, αi are some multi-indices, and ci ∈ C.

Proof: By translation, we may assume that a = 0. Let ψ ∈ D be a cutoff function such that ψ ≥ 0, ψ ≡ 1
on B(0, 1

2 ) and ψ ≡ 0 outside B(0, 1). Since T is supported in the point {0}, it follows that T ((1 − ψ)φ) = 0
for all φ ∈ E , and hence T (φ) = T (ψφ) for all φ ∈ E . Note that by Leibnitz’s formula for the derivatives of a
product, we have for a compact set K and α a multi-index, the inequality:

pα,K(ψφ) = sup
x∈K

| Dα(ψφ) |≤ C
∑

|β|≤|α|
sup

‖x‖≤1

| Dβφ |

where C depends on sup‖x‖≤1 | Dγψ | for various | γ |≤| α |.

Combining the above fact with the Lemma 1.4.13, we have an inequality:

| T (φ) |=| T (ψφ) |≤ C

k∑

i=1

pαi,Ki
(ψφ) ≤ C

∑

|α|≤N
sup

‖x‖≤1

| Dαφ(x) | for all φ ∈ E (2)

where N = max1≤i≤k | αi |. Now we make the following:

Claim: Let φ ∈ E such that Dαφ(0) = 0 for all | α |≤ N . Then T (φ) = 0.
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Consider the sequence of functions φk ∈ E defined by

φk(x) = φ(x)(1 − ψ(kx)), x ∈ Rn

where ψ is the cut-off function defined in the first paragraph. The fact that Dαφ(0) = 0 for | α |≤ N will
imply by Taylor’s formula for Dβφ around the origin that there exists a δ > 0 such that

| Dβφ(x) |≤ C ‖x‖N+1−|β|
for all ‖x‖ < δ, | β |≤ N

Note that the function ψ(kx) and all its derivatives are supported in the ball B(0, 1/k), and for k large enough,
this ball is contained in B(0, δ).

Now let α be a multi-index such that | α |≤ N . Then we have

| Dα(φ(x)ψ(kx)) |= 0 for ‖x‖ > 1

k
, and all k

On the other hand, for ‖x‖ < 1
k , and k large enough so that 1

k < δ, we have:

| Dα(φ(x)ψ(kx)) | ≤ C
∑

|β|≤|α|
| Dβφ(x) || Dα−βψ(kx) |

≤ C
∑

|β|≤|α|
‖x‖N+1−|β|

k|α|−|β| ∥∥Dα−βψ
∥∥

∞

≤ C
∑

|β|≤|α|
(k−1)N+1−|β|k|α|−|β|

≤ Ck|α|−N−1 ≤ Ck−1

Summing up, we have:

sup
x∈Rn

| Dα(φk(x) − φ(x)) |= sup
x∈Rn

| Dα(φ(x)ψ(kx)) |≤ Ck−1 for | α |≤ N and k >> 0

Plugging this fact into the inequality (2) above, we find that: limk→∞ | Tφk − Tφ |= 0, i.e.

lim
k→∞

T (φk) = T (φ)

Now note that φk are compactly supported in the region {1/2k ≤ ‖x‖ < ∞}, and hence compactly supported
in Rn \ {0}. Since suppT = {0}, T (φk) = 0 for all k. Thus T (φ) = limk→∞ T (φk) = 0 and our claim follows.

Now, to show that T =
∑

|α|≤N cαD
αδ0, it is enough to show that the Fourier transform T̂ is a polynomial

(see the preceding Exercise 1.4.17). By the Proposition 1.4.15, we have for the N chosen above that

T̂ (ξ) = T (e−ξ) = T


 ∑

0≤k≤N

[−i(ξ.x)]k
k!

+ φ




=
∑

0≤|α|≤N
(−i)|α| ξ

αT (xα)

α !
=

∑

0≤|α|≤N
cαξ

α

since T (φ) = 0 by the Claim above (all its derivatives of order ≤ N vanish at 0). This proves the proposition.
2

Finally, we have the following description of compactly supported distributions.

Proposition 1.4.19. Let T ∈ E ′ be a compactly supported distribution. Then there exists a continuous
function g ∈ C0(R

n) such that:

T =

k∑

i=1

ciD
αi
x g
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Proof: By the Proposition 1.4.15, the Fourier transform T̂ is a smooth function, say F , of slow growth. That
is, there exist C > 0 and N such that:

| F (ξ) |≤ C(1+ | ξ |)N

Since (1+ | ξ |2)−s is in L1(Rn) for any s > n/2, it follows that the function:

G(ξ) = (1+ | ξ |2)−MF (ξ)

is in L1(Rn) for M = N + n, say. So, by the Riemann-Lebesgue lemma (v) of Proposition 1.2.5 above, the

function g = G∨ = G̃∧ is in C0(R
n), and G = ĝ. Also

F (ξ) =

(
1 +

n∑

i=1

ξ2i

)M
G(ξ) = P (ξ)ĝ(ξ) = (P (D)g)∧(ξ)

where P (ξ) = (1+ | ξ |2)M is a polynomial, by (ii) of Proposition 1.2.5. But then:

T = (T̂ )∨ = F∨ = ((P (D)g)∧)
∨

= P (D)g

which proves the proposition. 2

Remark 1.4.20 (Tempered distributions given by non-negative L1,loc functions). We saw with the example
of ex cos ex in the Remark 1.3.7 that an L1,loc function which is a tempered distribution is not necessarily a
tempered function in the sense of Example 1.3.3. However, if f ∈ L1,loc(R

n), and f is non-negative, then the
distribution Tf defined by f is a tempered distribution implies that the function f is a tempered function in
the sense of Example 1.3.3. For it is enough to prove, for example, that for some N , (1+ | x |)−Nf is integrable

on say {| x |≥ 2}, because every locally integrable function is integrable on B(0, 2). Let ψ ∈ C∞
c (R) be a real

valued non-negative function with ψ ≡ 1 on the interval [−1/2, 1/2], and ≡ 0 outside the interval [−1, 1]. For
a ≥ 2, define on Rn the radially symmetric non-negative function:

ψa(x) = ψ(| x | −a)
which is compactly supported in the annulus {a− 1 ≤| x |≤ a+ 1}. Since ψa are radially symmetric, it is easy
to check that the Schwartz seminorms of these functions are majorised as:

pαβ(ψa) = sup
x

| xαDβ
xψa |≤ (a+ 1)|α| | ∂βr ψ |≤ Cβ(a+ 1)|α|

where Cβ is independent of a. Now, since f is a tempered distribution, we apply the Lemma 1.4.13 above to
conclude that for a ≥ 2 we have:

∫

a− 1
2 ≤|x|≤a+ 1

2

f(x)dx ≤
∫

Rn

f(x)ψa(x)dx ≤
k∑

i=1

pαi,βi
(ψa) ≤ C(a+ 1)N

for some N , and C independent of a. That is, the integral of f on the annulus {a − 1
2 ≤| x |≤ a + 1

2} is of
polynomial growth in a. From this it is easy to check that f is a tempered function.

As a consequence of the above discussion, a function f ∈ L1,loc is a tempered function iff | f | is a tempered
distribution.

2. Distributions and Partial Differential Equations

2.1. Motivation from Electrostatics. We recall that in electromagnetism, the Maxwell equations imply
that for a smooth charge distribution g ∈ C∞, the scalar electrostatic potential is given by a function φ, where
φ is a solution to the inhomogeneous Laplace equation

∆φ = −
3∑

i=1

∂2
i φ = g

Classically, it was known that the potential due to a unit point charge at the origin was given by φ(x) = C | x |−1

by the inverse square law, so the potential at x due to the “infinitesimal” charge element g(y)dy situated at y
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would be C | x− y |−1 g(y)dy. Since the scalar potential is additive, the total potential at x due to the entire
charge distribution would be the integral:

φ(x) = C

∫
| x− y |−1 g(y)dy (3)

This looks like the convolution of the “function” C | x |−1 and g. Only C | x |−1 is not a function. It is however,
a tempered distribution, indeed it is a tempered function as is easily checked by using polar coordinates. So
although the expression in (3) above doesn’t quite make sense unless we justify the convergence of the integral
above, we can try to see if it can be recast as a convolution of a the tempered distribution C | x |−1 which will
(a) rigorise and (b) generalise the above heuristic argument.

2.2. Fundamental solutions.

Definition 2.2.1. Let L be a linear differential operator with constant coefficients on Rn. That is, L = P (D)
where P is an n-variable polynomial. We say that the distribution T is a fundamental solution of L if

LT = δ0

as an identity of distributions. We are not suggesting that they exist in general. If, however, T is a tempered

distribution, then its Fourier transform T̂ must also be a tempered distribution, so also LT . By taking the

Fourier transform of LT = δ0 and applying (ii) of Proposition 1.4.12 and Corollary 1.4.16 we see that T̂ must
satisfy the identity:

P (ξ)T̂ = 1

of tempered distributions. More on this later.

The reason to look for fundamental solutions is the following proposition.

Proposition 2.2.2. Let g ∈ S be a rapidly decreasing function, and assume that T is a tempered distribution
which is a fundamental solution of L = P (D). Then the smooth function φ := g ∗ T is a smooth solution of
Lφ = g. Similarly, if g ∈ D is a compactly supported function and T is any distributional fundamental solution
to L.

Proof: By the Lemma 1.4.7, we have in all the cases cited above that φ is a smooth function. Furthermore,
by the same lemma, and the Example 1.4.6, we have:

L(φ) = P (D)(g ∗ T ) = g ∗ P (D)T = g ∗ δ0 = g

This proves our proposition. 2

This is a “soft analysis” method of solving the inhomogeneous equation Lφ = g, given a fundamental
solution. Finding a fundamental solution, however, is not a “soft” activity. We illustrate with a few examples
below.

Let us define the following linear first order differential operators on R2:

∂ :=
1

2
(∂x + i∂y) , ∂ :=

1

2
(∂x − i∂y)

(The operator ∂ is called the Cauchy-Riemann operator). Note that 4∂∂ = 4∂∂ = −∆ where ∆ = −∂2
x − ∂2

y is
the Laplace operator on the plane.

Proposition 2.2.3 (Cauchy Problem). On R2, the tempered distribution 2(x+ iy)−1 = 2/z is a fundamental
solution to ∂. The tempered distribution − log | z | is a fundamental solution to ∆.

Proof: We recall that our volume element on R2 is dV = (2π)−1dxdy. By using polar coordinates, for example,
dV = (2π)−1rdrdθ, and it is readily verified that 2/z and log | z | are tempered functions, and hence tempered
distributions by Example 1.3.3.
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For f = P + iQ a complex valued function, the 1-form fdz on R2 denotes (P + iQ)(dx + idy) = (Pdx −
Qdy) + i(Qdx + Pdy). If W ⊂ R2 is any open set, and Ω ⊂ W is a compact domain with smooth boundary
∂Ω, then we have the Green Formulas:

∫

∂Ω

Qdx+ Pdy = 2π

∫

Ω

(∂xP − ∂yQ) dV,

∫

∂Ω

Pdx−Qdy = −2π

∫

Ω

(∂xQ+ ∂yP ) dQ

Since ∂f = 1
2 (∂x + i∂y)(P + iQ) = 1

2 (∂xP − ∂yQ) + i(∂yP + ∂xQ), we can write the two Green formulas above
for the 1-form fdz as the single formula:

∫

∂Ω

fdz = 4πi

∫

Ω

(∂f)dV (4)

Now we claim that the tempered distribution 2
z is a fundamental solution of ∂ on R2.

For, let φ ∈ S be a smooth function. Then note that on R2 \ {0}, the smooth function 2
z is holomorphic, so

that on R2 \{0} we have by the Leibnitz formula that ∂(2φ/z) = (2/z)∂φ. For ε > 0, R > 0, let Ωε,R ⊂ R2 \{0}
denote the annulus ε ≤| z |≤ R. Choose R >> 0 so that the support of φ is contained in B(0, R). We apply
Green’s formula (4) to the function f(z) = 2φ/z, W = R2 − {0} and Ω = Ωε,R, to obtain:

∫

Ωε,R

(
2

z

)
∂φdV =

∫

Ωε,R

∂(2φ/z)dV =

∫

Ωε,R

∂fdV

=
1

4πi

[∫

S(R)

f(z)dz −
∫

S(ε)

f(z)dz

]

=
i

2π

∫

S(ε)

φ(z)

z
dz

where S(r) denotes the circle of radius r centred at the origin and oriented counterclockwise, and the integral
over S(R) vanishes because φ ≡ 0 on S(R) by the choice of R. From the fact that

∫
S(r)

dz/z = 2πi, it follows

that: ∫

R2

2

z
∂φdV = lim

ε→0

∫

Ωε,R

2

z
∂φdV = lim

ε→0

i

2π

∫

S(ε)

φ(z)

z
dz = −φ(0)

From this it follows that:

∂(2/z)(φ) = −(2/z)(∂φ) = −
∫

R2

(
2

z

)
∂φdV = φ(0) = δ0(φ)

for all φ ∈ S. Thus ∂(2/z) = δ0, and the assertion for the Cauchy Riemann operator follows.

The statement for the Laplacian follows by first checking that log | z | is a tempered distribution, and obeys
the distributional identity:

4∂ log | z |= (∂x − i∂y)(log(x2 + y2)) =
2

z
as distributions on R2. This is clear enough as an identity of functions on R2 \ {0}, but has to be verified as
an identity of distributions on R2, which involves using the annuli Ωε,R etc., and writing down a ∂ analogue of

the ∂ Green’s formula that we had in (4) above. We leave these details to the reader.

Then it follows that:

∆(− log | z |) = 4∂∂(− log | z |) = ∂(4∂ log | z |) = ∂(2/z) = δ0

by the fact that (2/z) is a fundamental solution to ∂ proved above. The proposition follows. 2

Proposition 2.2.4 (Fundamental solutions to ∆ on Rn, n 6= 2). Let n 6= 2. A fundamental solution to ∆ on
Rn is given by the tempered distribution:

T =
(2π)n/2r−n+2

(2 − n)ωn−1

where ωn−1 := VolSn−1.
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Proof: There is the following special case of Stokes’s Theorem (=Gauss’s divergence theorem) for a do-
main Ω with smooth boundary ∂Ω contained in an open subset U ⊂ Rn, and a smooth vector field v(x) =
(v1(x), .., vn(x)) on U . ∫

Ω

(∑

i

∂ivi

)
dV = (2π)−n/2

∫

∂Ω

(v.ν)dS

where dS is the induced surface measure on ∂Ω from the Euclidean measure dx1...dxn on Rn, and ν denotes
the outward normal vector field on ∂Ω. (The factor of (2π)−n/2 comes because for us dV = (2π)−n/2dx1...dxn.)

If we substitute for v the particular vector field v = f∇g, where f, g are smooth functions on U , we have
the formula: ∫

Ω

(∇f.∇g)dV −
∫

Ω

(f∆g)dV = (2π)−n/2
∫

∂Ω

(f∂νg)dS

where ∂νg := ∇g.ν is the normal derivative vector field of g on ∂Ω. (Remember that ∆ = −∑i ∂
2
i ).

Interchanging the roles of f and g, and subtracting, we have the Green Formula:∫

Ω

(f∆g − g∆f)dV = (2π)−n/2
∫

∂Ω

(g∂νf − f∂νg)dS (5)

Now note that the function f(x) := ‖x‖−n+2
= r−n+2 is tempered, and on a radially symmetric function it

is easily checked by using polar coordinates that:

∆ = −∂2
r − (n− 1)r−1∂r

so that ∆f = ∆(r−n+2) ≡ 0 on Rn \ {0}. Now let Ωε,R = {x : ε ≤ ‖x‖ ≤ R}. If g is a smooth function of
compact support, and supp g ⊂ B(0, R), we will have g = ∂νg ≡ 0 on the sphere S(R) of radius R. Thus from
the Green formula (5) it follows that:∫

Ωε,R

f∆g = −(2π)−n/2
∫

S(ε)

g∂νfdS = (2π)−n/2
∫

S(ε)

g∂rfdS = (2π)−n/2(2 − n)

∫

S(ε)

g.r−n+1dS

= (2π)−n/2(2 − n)

∫

S(ε)

g.ε1−ndS = (2π)−n/2(2 − n)

∫

S(1)

g(εx)dS

It is clear that as ε → 0, the expression above converges to

(2π)−n/2(2 − n)ωn−1g(0)

where ωn−1 := VolS(1) is the volume of the unit sphere in Rn. Thus we have:

(∆f)(g) =

∫

Rn

f∆gdV = (2π)−n/2(2 − n)ωn−1δ0(g)

which shows that a fundamental solution is as asserted. 2

Remark 2.2.5. In general there is nothing unique about a fundamental solution. For example, since the
Cauchy-Riemann operator ∂ annihilates every holomorphic function f , the distribution 2/z + f(z) is also a
fundamental solution for ∂. Likewise for the Laplacian ∆, adding on a harmonic function (i.e. a function
annihilated by ∆) will also provide a fundamental solution. For a general constant coefficient linear partial
differential operator L, all the fundamental solutions constitute the affine space:

φ+ ker{L : D′ → D′}
where φ is one fundamental solution. It is a consequence of the elliptic regularity theorem to be proved later
that any distribution in the kernel of ∂ or ∆ is actually a function, a smooth function in fact.
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3. Sobolev Theory

We will define certain Hilbert spaces which provide the ideal ones for studying differential operators, and
more generally the “pseudodifferential operators” to be introduced later.

3.1. Sobolev Spaces.

Definition 3.1.1. Let s ∈ R. The Sobolev space Hs(R
n) is defined as:

Hs(R
n) = {f ∈ S ′ : f̂ is a measurable function and

∫

Rn

(1+ | ξ |2)s | f̂(ξ) |2 dξ < ∞}

For f, g ∈ Hs(R
n), their Sobolev inner-product is defined by

(f, g)s :=

∫

Rn

(1+ | ξ |2)sf̂(ξ)ĝ(ξ)dξ

which is finite by applying the Cauchy-Schwartz inequality.

Remark 3.1.2.

(i): By the Plancherel Theorem in (iv) of 1.2.5, we have H0(R
n) = L2(R

n).

(ii): Note that for any s ∈ R, we have that the function ρs(ξ) := (1+ | ξ |2)s/2 is a slowly increasing function.
Thus mlutiplication by this function is an isomorphism S → S. Then if we define the linear operator:

Λs : S ′ → S ′

f 7→ (ρsf̂)∨

it follows that this operator is a continuous isomorphism (with inverse Λ−s). Hence, in view of the
Plancherel Theorem (iv) of 1.2.5, we have the description:

Hs = {f ∈ S ′ : Λsf ∈ L2(R
n)}

and since Λs is an isomorphism, it follows that Hs is isomorphic to L2 as a Hilbert space. In particular
it is a separable Hilbert space.

(iii): For each t ≤ s, we have (1+ | ξ |2)t ≤ (1+ | ξ |2)s, so Hs ⊂ Ht for all s ≥ t.

(iv): If T ∈ E ′ is a compactly supported distribution,then by the Proposition 1.4.15, it follows that T̂ is a
function (namely T (e−ξ)) which is of slow growth. That means its modulus square is also a function of
slow growth, and it will be integrable against (1+ | ξ |2)s for some s. Hence T will be in the corresponding
Hs(R

n). On the other hand every non-compactly supported Schwartz class function in in each Hs, but
not in E ′.

(v): Not every tempered distribution is in some Hs. For, the constant function 1 is a tempered distribution,
but since its Fourier transform is δ0, which is not a function, 1 does not belong to any Hs. Thus in view
of (iv) above, we have strict containments:

E ′ ⊂ H−∞ := ∪s∈RHs ⊂ S ′

(vi): Since Λs is an isomorphism on S, and so Λsf ∈ L2 for every f ∈ S and every s, it follows that:

S ⊂ H∞ := ∩s∈RHs

Also since Λs is a Hilbert space isometry of Hs to H0 = L2, Λs(S) = S, and S is dense in L2, it follows
that S is dense in each Hs.

(vii): However, the containment:
S ⊂ H∞ := ∩sHs

is also strict. For example, the function f(x) = (1 +x2)−1 on R has the Fourier transform e−|ξ|, which is
integrable against all powers of (1+ | ξ |2)s, so f ∈ H∞. However, f 6∈ S, because its Fourier transform
e−|ξ| is not smooth, so not in S.
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Exercise 3.1.3. Prove the slightly stronger statement than (vi) above, viz. that D = C∞
c is dense in each

Hs. Thus in view of (v) and this statement, one could also define Hs as the completion of the inner product
spaces D or S with respect to the Sobolev inner product (−,−)s.

We now have a very elementary proposition about these Sobolev Spaces.

Proposition 3.1.4 (Some Facts on Sobolev Spaces).

(i): The inclusion Hs ↪→ Ht for s ≥ t, defined in (iii) of 3.1.2 is a continuous (=bounded) operator. If f ∈ S,
the multiplication operator u 7→ fu is a continuous (=bounded) operator.

(ii): If m ≥ 0 is a non-negative integer, then on the vector subspace E ∩Hm(Rn) of Hm, the Sobolev m-norm
is equivalent to the norm defined by:

‖f‖2
=
∑

|α|≤m

∫

Rn

| Dα
xf |2 dx

Thus for such an m, Hm can be described as the completion of S or D with respect to this norm.

(iii): If P is a polynomial of degree k, then for the linear constant coefficient differential operator P (D), we
have:

P (D) : Hs → Hs−k

is a continuous(=bounded) operator of Hilbert spaces.

(iv): The sesquilinear pairing:

S × S → C

f, g 7→
∫

Rn

f(x)g(x)dx = 〈f, g〉

extends to a sesquilinear pairing of Hs ×H−s, also denoted 〈−,−〉 which satisfies:

| 〈f, g〉 |≤ ‖f‖s ‖g‖−s ; ‖f‖s = sup
06=g∈Hs

| 〈f, g〉 |
‖g‖−s

〈−,−〉 is therefore a perfect pairing and identifies H−s with the Hilbert space dual (Hs)
∗ of Hs.

Proof:
(i) is trivial from the fact for t ≤ s we have (1+ | ξ |2)t ≤ (1+ | ξ |2)s and all ξ. The second statement is

also straightforward, and left as an exercise.

For (ii), we note that there exists a constant C such that:

1

C
(1+ | ξ |2)m ≤

∑

α≤m
| ξ2α |≤ C(1+ | ξ |2)m, ξ ∈ Rn

from which it follows by (ii) of the Proposition 1.2.5 that:

1

C
(1+ | ξ |2)m | f̂(ξ) |2≤

∑

α≤m
| (Dαf)∧(ξ) |2≤ C(1+ | ξ |2)m | f̂(ξ) |2

and all ξ ∈ Rm. The result follows by integrating the above two inequalities over Rn, and the Plancherel
Theorem (iv), 1.2.5.

(iii) is also clear from the fact that (P (D)f)
∧

(ξ) = P (ξ)f̂(ξ), and that | P (ξ) |2≤ C(1+ | ξ |2)k for some
C > 0 and all ξ ∈ Rn, if k = deg P .

To see (iv), note that for f, g ∈ S, we have by Plancherel:

〈f, g〉 =
〈
f̂ , ̂̃g
〉

=

∫
f̂(ξ)(1+ | ξ |2)s/2 ̂̃g(ξ)(1+ | ξ |2)−s/2dξ ≤ ‖f‖s ‖g̃‖−s = ‖f‖s ‖g‖−s
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by using the Cauchy-Schwartz inequality. To see that equality is achieved in the inequality, choose g such that
̂̃g = f̂(1+ | ξ |2)s. This yields the rest of (iv), and the proposition follows. 2

Remark 3.1.5. (iii) of the Proposition 3.1.4 above is the reason for introducing Sobolev spaces, i.e. in order
to view differential operators as being bounded operators between Hilbert spaces.

3.2. Sobolev Embedding Theorem. There is a criterion for a function to be a k times continuously differ-
entiable function which can be stated in terms of Sobolev spaces.

Proposition 3.2.1 (Sobolev Embedding Theorem or Sobolev Lemma). Let k ≥ 0 be an integer. If s > k+ n
2 ,

then:

(i): Hs(R
n) ⊂ Ck0 (Rn), where the right hand space denotes the space of k times continuously differentiable

functions f with Dα
xf vanishing at ∞ for all | α |≤ k.

(ii): ‖Dα
xf‖∞ ≤ Cα ‖f‖s. Indeed if we define the norm

‖f‖∞,k = sup
|α|≤k

‖Dα
xf‖∞

on C∞
k (Rn), then the inclusion Hs ⊂ Ck0 of (i) above is continuous.

Proof: We first make the following:

Claim: If f ∈ S ′ is a tempered distribution such that (Dα
xf)∧ is a function in L1(R

n), then f ∈ Ck0 (Rn). Also,
‖Dα

xf‖∞ = supx∈Rn |Dα
xf | ≤ ‖(Dα

xf)∧‖1.

If g := (Dα
xf)∧ ∈ L1, then by the Riemann-Lebesgue Lemma (v) of Proposition 1.2.5, we have Dα

xf = g∨ is
in C0(R

n). The last statement is clear from the fact that ‖g∨‖∞ ≤ ‖g‖1.

In view of the above claim, all we have to do is show that if f ∈ Hs(R
n) for s ≥ k + n

2 , then (Dα
xf)∧ is an

L1 function. But then:

∫
|(Dα

xf)∧(ξ)| dξ =

∫
| ξ |α| f̂(ξ) | ξ =

∫
| ξ |α (1+ | ξ |2)−s/2(1+ | ξ |2)s/2 | f̂(ξ) | dξ

≤
(∫

| ξ |2α (1+ | ξ |2)−sdξ

)1/2

‖f‖s
by the Cauchy-Schwartz inequality. Since:

| ξ |2|α| (1+ | ξ |2)−s ≤ (1+ | ξ |2)k−s

and s− k > n/2, the integral
∫

| ξ |2α (1+ | ξ |2)−sdξ is finite, and we therefore have:

‖(Dα
xf)∧‖1 ≤ C ‖f‖s

which implies by the Claim above that:

‖Dα
xf‖∞ ≤ C ‖f‖s for all | α |≤ k

This proves both (i) and (ii) and the proposition follows. 2

Corollary 3.2.2. As a consequence of the entire subsection,we have the following chain of inclusions:

S ⊂ H∞ ⊂ H−∞ ⊂ S ′

each of which is strict. Note also that by the Sobolev Lemma above,

H∞ ⊂ C∞
0

Note also that the Dirac distribution δ0 belongs to H−s for all s > n
2 since δ̂0 = 1, and

‖δ0‖−s =

∫
(1+ | ξ |2)−sdξ < ∞
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for all s > n
2 . In general, the more negative the s, the more singular the tempered distributions that will be

included in Hs.

Remark 3.2.3. The Sobolev Lemma above is crucial for proving regularity (smoothness) of distributional
solutions to elliptic differential operators.

Exercise 3.2.4. By the Sobolev Lemma, H∞ ⊂ C∞
0 . Is C∞

0 a subset of H−∞?

3.3. Rellich’s Lemma. The other crucial lemma about the Sobolev spaces is a statement about the inclusion
Hs ⊂ Ht for s > t. Before we prove it we state the following lemma about locally compact metric spaces.

Proposition 3.3.1 (Arzela-Ascoli Theorem). LetX be a locally compact σ-compact metric space (σ-compactness
means X is a countable union of compact subsets). Let {fk} be a sequence of complex valued functions satis-
fying:

(i): {fk} is equicontinuous. That is for each x ∈ X and each ε > 0, there is a neighbourhood Ux of x such
that | fk(x) − fk(y) |< ε for all y ∈ Ux and all k.

(ii): {fk} is pointwise bounded, i.e. the set {fk(x) : k ∈ N} is a bounded set for each x ∈ X.

Then there exists a function f ∈ C(X) and a subsequence {fkm
} of {fk} such that fkm

→ f uniformly on
compact sets.

Proof: See Rudin’s Real and Complex Analysis, or Folland’s Real Analysis: Modern Techniques and their
Applications. 2

Proposition 3.3.2 (Rellich’s Lemma). Let s > t, so that Hs ⊂ Ht. Let {fk} be a sequence in Hs such that:

(i): There exists a compact set K such that for all k, the support of (the tempered distribution) fk is
contained in K.

(ii): {fk}k∈N is a bounded set in Hs.

Then there is a subsequence of {fk} which converges in Ht.

Proof: First note that for ξ, η ∈ Rn, we have by the triangle inequality that:

| ξ |2≤ 2(| ξ − η |2 + | η |2)
which implies that:

(1+ | ξ |2) ≤ 2(1+ | ξ − η |2)(1+ | η |2)
Thus if s ≥ 0, we have:

(1+ | ξ |2)s/2 ≤ C(1+ | ξ − η |2)s/2(1+ | η |2)s/2
where C is a constant depending on s. Similarly, if s < 0, we can apply the above inequality to | s |= −s and
interchange the roles of ξ and η to obtain the so called Peetre inequality for all s

(1+ | ξ |2)s/2 ≤ C(1+ | ξ − η |2)|s|/2(1+ | η |2)s/2

Since fk ∈ Hs, by definition f̂k is a function for each k. Let φ ∈ D be a smooth compactly supported
function which is ≡ 1 on K. Then fk = φfk as distributions, and by (iv) of the Proposition 1.4.12 we have

f̂k = φ̂ ∗ f̂k. Thus:
∣∣∣f̂k(ξ)

∣∣∣ =| (φ̂ ∗ f̂k)(ξ) |=
∣∣∣∣
∫
φ̂(ξ − η)f̂k(η)dη

∣∣∣∣ ≤
∫ ∣∣∣φ̂(ξ − η)f̂k(η)

∣∣∣ dη

which together with Peetre’s inequality above implies that:

(1+ | ξ |2)s/2 | f̂k(ξ) |≤ C

∫
| φ̂(ξ − η)(1+ | ξ − η |2) ||s|/2| (1+ | η |2)s/2f̂k(η) | dη

for all s. Applying the Cauchy-Schwartz inequality to the integral on the right, we have:

(1+ | ξ |2)s/2 | f̂k(ξ) |≤ C ‖φ‖|s| ‖fk‖s ≤ C ′ for all k (6)
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since {fk} is a bounded sequence in Hs.

We note that since f̂k are compactly supported distributions, by the Proposition 1.4.15 they are smooth

functions. So, similarly, we have dj f̂k = dj(φ̂ ∗ f̂k) = dj φ̂ ∗ f̂k, and again a corresponding argument shows that:

(1+ | ξ |2)s/2 | dj f̂k(ξ) |≤ C ′′ for all k

This shows that f̂k and dj f̂k are both uniformly bounded sequences of functions on each compact L ⊂ Rn. In

particular, the sequence f̂k is pointwise bounded, and the condition (ii) of the Arzela-Ascoli Theorem 3.3.1 is
satisfied.

The uniform boundedness of all dj f̂k implies by the Mean Value Theorem that on each compact L ⊂ Rn,
we have a uniform Lipschitz constant C satisfying:

| f̂k(x) − f̂k(y) |≤ C ‖x− y‖
for all x, y ∈ L and all k. This shows that the sequence of functions {f̂k} is equicontinuous, and condition (i) of

Arzela-Ascoli is satisfied. Thus there is a subsequence of {f̂k} which converges uniformly on compact subsets

of Rn. For notational convenience, denote this subsequence by {f̂k} as well.

Thus, for t < s, we have:

‖fj − fk‖2
t =

∫
| f̂j(ξ) − f̂k(ξ) |2 (1+ | ξ |2)tdξ

=

∫

|ξ|≥r
| f̂j(ξ) − f̂k(ξ) |2 (1+ | ξ |2)tdξ +

∫

|ξ|≤r
| f̂j(ξ) − f̂k(ξ) |2 (1+ | ξ |2)tdξ (7)

for all r > 0.

Since t− s < 0, we have:

(1+ | ξ |2)t = (1+ | ξ |2)t−s(1+ | ξ |2)s ≤ (1 + r2)t−s(1+ | ξ |2)s for ξ ≥ r

Thus, by the equation (6) (applied to f̂j − f̂k replacing f̂k), we get that the first integral in (7) is majorised by
C(1 + r2)t−s for some C > 0.

Given ε > 0, choose r large enough that C(1 + r2)t−s < ε then the first integral is < ε. The second integral

is < ε by choosing k and j large enough, since f̂k converges uniformly on the compact set {ξ ≤ r}. This shows
that {fk} is a Cauchy sequence in Ht, which is complete, so it converges. The proposition follows. 2

Exercise 3.3.3. Again show by considering a sequence of translates of a fixed function of compact support
(whose supports thus march off to infinity) that the condition (i) of Rellich’s Lemma cannot be dropped.
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4. Globalisation to Compact Manifolds

In the sequel, M will denote a paracompact, 2nd countable, Hausdorff, oriented, C∞-manifold of dimension
n. It is well known (by using partitions of unity) that such a manifold has a Riemannian metric on its tangent
bundle TM , and by duality, on its cotangent bundle T ∗M . We will very soon specialise to M compact.

4.1. Smooth vector bundles and sections.

Definition 4.1.1 (Smooth vector bundles). A smooth manifold pair π : E → M , with π a smooth surjective
submersion is called a smooth (or C∞) real (resp. complex) vector bundle of rank k if:

(i): For each x ∈ M , the fibre Ex := π−1(x) is a real (resp. complex) vector space of real (resp. complex)
dimension k.

(ii): There exists an open covering {Ui}∞
i=1 of M and smooth diffeomorphisms φi : π−1(Ui) → Ui × Fk

(where F = R (resp. C)) making the following diagram commute:

π−1(Ui)
φi−→ Ui × Fk

π ↘ ↙ pr1

Ui

where pr1 denotes projection into the first factor.

(iii): For each x ∈ Ui, and all i, the composite map:

Ex = π−1(x)
φi→ {x} × Fk → Fk

is a linear isomorphism of real (esp. complex) vector spaces.

The smooth diffeos φi are called local charts or local trivialisations for the bundle, E is called the total space
and M the base space of the bundle. The conditions (ii) and (iii) above simply say that the restricted bundles
E|Ui

: π−1(Ui) → Ui are trivial (i.e. product) bundles. When no confusion is likely, one simply writes E to
denote the bundle, instead of π : E → M .

A smooth map s : M → E is called a smooth section of E if π ◦ s = idM . Using local trivialisations, it is
easy to see that sections of the restricted bundles E|Ui

→ Ui are in bijective correspondence with Fk-valued
smooth functions on Ui.

Example 4.1.2 (Some important bundles). Important examples of natural vector bundles on a smooth real
(resp. complex) n-dimensional manifold M are its real (resp. holomorphic) tangent bundle TM (resp. TholM)
and cotangent bundle T ∗M (resp. T ∗

holM . The local trivialsiations of these bundles arise naturally from
a smooth atlas (resp. holomorphic atlas). We will usually be taking a real manifold of dimension n and
complexifying its real tangent and cotangent bundles, which will then become complex vector bundles of rank
n denoted respectively by TCM and T ∗

C
M . When M happens to a complex manifold of complex dimension n,

it can be viewed as a real manifold of dimension 2n, and TCM = TholM ⊕TholM and T ∗
C
M = T 1,0M ⊕T 0,1M ,

where T 1,0 is the complex dual of TholM and T 0,1 the complex dual of TholM (the conjugate bundle to TholM).

When one takes tensor or exterior powers of these bundles, one obtains other smooth bundles: ⊗kTCM ,
the bundle of contravariant k-tensors, or ⊗kT ∗

C
M the bundle of covariant k-tensors, or ∧pT ∗

C
M , the bundle

of complex valued differential k-forms. These associated bundles have natural trivialisations arising from the
trivialisations of the tangent and cotangent bundles. For further details the reader may consult any standard
differential topology or differential geometry text.

By proceeding componentwise, one easily defines the function spaces of Ck-valued smooth functions:

Ek(Rn) = ⊕k
i=1E(Rn)

and likewise Dk(Rn), or Sk(R)n. So also the spaces of vector valued distributions D′k(Rn), tempered distri-

butions S ′k(Rn) and compactly supported distributions E ′k(Rn).
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Now let E → M be a smooth complex vector bundle on a paracompact real manifold M of dimension n.
We can choose, by refining if necessary, a covering U of M by open sets {Ui}∞

i=1 such that:

(i): Ui is diffeomorphic to Rn, and U i is compact, for each i.

(ii): E|Ui
is a trivial bundle for each i.

Choose a partition of unity λi subordinate to the open cover U , so that suppλi is a compact subset of Ui
for each i, which is possible since M is paracompact. Then, if we denote the space of smooth sections of E by
C∞(M,E), in view of (i) and (ii) above we have a natural inclusion:

C∞(M,E) ↪→
∞∏

i=1

Ek(Rn)

s 7→ (λi(φi ◦ s))∞
i=1

Note that at each x ∈ M , only finitely many entries on the right have a non-zero value. Indeed, each compact
subset K ⊂ M meets at most finitely many U ′

is, so that K ∩ (suppλi) = φ for all but finitely many i. If we
denote si := λi(φi ◦ s), we may define seminorms:

pEα,K(s) = sup
i

(
sup

K∩(suppλi)

| Dα
x (si) |

)

where the quantiy in brackets on the right is the usual seminorm introduced earlier for Ek(Rn). This defines a
topology on C∞(M,E).

Exercise 4.1.3. Verify that taking M = Rn, E a trivial real rank k vector bundle (so that C∞(M,E) = Ek)
and a locally finite covering U by open balls {Ui}∞

i=1 (which are diffeomorphic to Rn), and with λi being a
partition of unity subordinate to U , the topology that is defined as above on C∞(M,E) is the same as the
topology introduced earlier on Ek. (One needs to fix bounds on derivatives of λi on their compact supports
etc.)

Similarly for C∞
c (M,E), the space of compactly supported smooth sections of E, we have the restriction of

the above inclusion:

C∞
c (M,E) ↪→ ⊕∞

i=1Ek(Rn)
s 7→

∑

i

si

where the si are as above. We leave it as an exercise for the reader to define the topology on this space in a
manner that is consistent (in the sense of the exercise above). We just remark that if {sn} is a sequence of
smooth compactly supported sections all having support in some fixed compact set K ⊂ M , then sn,i above
will be identically zero for all i such that i 6∈ F , where F = {i : Ui ∩K 6= φ} is a finite set independent of n,
and for each i ∈ F , all the sn,i will have support inside the compact set suppλi ∩K.

Definition 4.1.4 (Distributions on manifolds). A continuous linear functional on C∞
c (M,E) is called an E-

valued distribution on M , and the space of these is denoted as D′(M,E). Similarly, a continuous linear
functional on C∞(M,E) is called a compactly supported E-valued distribution on M , and their space denoted
E ′(M,E). When E is the trivial rank 1 (line) bundle on M , we just write D′(M) (resp. E ′(M)) for the
respective spaces of distributions.

When M is compact, C∞
c (M,E) = C∞(M,E), and compactly supported E-valued distributions are exactly

the same as E-valued distributions. One doesn’t really need the space of tempered distributions on a manifold,
their main use on Rn being the availability of Fourier transform, an operation that doesn’t make global sense
on a general manifold M .
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Example 4.1.5 (Currents on a smooth manifold). In the particular case when E = ∧n−pT ∗
C
M , the space of

its smooth sections C∞(M,E) is denoted
∧p

(M,C), and such a section is called a differential (n − p)-form.
E-valued distributions on M are known as p-currents on M . Likewise, compactly supported p-currents are
elements of E ′(M,∧n−pT ∗

C
M). The reason for the indexing is that one may think of a differential p-form ω as

a contnuous linear functional acting on the space
∧n−p
c (M) via integration:

Tω(τ) :=

∫

M

ω ∧ τ τ ∈ ∧pc(M)

where integration of an n-form on a singular n-cube is defined for the oriented manifold M as usual, and where
the support of τ can be covered by a finite union of k-cubes with the right orientations (i.e. a k-chain) etc.
Clearly then, a differential p-form is a p-current by this indexing convention. Using the Stokes formula for a
singular k-chain: ∫

σ

dω =

∫

∂σ

ω

and the facts that (i) d(ω ∧ τ) = dω ∧ τ + (−1)deg ωω ∧ dτ , and (ii) τ ∈ ∧n−p
c (M) implies that τ ≡ 0 on the

boundary of a sufficiently large k-chain covering the support of τ , the reader can easily check that by defining
the distributional exterior derivative of a p-current T by dT (ω) = (−1)p+1T (dω) for ω ∈ ∧n−p

c (M) leads to the
consistency formula: dTω = Tdω.

Indeed, if we denote the space of p-currents by Cp(M,C), there is the de-Rham complex of currents:

... → Cp(M,C)
d−→ Cp+1(M,C) → ....

with d ◦ d ≡ 0, and the usual de-Rham complex is a subcomplex of this complex via the chain map ω 7→ Tω. It
is a fact (using an approximation theorem analogous to the Proposition 1.4.10 proved for Rn) that this chain
map is a chain homotopy equivalence.

Similarly, the singular (n− p)-chain σ may be regarded as a compactly supported p-current via integration:

Tσ(τ) :=

∫

σ

τ for τ ∈ ∧n−p(M,C)

By Stokes’s theorem, the distributional derivative ∂Tσ defined by ∂Tσ(τ) = Tσ(dτ) leads to the usual boundary
operator on singular (n − p)-chains. In particular, an orientable (n − p)-dimensional submanifold N of M is
an (n− p) chain in M , and defines a p-current.

Analogously an infinite (Borel-Moore) locally finite (n− p)-chain maybe regarded as a p-current, acting on
∧n−p
c (M,C) via the same integration formula as above. Again, the distributional derivative defined as above

leads via Stokes to the usual geometric boundary. Thus p-currents (resp. compactly supported p-currents)
are general enough to include both (n − p)-Borel-Moore chains (resp. singular p-chains) and differential p-
forms (resp. compactly supported p-forms). One then shows that the cohomology of the complex of p-
currents C∗(M,C) is the same as that of the Borel-Moore chain complex ∆BM

n−∗, as well as the de Rham

complex
∧∗

(M,C). Similarly for compactly supported currents. Thus follow the standard Poincare duality
isomorphisms of the Borel-Moore homology HBM

n−p(M,C) and the de-Rham cohomology Hp
dR(M,C)) (resp.

singular homology Hn−p(M,C) and compactly supported de Rham cohomology Hp
dR,c(M,C))

Remark 4.1.6. In all of the above, one has chosen a particular partition of unity, and a particular kind of
open covering. One needs to check that everything defined above for M is independent of these choices. One
can actually define E(U) and D(U) for any open subset U ⊂ Rn. Then one shows that if U is a further locally
finite union of Ui, an analogue of the exercise 4.1.3 will imply that the “patching definition” of D′(U) or E ′(U)
is the same as the a priori definition. Then one uses common refinements, the partition of unity λiµj arising
from different partitions of unity λi and µj , etc. to prove that these various choices are immaterial.
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4.2. Sobolev spaces on a compact manifold. In this section M is assumed to be compact throughout

Definition 4.2.1. Let M be a compact manifold, and E a smooth rank k complex vector bundle on M . Again
find a finite open covering {Ui}Ni=1 satisfying:

(i): Ui is diffeomorphic to Rn for each i via a smooth diffeo ψi, and U i is compact in M .

(ii): E|Ui
is a trivial bundle for each i.

and let λi be a partition of unity subordinate to this open covering. Via (i) and (ii) above, identify Ui with
Rn, E|Ui

with Ui × Ck, and using pushforward and pullback under these identifications, identify the Sobolev

space Hs(Ui, E) as [Hs(R
n)]k := ⊕k

i=1Hs(R
n). There is a natural Sobolev (direct sum) inner product on this

last space, and the resulting Sobolev inner product on Hs(Ui, E) is denoted (−,−)i,s.

We now define:

Hs(M,E) := {f ∈ E ′(M,E) = D′(M,E) : λif ∈ Hs(Ui, E) for each i = 1, 2, .., N}
In fact, we can define the Sobolev inner product on Hs(M,E) by the formula:

(f, g)s :=
∑

i

(λif, λig)i,s

Equip M with a Riemannian metric g, which will be fixed once and for all. By the orientability of M there
results the global non-vanishing smooth section in

∧n
(M,C) called the Riemannian volume form, defined in a

local coordinate system by:

dV (x) :=
√

det gij(x)dx1 ∧ dx2 ∧ .... ∧ dxn
where gij := g(∂i, ∂j) is the Gramm matrix of the metric. It is readily checked that the expression above for
dV is independent of the coordinate chart.

Similarly, one may equip the complex vector bundle E with a Hermitian bundle metric denoted 〈−,−〉. If
f, g are sections in C∞(M,E), the function 〈f(x), g(x)〉 is a smooth C valued function of x ∈ M , and we may
define the global inner product:

(f, g) :=

∫

M

〈f(x), g(x)〉 dV (x)

which is finite since M is compact. This makes C∞(M,C) a complex inner-product space, and we denote its
completion by L2(M,E), the space of all measurable square integrable sections of E.

We can apply the results of the previous subsection and easily deduce the following:

Proposition 4.2.2 (Facts on Sobolev spaces on manifolds).

(i): H0(M,E) ≡ L2(M,E) as Hilbert spaces.

(ii): C∞(M,E) is dense in Hs(M,E) for each s ∈ R.

(iii): The sesquilinear pairing:

C∞(M,E) × C∞(M,E) → C

f, g 7→ (f, g) =

∫

M

〈f(x), g(x)〉 dV (x)

extends to a sesquilinear pairing Hs(M,E) ×H−s(M,E) → C and identifies H−s(M,E) as the Hilbert
space dual [Hs(M,E)]∗.

(iv): (Sobolev Embedding Theorem) There is a continuous inclusion Hs ↪→ Ck(M,C) for s > k+n/2. This
implies that H∞(M,E) := ∩s∈RHs(M,E) ⊂ C∞(M,E). Since C∞(M,E) ⊂ Hs(M,E) for all s, we have
the equality H∞(M,E) = C∞(M,E).

(v): H−∞(M,E) := ∪s∈RHs(M,E) = D′(M,E)
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(vi): (Rellich’s Lemma) For s > t, the inclusion:

Hs(M,E) → Ht(M,E)

is a compact operator, viz. every bounded sequence in Hs has a convergent subsequence in Ht.

Proof: Let {Ui}Ni=1 and λi be as in the beginning of this subsection. Since Ki := suppλi are compact subsets
of Ui, the measure dV (x) and the Lebesgue measure on Ui ' Rn are equivalent on Ki. Similarly, the Hermitian
bundle metric ‖ ‖ on E and the Euclidean metric on Ck are equivalent on Ki. Hence, for a smooth section
f ∈ C∞(M,E), we see that the L2-norm squared

∫
M

〈λif, λif〉 dV (x) is equivalent to the Euclidean L2-norm

squared of λif regarded as an element of Ek. Since i = 1, .., N , the first statement follows.

For (v), let T =
∑
i λiT ∈ D′(M,E), and apply (iv) of Remark 3.1.2 to the compactly supported distributions

λiT , for i = 1, .., N . The remaining statements are direct consequences of corresponding statements of the
Propositions 3.1.4, 3.2.1 and 3.3.2 of the last subsection, combined with the remarks of the last paragraph. We
leave them as an exercise. 2.

5. Pseudodifferential Operators on Rn

5.1. Motivation. When one wants to solve a differential equation on a manifold, one basically wants to
“invert” a differential operator. This “inverse” is usually not a differential operator. For example, if one wants
to solve the equation ∂f = g on the plane, for say g ∈ S, one found in the Propositions 2.2.2 and 2.2.3 that
the solution was g ∗ (2/z), which is given by the integral:

∫

R2

g(w)

w − z
dV (w)

which is an integral operator acting on g. Thus, one needs to enlarge the class of differential operators to
include more general operators. The key to this generalisation is the observation that if P =

∑
|α|≤d aα(x)Dα

x

is a differential operator of degree d, aα smooth functions, then for f ∈ S say, we have:

Pf(x) =
∑

|α|≤d
aα(x)Dα

xf =
∑

|α|≤d
aα(x)(D̂α

xf)∨(x) =
∑

|α|≤d
aα(x)(ξαf̂)∨(x) =

∫

Rn

eix.ξp(x, ξ)f̂(ξ)dξ

where p(x, ξ) =
∑

|α|≤d aα(x)ξα is called the symbol of the differential operator P . If the function f was vector

valued, taking values in Rk, and Pf is Rm-valued, then the aα(x) would be m × k matrices, and the symbol
p(x, ξ) would be m× k matrix-valued.

5.2. Pseudodifferential operators.

Definition 5.2.1 (Pseudodifferential operators). Let d ∈ Z. A matrix valued function:

p : Rn × Rn → homC(Ck,Cm)

(x, ξ) 7→ p(x, ξ)

is called a symbol of order d if:

(i): p is a smooth map.

(ii): For each pair of multi-indices α, β, there exists a constant Cαβ > 0 such that:
∣∣∣Dα

xD
β
ξ p(x, ξ)

∣∣∣ ≤ Cαβ(1+ | ξ |)d−|β| for all x, ξ ∈ Rn

(Note the norm on the left hand side of the inequality in (ii) is the Hilbert- Schmidt norm on homC(Ck,Cm),
defined by | A |2= trAA∗ = trA∗A.)

It is easily checked that the space of symbols of order d form a C- vector space, which is denoted Sd. Clearly
Sd ⊂ Se if d ≤ e, and we denote S∞ = ∪d∈ZS

d and S−∞ = ∩d∈ZS
d.

For a symbol p(x, ξ) of order d, we define the corresponding pseudodifferential operator of order d, or ψDO
for short, by the formula:
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Pf =

∫

M

eix.ξp(x, ξ)f(ξ)dξ

which makes sense at least for f ∈ Dk of compact support. The space of ψDO’s of order d is denoted Ψd. If
P is a pseudodifferential operator of order d, we denote its symbol p(x, ξ) of order d by σ(P ).

Example 5.2.2 (Linear Differential Operators). Clearly a linear differential operator P =
∑

|α|≤d aα(x)Dα
x of

order d is a ΨDO of order d.

Example 5.2.3 (Convolutions). Let g ∈ S. Then by Proposition 1.4.15, its Fourier transform ĝ(ξ) is also in

S. We also have Dβ
ξ ĝ(ξ) ∈ S for each β, and by the rapid decay condition:

∥∥∥| Dβ
ξ ĝ(ξ)

∥∥∥
∞

≤ Cβ(1+ | ξ |2)d

for each d ≥ 0 and some Cβ > 0. Also Dα
xD

β
ξ ĝ(ξ) ≡ 0 for all | α |> 0, so that ĝ(ξ) is a symbol of every order

d, and hence belongs to S−∞.

The corresponding ψDO is defined by:

Pf =

∫
eix.ξ ĝ(ξ)f̂(ξ)dξ =

(
ĝf̂
)∨

= g ∗ f for f ∈ D

which is just convolution by g. It is a ψDO in Ψ−∞. Thus, in particular, convolution by a smooth compactly
supported function is a pseudodifferential operator of infinite order. Convolution is not a differential operator.
Hence ψDO’s are general enough to include both differential operators and integral operators like convolution.

Remark 5.2.4.

(i): The foregoing example showed how the integral operator of convolution by a rapidly decreasing function
defined a pseudodifferential operator. There is a converse to this, namely if P is a ψDO in Ψ−∞, with
symbol σ(P ) = p(x, ξ) ∈ S−∞, (that is, the symbol is rapidly decreasing in the ξ direction), then the
ψDO P is an integral operator with smooth kernel. For, let f ∈ D, then,

Pf =

∫
eix.ξp(x, ξ)f̂(ξ)dξ =

∫
eix.ξp(x, ξ)

∫
e−iy.ξf(y)dydξ

=

∫ (∫
ei.(x−y)p(x, ξ)dξ

)
f(y)dy =

∫
K(x, y)f(y)dy

where the compact y-support of f and the rapid decay of p(x, ξ) in ξ allows the interchange of the
integrals, and where

K(x, y) :=

∫
ei(x−y)p(x, ξ)dξ = p∨(x, x− y)

p∨(x,−) being the partial inverse Fourier transform of p in the ξ variable. p is rapidly decreasing in ξ, and
smooth in x, so that p∨ is smooth in both variables, and K(x, y) is smooth. Thus P is an integral operator
with smooth kernel K. Loosely speaking, a general ψDO is an integral operator with “distributional”
kernel K(x, y) = p∨(x, x− y), since p∨ is in general a distribution.

(ii): Not every integral operator f 7→
∫
K(x, y)f(y)dy with K(x, y) smooth leads to a smoothing operator.

For example, taking the smooth kernel K(ξ, y) = e−iξ.y leads to the integral operator f 7→ f̂ , and say the

C∞ function f(x) = (1 + x2)−1 ∈ E(R) has Fourier transform f̂ = e−|x|, which is not even C1. However,
the next proposition will show that pseudodifferential operators of order d “reduce smoothness” by at
most d, like constant coefficient differential operators of order d (see (iii) of Proposition 3.1.4).

The way the definition of ψDO’s is set up, i.e. using the Fourier transform, it behaves well with respect to
Schwartz spaces and tempered distributions. More precisely:
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Proposition 5.2.5. For P ∈ Ψd a ψDO of order d, we have that P is a continuous linear operator of Sk to
Sm, and hence defines a continuous map of tempered k-vector valued distributions S ′k to S ′m. If the x-support
of p is compact, (i.e. there exists a K ⊂ Rn such that p(x,−) ≡ 0 for all x 6∈ K), then P is a bounded operator
from Hs+d(R

n,Ck) to Hs(R
n,Ck).

Proof: For simplicity, we will take k = m = 1, since it is the same argument, with moduli replaced by Hilbert
Schmidt norms etc. Let ∆ξ = −∑i ∂

2
i denote the Laplacian in the ξ-variable, whose symbol is p(ξ, x) =| x |2.

Then, for f ∈ S, we have that f̂ is also in S, and so by the definition of a symbol of order d, p(x, ξ)f̂(ξ) is in
S in the ξ variable, by using Leibnitz formula. Thus the integral defining Pf(x) is finite for each x, and also
we have the inequality: ∣∣∣∆N

ξ

[
p(x, ξ)f̂(ξ)

]∣∣∣ ≤ Cr,N (1+ | ξ |2)−r

for any r > 0. Hence:

| x2NPf(x) | =

∣∣∣∣
∫

(∆N
ξ e

ix.ξ)p(x, ξ)f̂(ξ)dξ

∣∣∣∣ =

∣∣∣∣
∫
eix.ξ∆N

ξ

(
p(x, ξ)f̂(ξ)

)
dξ

∣∣∣∣

≤ Cr,N

∫
(1+ | ξ |2)−rdξ

where we have used integration by parts for the last equality of the first line, since p(x, ξ)f̂(ξ) is rapidly
decreasing (Schwartz class) in ξ. Choosing r > n/2 shows that | x |2N Pf is bounded for all n. For the
higher derivatives Dα

x with respect to x, we differentiate under the integral sign with respect to x and note
that Dα

x (eix.ξp(x, ξ)) is a sum of terms of the kind ξγDα−γ
x p(x, ξ). But if p(x, ξ) is a symbol of order d, so is

Dα−γ
x p(x, ξ) by definition, and if f̂(ξ) ∈ S, so is | ξ |γ f̂(ξ), so the same argument as above applies to each

term in this sum, and we have Pf ∈ S.

To prove the second statement, let K denote the x-support of p(x, ξ). For f ∈ S, we have:

(Pf)∧(η) =

∫
e−ix.ηeix.ξp(x, ξ)f̂(ξ)dξdx =

∫
q(η − ξ, ξ)f̂(ξ)dξ

where the compact x-support and rapid decay in ξ of p(x, ξ)f̂(ξ) (since f ∈ S implies f̂ ∈ S as well) justifies
the change of integrals above. Here

q(η, ξ) :=

∫
e−ix.ηp(x, ξ)dx

is the partial Fourier transform of p in the x-direction, which is a Schwartz class function in η since p has
compact x-support. In the ξ variable, q(η, ξ) has the same growth properties as p(x, ξ). Putting these two
facts together, we have:

| q(η, ξ) |≤ Ck(1+ | ξ |2)d/2(1+ | η |2)−k/2

which implies that:

| q(η − ξ, ξ) |≤ Ck(1+ | ξ |2)d/2(1+ | η − ξ |2)−k/2 (8)

where we will conveniently choose k to be large enough later on.

Now, let g ∈ S. Then by the Plancherel theorem (iv) of Proposition 1.2.5 and the Cauchy-Schwartz
inequality, we have:

| (Pf, g)0 | = | (P̂ f , ĝ)0 |=
∣∣∣∣
∫
q(η − ξ, ξ)f̂(ξ)ĝ(η)dξdη

∣∣∣∣

≤
∫

| K(η, ξ) |1/2| (1+ | ξ |2)s/2f̂(ξ) || K(η, ξ) |1/2| (1+ | η |2) d−s
2 ĝ(η) | dξdη

≤
(∫

| K(η, ξ) | dη(1+ | ξ |2)s | f̂(ξ) |2 dξ
)1/2(∫

| K(η, ξ) | dξ(1+ | η |2)d−s | ĝ(η) |2 dη
)1/2

(9)

where

K(η, ξ) := q(η − ξ, ξ)(1+ | ξ |2)−s/2(1+ | η |2) s−d
2
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Because of the inequality (8) above, and Peetre’s inequality, we have:

| K(η, ξ) | = | q(η − ξ, ξ)(1+ | ξ |2)−s/2(1+ | η |2) s−d
2

≤ Ck(1+ | ξ |2) d−s
2 (1+ | η |2) s−d

2 (1+ | η − ξ |2)−k/2

≤ Ck(1+ | η − ξ |2) |d−s|−k

2

This shows that by choosing k so that | d− s | −k < −n, or k >| d− s | +n, the integrals:
∫

| K(η, ξ) | dη ≤ A;

∫
| K(η, ξ) | dξ ≤ A

where A < ∞ is independent of ξ, η, so that from the inequality (9) above, we have for f, g ∈ S:

| (Pf, g)0 |≤ ACk ‖f‖s ‖g‖d−s
By the density of S in Hs and Hd−s, we have the same inequality for all f ∈ Hs and all g ∈ Hd−s. Then, by
(iv) of Proposition 3.1.4, we have for f ∈ S that:

‖Pf‖s−d = sup
g∈Hd−s; g 6=0

| (Pf, g)0 |
‖g‖d−s

≤ C ‖f‖s

which proves that P : Hs → Hs−d is bounded, and the proposition follows. 2

Remark 5.2.6. Like the spaces Lp,loc, one can define the localised Sobolev spaces:

Hs,loc(R
n) = {f ∈ S ′ : ψf ∈ Hs(R

n) for all ψ ∈ C∞
c (Rn)}

Then if one drops the compact x-support condition on σ(P ) = p(x, ξ), one observes that the pseudodifferential
operator ψP defined by (ψP )f(x) := ψ(x)Pf(x) will have the symbol σ(ψP ) = ψ(x)p(x, ξ), which will have
compact x- support, so that the previous proposition applied to ψP will yield the fact that ‖(ψP )f‖s−d < ∞
for f ∈ Hs(R

n). That is, Pf ∈ Hs−d,loc for f ∈ Hs. In fact, if one defines a topology on Hs−d,loc by fn → 0
iff ψfn → 0 for each ψ ∈ C∞

c (Rn), then the argument above shows that for a general ψDO P we have
P : Hs → Hs−d,loc a continuous linear map.

Exercise 5.2.7.

(i): Show that the obvious containment Hs ⊂ Hs,loc is strict for each s. In fact, find a function which is in
Hs,loc for every s, but not in Hs for any s.

(ii): Show that the localised analogue of the Sobolev lemma holds. That is, if a tempered distribution f ∈ S ′

is in H∞,loc := ∩s∈RHs,loc then f ∈ C∞. One can no longer conclude, of course, that f or its derivatives
vanish at ∞, i.e. in general f won’t be in C∞

0 .

Corollary 5.2.8 (Infinitely smoothing operators). If P is in Ψ−∞ = ∩dΨd, then P (Hs) ⊂ C∞ for every s. In
particular, P (H−∞) ⊂ C∞. (Such operators are called infinitely smoothing. Thus convolutions with g ∈ S are
infinitely smoothing, by Example 5.2.3.)

Proof: Apply the Remark 5.2.6 and (ii) of the Exercise 5.2.7 above. 2
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5.3. Some Technical Lemmas on ψDO’s. We will need a few lemmas to perform operations with ψDO′s.
We make a a couple of definitions first.

Definition 5.3.1. Let p(x, ξ) ∈ Sd be a symbol of order d with compact x-support K. For an open subset
U ⊂ Rn, we will say that p ∈ Sd(U) if K ⊂ U . Clearly Sd(U) ⊂ Sd(V ) for U ⊂ V .

Definition 5.3.2. Let p, q ∈ Sd(U). We will say p ∼ q if p − q ∈ S−∞(U) := ∩d∈RS
d(U). If d1 > d2 > ... >

dj < ... is a sequence of real numbers with dj → −∞, and pj ∈ Sdj (U) for j = 1, 2, ..,, we will say p ∼∑j pj if

p−∑k−1
j=1 pj ∈ Sdk(U) for all k.

Lemma 5.3.3. Let U be a relatively compact open set in Rn, and let d1 > d2 > ... > dj > ... be a sequence

of real numbers with dj → −∞. Let pj ∈ Sdj (U) for j = 1, 2, ...,. Then for any V containing U , there is a
symbol p ∈ Sd1(V ) and such that p ∼∑j pj in Sd1(V ).

Proof: By definition, there are constants Cjα,β satisfying:
∣∣∣Dα

xD
β
ξ pj(x, ξ)

∣∣∣ ≤ Cjα,β(1+ | ξ |)dj−|β|

for all α, β, j.
Let ψ ≥ 0 be a smooth function in C∞

c (Rn) with ψ(x) ≡ 0 for | ξ |≤ 1 and ψ ≡ 1 for | ξ |≥ 2. Let
1 ≤ r1 ≤ r2... < rj < ... be a sequence of positive real numbers with limj→∞ rj = ∞. We define the symbol:

p(x, ξ) =

∞∑

k=1

ψ(r−1
k ξ) pk(x, ξ)

For a fixed ξ, | r−1
j ξ |≤ 1 for j large enough, so ψ(r−1

j ξ) ≡ 0 for j large enough, and the sum on the right is
finite, and makes sense. Also, since the x-support of each pj is contained in U , the x-support of p is contained

in U , which is compact. Thus the x-support of p is contained in every open set V ⊃ U .

To make p a symbol in Sd1(V ), we need to make a careful choice of rj . For each multi-index γ, let Aγ > 0
be a constant so that:

| Dγ
ξψ(ξ) |≤ Aγ for all ξ

Then, since rj ≥ 1 for all j, it follows that:

| Dγ
ξψ(r−1

j ξ) |≤ Aγr
−|γ|
j for each multi-index γ and all | ξ |≤ 2rj ; ≡ 0 for | γ |> 0, | ξ |> 2rj

Thus, for any choice of 1 ≤ r1 < r2 < ... < rj < ..., we have:

| Dα
xD

β
ξ (ψ(r−1

j ) pj(x, ξ) | ≤
∑

γ≤β

∣∣∣∣∣
β!Dγ

ξψ(r−1
j ξ)Dα

xD
β−γ
ξ p(x, ξ)

(γ)!(β − γ)!

∣∣∣∣∣

≤
∑

γ≤β
β!AγC

j
α,β−γ(1+ | ξ |)dj−|β|+|γ|r−|γ|

j ≤
∑

γ≤β
β!AjC

j
α,β−γ(1+ | ξ |)dj−|β|(1 + 2rj)

|γ|r−|γ|
j

≤ M j
α,β(1+ | ξ |)dj−|β| (10)

where:

M j
α,β := β!

∑

γ≤β
3|γ|AγCα,β−γ

is a positive constant independent of any choice of the sequence 1 < r1 < r2.. < rj < .... This shows that

ψ(r−1
j ξ)pj(x, ξ) is also a symbol of order dj , and lies in Sdj (U) ⊂ Sdj (V ).

For each k ∈ Z+, define:

Mk = sup{Mk
α,β :| α |≤ k, | β |≤ k}
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Now choose a sequence of numbers rk > 0 such that rk → ∞ and:
∞∑

k=2

Mk

(1 + rk)dk−1−dk
= C < ∞ (11)

We need to check that p is a symbol of order d1. In fact, we make the more general:

Claim:

qj :=
∑

k≥j
ψ(r−1

k ξ) pk(x, ξ)

is a symbol of order dj .

Let α, β be multi-indices with | α |, | β |≤ m. It is clearly enough to check the decay condition for Dα
xD

β
ξ qj on

the set | ξ |≥ rm. Also, since ψ(r−1
i ξ)pi(x, ξ) is in Sdi(U), the finite sum:

ψ(r−1
j ξ) pj(x, ξ) + .....+ ψ(r−1

m−1ξ) pm−1(x, ξ)

is clearly a symbol of order max{dj , dj+1, .., dm−1} = dj . Thus we just need to verify that:

| Dα
xD

β
ξ (qm) |≤ (const)(1+ | ξ |)dj−|β| for all | ξ |≥ rm

We have from (10) that:

| Dα
xD

β
ξ (qm) |≤

∑

s≥0

∣∣∣Dα
xD

β
ξ

[
ψ(r−1

m+sξ) pm+s(x, ξ)
]∣∣∣ ≤

∑

s∈F (ξ)

Mm+s
α,β (1+ | ξ |)dm+s−|β| (12)

where:

F (ξ) = {s : s ≥ 0 and rm+s <| ξ |}
since ψ(r−1

m+sξ) ≡ 0 for r−1
m+s | ξ |≤ 1, i.e. for all s such that rm+s ≥| ξ |.

Since | α |, | β |≤ m ≤ m + s, we have Mm+s
α,β ≤ Mm+s for all s ≥ 0. Also, for an s ∈ F (ξ), because

dm+s − dm < 0, and | ξ |> rm+s, we have the inequality:

(1+ | ξ |)dm+s−|β| = (1+ | ξ |)dm+s−dm(1+ | ξ |)dm−|β| ≤ (1 + rm+s)
dm+s−dm(1+ | ξ |)dm−|β|

Plugging these two facts into the inequality (12), and noting that dm − dm+s ≥ dm+s−1 − dm+s for s ≥ 1, we
have:

| Dα
xD

β
ξ (qm) | ≤


 ∑

s∈F (ξ)

Mm+s

(1 + rm+s)dm−dm+s


 (1+ | ξ |)dm−|β|

≤


Mm +

∑

s∈F (ξ),s≥1

Mm+s

(1 + rm+s)dm+s−1−dm+s


 (1+ | ξ |)dm−|β|

≤
[
Mm +

∞∑

k=2

Mk

(1 + rk)dk−1−dk

]
(1+ | ξ |)dm−|β|

≤ (Mm + C)(1+ | ξ |)dj−|β|

by the equation (11) and the fact that dm ≤ dj . This proves the Claim that qj ∈ Sdj (V ), and in particular
p = q1 ∈ Sd1(V ).

Also note that for each j, pj(x, ξ) − ψ(r−1
j ξ) pj(x, ξ) has compact support in both x and ξ, so is a symbol

in S−∞(U) ⊂ S−∞(V ). Hence pj(x, ξ) ∼ ψ(r−1
j ξ) pj(x, ξ) in Sdj (V ), so that:

p(x, ξ) −
k−1∑

j=1

pj(x, ξ) ∼ p(x, ξ) −
k−1∑

j=1

ψ(r−1
j ξ) pj(x, ξ) = qj(x, ξ)

and since qj ∈ Sdj (V ), it follows that p ∼∑∞
j=1 pj in Sd1(V ) and the proposition follows. 2
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The other technical lemma one needs stems from the following observation. Let P be a ψDO given by the
symbol p(x, ξ). Suppose f ∈ D, and we write the formula for Pf , viz.,

Pf =

∫
eix.ξp(x, ξ)f̂(ξ)dξ

=

∫
eix.ξp(x, ξ)

∫
e−iy.ξf(y)dydξ

which can be viewed (by interchanging the orders of integration) as a special case of:

Kf :=

∫
ei(x−y).ξa(x, y, ξ) f(y)dξdy (13)

where a(x, y, ξ) = a(x, x, ξ) = p(x, ξ) for all y. The natural question is: do we enlarge the class of ψDO’s by
using the formula (13) instead of the formula for Pf in terms of p(x, ξ) in the first line above ?

This is answered by the following definition and lemma.

Definition 5.3.4. A bi-symbol a(x, y, ξ) of order d is a smooth function on Rn × Rn × Rn → homC(Ck,Cm)
which satisfies:

(i): The x-support of a is compact.

(ii):
∣∣∣Dα

yD
β
xD

γ
ξ a(x, y, ξ)

∣∣∣ ≤ Cα,β,γ(1+ | ξ |)d−|γ|, where | | on the left hand side denotes Hilbert-Schmidt

norm, as usual.

By this definition, a symbol p(x, ξ) ∈ Sd with compact x-support is a bi-symbol of order d, with a(x, y, ξ) :=
a(x, x, ξ) := p(x, ξ) for all y.

Now we have the answer to our earlier question, in the following:

Lemma 5.3.5. Let a(x, y, ξ) be a bi-symbol of order d, and define the operator K by:

Kf(x) =

∫
ei(x−y).ξa(x, y, ξ)f(y)dydξ for f ∈ D

Then K is a ψDO of order d whose symbol k has the asymptotic expansion (i.e. upto a symbol in S−∞) given
by:

k(x, ξ) ∼
∑

α

dαξD
α
y a(x, y, ξ)|y=x

α!
(14)

Note that in the special case when a(x, y, ξ) = a(x, x, ξ) = p(x, ξ) for all y, i.e. the bi-symbol is actually a
symbol in disguise, we have Dα

y ≡ 0 for all | α |> 0, and the expansion above reduces to just its first α = 0
term, viz. a(x, x, ξ), and this is as it should be.

Proof: We will as usual simplify by assuming that k = m = 1, because the proof is the same. Since the formula
for Kf in the statement of this lemma is being defined on f ∈ D = C∞

c (Rn), we can write f = ψ(y)f(y) where
ψ ≡ 1 on supp f , so that in the formula above, a(x, y, ξ) is replaced by a(x, y, ξ)ψ(y), and we lose no generality
in assuming that the y-support of a(x, y, ξ) is also compact.

Define the function:

q(x, ρ, η) :=

∫
e−iy.ρ a(x, y, η)dy (15)

which is the Fourier transform of a(x, y, η) in the y-direction. From this, it follows that:

Dα
y a(x, y, η)|y=x =

∫
eiy.ρραq(x, ρ, η)dρ|y=x =

∫
eix.ρq(x, ρ, η)dρ (16)
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Now we do some formal manipulations to express Kf in the form of a pseudodifferential operator with some
symbol, and then check that the alleged symbol is actually a symbol. First note that by the Fourier inversion
formula: ∫

e−iy.ξ a(x, y, ξ)f(y)dy =

∫
e−iy.ξ a(x, y, ξ)

∫
eiy.η f̂(η)dηdy

=

∫ (∫
e−iy.(ξ−η) a(x, y, ξ)dy

)
f̂(η)dη =

∫
q(x, ξ − η, ξ)f̂(η)dη

where the interchange of integrals is allowed since a(x, y, ξ) has compact y-support, and f ∈ D implies f̂(η)

has rapid decay in η. We also need a precise estimate on the decay of q(x, ξ − η, ξ)f̂(η). Since q(x, η, ξ) has
rapid decay in η as stated above, and the same decay as a(x, y, ξ) in ξ, we have, for each k ≥ 0

| q(x, η, ξ) |≤ Ck(1+ | ξ |)d(1+ | η |)−k (17)

Since f̂(η) is rapidly decreasing, we also have, for the same k:

| f̂(η) |≤ Ck(1+ | η |)−k

where Ck above (and below) is a generic constant depending on k. Hence:

| q(x, ξ − η, ξ)f̂(η) | ≤ Ck(1+ | ξ |)d(1+ | ξ − η |)−k(1+ | η |)−k

≤ Ck(1+ | ξ |)d(1+ | ξ |)−k = Ck(1+ | ξ |)d−k

by using the Peetre inequality (see the proof of Proposition 3.3.2) for k/2 > 0 and the fact that the ratio of
(1 + r2)k/2 and (1 + r)k is bounded above and below by strictly positive constants independent of r ≥ 0. By

choosing k large enough, we see that | q(x, ξ − η, ξ)f̂(η) | is integrable over Rn in ξ, as well as η (since it is
rapidly decreasing in the middle variable).

Now,

Kf(x) =

∫
ei(x−y).ξa(x, y, ξ)f(y)dydξ =

∫
eix.ξ

(∫
e−iy.ξ a(x, y, ξ)f(y)dy)

)
dξ

=

∫
eix.ξ

(∫
q(x, ξ − η, ξ)f̂(η)dη

)
dξ =

∫
eix.η

(∫
eix.(ξ−η)q(x, ξ − η, ξ)dξ

)
f̂(η)dη

=

∫
eix.ηp(x, η)f̂(η)dη

where the interchange of ξ and η variables is allowed because of the last paragraph, and where we have
introduced the function:

p(x, η) :=

∫
eix.(ξ−η)q(x, ξ − η, ξ)dξ

Now we check the decay of the derivatives of p(x, η) in both variables. This is easily done by changing
variables ρ := ξ − η, so that:

p(x, η) =

∫
eix.ρq(x, ρ, η + ρ)dρ

Applying the estimate (17) above for q, we have:

| p(x, η) | ≤ Ck

∫
(1+ | η + ρ |)d(1+ | ρ |)−kdρ ≤ Ck

∫
(1+ | ρ |)|d|(1+ | η |)d(1+ | ρ |)−kdρ

≤ Ck(1+ | η |)d
[∫

(1+ | ρ |)|d|−kdρ

]
≤ Ck(1+ | η |)d

where we have used Peetre’s inequality in the first line above, and chosen k >| d | +n. Similarly, by writing

down the corresponding estimates for Dα
xD

β
ξ q(x, η, ξ) analogous to (17), one can deduce the estimates for

Dα
xD

β
η p(x, η) using exactly the same arguments.



ELLIPTIC COMPLEXES AND INDEX THEORY 37

To get the asymptotic formula for p(x, η), first expand the function q(x, ρ, η+µ) by Taylor’s theorem in the
third variable, to obtain:

q(x, ρ, η + µ) =
∑

|α|≤k

dαη q(x, ρ, η)

α!
µα + qk(x, ρ, η;µ) (18)

where qk(x, ρ, η;µ) is a constant times integral of the derivative dk+1
η q(x, ρ, η + tµ) over 0 ≤ t ≤ 1. Analogous

to the inequality (17), since a(x, y, η) is compactly supported (hence rapidly decreasing) in the middle variable,
that, for all p ≥ 0:

| qk(x, ρ, η;µ) | ≤ Ck sup
0≤t≤1

| dk+1
η q(x, ρ, η + tµ) |≤ Ck sup

0≤t≤1
(1+ | η + tµ |)d−k−1(1+ | ρ |)−p

≤ sup
0≤t≤1

Ck(1+ | tµ |)k+1−d(1+ | η |)d−k−1(1+ | ρ |)−p

≤ Ck(1+ | µ |)k+1−d(1+ | η |)d−k−1(1+ | ρ |)−p

by Peetre’s inequality, for if k >> 0, we have | d− k − 1 |= k + 1 − d ≥ 0. Hence:

| qk(x, ρ, η; ρ) |≤ Ck(1+ | ρ |)k+1−d−p(1+ | η |)d−k−1

Thus, by choosing p > k + 1 − d+ n, we see that:

| pk(x, η) |:=|
∫
eix.ρqk(x, ρ, η; ρ)dρ |≤ Ck(1+ | η |)d−k−1 (19)

and is a symbol in Sd−k−1. Hence, putting together the equations (16) and (18) we have:

p(x, η) =

∫
eix.ρq(x, ρ, η + ρ)dρ

=

∫
eix.ρ


∑

|α|≤k

dαη q(x, ρ, η)

α!
ρα


 dρ+ pk(x, η)

=
∑

|α|≤k

dαηD
α
y a(x, y, η)y=x

α!
+ pk(x, η)

which proves the proposition, in view of the fact that pk(x, η) ∈ Sd−k−1 for all k. 2

Corollary 5.3.6. Let a and K be as in the previous Proposition 5.3.5. If a(x, y, ξ) vanishes in a neighbourhood
of the diagonal ∆ := {(x, x, ξ)}, then the ψDO is infinitely smoothing.

Proof: By hypothesis, Dα
y a(x, y, ξ)|x=y ≡ 0, and the asymptotic series of the previous proposition implies the

symbol σ(K) = k(x, ξ) is equivalent to 0, i.e. is a symbol in S−∞. 2

The next corollary is the key to many patching arguments for ΨDO’s that are going to be used on compact
manifolds.

Corollary 5.3.7. Let ψ := (ψ1, ψ2) ∈ C∞
c (Rn)×C∞

c (Rn) be a pair of compactly supported smooth functions,
and let P ∈ Ψd be a pseudodifferential operator of order d. Then the operator defined by:

(Pψf)(x) := ψ1(x)P (ψ2f) for f ∈ S
is also a ψDO in Ψd.

Proof: By definition, for f ∈ S, we have:

(Pψf)(x) = ψ1(x)

∫
eix.ξp(x, ξ)(ψ2f)∧(ξ)dξ =

∫
ei(x−y).ξψ1(x)p(x, ξ)ψ2(y)f(y)dydξ

which, by Proposition 5.3.5, implies that it is a ψDO of order d, because the bisymbol

a(x, y, ξ) = ψ1(x)p(x, ξ)ψ2(y)

is a bi-symbol of order d, with compact x and y support. 2
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If L =
∑

|α|≤d aα(x)Dα
x is a linear differential operator, then we have the obvious fact that Lf vanishes

identically on any neighbourhood on which f vanishes identically. i.e.

supp (Lf) ⊂ supp f

for f ∈ C∞. This property is expressed by saying that linear differential operators are local, they read only
the local behaviour of f . This is clearly false for pseudodifferential operators, because for example we can take

f ∈ C∞
c , which is everywhere ≥ 0, and convolve it with an everywhere > 0 Schwartz class function like e−|x|2

(which is an infinitely smoothing ψDO by the example 5.2.3, and note that g ∗ f will be strictly positive at all
points. However, ψDO’s have the property that they diminish singular support, i.e.

Proposition 5.3.8 (ψDO’s are pseudolocal). If f ∈ Hs for some s ∈ R, and if f|U is a smooth function on
some open set U ⊂ Rn, then for every P ∈ Ψ∞, we have Pf is smooth on U .

Proof: Let x ∈ U , and let ψ1 ∈ C∞
c (U) with ψ1 ≡ 1 on a neighbourhood V ⊂ U of x. Let ψ2 ∈ C∞

c (U) with
ψ2 ≡ 1 on a neighbourhood W ⊂ W ⊂ U of the support of ψ1. Clearly, ψ2f ∈ C∞

c (U), and hence ψ2f ∈ S.
By the Proposition 5.2.5, we have Pψ2f ∈ S.

On the other hand, since ψ1P (1 − ψ2) is defined by the bi- symbol:

a(x, y, ξ) = ψ1(x)p(x, ξ)(1 − ψ2(y))

where p = σ(P ), it is easily checked to be of the same order as p. Also since (1−ψ2(y)) vanishes identically for y
contained in the neighbourhood W of suppψ1, it follows that a(x, y, ξ) vanishes identically on a neighbourhood
of the diagonal. Thus the pseudodifferential operator ψ1P (1 − ψ2) is infinitely smoothing, by the Corollary
5.3.6 above. Hence, in the neighbourhood V of x, since ψ1 ≡ 1, we have

Pf = ψ1Pf = ψ1Pψ2f + ψ1P (1 − ψ2)f

and both the terms on the right are smooth on V . Hence the proposition. 2

5.4. The algebra of ψDO’s. When H is a separable Hilbert space, there is the (non- commutative) algebra
L(H) of bounded linear operators on H, with multiplication given by composition, and a star operarion given
by adjoints. Inside L(H), there is the closed two-sided ideal of compact operators, denoted K(H). Finally, we
pass to the quotient, and obtain the Calkin algebra C(H) := L(H)/K(H). The so-called Fredholm operators
are defined to be the invertible elements in CH), i.e. they are invertible modulo compact operators. (These
matters will be delved in a future section).

We would like to mimic all this for pseudodifferential operators, with the role of compact operators being
played by infinitely smoothing operators. The first task is to define composition and adjoints of ψDO’s.

Definition 5.4.1 (Adjoints). Let P be a ψDO. For f ∈ S, define the adjoint P ∗ of P by the formula:

(P ∗f, g) =

∫
〈P ∗f(x), g(x)〉 dx = (f, Pg) =

∫
〈f(x), Pg(x)〉 dx for all g ∈ S

This certainly defines P ∗f as a tempered distribution, for each f ∈ S. We will eventually check that P ∗ is also
a ψDO of the same order as P .

For P,Q, two ψDO′s, one defines the composite PQ by (PQ)f = P (Qf) for all f ∈ S, which makes sense
since Pf ∈ S for f ∈ S by the Proposition 5.2.5.

Definition 5.4.2 (Support of a ψDO). We will say that a ψDO P is supported in a compact set K if:

(i): suppPf ⊂ K for all f ∈ C∞
c (Rn).

(ii): Pf ≡ 0 if f ∈ C∞
c (Rn) and supp f ∩K = φ

In this event we will say suppP = K.
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Exercise 5.4.3. If P ∈ Ψd, and suppP ⊂ K, then the x-support of p(x, ξ) = σ(P ) is contained in K. The
converse is false in general, but clearly true for differential operators.

Now we can state the main proposition.

Proposition 5.4.4. Let P ∈ Ψd with symbol σ(P ) = p and Q ∈ Ψe with symbol σ(Q) = q be two ψDO’s,
with suppP, suppQ in some compact set K ⊂ Rn. Then:

(i): P ∗ is a ψDO of order d, supported in K, and its symbol is given by the asymptotic formula:

σ(P ∗) ∼
∑

α

dαxD
α
ξ p

∗(x, ξ)

α !

where p∗(x, ξ) = pt(x, ξ), the matrix adjoint of p.

(ii): The composite PQ is a ψDO of order d+ e, supported in K, and its symbol is given by the asymptotic
expansion:

σ(PQ) ∼
∑

α

dαξ pD
α
x q

α !

Proof: We have to just write down a suitable bi-symbol for P ∗ and PQ, and appeal to the Proposition 5.3.5.
First, for the adjoint we have for, f, g ∈ S and 〈−,−〉 denoting the Hermitian inner product on Cm, that:

(f, Pg) =

∫
〈f(y), Pg(y)〉 dy =

∫
e−iξ.y 〈f(y), p(y, ξ)ĝ(ξ)〉 dξdy

=

∫
e−iξ.y 〈p∗(y, ξ)f(y), ĝ(ξ)〉 dξdy =

∫ ∫
ei(x−y).ξ 〈p∗(y, ξ)f(y), g(x)〉 dxdξdy

= (P ∗f, g)

where all changes of integrals are allowed by the rapid decay of f and g and compact x-support and rapid
ξ-decay of p(x, ξ)ĝ(ξ):

P ∗f :=

∫
ei(x−y).ξp∗(y, ξ)f(y)dξdy

which is the ψDO corresponding to the bisymbol:

a(x, y, ξ) = p∗(y, ξ)

It is easy to check from the definition (P ∗f, g) = (f, Pg) that the support suppP ∗ ⊂ K if suppP ⊂ K. Also
the y-support of a(x, y, ξ) is contained in K, by the previous Exercise 5.4.3, and the ξ-decay is the same as
that of p∗, which is the same as that of p. So, by the Proposition 5.3.5, we have that P ∗ is a ψDO of order d,
and its symbol has the asymptotic expansion:

σ(P ∗) ∼
∑

α

dαξD
α
xp

∗(x, ξ)

α !

which proves (i) of our proposition.

To see (ii), let us first note that if r(y, ξ) := σ(Q∗), the symbol of Q∗, then by definition we have for f ∈ S
that:

Q∗g(y) =

∫
eiy.ξr(y, ξ)ĝ(ξ)(y)dy

Now, for f ∈ S, we have:

(Q̂f , ĝ) = (Qf, g) = (f,Q∗g) =

∫
〈f(y), (Q∗g)(y)〉 dy

=

∫ 〈
f(y), eiy.ξr(y, ξ)ĝ(ξ)

〉
dξdy

=

∫ 〈∫
e−iy.ξr∗(y, ξ)f(y)dy, ĝ(ξ)

〉
dξ
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which implies that:

Q̂f(ξ) =

∫
e−iy.ξr∗(y, ξ)f(y)dy (20)

Now, letting p(x, ξ) = σ(P ), we have by definition, and substitution from (20) above:

PQf(x) =

∫
eix.ξp(x, ξ)(Q̂f)(ξ)dξ =

∫
ei(x−y).ξp(x, y)r∗(y, ξ)f(y)dydξ

which is in the form required by the Lemma 5.3.5, with the bi-symbol:

a(x, y, ξ) = p(x, ξ)r∗(y, ξ)

which, by the self-same lemma shows that PQ is a pseudodifferential operator whose symbol has the asympttotic
expansion:

σ(PQ) ∼
∑

α

dαξD
α
y (p(x, ξ)r∗(y, ξ))|y=x

α !
=
∑

γ,α

dα−γ
ξ p(x, ξ)dγξD

α
y r

∗(y, ξ)|y=x

γ !(α− γ)!

=
∑

ρ,δ

dρξp(x, ξ)d
δ
ξD

ρ+δ
y r∗(y, ξ)|y=x

ρ!δ!
=
∑

ρ

dρξp(x, ξ)D
ρ
x

ρ !

(∑

δ

dδξD
δ
xr

∗(x, ξ)

δ !

)

Now, since Q = (Q∗)∗, and the symbol of Q∗ is r(x, ξ), we have by the part (i) above:

σ(Q) = q(x, ξ) ∼
∑

δ

dδξD
δ
xr

∗(x, ξ)

δ !

which on substitution into the last equation above yields:

σ(PQ) ∼
∑

ρ

dρξp(x, ξ)D
ρ
xq(x, ξ)

ρ !

and proves (ii) of our proposition. The statements about the supports are readily verified, and left as an

exercise. 2

Corollary 5.4.5. Denote by Ψd
K the space of ψDO’s with support in K, and let Ψ−∞

K := ∩dΨd
K , and Ψ∞

K :=
∪dΨd

K . Then, by the previous proposition, Ψ∞
K is a (non-commutative) algebra with adjoints.

5.5. Ellipticity.

Notation : 5.5.1. From this point onwards, the letter “P” will always denote a linear differential operator or
order d, so that its symbol p(x, ξ) will always be a polynomial in ξ, with coefficients as smooth matrix-valued
functions in x. In this situation, suppP is contained in K iff the x-support of p(x, ξ) is contained in K.

Definition 5.5.2. A differential operator P is said to be elliptic over an open set U ⊂ Rn if:

(i): There exists a constant C > 0 such that for some V ⊃ U , p(x, ξ) is an invertible linear transformation
for all x ∈ V and all | ξ |≥ C, and furthermore,

(ii): The Hilbert-Schmidt norm of the matrix p(x, ξ)−1 for | ξ |≥ C satisfies:

| p(x, ξ)−1 |≤ A(1+ | ξ |)−d for x ∈ V, | ξ |≥ C

In this event, we say that p(x, ξ) is an elliptic symbol of order d over U .
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Example 5.5.3. It is trivial to check that for any positive integer d, the symbol:

p(x, ξ) = (1+ | ξ |2)d

is an elliptic symbol of order 2d. If we take a(x) ∈ C∞
c with support a compact set K, then the symbol:

p(x, ξ) = a(x)(1+ | ξ |2)d

will be elliptic over any open set U whose closure is contained in K. Thus elliptic symbols of all even orders
exist.

Definition 5.5.4 (Leading symbol). For a differential operator P =
∑

|α|≤d aα(x)Dα
x of order d, we define its

leading symbol as:

σL(P ) :=
∑

|α|=d
aα(x)ξα

Here is a simple criterion for checking ellipticity of a linear differential operator.

Lemma 5.5.5. P is elliptic over U iff σL(P ) is elliptic over U .

Proof: Let P be elliptic over U , of order d, with symbol p(x, ξ). By definition, for | ξ |≥ C, p(x, ξ) is invertible
for x ∈ V ⊃ U . Let q(x, ξ) := (p(x, ξ))−1 for x ∈ V , and | ξ |≥ C. For t > 1, we have by (ii) of the Definition
5.5.2 that for x ∈ V and | ξ |≥ C.

Id = p(x, tξ)q(x, tξ) = t−dp(x, tξ).tdq(x, tξ)

On taking limits, we find that limt→∞ t−dp(x, tξ) = σL(P )(x, ξ), for all x, ξ. This implies that

lim
t→∞

tdq(x, tξ)

exists and is finite for x ∈ V and | ξ |≥ C. Call this limit r(x, ξ). It follows that r(x, ξ) is the inverse of
σL(P )(x, ξ).

Since
| q(x, tξ) |≤ A(1 + t | ξ |)−d for x ∈ V, | ξ |≥ C

we clearly have:
| r(x, ξ) |≤ B(1+ | ξ |)−d for x ∈ V, | ξ |≥ C

Thus it follows that r(x, ξ) = (σL(P )(x, ξ))−1 for x ∈ V and | ξ |≥ C, and that σL(P ) fulfils both (i) and (ii)
of 5.5.2, and hence is an elliptic symbol.

To check the converse, one merely writes:

p(x, ξ) = σL(P )(x, ξ)(I − k(x, ξ))

where | k(x, ξ) |< 1 for | ξ | large enough. Then one uses the geometric series expansion to get

p(x, ξ)−1 = (σL(P )(x, ξ)−1(I + k(x, ξ) + k(x, ξ)2 + ....+ ...)

for | ξ | large enough. We leave the estimate for | p(x, ξ)−1 | as an exercise, it follows from the corresponding
estimate for σL(P )−1. 2

Example 5.5.6. IfM is a Riemannian manifold, then in a local coordinate chart U , we can write the Laplacian
of M as:

∆ = −
∑

i,j

gij∂i∂j + (lower order terms)

so that on the coordinate chart U , its leading symbol is −∑i,j g
ij(x)ξiξj , which is certainly elliptic of order 2

all over U , since [gij(x)] is a positive definite quadratic form for each x.

Definition 5.5.7. Let P ∈ Ψd. We say that the ψDO Q is a parametrix for P if Q ∈ Ψ−d, and PQ − I and
QP − I are infinitely smoothing operators (i.e. are elements of Ψ−∞).
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Remark 5.5.8. Note that if P is elliptic of order d over U , σ(P ) = p(x, ξ)−1 exists for all x ∈ V and | ξ |≥ C.
It follows that p(x, ξ) is everywhere non-vanishing for x ∈ V ⊃ U and | ξ |≥ 2C. Thus, if the support of p is a
compact set K (⇔ suppP = K, since P is a differential operator) we must have K ⊃ V .

Definition 5.5.9. Let us say a symbol s(x, ξ) is infinitely smoothing over V if ψ(x)s(x, ξ) ∈ S−d(V ) for all
ψ ∈ C∞

c (V ), and all d. (See the Definition 5.3.1). A ψDO P is said to be infinitely smoothing over V if its
symbol p(x, ξ) is infinitely smoothing over V .

Clearly, since C∞
c (U) ⊂ C∞

c (V ) for U ⊂ V , we have s is infinitely smoothing over U if it is infinitely
smoothing over V ⊃ U .

Lemma 5.5.10. Let p(x, ξ) be an elliptic symbol over U , of order d, and let V , C be as in the Definition 5.5.2,
with U ⊂ V . Then there exists a symbol q0 ∈ S−d such that:

(i): pq0−I and q0p−I are infinitely smoothing over V1, where V1 is any open set satisfying U ⊂ V1 ⊂ V 1 ⊂ V .

(ii): If p has compact x-support, with suppx p = K, then the x-support of q0 satisfies:

suppx q0(x, ξ) ⊂ V ⊂ V ⊂ K

Proof: By hypothesis,

| p(x, ξ)−1 |≤ A(1+ | ξ |)−d for x ∈ V, | ξ |≥ C

Let φ(t) ∈ C∞
c (R) such that φ ≡ 0 for t ≤ C and φ ≡ 1 for t ≥ 2C. Define:

q0(x, ξ) = φ(| ξ |)p(x, ξ)−1 for x ∈ V

Multiplying q0 above with a function ψ ∈ C∞
c (V ) which is ≡ 1 on the subset V1 ⊂ V , we can assume that

q0(x, ξ) is defined for all x ∈ Rn, and the above equation defining q0 holds good for all x ∈ V1.

Thus pq0 − I and q0p − I are equal to (φ(| ξ |) − 1)I for all x ∈ V1 and all ξ. Since φ(| ξ |) − 1) ≡ 0 for
| ξ |≥ 2C, the operator (φ(| ξ |) − 1)I is infinitely smoothing over V1. The proof that q0 obeys the decay
conditions for a ψDO of order (−d) follows from the decay condition for | p(x, ξ)−1 | in (ii) of the Definition
5.5.2, and formulas like:

Dxj
(p−1) = −p−1(Dxj

p)p−1, Dξj
(p−1) = −p−1(Dξj

p)p−1

combined with Leibnitz’s rule. This proves (i).

For the statement about x-supports, note that if x-support of p is K, then by the Remark 5.5.8, we have
V ⊂ K, the x-support of p. Since we have multiplied by the compactly supported function ψ ∈ C∞

c (V ) right
after the definition of q0, we have that the support of q0 is a compact subset of V , and (ii) follows. 2

Proposition 5.5.11 (Parametrices for elliptic operators). Let P be an elliptic differential operator of order
d, elliptic over U . Assume that suppP ⊂ K. Let V ⊃ U as in the Definition 5.5.2. Then, there exists a ψDO
Q of order −d such that for any open set V1 satisfying:

U ⊂ V1 ⊂ V 1 ⊂ V

PQ− I and QP − I are infinitely smoothing over V1.

Proof: Note that by the Remark 5.5.8 above, we must have K ⊃ V ⊃ U .

Define q0 ∈ S−d by Lemma 5.5.10 above, so that pq0 − I and q0p− I are infinitely smoothing over V1. For
k > 0, we would like to satisfy the formula σ(PQ− I) ∼ 0 and σ(QP − I) ∼ 0, and we would like q = σ(Q) to
be a sum:

q ∼ q0 + q1 + ...qj + ...
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with qj ∈ S−d−j , in accordance with the Lemma 5.3.3. From (ii) of the Proposition 5.4.4, we see that
σ(PQ− I) ∼ 0 results in the requirements:

pq0 − I ∼ 0; and
∑

0≤|α|≤k

dαξ pD
α
x qk−|α|

α !
∼ 0 for k > 0

where the sum on the right is the homogeneous component of σ(PQ − I) which lies in S−k for k > 0 (Note
that Dα

ξ p ∈ Sd−|α| and Dα
x qk−|α| ∈ S−d−k+|α|). The first is already satisfied by the definition of q0 and the

Lemma 5.5.10, and the second may be rewritten as:

pqk ∼ −
∑

0<|α|≤k

dξp
αDα

x qk−|α|
α !

for k > 0

where the right hand side involves only q0, ..., qk−1. Since q0p ∼ I, we might as well multiply both sides on the
left by q0, and define qk by the inductive formula:

qk = −q0
∑

0<|α|≤k

dαξ pD
α
x qk−|α|

α !
for k > 0

Indeed, from this inductive definition, it inductively follows that qk ∈ S−d−k for all k.

If suppxp = K, then by (ii) of the Lemma 5.5.10 above, we have suppxq0 ⊂ V ⊂ V ⊂ K, and by the
definition of qk, we also have suppxqk ⊂ V ⊂ V ⊂ K for all k. Then, if one defines q ∼ ∑

j qj by the Lemma

5.3.3, q will be supported in a subset of V . At any rate, since the inductive definition forces PQ − I ∼ 0 on
V1, we have that PQ− I is infinitely smoothing on V1.

By a similar procedure, one may define Q′ ∈ S−d such that Q′P − I is infinitely smoothing on V1. But then
since pre or post-composing an infinitely smoothing operator with any ψDO leads to an infinitely smoothing
operator (by (ii) of Proposition 5.4.4), we have:

Q′ ∼ Q′.I ∼ Q′PQ ∼ I.Q ∼ Q

on V1. The proposition follows. 2

6. ψDO’s and Elliptic Operators on Compact Manifolds

We revert to the setup of §4. Let E,F be smooth complex vector bundles on a compact manifold M , and
let {Ui}Ni=1 be an open covering of M such that Ui is diffeomorphic to Rn for each i, and the restricted bundles
E|Ui

and F|Ui
are both trivial (of ranks k and m respectively). {λi} is a smooth partition of unity subordinate

to {Ui}.

6.1. Basic definitions and lemmas.

Definition 6.1.1. Let P : C∞(M,E) → C∞(M,F ) be a C-linear operator. We say P is a ψDO or pseudo-
differential operator on M of order d if for all i, j ∈ 1, 2, ..., N , and all ψ ∈ C∞

c (Uj) and φ ∈ C∞
c (Ui), the

“localised operators”

ψPφ : C∞(Ui, E|Ui
) → C∞(Uj , F|Uj

)

are ψDO′s of order d, where (the domain and target are identified with Ek and Em respectively). That this
definition makes sense follows from the Corollary 5.3.7. The C-vector space of these ψDO’s of order d is
denoted Ψd(M), where we have suppressed E, F from the notation for brevity.

Furthermore, we will call P as above a linear differential operator of order d if all the localisations above
are differential operators of order d. We will call it an elliptic differential operator if each of these localisations
ψPφ are elliptic over each open set U satisfying U ⊂ {x : φ(x)ψ(x) 6= 0} ⊂ Ui ∩ Uj .

We now have an analogue of the Proposition 5.2.5.
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Proposition 6.1.2. Let P : C∞(M,E) → C∞(M,F ) be a ψDO of order d. Then P extends to a continuous
(=bounded) linear operator of Hilbert Spaces:

P : Hs+d(M,E) → Hs(M,F )

where the Sobolev spaces Hs+d(M,E) and Hs(M,F ) are as defined in Definition 4.2.1.

Proof: Let {λi} be the partition of unity as described above at the beginning of this section (i.e. as in §4.2),
subordinate to the open covering {Ui}Ni=1. By the foregoing definition, we have λiPλj a ψDO, with symbol of

compact support. Now, for f ∈ C∞(M,E), we compute, using f =
∑N
j=1 λjf|Uj

, that:

‖Pf‖2
s =

∥∥∥∥∥∥

N∑

j=1

Pλjf|Uj

∥∥∥∥∥∥

2

s

≤ C

N∑

j=1

∥∥Pλjf|Uj

∥∥2

s

= C

N∑

i,j=1

∥∥λiPλjf|Uj

∥∥2

s
≤ C

N∑

i,j=1

Cij
∥∥f|Uj

∥∥2

s+d

≤ C ‖f‖2
s+d

where we have used the Definition 4.2.1, Proposition 5.2.5 applied to λiPλj and
∥∥f|Uj

∥∥2

s+d
≤ ‖f‖2

s+d to arrive

at the last line. The proposition follows. 2

Similarly, one can deduce the pseudolocal property of ψDO’s on M by appealing to the Proposition 5.3.8,
whose statement and proof we leave as an exercise.

Proposition 6.1.3. Let P : C∞(M,E) → C∞(M,F ) be a ψDO of order d. Using Hermitian metrics on
E and F , gives global L2-inner products on C∞(M,E) and C∞(M,F ) (which we called (−,−) in (iii) of
Proposition 4.2.2), call them (−,−)E and (−,−)F respectively. Define the L2-adjoint of P by the formula:

(P ∗f, g)E = (f, Pg)F for f ∈ C∞(M,F ), g ∈ C∞(M,E)

Then P ∗ is a ψDO of order d.
If P : C∞(M,E) → C∞(M,F ) is a ψDO of order d, and Q : C∞(M,F ) → C∞(M,G) is a ψDO of order e,

the composite QP : C∞(M,E) → C∞(M,G) is a ψDO of order d+ e.

Proof: Let φ, ψ be as in Definition 6.1.1. Then, by the definition of P ∗, we have:

(φP ∗ψf, g)E = (P ∗ψf, φg)E = (ψf, Pφg)F = (f, ψPφg)F

which implies that φP ∗ψ = (ψPφ)∗. Because the right hand expression is a ψDO of order d by definition 6.1.1
and (i) of Proposition 5.4.4, it follows that P ∗ is a ψDO of order d.

For the composite, note that if P and Q are ψDO’s of orders d and e, and φ and ψ are as in the last
paragraph, we may write:

φPQψ =

N∑

i=1

φPτiλiQψ

where τi ∈ C∞
c (Ui) is a function which is ≡ 1 on the support of λi, and therefore satisfies τiλi ≡ λi for all i.

Now we can appeal to (ii) of the Proposition 5.4.4 to conclude that each term (φPτi)(λiQψ) on the right is a
ψDO of order d+ e, and hence so is their sum. 2
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6.2. Elliptic operators on manifolds and parametrices. Now we come to the most crucial proposition
about elliptic differential operators on compact manifolds.

Proposition 6.2.1 (Parametrices for elliptic operators on manifolds). Let P : C∞(M,E) → C∞(M,F ) be
an elliptic differential operator on the compact manifold M . Then there exists a ψDO Q : C∞(M,F ) →
C∞(M,E) of order −d such that PQ− I and QP − I are infinitely smoothing operators.

Proof: It is enough to construct the “left” parametrix satisfying QP−I ∈ Ψ−∞(M), for by the same argument
as the last paragraph of Proposition 5.5.11, it serves as the “right” parametrix too.

So let λi, Ui be as at the outset of this section. Let us denote:

Wi := {x : λi(x) 6= 0} ⊂ Ui

By the choices and definitions made in the past, the closure W i is a compact subset of Ui for all i = 1, 2., , N .
Let ψi ∈ C∞

c (Ui) with ψi ≡ 1 on W i. Let ρi ∈ C∞
c (Ui) with ρi ≡ 1 on the support suppψi, for i = 1, 2, .., N .

Consider the localisation ψiPρi. It is easy to check that Wi = {x : λi(x) 6= 0} is an open subset of

{x : ψi(x) 6= 0} ∩ {x : ρi(x) 6= 0}
and indeed W i is contained in the intersection above. Thus, by the Definition 6.1.1, ψiPρi is elliptic over Wi.

Since P is a differential operator, and ρi ≡ 1 on suppψi, we have ψiPρi = ψiP for all i = 1, 2, .., N . Thus
ψiP is elliptic over Wi. Also ψiP has support contained in the compact set Ki = suppψi.

Thus, by the Proposition 5.5.11, there exists an open set Vi ⊃ W i and a parametrix Qi which is a ψDO of
order −d such that Qi(ψiP ) − I is infinitely smoothing over Vi. That is, λ(Qi(ψiP − I) is infinitely smoothing
on M for all λ ∈ C∞

c (Vi). In particular, since suppλi = W i is a compact subset of Vi, we have λi(Qi(ψiP )− I)
is in Ψ−∞(M). Hence so is the sum:

∑

i

λi(Qi(ψiP ) − I) =
∑

i

(λiQψi)P − I

since
∑
i λi ≡ 1. But this means that Q :=

∑
i λiQψi is the desired left parametrix. It is of order −d because

each term in this sum is of order −d. 2

One of the deepest consequences of the existence of a parametrix for an elliptic differential operator is the
following proposition.

Proposition 6.2.2 (Garding-Friedrichs Inequality). Let P : C∞(M,E) → C∞(M,F ) be an elliptic differ-
ential operator of order d. Then there exists a constant C > 0 (depending only on P , M , E and F ) such
that:

‖f‖s+d ≤ C (‖Pf‖s + ‖f‖s) for all f ∈ Hs+d(M,E)

Proof: Let Q be the parametrix for P from the previous Proposition 6.2.1. Then, by definition:

f = QPf + Sf

where S : C∞(M,E) → C∞(M,E) is infinitely smoothing. Thus

‖f‖s+d ≤ ‖QPf‖s+d + ‖Sf‖s+d
Since S is in Ψ−∞(M), it is in Ψ−d(M), so by the Proposition 6.1.2, we have:

‖Sf‖s+d ≤ C ‖f‖s
By the same proposition, since Q ∈ Ψ−d(M), we have:

‖QPf‖s+d ≤ C ‖Pf‖s
Thus the desired inequality follows. 2
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Corollary 6.2.3 (An equivalent Sobolev norm). Let P : C∞(M,E) → C∞(M,E) be an elliptic differential
operator of order d. Let (−,−) denote the global L2 inner product on C∞(M,E) as before. Then the norm
associated to the inner product:

〈f, g〉 := (f, g) + (Pf, Pg) f, g ∈ C∞(M,E)

is equivalent to the Sobolev norm ‖ ‖d on C∞(M,E) defined in the Definition 4.2.1. Hence completing
C∞(M,E) with respect to the norm defined by 〈−,−〉 gives exactly the Sobolev space Hd(M,E).

Proof: Let us denote:
‖f‖′

:= 〈f, f〉 1
2

for f ∈ C∞(M,E). Then, noting that (−,−) = (−,−)0, the Sobolev 0-norm, we have

‖f‖
′2

= ‖Pf‖2
0 + ‖f‖2

0

≤ C ‖f‖2
d + ‖f‖2

d ≤ C ‖f‖2
d

where we have used the Proposition 6.1.2, and the fact that ‖f‖0 ≤ ‖f‖d for d ≥ 0 in the last line above.

On the other hand, by the Garding-Friedrichs inequality of 6.2.2, we have:

‖f‖d ≤ C(‖Pf‖0 + ‖f‖0)

≤ C(‖f‖′
+ ‖f‖′

) = 2C ‖f‖′

Thus our proposition follows. Since Hd(M,E) is the completion of C∞(M,E) with respect to ‖ ‖d, and the

last norm is equivalent to ‖ ‖′
, the second statement of the proposition follows. 2

Proposition 6.2.4 (Elliptic Regularity Theorem). Let P =
∑
α aα(x)Dα

x : C∞(M,E) → C∞(M,E) be an
elliptic differential operator of degree d ≥ 1, so that P : D′(M,E) → D′(M,E) gets defined on distributional
sections (see the Definition 4.1.4) by the formula:

Pf(g) = f

(∑

α

(−1)|α|Dα
xaα(x)tg

)
for f ∈ D′(M,E), g ∈ C∞(M,E) = D(M,E)

Let f ∈ D′(M,E) be a distributional solution to:

Pf = g

where g ∈ Hs(M,E). Then f ∈ Hd+s(M,E). In particular, if g is smooth, then f is also smooth.

Proof: Since M is compact, we have from (v) of Proposition 4.2.2 that D′(M,E) = ∪kHk(M,E). Thus
f ∈ Hk(M,E) for some k. Let Q ∈ Ψ−d(M) be a parametrix for P , by the Proposition 6.2.1. Then, by
definition, the operator S := QP − I ∈ Ψ−∞(M) is infinitely smoothing, and we have:

f = QPf + Sf = Qg + Sf

But since g ∈ Hs(M,E) and Q ∈ Ψ−d(M), we have Qg ∈ Hs+d(M,E), by Proposition 6.1.2. Also f ∈
Hk(M,E) and S ∈ Ψ−∞(M) implies S ∈ Ψk−d−s(M,E), so that again by 6.1.2, we have Sf ∈ Hd+s(M,E).
Thus f ∈ Hd+s(M,E).

If g ∈ C∞(M,E), we have g ∈ Hs(M,E) for all s by the Sobolev Embedding Theorem (iv) of Proposition
4.2.2. The last paragraph implies that f ∈ Hs+d(M,E) for all s, i.e. f ∈ H∞(M,E) = C∞(M,E) by the same
proposition. 2
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7. Elliptic operators on Rn

7.1. Parametrices on Rn. It is quite natural to ask what the analogues of the results obtained in the last
section are in the setting of Rn.

Definition 7.1.1. Let P =
∑
α aα(x)Dα

x be a linear differential operator of order d. Then say that P is elliptic
if it is elliptic over a neighbourhood U of each point x ∈ Rn (in the sense of Definition 5.5.2. (Note that this
is weaker than saying that it is elliptic over Rn, because we are not demanding one single constant C for all
x ∈ Rn)

Proposition 7.1.2 (Existence of parametrices). Let P be an elliptic linear differential operator on Rn of order
d. Then there exists a q(x, ξ) of such that:

(i): ρ(x)q(x, ξ) ∈ S−d for all ρ ∈ C∞
c (Rn).

(ii): For a relatively compact subset W ⊂ Rn, let ρ ∈ C∞
c (Rn) with ρ(x) ≡ 1 for all x ∈ W . Then for the

ψDO Q corresponding to ρ(x)q(x, ξ), the ψDO′s PQ− I and QP − I are infinitely smoothing over W .

Proof: By definition, we have P elliptic over Uα, for {Uα} an open covering of Rn. By appealing to paracom-
pactness and second countability of Rn, we have a countable locally finite open covering {Ui}∞

i=1 of Rn such
that P is elliptic over Ui. Let {λi} be a partition of unity subordinate to {Ui}.

By the Proposition 5.5.11 , there are ψDO’s Qi which satisfy PQi−I is infinitely smoothing over V1,i where

V1,i ⊃ Ui. That is, ρi(PQi − I) = Si, where Si ∈ Ψ−∞ for all ρi ∈ C∞
c (V1,i). If we take ρi ≡ 1 on Ui, we have:

PQi − I = Si; QiP − I = Ti on Ui

where Si, Ti are the restrictions to Ui of some infinitely smoothing operators in Ψ−∞. Since we can replace P
above by ρiP on Ui, we can also assume by the last para of the proof of Proposition 5.5.11 that the x-supports
of qi are compact sets for all i, as are the x-supports of ti = σ(Ti) and si = σ(Si).

The trouble is that Qi and Qj won’t generally agree on the overlaps Ui ∩Uj . However, we do know that for
x ∈ Ui ∩ Uj ,we have:

qi(x, ξ) = σ(Qi) = σ(Qi.I) = σ (Qi(PQj − Sj)) = σ (QiPQj −QiSj) = σ (Qj + TiQj −QjSi)

= qj(x, ξ) + rij(x, ξ)

where rij = σ(Rij) := σ(TiQj −QiSj). By the formula in (ii) of 5.4.4, the symbols σ(TiQj) and σ(QiSj) are
also compactly supported, and we may as well assume that the support suppxrij(x, ξ) is compact for all i, j.

Finally, by 5.5.11, eachRij is the restriction of an infinitely smoothing operator (the pre and post composition
of an infinitely smoothing operator with any ψDO is infinitely smoothing), call it Rij again, to Ui ∩ Uj . Thus
rij ∈ S−∞.

Also note that for x ∈ Ui ∩ Uj we have rij(x, ξ) = −rji(x, ξ), and on the triple intersection Ui ∩ Uj ∩ Uk we
have the cocycle condition on the rij ’s:

rij(x, ξ) + rjk(x, ξ) + rki(x, ξ) = (qi − qj) + (qj − qk) + (qk − qi) = 0 for x ∈ Ui ∩ Uj ∩ Uk
Now we borrow a trick from sheaf theory and define:

ki(x, ξ) =
∑

l

λlril(x, ξ)

since λj are a partition of unity , the sum on the right makes sense. Unfortunately, ki are no longer compactly
supported, and hence the decay conditions on rij(x, ξ) will no longer translate into global decay conditions for
ki. However, for any relatively compact subset W ⊂ Rn, W will meet only finitely many of the locally finite
collection Ui, say for i ∈ F . Then, since we have conditions:

| Dα
xD

β
ξ rij(x, ξ) |≤ Cijα,β(1+ | ξ |)−k for all i, j, α, β, k, x
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we will get a corresponding condition:

| Dα
xD

β
ξ ki(x, ξ) |≤ Ci(W )α,β(1+ | ξ |)−k for all i, j, α, β, k, x ∈ W

by majorising all the derivatives of {λl}l∈F upto order α and the Cijα,β over W . This implies that that ki is
infinitely smoothing over every W which is relatively compact.

Also we have:

ki(x, ξ) − kj(x, ξ) =
∑

l

(λlril − λlrjl) =
∑

l

λl(−rli − rjl) =
∑

l

λlrij = rij(x, ξ) for x ∈ Ui ∩ Uj

This implies:

qi(x, ξ) − qj(x, ξ) = ki(x, ξ) − kj(x, ξ) for x ∈ Ui ∩ Uj
which implies that qi(x, ξ) − ki(x, ξ) = qj(x, ξ) − kj(x, ξ) for x ∈ Ui ∩ Uj . Let us define a global function:

q(x, ξ) := qi(x, ξ) − ki(x, ξ) for x ∈ Ui

Then q makes sense all over Rn. It may not be a symbol for the simple reason that ki are no longer globally
defined symbols. However, from the decay properties above for ki on a relatively compact open set W ⊂ Rn,
it is trivial to check that ρQ ∈ S−d for all ρ ∈ C∞

c (Rn). It is also readily verified that if W is a relatively
compact subset of Rn with ρ ≡ 1 on W , and Q is the ψDO corresponding to ρ(x)q(x, ξ), we have σ(PQ− I)
is infinitely smoothing over W . Likewise for QP − I. This proves the proposition. 2

Definition 7.1.3. Let W be a relatively compact (=bounded) open subset of Rn. Define the Sobolev space
H0
s (W ) to be the closure of C∞

c (W ) with respect to the Sobolev s-norm ‖ ‖s. Note that it is a closed subspace
of Hs(R

n) by definition.

Proposition 7.1.4. Let W ⊂ Rn be a relatively compact open set, and let P ∈ Ψd be a ψDO or order d with
symbol p(x, ξ) ∈ Sd. Assume that the support suppxp(x, ξ) is a compact. Then

P : H0
s+d(W ) → Hs(R

n)

is a bounded operator. If further the compact subset K = suppxp(x, ξ) is contained in W , then P is a bounded
operator from H0

s+d(W ) → H0
s (W )

Proof: The first statement is clear from the Proposition 5.2.5, because with the compact x-support hypothesis
imposed on p, we have P : Hs+d(R

n) → Hs(R
n) is a bounded operator, and H0

s+d(W ) is a closed subspace of
Hs+d(R

n), so the restriction to this subspace is also bounded.

For the second statement, let f ∈ H0
s+d(W ), and let fn ∈ C∞

c (W ) be a sequence of smooth functions with
‖fn − f‖s+d → 0. Since p is compactly supported, and fn are clearly Schwartz class, the Proposition 5.2.5
implies that Pfn are smooth Schwartz class functions on Rn. Also, the formula:

Pfn(x) =

∫
eix.ξp(x, ξ)f̂n(ξ)dξ

shows that suppxPfn ⊂ suppxp(x, ξ) = K ⊂ W . Thus Pfn ∈ C∞
c (W ). Also, since the x-support of p is

compact, we have by 5.2.5 that:

‖Pfn − Pfm‖s ≤ C ‖fn − fm‖s+d
Thus {Pfn} is a Cauchy sequence in H0

s (W ), and since it converges to Pf ∈ Hs(R
n), and the subspace H0

s (R
n)

is a closed subspace of Hs(R
n), it follows that Pf ∈ H0

s (W ). By the first part, the restricted operator:

P : H0
s+d(W ) → H0

s (W )

is also a bounded operator. The proposition follows. 2
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Proposition 7.1.5 (Garding-Friedrichs Inequality II). Let W be a relatively compact open subset of Rn, and
let P be a linear differential operator elliptic over W . Then there exists a constant depending only on W and
P such that:

‖f‖s+d ≤ C (‖Pf‖s + ‖f‖s) for f ∈ H0
s+d(W )

Proof: By hypothesis, there is a open set V ⊃ W and a constant C such that that p(x, ξ) is invertible for
x ∈ V and | ξ |≥ C, and the following estimate holds:

| p(x, ξ)−1 |≤ C(1+ | ξ |)−d for x ∈ V, | ξ |≥ C

Let ρ ∈ C∞
c be a smooth function which is identically 1 on V , and hence identically 1 on W . Then since

P is a differential operator, we have ρPf = Pf for all f ∈ C∞
c (W ). Also ρP is clearly elliptic over W by the

above criterion, so without loss of generality, we may assume that p(x, ξ) := σ(P ) has compact x-support.

By the Proposition 5.5.11, there exists a ψDO Q which is of order (−d), also having compact x-support for
its symbol, and satisfying

QP − I = S

where S is infinitely smoothing over V1 ⊃ V . This means τS is in Ψ−∞ for every τ ∈ C∞
c (V1). Let us choose

a τ which is identically 1 on W . Then we have:

f = τf = (τI)f = τ QPf − τSf for f ∈ C∞
c (W )

Thus
‖f‖s+d ≤ ‖τQPf‖s+d + ‖(τS)f‖s+d for f ∈ C∞

c (W )

Since P is a differential operator, Pf ∈ C∞
c (W ) as well, and since τQ is a compactly supported ψDO of

order −d, we have by the first part of the last Proposition 7.1.4 that:

‖τQPf‖s+d ≤ C ‖Pf‖s
Because τS is also a compactly supported ψDO in Ψ−∞ ⊂ Ψ−d, and f ∈ C∞

c (W ), we have similarly:

‖τSf‖s+d ≤ C ‖f‖s
by the same Proposition 7.1.4. Thus we have the desired inequality for all f ∈ C∞

c (W ).

Now let f ∈ H0
s+d(W ). Choose a sequence fn ∈ C∞

c (W ) with fn → f in H0
s+d(W ). Since P has compact

x-support, it follows by the first part of 7.1.4 that Pfn → Pf in Hs(R
n). Since the inclusion H0

s+d(W ) →
Hs+d(R

n) → Hs(R
n) is continuous, we also have fn → f in Hs(R

n). Thus the norms ‖Pfn‖s → ‖Pf‖s and
‖fn‖s → ‖f‖s. Thus we have:

‖f‖s+d = lim
n→∞

‖fn‖s+d ≤ C lim
n→∞

(‖Pfn‖s + ‖fn‖s) = C(‖Pf‖s + ‖f‖s)
which proves the proposition. 2
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8. Operators on Hilbert Spaces and Fredholm Theory

H will always denote a separable complex Hilbert space, with inner product denoted 〈−,−〉, which is C-
linear in the first argument and C-antilinear in the second. B(H) will denote the algebra of bounded operators
on H. For T ∈ B(H), its adjoint is the operator T ∗ ∈ B(H), and is the operator defined by 〈Tx, y〉 = 〈x, T ∗y〉.
This defines an involution on B(H) and makes it C∗-algebra. More generally, for T ∈ B(H1,H2) (=the space of
bounded operators from H1 to H2), the adjoint T ∗ ∈ B(H2,H1) is defined by the formula 〈Tx, y〉2 = 〈x, T ∗y〉1,
where 〈−,−〉i are the inner products in the Hilbert spaces Hi.

8.1. Compact Operators.

Definition 8.1.1 (Compact operator). Let H1, H2 be Hilbert spaces. Then T ∈ B(H1,H2) is said to be a
compact operator if for every bounded sequence xn in H1, the sequence Txn in H2 contains a convergent
subsequence. Because our Hilbert spaces are always assumed separable, this condition is equivalent to saying
that the image T (B) of each bounded set B ⊂ H1 has compact closure in H2. The subset of compact operators
in B(H) is denoted K(H).

Example 8.1.2. Clearly, the identity operator I ∈ B(H) is a compact operator if and only if H is finite
dimensional.

Example 8.1.3 (Linear maps of finite rank). If T : H → H is a bounded linear map such that dim ImT < ∞,
then T is a compact operator. For compactness, note that the Heine-Borel theorem for V = Cn implies that
every bounded subset of V has compact closure. Thus if T has finite dimensional image, the image T (B) of
every bounded subset B ⊂ H would be a bounded subset of the finite dimensional space V = ImT ⊂ H, and
hence have compact closure.

Next, if T ∈ B(H) is such that ker T has finite codimension, i.e. dim (ker T )
⊥
< ∞, then again T is

compact. For then, T would induce a linear embedding:

T̃ : (ker T )⊥ → H
whose image is the same as ImT . But since Im T̃ is finite dimensional, we have dim ImT < ∞ as well, so T is
a bounded operator of finite rank, and a compact operator by the above discussion. Finally, if H is itself finite
dimensional, then EndC(H) = B(H) = K(H).

Example 8.1.4 (Diagonal operators). Let T ∈ B(H), and {en} be an orthonormal basis of H such that
Ten = λnen for every n, where λn ∈ C. Then (exercise) T is compact iff limn→∞ λn → 0.

Example 8.1.5 (The Green Operator on S1). The Hilbert space H := L2(S
1) has an orthonormal basis

{en := eint}n∈Z where 0 ≤ t < 2π is the angle parameter on S1. The Green operator on S1 is the opera-
tor defined by:

G : H → H
en 7→ en

n2
for n 6= 0

7→ 0 for n = 0

In view of the previous example 8.1.4, this operator G is compact. It has the following significance. For the

Laplace operator ∆ : C∞(S1) → C∞(S1) on S1, defined by ∆ = −d2
dt2 on the circle, we have an extension to

the domain of ∆, call it D := dom ∆ ⊂ H. We note that en satisfy ∆en = n2en for n ∈ Z. Thus D consists of

all f =
∑
n f̂(n)en ∈ H such that the series

∑
n∈Z

n4|f̂(n)|2 is convergent. That is, the sequence {n2f̂(n)}n∈Z

should be in l2(Z). Note that D is a proper L2-dense linear subspace of H (it contains each en!).
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In fact, we see that D is set-theoretically the Sobolev space H2(S
1, E) for the trivial bundle E = S1 × C.

This is because ∆ is clearly an elliptic operator (its leading symbol is ≡ −1 in any chart with coordinate t),

and for f ∈ C∞(S1), we have ∆f is given by convergent Fourier series
∑
n∈Z

n2f̂(n)en, so that the L2(S
1)

norm (= Sobolev 0-norm ‖ ‖0) of ∆f is given by:

‖∆f‖2
=
∑

n∈Z

n4 | f̂(n) |2

By the Garding-Friedrichs inequality and its Corollary 6.2.3, we have:

‖f‖2
2 = ‖f‖2

+ ‖∆f‖2

and this is finite iff f ∈ H and ∆f ∈ H, i.e. iff f ∈ D.

Note that since we are putting the L2-norm (and not the Sobolev 2- norm) on D, the operator
∆ : D → H is an unbounded operator. Indeed, ‖en‖ = 1 but ‖∆en‖ = n2. However, we claim that ∆ has

closed range in H, and Im ∆ = (Ce0)
⊥, the closed subspace of all functions in H which are orthogonal to e0,

i.e.

Im ∆ =

{
f ∈ H :

∫ 2π

0

f(t)dt = 0

}

This is seen as follows. Note that the Green operator G defined above satisfies the identity:

IH = π0 + ∆G

where π0 is orthogonal projection onto the space Ce0 = ker ∆, and defined by π0f = 〈f, e0〉 = 1
2π

∫ 2π

0
f(t)dt.

The above identity makes sense since G(H) ⊂ D. It is true on all of H because it is trivially checked to be true
for all en, n ∈ Z. It follows that the image Im ∆ is nothing but Im (Id− π0) = Imπ1 where π1 : H → (Ce0)

⊥ is
the complementary orthogonal projection to π0. Thus Im ∆ is (Ce0)

⊥, which is closed. Thus G is an ‘inverse’ to
∆ on Im ∆, and gives a Hilbert space isomorphism between (Ce0)

⊥ and Im ∆. Note that ker G = ker ∆ = Ce0.

Similarly, we have the other identity:

π1|D = ID − π0|D = G∆

which holds on D.

Example 8.1.6. Let M be a compact Riemannian manifold. Then, by Rellich’s Lemma in (vi) of the Propo-
sition 4.2.2, the inclusion:

i : Hs(M,E) ↪→ Ht(M,E)

is a compact operator.

Example 8.1.7. If we take a non-compact manifold, say M = R. Then as pointed out in the Exercise 3.3.3,
take a fixed function φ ∈ H1(R) of ‖φ‖1 = 1, with compact support in say (− 1

2 ,
1
2 ), and consider its translates

φn = φ(x+ n). Clearly, by (ii) of the Proposition 3.1.4,

‖φn‖2
1 = ‖φn‖2

0 + ‖Dxφn‖2
0 = ‖φ‖2

1 for all n

so that {φn} is a bounded sequence in H1(R). But {φn} can have no convergent subsequence in H0(R).
Indeed, since φn and φm have disjoint supports for n 6= m, we have 〈φn, φm〉 = 0 for n 6= m, which implies

‖φn − φm‖0 =
√

2 ‖φ‖0 for all n 6= m. Hence {φn} cannot have a Cauchy subsequence in H0(R). Thus the
inclusion H1(R) ↪→ H0(R) is not compact.

Example 8.1.8. Let M be a compact Riemannian manifold, and let:

P : Hs(M,E) → Hs+d(M,E)

be any pseudo-differential operator of order −d < 0 (See the Proposition 6.1.2). Then, the composite:

Hs(M,E)
P→ Hs+d(M,E) ↪→ Hs(M,E)
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is a compact operator. This is because P is a bounded operatorHs(M,E) → Hs+d(M,E), and i : Hs+d(M,E) →
Hs(M,E) is a compact operator by 8.1.6 above, and it is easy to check that pre or post composing a bounded
operator with a compact operator results in a compact operator (See Proposition 8.2.1 below).

In particular, if Q is a parametrix for an elliptic differential operator P on M of order d > 0, then the
composite

Hs(M,E)
Q→ Hs+d(M,E) ↪→ Hs(M,E)

is a compact operator for each s, since Q is of order −d.

The Green Operator cited in the Example 8.1.5 above is a particular case for M = S1 and E = M × C,
the trivial bundle. For ∆ is clearly an elliptic operator of order 2 on S1, and by the Proposition 6.2.1, has
a parametrix Q, which is precisely the operator G, because as we remarked above I − ∆G and I − G∆ give
projection to e0, which is the constant function 1 on S1, and hence infinitely smoothing. Since G is an operator
of order −2, if we view G as the composite operator:

H = L2(S
1) = H0(S

1) → H2(S
1) ↪→ L2(S

1) = H
then by the last paragraph, G is a compact operator.

Finally, if S is an infinitely smoothing operator, then for any s, t ∈ R, we choose d so that d > t − s, and
since S ∈ Ψd for each d, we see that the composite:

Hs(M,E)
S→ Hs+d → Ht(M,E)

is compact for all s, t.

Example 8.1.9. It is natural to wonder what happens for the Laplacian ∆ = −∑n
i=1

∂2

∂x2
i

on Rn, which is

an elliptic differential operator of order 2 on Rn. To simplify things, let us take the case of n = 1, because
the sharp contrast with the compact manifold S1 considered above are already visible for n = 1. Indeed, we
saw in the Example 8.1.7 above how the inclusion Hs(R) ↪→ Ht(R) fails to be compact for s > t. This affects
everything, as we shall soon see.

The first thing to note is that if f ∈ H−∞ is a tempered distribution, then ∆f = 0 implies that f is smooth.
(This is a version of elliptic regularity for Rn, which can be deduced from the existence of local parametrices
from 5.5.11 applied to ∆ and noting that f is smooth over U iff ρf is smooth for all ρ ∈ C∞

c (U)).

Thus, for every s, the space of harmonic distributions inside the Sobolev space Hs is given by:

{ax+ b : a, b ∈ C} ∩Hs(R)

from which it follows that (ker ∆) ∩ H = {0}, where we define H := L2(R) = H0(R).

The natural domain D ⊂ H for the operator ∆ can also be described. Let D ⊂ R = {f ∈ H : ∆f ∈ H},
which makes sense because for f ∈ H = H0(R), ∆f is a tempered distribution in H−2(R). We use Plancherel’s

Theorem (iv) of the Proposition 1.2.5 on L2(R) and the fact (ii) of the same proposition that (∆f)∧ = ξ2f̂(ξ)
to get the commutative diagram:

D ∆−→ H
̂↓ ↓̂
D1

ξ2−→ H

where D1 := D∧, and the lower horizontal arrow is multiplication by ξ2. Note that since f 7→ f̂ is an isometry,
and ker ∆ ∩ H = {0} as noted above, both horizontal maps are injective linear isomorphisms, though not
bounded operators.

Since g ∈ H iff ĝ ∈ H, it follows from the diagram above D1 = {g ∈ H : ξ2g ∈ H}, and hence:

D1 = L2(R, dµ)
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where the measure dµ = (1+ | ξ |2)2dξ. Hence also the space D is given by:

D := dom ∆ = {f ∈ H : ξ2f̂(ξ) ∈ H}
D is again an L2-dense linear subspace of H, for it contains all Schwartz class (rapidly decreasing) functions.
This is similar with with the case of S1 discussed in 8.1.5 above, where the condition for f ∈ D was that

{n2f̂(n)} should be a square-summable sequence, which again included all f ∈ C∞(S1), a dense subspace. In
fact, exactly as in the S1-case, one immediately checks by using (ii) of the Proposition 3.1.4 that the conditions

f ∈ H and ξ2f̂ ∈ H imply that D is set-theoretically the Sobolev space H(2)(R) ⊂ H = L2(R).

But here the analogy ends. It is clear that for a Fourier series
∑
n∈Z

f̂(n)en on S1, the finiteness of∑
n∈Z

|n2f̂(n)|2 implies the finiteness of
∑
n∈Z

|f̂(n)|2. On the other hand we have:

Claim 1: ξ2D1 6= H, or equivalently, ∆(D) 6= H.

Take any g ∈ C∞
c (R) such that g(0) 6= 0, then we claim that the function:

ρ(ξ) := ξ−2g(ξ) for ξ 6= 0

= 0 for ξ = 0

is not in H. For, since g(0) 6= 0, we have | g(ξ) |2≥ C > 0 for ξ ∈ (0, a) and some a > 0 so that

‖ρ‖2 ≥
∫ a

0

Cξ−4dξ = ∞

so that ρ 6∈ H, so ρ 6∈ D1, but ξ2ρ(ξ) = g(ξ) is in H. Thus the image of D1 under ξ2 is not all of H and
excludes, for example, all compactly supported g ∈ C∞

c (R) with g(0) 6= 0. Hence, for any such g, g∨ 6∈ ∆(D),
and so ∆(D) is a proper subspace of H by the commutative diagram above. 2

However, we have:

Claim 2: ξ2D1 is dense in H, or equivalently, ∆(D) is dense in H. (Contrast with S1, where ∆(D) was of
codimension 1 in H)

Let g ∈ C∞
c (R) be a compactly supported function, then the function:

gn(ξ) := g(ξ) for | ξ |≥ 1

n

= 0 for | x |≤ 1

n

is in H for each n. Again, one computes:

‖gn − g‖2
=

∫ 1/n

−1/n

| g(ξ) |2 dξ ≤ 2√
2πn

. ‖g‖2
∞

so that gn → g in H. Now gn = ξ2(ξ−2gn) and ξ−2gn ∈ D1 since it is bounded and compactly supported, so
gn ∈ ξ2(D1). Thus ξ2D1 is dense in C∞

c (R), and since C∞
c (R) is dense in H, we have ξ2D1 is dense in H. The

commutative diagram above implies ∆(D) is dense in H. 2

Claim 3: ξ2D1 is not closed in H, or equivalently ∆(D) is not closed in H.

For, if ξ2D1 were closed in H, then Claim 2 above would imply ξ2D1 = H, which would contradict Claim 1.
The commutative diagram implies that ∆(D) 6= H. 2

An immediate consequence of Claims 2 and 3 above is that the cokernel Coker ∆ in H is infinite dimensional.
Contrast with S1, where the cokernel was the 1-dimensional space Ce0.

Also, in sharp contrast to the case of the circle in 8.1.5, if one formally defines the Green operator on the
subspace ∆(D) to be ∆−1, it would fail to be a compact operator. In fact,

Claim 4: ξ−2 : ξ2D1 → D1 is an unbounded operator, or equivalently, G = ∆−1 : ∆(D) → D is an unbounded
operator.
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For, let g ∈ C∞
c (R) with g(0) 6= 0, as in the proof of Claim 1 above. Define ρ(ξ) = ξ−2g(ξ) and ρn(ξ) = ξ−2gn,

where gn are as in the proof of Claim 2 above. We saw that gn → g in H, so that we have:

∥∥ξ2ρn
∥∥ = ‖gn‖ → ‖g‖

and hence
∥∥ξ2ρn

∥∥ is a bounded sequence. However, letting n > 1/a, a as in the proof of Claim 1 above, we
have

‖ρn‖2 ≥
∫ a

1/n

| ρn(ξ) |2 dξ =

∫ a

1/n

| ρ(ξ) |2 dξ =

∫ a

1/n

ξ−4 | g(ξ) |2 dξ ≥ C

∫ a

1/n

ξ−4dξ ≥ An3

for some A > 0, which means ‖ρn‖ is an unbounded sequence. Since ρn = ξ−2gn ∈ D1 from the proof of Claim
2, it follows that the operator ξ−2 : ξ2(D1) → D1 cannot be a bounded operator. From the commutative
diagram above, G := ∆−1 : ∆(D) → D is also not bounded.

Later, we will see how discreteness of the spectrum of ∆ has to do with the compactness of the Green
operator, which in turn has to do with the compactness of M . Meanwhile, we state a proposition which is the
key to many of the results on spectra of the Laplacian, and more generally any self-adjoint elliptic differential
operator.

Proposition 8.1.10 (Spectra of self-adjoint compact operators). Let H be a separable Hilbert space, and let
G ∈ B(H) be a compact self-adjoint operator. Then there is an orthonormal basis {en}∞

n=1 of H consisting of
eigenvectors of G, viz.

Gen = µnen for n = 1, 2, ....

with µn ∈ R. Indeed {µn}∞
n=1 is a bounded sequence, and satisfies limn→∞ µn = 0.

Proof: That there is an orthonormal basis {en}∞
n=1 of eigenvectors for G is a consequence of the well-known

spectral theorem for a bounded self-adjoint operator. That the set of eigenvalues {µn}∞
n=1 is a bounded subset

of R follows from the boundedness and self-adjointness of G.

If µ 6= 0 is a cluster point of {µn}∞
n=1, then we can find a subsequence µnk

satisfying |µnk
| > |µ|/2, say.

Then, if B is the unit ball in the infinite dimensional subspace W ⊂ H spanned by {enk
}∞
k=1, the image G(B)

will contain the ball |µ|
2 B, which is non-compact. Thus G(B) cannot have compact closure, contradicting that

G is a compact operator. Thus µ = 0, and limn→∞ µn = 0. 2

8.2. The Calkin Algebra. Let H be a complex Hilbert space as above, with inner product 〈−,−〉. Let B(H)
denote the C∗-algebra of bounded linear operators on H, and let K(H) denote the complex linear subspace of
compact operators (verify that it is a complex subspace). We have the following easy lemma:

Proposition 8.2.1. K(H) is a two-sided ∗-ideal in B(H). Finally K(H) is closed with respect to the operator
norm topology on B(H).

Proof: Let {xn} be a bounded sequence in H, T ∈ K(H), and S ∈ B(H). Then, since there is a convergent
subsequence {Txnk

}, and since S is bounded and hence continuous, the sequence {STxnk
} is also convergent,

so ST is a compact operator.

Similarly, since S is bounded, {Sxn} is also a bounded sequence in H. By the compactness of T , there exists
a convergent subsequence {TSxnl

} of {TSxn}. Thus TS is also a compact operator.

To show K(H) is a star ideal, we need to show that T ∗ is compact if T is compact. Let {xn} be a bounded
sequence in H, with ‖xn‖ ≤ A for all n. Since T ∗ is a bounded operator, we have from the fact that K(H)
is a right ideal that TT ∗ is a compact operator, if T is a compact operator. Thus there exists a subsequence
{TT ∗xnk

} which converges. That is, for each ε > 0, there exists a N(ε) such that

‖TT ∗xnk
− TT ∗xnl

‖ < ε for all k, l ≥ N(ε)

This implies, since ‖xnk
− xnl

‖ ≤ 2A for all k, l, and Cauchy-Schwartz, that

‖T ∗xnk
− T ∗xnl

‖2
= 〈xnk

− xnl
, TT ∗xnk

− TT ∗xnl
〉 < 2Aε for all k, l ≥ N(ε)
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which shows that the subsequence {T ∗xnk
} is a Cauchy sequence, hence convergent. Thus T ∗ is compact, and

K(H) is a ∗-ideal.

To see that K(H) is a closed ideal, let Tn ∈ K(H) be a sequence of compact operators, with Tn → T , and
T ∈ B(H). We need to show that T is a compact operator. Let {xn} be a bounded sequence in H, with
‖xn‖ ≤ A for all n. Let ε > 0 be given.

Because of the compactness of all Tn’s, we can first find a subsequence {x1
n} of xn such that {T1x

1
n} converges,

and then a subsequence {x2
n} of {x1

n} such that {T2x
2
n} converges. Clearly then, both {T1x

2
n} and {T2x

2
n}

converge. Proceeding inductively, for each j ≥ 1 we have the following:

(i): {xjn} is a subsequence of {xj−1
n }.

(ii): {Tmxjn} is a convergent sequence for all m ≤ j.

Now consider the diagonal subsequence {xnn} by taking the n-th element of the n-th subsequence among the
{xjn}. By (i) above, {xnn} is a subsequence of each of the subsequences {xjn}, so it is a subsequence of {xn}.

Claim: The sequence {Txnn} is convergent.

For, let ε > 0. Since {xnn} is a subsequence of each {xjn}, it follows by (ii) above that {Tjxnn} is a convergent
sequence for each j. Let its limit be yj .

Since Tn → T , there exists an N ≥ 0 such that

‖Tj − T‖ < ε for all j, k ≥ N

where the norm is operator norm. This implies that for j, k ≥ N , ‖Tj − Tk‖ < 2ε, and hence:

‖Tjxnn − Tkx
n
n‖ ≤ 2ε ‖xnn‖ ≤ 2Aε for all j, k ≥ N and each n

Taking the limit limn→∞ of these inequalities, we obtain:

‖yj − yk‖ ≤ 2Aε for j, k ≥ N

which shows that {yj} is a Cauchy sequence, and hence converges to y ∈ H.

Thus there is an N1 ≥ N > 0 such that ‖yj − y‖ < ε for j ≥ N1. Also there is an N2 > 0 such that

‖TN1x
n
n − yN1‖ < ε for n ≥ N2

Then for n ≥ N2, we have:

‖Txnn − y‖ ≤ ‖Txnn − TN1x
n
n‖ + ‖TN1x

n
n − yN1‖ + ‖yN1 − y‖

≤ ‖T − TN1‖ ‖xnn‖ + ε+ ε

≤ (A+ 2)ε

which proves that {Txnn} converges to y, and hence the claim.

Hence T is compact, and K(H) is a closed ideal. 2

Definition 8.2.2. The quotient algebra B(H)/K(H) is called the Calkin Algebra of H, and denoted C(H). By
the lemma 8.2.1 above, this algebra is a Banach ∗-algebra. The star operation in C(H) is the one induced from
B(H), viz. [T ]∗ := [T ∗]. The norm of an element [T ] ∈ C(H) is defined as:

‖[T ]‖ = inf{‖T +K‖ : K ∈ K(H)}
which is a bonafide norm because K(H) is closed. From the fact that B(H) is a C∗-algebra, and the lemma
above, it follows (not entirely trivially) that C(H) is also a C∗-algebra with this norm.
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8.3. Fredholm Operators.

Definition 8.3.1. We say that T ∈ B(H) is a Fredholm operator if its image [T ] ∈ C(H) is an invertible element
of C(H). Since K(H) is a two-sided ideal, T is Fredholm if and only if there exist operators S, S1 ∈ B(H) such
that ST−IH ∈ K(H) and TS1−IH ∈ K(H). (Since inverses are unique in C(H), we see that [S] = [S1] = [T ]−1,
i.e., S − S1 ∈ K(H))

Remark 8.3.2. Note that T Fredholm implies that T ∗ is also Fredholm, because ST − IH (resp. TS1 − IH)
compact implies T ∗S∗ − IH (resp. S∗

1T
∗ − IH) are compact, because K(H) is a ∗-ideal by lemma 8.2.1.

The definition above is often not very practical, since we have to be lucky enough to hit upon the operators
S and S1, given the operator T . Fortunately, there is a criterion for T to be Fredholm which can be stated
entirely in terms of T . More precisely:

Proposition 8.3.3 (Fredholm Theorem). Let T ∈ B(H). Then T is Fredholm if and only if all the following
three criteria are satisfied:

(i): The image ImT of T is a closed subspace of H.

(ii): The kernel ker T is a finite dimensional subspace of H.

(iii): The cokernel CokerT := (ImT )
⊥

is finite dimensional.

Proof: First let us prove the sufficiency (i.e. the if) part. Let us denote N := ker T , R := ImT , both closed
subspaces of H by hypothesis. Let V := N⊥, and W := R⊥. By hypothesis dim N < ∞ and dim W < ∞.
Let iN , iV , iW , iR denote the inclusions of N,V,W,R into H, and similarly let πN , πV , πW , πR denote the
orthogonal projections onto these closed subspaces.

By definition (and the Open Mapping Theorem), there is an induced map:

T1 : V = N⊥ → R

(viz. the restriction of T to V = N⊥) which is an isomorphism. Note that T1πV = πRT and TiV = iRT .

Let Q : R → V be the inverse of T1. Then QT1 = IV , and T1Q = IR. We need to construct maps
S, S1 ∈ B(H) with ST − IH and TS1 − IH compact.

Set S = S1 := iVQπR. Then ST = iVQπRT = iVQT1πV = iV IV πV = iV πV = IH − iNπN . But
iNπN ∈ B(H) has finite dimensional range, viz. N , so it is compact by the example 8.1.3. Hence ST − IH is
compact. Similarly, one checks that TS1 = iRπR = IH − iWπW , so that TS1 − IH is the compact operator
iWπW .

To see the necessity part, assume T is Fredholm. To show that R := ImT is closed, let yn = Txn be a
sequence in R, with limn→∞ yn = y ∈ H. We need to show that y ∈ R. Without loss of generality, one can
assume that xn ⊥ N(T ) for all n. We first claim that {xn} must then be bounded. For if not, assume there is

a subsequence {xnk
} such that ‖xnk

‖ ≥ k. Then set zk = ‖xnk
‖−1

xnk
. Then

lim
k→∞

Tzk = lim
k→∞

‖xnk
‖−1

Txnk
= 0

since Txnk
→ y. Thus Tzk → 0. By the equation ST − I = K a compact operator, it follows that some

subsequence of Kzk converges (since ‖zk‖ = 1) and thus zk contains a convergent subsequence. Let the limit
of that subsequence be z. Then Tz = 0 by the above. Thus z ∈ N(T ). On the other hand ‖zk‖ = 1, and
zk ∈ (N(T ))⊥ implies ‖z‖ = 1 and z ∈ N(T )⊥. This is a contradiction, and proves the claim.

Since xn is a bounded sequence, Kxn contains a convergent subsequence xnk
. Also STxnk

converges to Sy.
Thus xnk

= STxnk
−Kxnk

is a convergent sequence, converging to x say. Then clearly Tx = y.
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To show that N = ker T is finite dimensional, let x ∈ N be any vector. Then STx = 0 = IHx+Kx = x+Kx.
Thus x = −Kx for all x ∈ N . That is, IN = −πNKiN , so that IN is a compact operator. From Example
8.1.2, this implies that N is finite dimensional.

By remark 8.3.2, T ∗ is also Fredholm, it follows that dim N(T ∗) < ∞ as well, by replacing T with T ∗ in
the last paragraph. But by the fact that R is closed, it is easy to check that CokerT = R⊥ = N(T ∗) = ker T ∗.
Thus CokerT is finite dimensional, and the proposition is proved. 2

8.4. Two Hilbert Spaces for the price of one. All of the above discussion can be generalised to B(H1,H2).
where H1 and H2 are two different separable Hilbert spaces. This is scarcely surprising, since all infinite
dimensional separable Hilbert spaces are (non-canonically) isomorphic to one another, but sometimes it helps
to see them as distinct objects. For finite dimensional H1 and H2, H1 may not be isomorphic to H2, but in
that case everything is a tautology from elementary linear algebra.

Note that B(H1,H2) is no longer an algebra, but just a Banach space. (If both H1 and H2 are infinite
dimensional separable Hilbert spaces, we can fix an isomorphism Ψ : H2 → H1, then the map T 7→ Ψ ◦ T
will be an isomorphism of the Banach space B(H1,H2) with the Banach space B(H1), and we can use this
isomorphism of Banach spaces to define an algebra structure on the former. But, of course, this algebra
structure will be non-canonical, and depend on Ψ.)

We have already seen in definition 8.1.1 what a compact operator K : H1 → H2 is. The subset of compact
operators in B(H1,H2) is denoted K(H1,H2). It is easily seen to be a closed Banach subspace of B(H1,H2).

The adjoint defines a C-antilinear isomorphism

∗ : B(H1,H2) → B(H2,H1)

T 7→ T ∗

We also have the following proposition, whose proof is a trivial generalisation of the proofs of the corre-
sponding propositions for H1 = H2 = H enunciated in the last two subsections.

Proposition 8.4.1. Let H1, H2, B(H1,H2), K(H1,H2) etc. be as above. Then:

(i): For T ∈ K(H1,H2), and S1 ∈ B(H3,H1), S2 ∈ B(H2,H3), H3 any separable Hilbert space, T ◦ S1 and
S2 ◦ T are compact operators.

(ii): K(H1,H2) is a closed subspace of B(H1,H2).

(iii): Under the isomorphism ∗ defined above, K(H1,H2) maps isomorphically onto K(H2,H1).

(iv): An operator T ∈ B(H1,H2) is said to be Fredholm if there exist operators S, S1 ∈ B(H2,H1) such that
ST − IH1 ∈ K(H1) and TS1 − IH2 ∈ K(H2). T is Fredholm iff ker T is finite dimensional, ImT is closed
and CokerT is also finite dimensional. The adjoint T ∗ is also a Fredholm operator if T is a Fredholm
operator.

(v): If T ∈ B(H1,H2) and S ∈ B(H2,H3) are Fredholm, then so is ST ∈ B(H1,H3).

We now run through some examples of Fredholm operators.

Example 8.4.2. If T ∈ B(H1,H2) is invertible, then clearly T is Fredholm. The composite of two Fredholm
operators is also clearly Fredholm.

Example 8.4.3. Obviously, any linear map between two finite dimensional Hilbert spaces H1, H2 is always
Fredholm.
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Example 8.4.4 (Unilateral shifts). Let {en}∞
n=1 be an orthonormal basis for a separable Hilbert space H.

Then define the unilateral right 1-shift operator:

T : H → H
ei 7→ ei+1 for all i ≥ 1

This is clearly a Fredholm operator by the proposition 8.3.3, for ker T = {0}, and the range ImT = (Ce1)
⊥

is
closed, and the cokernel CokerT = Ce1. The adjoint of this operator is easily checked to be:

T ∗ : H → H
ei 7→ ei−1 for all i ≥ 2

e1 7→ 0

As remarked before, T ∗ is also Fredholm, and is called the unilateral (-1)-shift operator. Now ker T ∗ = Ce1,
and CokerT = {0}. By (v) of the proposition 8.4.1 above, the unilateral k-shift T k and the unilateral (−k)-shift
(T ∗)k are also Fredholm, and their kernels (resp. cokernels) are {0} and ⊕k

i=1Cei (resp. ⊕k
i=1Cei and {0})

respectively.

Example 8.4.5 (Parametrices). Let M be a compact Riemannian manifold, E and F two complex vector
bundles on M , and let:

P : C∞(M,E) → C∞(M,F )

be an elliptic differential operator of order d ≥ 1 (See Definition 6.1.1). Then P : Hs+d(M,E) → Hs(M,F ) is
a Fredholm operator.

For, by the Proposition 6.2.1, we have a parametrix

Q : Hs(M,F ) → Hs+d(M,E)

such that S := PQ − I is an infinitely smoothing operator on Hs(M,F ) and T := QP − I is an infinitely
smoothing operator on Hs(M,E). By the Example 8.1.8, it follows that both S and T are compact opera-
tors. Thus, by definition, both P and Q are Fredholm operators. Hence, by the Fredholm Theorem 8.3.3,
P (Hs+d(M,E)) is closed in Hs(M,F ), and kerP and CokerP are finite dimensional.

As a particular case, let us look at the Laplacian on S1 again.

Example 8.4.6 (Green operator on S1). We recall the example 8.1.5. Let H = L2(S
1) as before, and recall

D = dom ∆ = {f ∈ L2(S
1) :

∞∑

n=−∞
n4|f̂(n)|2 < ∞}

We also recall that ∆en = n2en, (where en = einθ) so that ∆ became an unbounded linear operator from
D → H. Then consider the space:

H2 := H2(S
1) = {f ∈ H :

∞∑

n=−∞
(1 + n4)|f̂(n)|2 < ∞}

Clearly, H2 = D as a vector space. However, on H2 we have the Sobolev inner product 〈−,−〉2, which by the
Corollary 6.2.3, can also be defined as:

〈f, g〉2 := 〈f, g〉0 + 〈∆f,∆g〉0 =

∞∑

n=−∞
(1 + n4)f̂(n)ĝ(n)

which explains the notation H2(S
1) for the space above, and by earlier considerations makes it into a Hilbert

Space. It is clear that en = einθ continue to be orthogonal, but not orthonormal with respect to 〈−,−〉2.
Indeed, ‖en‖2 = (1 + n4)

1
2 .

Clearly, by definition, we have:

‖∆f‖2
=

∞∑

n=−∞
n4|f̂(n)|2 ≤ ‖f‖2

2
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which makes ∆ : H2 → H a bounded operator, an element of B(H2,H) (a fact we already know from Proposition
6.1.2) an element of B(H2,H).

Similarly, for the Green operator G introduced in 8.1.5,

‖Gf‖2
2 =

∞∑

n=−∞,n6=0

(1 + n4)

n4
|f̂(n)|2 ≤ 2 ‖f‖2

so G is also a bounded operator,and lies in B(H,H2). The relations IH2 − π0 = G∆ and IH − π0 = ∆G found
in 8.1.5 show that both ∆ : H2 → H and G : H → H2 are Fredholm operators. Note that ker ∆ = Ce0, and
ker G = Ce0 as well.

Exercise 8.4.7. The Green operator can be written explicitly as a convolution with an L2 function on S1.
Define the function g ∈ L2(S

1) = H by the formula:

g =
1

2π

∑

n 6=0, n∈Z

1

n2
en

where en(e
it) = eint for z = eit ∈ S1. Verify that:

(Gf)(z) =

∫

S1

g(zw−1)f(w)dw for z ∈ S1

where w = eis, and dw := ds. Calculate the distribution ∆ g.
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We might as well record a direct consequence of the last few sections in the following:

Proposition 8.4.8 (Green Operator for a Self-adjoint Elliptic Differential Operator). LetM be a compact Rie-
mannian manifold, with a smooth complex vector bundle E on it. Let dV (x) be the Riemannian volume form
on M and let 〈−,−〉 be a Hermitian inner product on E. Let P : C∞(M,E) → C∞(M,E) be an elliptic
differential operator of order d > 0. Assume that P is formally self-adjoint, viz.

(Pf, g) =

∫

M

〈Pf(x), g(x)〉x dV (x) = (f, Pg) for all f, g ∈ C∞(M,E)

Consider the bounded operator:

P : Hd(M,E) → H0(M,E) = L2(M,E)

Then, for this last operator, we have:

(i): dim kerP < ∞, and this kernel is contained in C∞(M,E), and in particular Hs(M,E) for all s ∈ R.

(ii): ImP ⊂ L2(M,E) is closed, and CokerP := (ImP )⊥ = kerP .

(iii): There exists a bounded self-adjoint operator called the Green Operator

G : L2(M,E) → L2(M,E)

for P which satisfies:

(a): G ≡ 0 on kerP ⊂ L2(M,E), and G = P−1 on kerP⊥ = CokerP⊥ = ImP ⊂ L2(M,E). G is a
compact operator.

(b): G(C∞(M,E)) ⊂ C∞(M,E), and GP = PG on C∞(M,E).

(c): G : L2(M,E) → L2(M,E) is a compact self adjoint operator. There is an orthonormal basis
{ei}∞

i=1 of L2(M,E) of eigensections of G, which satisfy

Gei = µiei for all i

where µi ∈ R for all i. 0 is the only cluster point of the set {µi}∞
i=1, and limi→∞ µi = 0.

(d): The eigensections {ei} of (c) above are all smooth, and are also eigensections for P , satisfying:

Pei = λiei for all i

where λi ∈ R is a discrete subset of R, and limi→∞ | λi |= ∞

Proof: The operator:

P : Hd(M,E) → L2(M,E) = H0(M,E)

is bounded by the Proposition 6.1.2. Its kernel kerP is finite dimensional by the Example 8.4.5 above, where P
was found to be Fredholm, and (ii) of the Fredholm Theorem 8.3.3. That kerP ⊂ C∞(M,E) is a consequence
of the elliptic regularity theorem Proposition 6.2.4. Since C∞(M,E) ⊂ Hs(M,E) for all s, it follows that
kerP ⊂ Hs(M,E) for all s. This proves (i).

That ImP is closed in L2(M,E) follows from (i) of the Fredholm Theorem 8.3.3, and Example 8.4.5. Since
P : Hd → H0 is bounded, P (C∞(M,E)) is dense in ImP . Hence f ∈ L2(M,E) is orthogonal to ImP iff
(f, Pg) = 0 for all g ∈ Hd(M,E). By the formal self-adjointness of P , and the natural duality of Hd and H−d
in (iii) of 4.2.2, (f, Pg) = (Pf, g) for f ∈ H0 and g ∈ Hd. Thus we have (Pf, g) = 0 for all g ∈ Hd(M,E).
This is equivalent to Pf = 0. Thus CokerP = (ImP )⊥ = kerP , and (ii) follows.

By (ii), we have an L2-orthogonal decomposition:

L2(M,E) = ImP ⊕ CokerP = ImP ⊕ kerP

We now define G by setting G ≡ 0 on kerP , and G to be equal θ which is the composite:

ImP
P−1

→ (kerP )⊥ ↪→ Hd(M,E) ↪→ H0(M,E) = L2(M,E)
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By the Open Mapping Theorem, P−1 : ImP → kerP⊥ is a bounded operator, as is the inclusion (kerP )⊥ →
Hd(M,E). The last inclusion Hd(M,E) → L2(M,E) is a compact operator by Rellich’s Lemma 4.2.2. Thus
by the Proposition 8.2.1, the map θ is a compact operator. Since G = θ ◦π, where π : L2 → ImP is orthogonal
projection onto the closed subspace ImP , G is also a compact operator by 8.2.1. This proves (a) of (iii).

Since P is a differential operator, P (C∞(M,E)) ⊂ C∞(M,E), and if g ∈ C∞(M,E) ⊂ L2(M,E), then its
projection to the closed subspace ImP = (kerP )⊥ is given by:

π(g) = g −
k∑

i=1

(g, fi)fi

where {fi}ki=1 is an L2-orthonormal basis for kerP . By (i) above, all the fi are smooth, thus the scalar
combination

∑
i(g, fi)fi is smooth, and hence π(g) above is smooth. On the other hand, for a smooth g = Pf

in ImP , it follows by elliptic regularity of Proposition 6.2.4 that f is also smooth. Thus the map θ above
also maps smooth sections in ImP into smooth sections. Since G = θ ◦ π, it maps smooth sections to smooth
sections. The fact that GP = PG on smooth sections follows immediately from the definitions. This proves
(b).

That G is a compact operator was seen in (a). That it is self-adjoint follows from the definition G = θ ◦ π,
and θ is the inverse of the formally self-adjoint P , and C∞(M,E) is dense in L2(M,E). The statement about
its eigenvalues and the orthonormal decomposition of L2(M,E) into eigenspaces of G is the content of the
Proposition 8.1.10. The eigenvalues are real since G is self-adjoint. This proves (c).

To see (d), note that Gei = µiei, and µi 6= 0 implies that ei are orthogonal to kerP , and hence so are Gei,
so that:

µiPei = PGei = Pθei = PP−1ei = ei

so that Pei = µ−1
i ei for all µi 6= 0, and ei become eigensections of P , corresponding to the real non-zero

eigenvalues λi = µ−1
i . Since (P − λi)ei = 0, and P − λi is also elliptic of order d (it has the same leading

symbol as P ), it follows that ei ∈ C∞(M,E) for all i such that µi 6= 0. For those i’s which have µi = 0, we
have ei ∈ kerP , and we already know those are smooth by (b). Hence ei are all smooth, and the rest of (d)
follows from (c) above. 2

Actually, we can refine (iii) (d) of the previous proposition. To be precise, we have the following proposition.

Proposition 8.4.9. Let M , E and P be as above in Proposition 8.4.8. Then let us arrange the absolute values
of the eigenvalues λi of P as in (iii) (d) of the previous proposition in non-decreasing order as:

| λ1 |≤| λ2 | .... ≤| λk |≤ ...

Then there exists constants C, δ > 0 and N ∈ N such that | λn |≥ Cnδ for all n ≥ N .

Proof: First we note that the eigenvalues of P k will be λkn, and obtaining the assertion for λkn is sufficient to
imply the same assertion for λn (with δ replaced by δ/k). So we may assume without loss of generality that P
is of degree d > n/2 where n = dim M .

Since we are assuming d > n/2, by (iv) of the Proposition 4.2.2 (viz. the Sobolev embedding theorem), we
have for f ∈ C∞(M,E) the inequality:

‖f‖∞ = sup
x∈M

| f(x) |≤ C ‖f‖d for all f ∈ C∞(M,E)

and combining this with the Garding-Friedrichs inequality Proposition 6.2.2 we have:

‖f‖∞ ≤ C(‖Pf‖0 + ‖f‖0) for all f ∈ C∞(M,E) (21)

We note that by elliptic regularity, all the eigensections φk of P are smooth sections. We assume they are
orthonormal with respect to L2-norm ‖ ‖0. Define:

F (a) := spanC{φk : Pφk = λkφk and | λk |≤ a}
Let m = dim F (a). This dimension is finite by the fact that λ−1

k have no cluster point except 0 from (iii) (c)
of 8.4.8. We will make an estimate for m in terms of a, which will imply our assertion.



62 VISHWAMBHAR PATI

Note that for f =
∑m
j=1 αjφj ∈ F (a), we have Pf =

∑m
j=1 αjλjφj , which shows that

‖Pf‖0 ≤ a ‖f‖0 for all f ∈ F (a)

Plugging this into the inequality (21) above, we have for all choices of complex constants αj , the inequality:
∥∥∥∥∥∥

m∑

j=1

αjφj

∥∥∥∥∥∥
∞

≤ C(1 + a)

∥∥∥∥∥∥

m∑

j=1

αjφj

∥∥∥∥∥∥
0

(22)

In a local frame {ei(x)}ki=1 orthonormal frame of E over U ⊂ M , where k = rkCE, write:

φj(x) =

k∑

i=1

φij(x)ei(x)

So that for any choice of constants αj , we have for x ∈ U that

m∑

j=1

αjφj(x) =

k∑

i=1


∑

j

αjφ
i
j(x)


 ei(x)

so that for any choice of constants αj ∈ C, the inequality (22) implies:
∣∣∣∣∣∣
∑

j

αjφ
i
j(x)

∣∣∣∣∣∣
≤

∥∥∥∥∥∥

m∑

j=1

αjφj

∥∥∥∥∥∥
∞

≤ C(1 + a)


∑

j

| αj |2



1
2

for each i = 1, 2, ..k

For x ∈ U , choose αj = φ
i

j(x). Then the last inequality reads:

∑

j

| φij(x) |2≤ C(1 + a)


∑

j

| φij(x) |2



1
2

that is: 
∑

j

| φij(x) |2



1
2

≤ C(1 + a)

Squaring both sides and summing over i = 1, .., k, we have:

m∑

j=1

‖φj(x)‖2
x =

∑

j

(∑

i

| φij(x) |2
)

=
∑

i


∑

j

| φij(x) |2

 ≤ kC2(1 + a)2 = C2(1 + a)2

where C is a generic constant independent of a. This inequality is true for each x ∈ M , so we may integrate
both sides over all of M to obtain

m =

∫

M

m∑

j=1

(
‖φj(x)‖2

x

)
dV (x) ≤ C2(1 + a)2

which shows that 1
Cm

1
2 − 1 ≤ a. Since | λj |≤ a for j = 1, 2, ..,m, we can take a = maxmj=1 | λj |=| λm |, so

that we have:

| λm |≥ Cm
1
2 for m ≥ N

and the proposition follows. 2

8.5. The Fredholm Index.

Definition 8.5.1 (Fredholm Index). Let T : H → H be a Fredholm operator. The Fredholm index of T is
defined by:

indT = dim ker T − dim CokerT

It makes sense, and is an integer, because of proposition 8.3.3. Similarly for T ∈ B(H1,H2), one again defines
the index indT by the same formula.



ELLIPTIC COMPLEXES AND INDEX THEORY 63

Example 8.5.2 (Index of examples above). We can easily compute the indices of the various examples of
Fredholm operators listed above. For an invertible operator T : H1 → H2, the index is clearly 0. For a
linear map T : V → W of finite dimensional vector spaces, the index is easily seen to be dim V − dim W by
elementary linear algebra. (Thus in the finite dimensional situation, the index depends only on the domain
V and range W , and is not a very interesting invariant of T ). For the unilateral right (resp. left) k-shift, the
index is (−k) (resp. k).

For an elliptic self-adjoint differential operator P : C∞(M,E) → C∞(M,E) of order d, M a compact
Riemannian manifold, we have that P : Hd(M,E) → L2(M,E) is Fredholm, by 8.4.5. Also by (ii) of 8.4.8,
kerP = CokerP , and hence indP = 0.

Proposition 8.5.3. Let T ∈ B(H1,H2) and S ∈ B(H2,H3) be Fredholm operators. Then TS ∈ B(H1,H3) is
Fredholm, and

indST = indS + indT

In particular, if H1 = H2 = H, the index is a group homomorphism from the group of units (=set of invertible
elements) in the Calkin algebra C(H) to Z.

Proof: In the sequel, we will denote the kernel of a linear operator T by N(T ). The fact that ST is Fredholm
follows from the fact that post and precomposing compact operators with bounded operators again yields
compact operators (see example 8.4.2).) Note that for any linear operator T , we have the following identity
for a closed subspace W :

T−1(W⊥) = (T ∗(W ))
⊥

(23)

where the left side is the inverse image of W⊥. From this (by taking W⊥ = {0}), one sees that CokerT ∗ =

ImT ∗⊥ = N(T ), and CokerT = (ImT )⊥ = N(T ∗). Now one may do orthogonal decompositions of H1, H2

and H3 as follows:

H1 = N(T ) ⊕ F

H2 = N(T ∗) ⊕G1 = N(S) ⊕G2

H3 = N(S∗) ⊕H

where T : F → G1 and S : G2 → H are isomorphisms.

The kernel of ST is given by (using the identity (23), and noting that T|F : F → ImT is an isomorphism)
above):

N(ST ) = T−1S−1(0) = T−1(N(S))

= N(T ) + T−1
|F (N(S) ∩ ImT )

= N(T ) + T−1
|F (N(S) 	 (N(S) ∩N(T ∗))

so that

dim N(ST ) = dim N(T ) + dim N(S) − dim (N(S) ∩N(T ∗))

Similarly,

dim N((ST )∗) = dim N(T ∗S∗) = dim N(S∗) + dim N(T ∗) − dim (N(T ∗) ∩N(S∗∗))

= dim N(S∗) + dim N(T ∗) − dim (N(T ∗) ∩N(S))

Combining the two identities above, we get:

indST = dim N(ST ) − dim N((ST )∗) = dim N(T ) + dim N(S) − dim N(S∗) − dim N(T ∗) = indT + indS

proving the proposition. 2
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8.6. Path components and Fredholm index. We have the following crucial fact about Fredholm operators.

Proposition 8.6.1 (Invariance of index). Let t 7→ Tt be a continuous map of an interval I to B(H), with Tt
a Fredholm operator for each t ∈ I. Then:

indTt = indTs for all t, s ∈ I

Thus the index remains a constant integer on each path component of the set of units (=invertible elements)
in the Calkin Algebra.

Proof: We will show that the index is locally constant on I, and that will make t 7→ indTt a continuous,
and hence constant map. For a point t ∈ I, denote the kernel of Tt by Kt. Since Tt is Fredholm for each t,
Kt is finite dimensional for all t. Let Vt := K⊥

t , and Wt := ImTt. By Fredholmness of Tt, W
⊥
t is also finite

dimensional for each t.

Fix any a ∈ I. We claim that for a small enough ε > 0, and for |t − a| < ε, the index indTt = indTa.
For simplicity of notation, denote Ka by K, Va by V and Wa by W . Let π : H → W denote the orthogonal
projection, and i : V → H denote the inclusion. Then π Ta i : V → W is an isomorphism, by definition.
Since isomorphisms from V to W form an open set in B(V,W ), it follows that there is an ε > 0 such that
π Tt i : V → W is an isomorphism for all t such that |t− a| < ε.

Thus, for |t− a| < ε, the index

ind (π Tt i) = 0

By the proposition 8.5.3, and the facts that ker π = W⊥ = CokerTa, Cokerπ = 0, ker i = 0, Coker i = V ⊥ =
kerTa, it follows that

ind (π Tt i) = indπ + indTt + ind i = dim W⊥ + indTt + (− dim V ⊥) = indTt − indTa

Thus indTt = indTa for |t− a| < ε, and the proposition is proved. 2.

9. Elliptic Complexes on Compact Riemannian manifolds

9.1. The de Rham complex. Let M be a smooth connected oriented (i.e.the Jacobian of each coordinate
change in the atlas being used has positive determinant) Riemannian manifold of dimension n, with Riemannian
metric g. We recall that the volume n-form dV associated to this Riemannian metric, is given in a local
coordinate system (φ,U) of an oriented atlas by:

dVg(x) =
√

det gij(x) dx1 ∧ dx2 ∧ .. ∧ dxn
with coordinate functions xi being the components of φ on the open set U . The expression above is independent
of the coordinate system chosen, by the tranformation properties of the coordinate changes on the overlaps
Ui ∩ Uj , and the orientability of the atlas {(φi, Ui)}. We will usually write dV instead of dVg.

One also has the complex vector space of smooth complex-valued differential p-forms on M , which is denoted
by
∧p

(M). Let ω be a differential p-form is given in a coordinate chart (φ,U) by the local expression:

ω =
∑

i1<i2<...<ip

ωi1<i2<...<ipdxi1 ∧ dxi2 ... ∧ dxip =
∑

I

ωIdxI

where I = (i1 < i2 < .. < ip), 1 ≤ ij ≤ n denotes a multi-index of length p, and ωI are all smooth functions on

the open set U . Note that
∧0

(M) is just the vector space of smooth functions on M , and when M is oreinted,

there is an isomorphism f 7→ fdVg of
∧0

(M) with
∧n

(M) upon choosing a Riemannian volume element.

Then one can define the exterior derivative operator

d :

p∧
(M) →

p+1∧
(M)

by dω :=
∑
I dωI ∧ dxI , where dωI =

∑
j
∂ωI

∂xj
dxj is a 1-form. One easily checks that this definition of d is

global, and does not depend on the choice of local coordinate charts. (In the case of M = R3, the exterior
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derivatives on
∧0

(R3),
∧1

(R3) and
∧2

(R3) lead to the familiar grad, curl and divergence operators.) It is well
known that d ◦ d = 0, and so we have a cochain complex of complex vector spaces:

0∧
(M)

d→
1∧

(M)
d→ ...

p∧
(M)

d→
p+1∧

(M)...
d→

n∧
(M)

which is called the de Rham complex of M . We also have the skew-derivation formula for the exterior derivative:

d(ω ∧ τ) = dω ∧ τ + (−1)pω ∧ dτ
where ω ∈ ∧p(M), τ ∈ ∧q(M).

The de Rham complex contains much of the algebraic topology of M , even though its definition is purely
analytical. For example, we can define the i-th de Rham cohomology of M as the quotient:

Hi(M,C) :=
ker d :

∧i
(M) → ∧i+1

(M)

Im d :
∧i−1

(M) → ∧i
(M)

It turns out by de Rham’s theorem (to be stated below) that the dimension dim Hi(M,C) is the i-th Betti
number of M , and the alternating sum

n∑

i=0

(−1)i dim Hi(M,C)

is the topological Euler characteristic χ(M) of M .

Now one brings in the Riemannian metric to introduce pointwise and global hermitian inner products on
differential forms. The Riemannian metric g defines inner products for all real tangent vectors, and gives an
identification of the real cotangent space with the tangent space by the identification X 7→ X∗ where X∗ is
defined by the formula X∗(Y ) = g(X,Y ) for all tangent vectors Y to M at x. Declaring the vector space
isomorphism above to be an isometry puts a real positive definite inner product 〈−,−〉 on real cotangent
vectors. More explicitly, in a coordinate chart (φ,U) with coordinates xi we have:

〈dxi, dxj〉 = gij

where gij is the inverse of the n × n positive definite matrix
[
gkl := g

(
∂
∂xk

, ∂
∂xl

)]
. Each of these gij ’s is a

smooth function of x ∈ U . Now we get inner products on all real p-covectors by the formula:
〈
dxi1 ∧ dxi2 ... ∧ dxip , dxj1 ∧ dxj2 ... ∧ dxjp

〉
= det[giljm ]

Thus we can talk of 〈ω(x), τ(x)〉 for two real p-forms ω, τ ∈ ∧p
(M,R). We do the canonical Hermitian

extension of this real inner product on
∧p

(M,R) to a Hermitian inner product on its complexification
∧p

(M) =∧p
(M,R)⊗C. We continue to denote it by 〈−,−〉. By definition, for ω, τ ∈ ∧p(M), the pointwise inner product

〈ω(x), τ(x)〉 is a smooth function of x ∈ M . We can then define the global inner product:

(ω, τ) :=

∫

M

〈ω(x), τ(x)〉 dV (x)

of the smooth p-forms ω, τ ∈ ∧p(M), and if M is compact, (ω, τ) will be finite for all ω, τ ∈ ∧p(M).

The Hodge star operator is an operator:

∗ :

p∧
(M) →

n−p∧
(M)

which is the unique operator obeying the identity:

ω ∧ (∗τ) = 〈ω, τ〉 dV = τ ∧ ∗ω
for ω, τ ∈ ∧p

(M). That is, 〈−,−〉 being a non-degenerate pairing gives an identification of
∧p

(M) with

its dual vector space
∧p∗

(M), and ∧ being a non-degenerate pairing of
∧p

(M) with
∧n−p

(M) provides an

identification of
∧n−p

(M) with
∧p∗

(M), so the Hodge ∗-operator is the resulting identification of
∧p

(M) with∧n−p
(M). Using the fact that ω ∧ ∗τ = (−1)p(n−p)(∗τ) ∧ ω and that 〈ω, τ〉 dV = 〈τ, ω〉 dV , it easily follows

from the definition of ∗ above that

∗ ◦ ∗ = (−1)p(n−p) on

p∧
(M)
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As expected, ∗ :
∧0

(M) → ∧n
(M) is the isomorphism f 7→ fdV discussed earlier.

Using the Hodge ∗-operator, one can define the differential operator:

δ :

p∧
(M) →

p−1∧
(M)

ω 7→ (−1)np+n−1 ∗ d(∗ω)

From this definition it follows that ∗δω = (−1)np+n−1 ∗ ∗d ∗ ω = (−1)np+n−1+(n−p+1)(p−1)d ∗ ω = (−1)pd(∗ω).

We note that if ω is a p-form and τ a (p+ 1)-form, then:

d(ω ∧ ∗τ) = dω ∧ ∗τ + (−1)pω ∧ d(∗τ) = dω ∧ ∗τ − ω ∧ (∗δτ)
Now d(ω∧∗τ) is an n-form on M , and if M is compact, or if one of τ, ω are of compact support, then by Stokes
theorem we have (since ∂M = φ) that:

(dω, τ) =

∫

M

dω ∧ ∗τ =

∫

M

ω ∧ ∗δτ +

∫

M

d(ω ∧ ∗τ) =

∫

M

ω ∧ ∗δτ +

∫

∂M

(ω ∧ ∗τ)

= (ω, δτ) + 0 = (ω, δτ) (24)

That is, the operators d and δ are formal adjoints to each other on the spaces of smooth compactly supported
forms, with respect to the global inner product ( , ) defined above.

9.2. The Laplacian on differential forms.

Definition 9.2.1. The Laplace-Beltrami operator, or Laplacian on
∧p

(M) is defined as:

∆ :

p∧
(M) →

p∧
(M)

ω 7→ (dδ + δd)ω

Since d and δ are both first-order differential operators, ∆ is a second order differential operator.

One can also write down expressions for ∆ in local coordinates, which are messy. For ∆ :
∧0

(M) → ∧0
(M),

the expression is:

∆f = − 1√
g

n∑

i,j=1

∂i(
√
ggij∂jf) for f ∈

0∧
(M)

where
√
g :=

√
det gij and ∂j := ∂

∂xj
.

Remark 9.2.2 (Formal self-adjointness and positivity of ∆). By (24) above, we also have for M compact, or
one of ω, τ ∈ ∧p(M) of compact support that:

(∆ω, τ) = ((dδ + δd)ω, τ) = (δω, δτ) + (dω, dτ) = (ω,∆τ)

that is, ∆ is formally self-adjoint with respect to the global inner product (−,−) on
∧p

(M).

Further, by the above, if ω is of compact support, or M is compact,

(∆ω, ω) = (dω, dω) + (δω, δω)

Hence for M compact, (∆ω, ω) ≥ 0 for all ω ∈ ∧i(M), and ∆ω = 0 for ω ∈ ∧i(M) if and only if dω and
δω = 0.

Instead of proving ellipticity of the Laplace operator separately, we will set up the general notion of an
elliptic complex, and the Laplacian above will follow as a special case.
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9.3. Elliptic operators on compact manifolds. In the sequel, TM will always denote the complexified
tangent bundle TC(M) := TR(M) ⊗R C. Likewise, for the cotangent bundle T ∗M := T ∗

C
M = hom(TRM,C).

Definition 9.3.1 (Algebra of differential operators on M). Define the space D0(M) of linear differential op-
erators of order 0 to be C∞(M).

Let χ(M) denote the space of vector fields on M . That is, χ(M) is the space C∞(M,TM) of smooth
sections of TM on M . Note that χ(M) has a natural left-module structure over the ring C∞(M).

Define the space D1(M) of linear differential operators of order 1 by

D1(M) := C∞(M) ⊕ χ(M)

This C-vector space inherits the left C∞-module structure from both its summands. In addtion, it also the
structure of a right C∞(M) module, defined by:

(Pg) = gP + [P, g] = gP + [αX, g] = gP + αX(g) for P = β + αX, X ∈ χ(M), α, β ∈ C∞(M)

This formula arises from the fact that the vector field X is a derivation on C∞(M), or more simply because
Pg is naturally defined by the formula:

Pg(f) = P (gf) for all f ∈ C∞(M)

Note that the commutators satisfy:

(i): [D1(M),D1(M)] ⊂ D1(M).

(ii): [D0(M),D1(M)] = [D1(M),D0(M)] ⊂ D0(M)

The k − th tensor power of D1(M) is defined as

T k := D1(M) ⊗C∞(M) D1(M) ⊗ ...⊗C∞(M) D1(M) (k times)

uses the right C∞(M)-module structure of the i-th factor and the left C∞(M)-module structure of the (i+1)-th
factor. Thus it has a natural left and right C∞(M)-module structure. Note that

T k = ⊗kD1(M) =
(
⊗kD1(M)

)
⊗ C∞(M) ⊂

(
⊗kD1(M)

)
⊗ D1(M) = T k+1

so that we can define:

T := ∪∞
k=0T k = ∪∞

k=0(⊗kD1(M))

as an associative, non-commutative C∞(M) algebra, fitered by T k. Let I be the left-ideal in T generated by
all elements of the form

P1 ⊗ P2 − P2 ⊗ P1 − [P1, P2] ⊗ 1, P1, P2 ∈ D1(M)

A simple calculation shows that for g ∈ C∞(M), P1, P2 ∈ D1, we have:

(P1 ⊗ P2 − P2 ⊗ P1 − [P1, P2] ⊗ 1)g = g(P1 ⊗ P2 − P2 ⊗ P1 − [P1, P2] ⊗ 1)

+ ([P1, g] ⊗ P2 − P2 ⊗ [P1, g] − [[P1, g], P2] ⊗ 1)

+ (P1 ⊗ [P2, g] − [P2, g] ⊗ P1 − [P1, [P2, g]] ⊗ 1)

(where one uses the Jacobi identity ([[P1, P2], g] + [[P2, g], P1] + [[g, P1], P2] = 0). Thus the left C∞(M)-ideal
generated by the elements P1 ⊗P2 −P2 ⊗P1 − [P1, P2]⊗1 automatically becomes a right C∞(M)-ideal as well.
Now we can go modulo this ideal I.

Hence we define the algebra of differential operators on M to be the associative algebra:

D∞(M) = T /I
The image of Dd(M) of T d is the left C∞(M)-module of linear differential operators of order d. Since T d ⊂
T d+1, we have Dd(M) ⊂ Dd+1(M) for all d, and D0(M) = C∞(M). D∞ is a non-commutative, associative
algebra over C∞(M), filtered by Dd(M). From the corresponding property of T k’s, it follows that:

Di(M).Dj(M) ⊂ Di+j(M)
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Finally, if E and F are two smooth complex vector bundles over M , the space of smooth sections of the
bundle hom(E,F ), namely C∞(M, hom(E,F )), is a right (=same as left) C∞(M)-module in a natural way.
Hence we may define the C∞(M)-modules:

Dd(M ;E,F ) := C∞(M, hom(E,F )) ⊗C∞(M) Dd(M), D∞(M ;E,F ) := C∞(M, hom(E,F )) ⊗C∞(M) D∞(M)

Note that these left C∞(M)-modules are algebras if E = F .

Exercise 9.3.2. Verify (by using local coordinates) that P : C∞(M,E) → C∞(M,F ) is a linear differential
operator of order d in the sense of 6.1.1 iff it is an element of Dd(M ;E,F ).

We will denote Dd(M ;E,F ) simply as Dd(E,F ), and sometimes even Dd when no confusion is likely, for
notational convenience.

Lemma 9.3.3 (Leading symbols again). Let π : (T ∗M) → M denote the natural projection, where T ∗M is
the real cotangent bundle of M . Note that there is the scaling map T ∗M → T ∗M given by ξ 7→ tξ, which
preserves each fibre T ∗

xM . Define the space of symbols of order d by:

Symd(E,F ) :=
{
σ ∈ C∞(T ∗M,π∗ hom(E,F )) : σ(tξ) = tdσ(ξ), ξ ∈ T ∗(M)

}

(In other words, those smooth sections σ which are homogenous polynomials of degree d in the fibre variables).

When E = F = M × C the trivial line bundle, we denote Symd(E,F ) simply by Symd(M). We have the
following facts:

(i): The associated graded module to the filtered C∞(M)-module D∞(E,F ) is the algebra Sym∞(E,F ) :=

⊕∞
d=0Symd(E,F ). The natural quotient map of C∞(M)-modules:

Dd(E,F ) → Symd(E,F )

P 7→ σL(P )

is called the leading symbol map. When E = F , Sym∞(E,E) is a commutative algebra, and the map σL
is an algebra homomorphism D∞(E,E) → Sym∞(E,E). In a local coordinate system, σL(P ) as defined
above coincides with the leading symbol defined earlier in Definition 5.5.4.

(ii): If ξ ∈ T ∗
x (M) is any cotangent vector, and f is any smooth function satisfying df(x) = ξ, then the

leading symbol can be computed from the formula:

σL(P )(ξ) = lim
t→∞

t−d(e−itfPeitf )(x)

(iii): P is elliptic iff σL(P )(ω) is a bundle isomorphism at all points of T ∗M \ 0M , where 0M denotes the
zero section of T ∗M .

Proof: First we note that

Dd(E,F ) = C∞(M ; hom(E,F )) ⊗C∞(M) Dd(M)

and similarly
Symd(E,F ) = C∞(M ; hom(E,F )) ⊗C∞(M) Symd(M)

hence we need prove all the assertions for the case of E = F = M × C, the trivial bundle, and then left-tensor
everything with C∞(M, hom(E,F )) to get it for general E and F . The second simplification one can make
is to reduce it to M = Rn. This is done by first covering M with charts Ui with each Ui diffeomorphic to
Rn. In fact, for any U ⊂ M open, we can define the left and right C∞(U) module Dd(U) by the definition
above (applied to M = U). Indeed, for V ⊃ U any two open subsets, there are the natural restriction maps
χ(V ) → χ(U) which preserves commutators of vector fields, and also the restriction map C∞(V ) → C∞(U).
Thus we have a natural restriction map D1(V ) → D1(U) of first order differential operators. Thus restriction
maps result:

T (V ) := ⊕k(⊗kD1(V )) → T (U)

which are algebra homomorphisms. Clearly the ideal IV generated by P1 ⊗ P2 − P2 ⊗ P1 − [P1, P2] ⊗ 1 in
T (V ) maps to the corresponding ideal IU ⊂ T (U), one has a natural restriction algebra homomorphism
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D∞(V ) → D∞(U) which maps Dd(V ) to Dd(U). The fact that Dd is a sheaf of left and right modules over
the sheaf C∞ follows from the facts that (i) D1 is a sheaf, which implies that T is a sheaf, and (ii) I is also a

sheaf of ideals inside T (verify!). Similarly, one forms the symbol sheaf Symd, whose sections over U ⊂ M are
precisely the sections σ in C∞(T ∗(U), π∗C) satisfying σ(tξ) = tdσ(ξ). The symbol map also becomes a sheaf
map with all of these definitions.

Because of the sheaf theoretic machinery above, all the assertions of the lemma need to be verified only
locally, i.e. on M = Rn. In this setting, D1 is the C∞(Rn) module of all operators of the kind

∑
i ai(x)∂i+b(x)

where ai, b ∈ C∞. Then clearly D1/D0 is the space χ of smooth vector fields on Rn. It is trivial to check that
for any smooth vector field X(x) =

∑n
i=1 ai(x)Di,x, (where Di = 1√

−1
∂i), the smooth function σ on T ∗(Rn)

defined by:
σ(ξx) =

√
−1 [ξx(X(x))] for ξx ∈ T ∗

x (Rn)

satisfies σ(tξ) = tσ(ξ) by the linearity of the cotangent vector ξx. Since σ(dxi,x) = ai(x) by this definition, it
is natural to write

σ(ξ) = σ

(
n∑

i=1

ξi dxi,x

)
=
∑

i

ai(x)ξi

which gives precisely the leading symbol of P =
∑
i ai(x)Di,x. Conversely, given a σ ∈ C∞(T ∗(Rn)) satisfying

σ(tξ) = tσ(ξ), it follows that σ is a linear functional on T ∗
x (Rn), and one gets a C∞ vector field in χ by setting

X(x) =

n∑

i=1

σ(dxi,x)Di,x

It is checked immediately that these maps are inverses of each other. More generally, if P =
∑

|α|≤d aαD
α
x is

a differential operator in Dd, then σL(P ) is
∑

|α|=d aαξ
α, which being a homogeneous polynomial of degree d,

satisfies σL(P )(tξ) = tdσL(P ). The space of smooth functions on T ∗(M) and obeying this scaling property
are precisely those functions which are homogeneous polynomials of degree d in the variables ξ1, .., ξn, and so
Symd is exactly σL(Dd). Indeed, this definition of σL agrees with the earlier one in Definition 5.5.4. Now it is
trivially checked that σL(PQ) = σL(P )σL(Q). Thus (i) is proved.

To see (ii), note that if df(x) = ξ, then ∂j,xf = ξj , and hence for a C∞ function g, we have:

Dj,x(e
itfg)(x) = teitf∂j,xf(x)g(x) + eitfDj,xg(x) = teitfξjg(x) + eitf (Dj,xg)(x)

More generally, using Leibnitz formula for differentiating a product:

Dα1
1,x...D

αn
n,x(e

itfg)(x) = t|α|eitfξα1
1 ...ξαn

n g(x)

+ (terms involving strictly lower powers of t)

from which it follows that
lim
t→∞

t−d(e−itfPeitf )(x) = σL(P )

and (ii) is proved.

(iii) is clear because saying that σL(P )(ξ) 6= 0 for all | ξ | large enough is equivalent to saying that it is
non-zero for all ξ 6= 0, by homogeneity of σL(P ). The lemma follows. 2

For f a smooth function on M , and P ∈ Dd(M,E) a differential operator, we denote by (ad f)P the
differential operator fP − Pf . Using the fact that [D0,D1] ⊂ D0 and induction, it is easy to see that
(ad f)P ∈ Dd−1(M,E), so that (ad f)dP is a zero-th order operator.

Corollary 9.3.4. Let P and f as in (iii) of the Lemma 9.3.3 above. Then

(i):

σL(P ) =
(−i)d
d!

(ad f)dP

(ii): Let P ∗ be the adjoint of P , defined with respect to some Hermitian inner products on E,F . Then

σL(P ∗)(ξ) = (σL(P ))∗(ξ)
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Proof: Note that
d

dt
(e−itfPeitf ) = (−i)e−itf [(ad f)P ]eitf

so that we inductively have:
(
d

dt

)d
(e−itfPeitf ) = (−i)de−itf [(ad f)dP ]eitf = (−i)d(ad f)dP

since (ad f)dP is in D0, and commutes with eitf . Applying L’Hospital’s rule to the formula in (iii) of 9.3.3, we
have (i)

To see (ii), if df(x) = ξ, we have by (iii) of 9.3.3 above that:

σL(P ∗)(ξ) = lim
t→∞

t−d(e−itfP ∗eitf ) = lim
t→∞

t−d
(
e−itfPeitf

)∗
= (σL(P ))

∗
(ξ)

The corollary follows.
2

9.4. Elliptic Complexes.

Definition 9.4.1. Let {Ei}mi=0 be complex vector bundles with Hermitian metrics. Say that a sequence of
differential operators:

... → C∞(M,Ei)
Pi−→ C∞(M,Ei+1) → ....

is an elliptic complex if:

(i): Pi+1 ◦ Pi = 0 for all i.

(ii): The associated symbol sequence

.... → π∗Ei
σL(Pi)(ξ)−→ π∗Ei+1

is exact for all ξ 6= 0 (i.e. all ξ ∈ T ∗M \M).

(iii): The order of each Pi is d > 0. (For most elliptic complexes of concern to us, d = 1).

Clearly, if we only have a two term sequence C∞(M,E0)
P→ C∞(M,E1), then this two term complex is

elliptic iff P is an elliptic operator of order d > 0.

Before looking at some examples of elliptic complexes, let us note the following:

Lemma 9.4.2. Let {C∞(M,E∗), P∗} be a complex of differential operators (i.e. Pi+1◦Pi = 0 for all i). Define
the Laplacian of this complex by:

∆i
P = P ∗

i Pi + Pi−1P
∗
i−1 : C∞(M,Ei) → C∞(M,Ei)

Then the complex above is elliptic iff ∆i
P is an elliptic operator for each i.

Proof: Let us denote σL(Pi) = pi. Let us assume that the complex is elliptic. Then, from (ii) of the Corollary
9.3.4, and (i) of 9.3.3 that σL is an algebra homomorphism, it follows that:

σL(∆i
P )(ξ) = p∗

i (ξ)pi(ξ) + pi−1(ξ)p
∗
i−1(ξ)

If for some e ∈ π∗Ei, σL(∆i
P )(ξ)e = 0, and ξ 6= 0, it follows that with respect to the Hermitian inner product

〈−,−〉 on π∗Ei, we have:

〈pi(ξ)e, pi(ξ)e〉 +
〈
p∗
i−1(ξ)e, p

∗
i−1(ξ)e

〉
= 0

which implies that pi(ξ)e = 0 and p∗
i−1(ξ)e = 0. Since the complex is elliptic, and ξ 6= 0, it follows that e =

pi−i(ξ)v for v ∈ π∗(Ei−1). Since p∗
i−1(ξ)e = 0, it follows that p∗

i−1(ξ)pi−1(ξ)v = 0. Thus
〈
v, p∗

i−1(ξ)pi−1(ξ)v
〉

=

0, which implies that pi−1(ξ)v = e = 0. Thus σL(∆i
P )(ξ) : π∗Ei → π∗Ei is a monomorphism, and hence an

isomorphism. That is ∆i
P is elliptic.

The converse is similar, and left as an exercise. 2
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Remark 9.4.3. Note that if P is an elliptic complex, and of finite length (i.e Ei = 0 for i >> 0), and
dim M > 0, then we have

∞∑

i=0

rankE2i =

∞∑

i=0

rankE2i+1

This is because we can choose a ξ 6= 0 in T ∗
xM , and the fact that the symbol complex:

... → Eix
σL(ξ)−→ Ei+1

x → ....

is exact means that the alternating sum:
∞∑

i=0

(−1)i dim Eix =

∞∑

i=0

(−1)irankEi = 0

which implies our assertion.

Example 9.4.4 (The de-Rham Complex). Set Ei = Λi(T ∗
C
M), the i-th exterior power of the (complexified)

cotangent bundle of M . Then consider the de-Rham complex:

.... → C∞(M,Ei) =: Λi(M,C)
di−→ Λi+1(M,C) → ....

If ξx =
∑
i ξjdxj,x is a real cotangent vector, in some local coordinate system, then since for ω =

∑
|I|=i ωIdxI ∈

Λi(M,C) we have the representation of dω in local coordinates:

dω =
∑

j

dxj∂j ∧ ω =
√

−1


∑

j

dxjDxj


 ∧ ω

it follows that σL(d)(ξ) =
√

−1
(∑

j dxjξj

)
∧ (−) = iξ ∧ (−). One already knows that this is a complex of

differential operators, i.e. di+1 ◦ di = 0, so to show that the complex is elliptic, it is enough to show that
the operator e(ξ) := ξ ∧ (−) is exact for ξ 6= 0. Since ξ 6= 0, we may complete it to a basis {ei}pi=1 of
π∗(T ∗M))ξ = T ∗

x (M) with ep = ξ. Then, each α ∈ Λp(T ∗
C,x(M)) may be uniquely written as:

α = α1 + ξ ∧ α2

where α1, α2 do not involve ξ = ep. If ξ ∧ α = 0, it follows that ξ ∧ α1 = 0, but since α1 does not involve ξ,
this implies α1 = 0. Thus α = ξ ∧ α2. This proves that the de-Rham complex is elliptic.

From the lemma 9.4.2 above, it follows that all the Laplacians ∆i = dd∗ + d∗d of the de-Rham complex are
elliptic operators.

Example 9.4.5 (Twisted Dolbeault Complex). Let M be a compact complex manifold of dimC M = n. Let
E be a holomorphic vector bundle on M of rkCE = k. We have the following well known decomposition (as
complex vector bundles) for the complexification of the real tangent bundle TRM :

TCM = TRM ⊗R C = T 1,0M ⊕ T 0,1M

where T 1,0M is the holomorphic tangent bundle of M , and T 0,1M is its complex conjugate bundle, and called
the anti-holomorphic tangent bundle of M . In a local holomorphic coordinate chart U ⊂ M , we may write
v ∈ T 1,0M|U as:

v =

n∑

j=1

αj
∂

∂zj

and correspondingly w ∈ T 0,1M|U as:

w =

n∑

j=1

βj
∂

∂zj

The decomposition of TCM leads to a corresponding decomposition of T ∗
C
M = homR(TRM,C) as:

T ∗
CM = (T 1,0M)∗ ⊕ (T 0,1M)∗
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Thus
Λi(T ∗

CM) = ⊕p+q=i

(
Λp(T 1,0M)∗ ⊗ Λq(T 0,1M)∗) =: ⊕p+q=iΛ

p,q(T ∗
CM)

Again, in a local holomorphic chart over U , and element ω ∈ Λp,q(T ∗M)|U has the representation:

ω =
∑

|I|=p, |J|=q
αIJdzI ∧ dzJ

where we use the notation:

dzI := dzi1 ∧ dzi2 ∧ ... ∧ dzip , dzJ = dzj1 ∧ dzj2 ∧ .... ∧ dzjq

We can tensor all this with the bundle E, and thus we have:

Λi(T ∗M) ⊗C E = ⊕p+q=iΛ
p,q(T ∗

CM) ⊗C E

Thus, for smooth sections of the above bundle, we have:

Λi(M,E) := C∞(M,Λi(T ∗M) ⊗C E) = ⊕p+q=iΛ
p,q(M,E)

where Λp,q(M,E) := C∞(M,Λp,q(T ∗
C
M) ⊗C E). Again, for U a coordinate chart, a section ω ∈ Λp,q(U,E) has

the representation:

ω =
∑

|I|=p, |J|=q
αIJdzI ∧ dzJ

where αIJ ∈ C∞(U,E) are smooth sections of E|U .

Now we can define the Dolbeault operator

∂
E

: Λp,q(M,E) → Λp,q+1(M,E)

by defining it on local representations as follows. On a coordinate chart U , write:

ω|U =
∑

|I|=p, |J|=q
αIJdzI ∧ dzJ

with αIJ ∈ C∞(U,E) = Λ0,0(U,E), and set

∂
E
ω|U =

∑

|I|=p, |J|=q
∂
E
αIJ ∧ dzI ∧ dzJ

where

∂
E
αIJ =

n∑

j=1

∂αIJ
∂zj

dzj

The thing to verify is that all this is globally defined, and the reason it is globally defined is that ∂
E
α is globally

defined as an element of Λ0,1(U,E) for α ∈ C∞(U,E) = Λ0,0(U,E), and U ⊂ M any open set. For, over a W

satisfying E|W is holomorphically trivial, we can write α as α =
∑k
i=1 αiei where αi are smooth functions on

W , and {ei}ki=1 is a holomorphic frame for E|W . Then we set:

∂
E
α =

k∑

i=1

∂αi ei

where, on a coordinate chart with coordinates z1, .., zn, we have

∂αi =

n∑

j=1

∂αi
∂zj

dzj

the usual ∂ operator on smooth complex valued functions. That this ∂-operator on smooth functions is well-
defined follows from the fact that coordinate changes on M are holomorphic.

If we change to another holomorphic frame {fj}kj=1 for E|V , where V ⊂ M is another open set, we have the
transition relation ei =

∑
j gjifj , where gij are holomorphic functions on V ∩W , and thus

α =
∑

i

αiei =
∑

j

(∑

i

gjiαi

)
fj
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and since gji are holomorphic, we have ∂(gjiαi) = gji∂αi, so that

∑

i

∂αi ei =
∑

j

(∑

i

gji∂αi

)
fj =

∑

j

∂

(∑

i

gjiαi

)
fj

which shows that our definition of ∂
E
α makes global sense, independent of local holomorphic frames.

It is now easy to check, using local coordinates, that ∂ ◦∂ = 0, so that we have the twisted Dolbeault Complex

.... → Λp,q(M,E) = C∞(M,Λp,qT ∗
C(M) ⊗C E)

∂
E

−→ Λp,q+1(M,E) → ....

of differential operators. That is, we are taking the complex vector bundle Eq := Λp,qT ∗
C
M ⊗ E, with a fixed

p. We can easily equip these smooth complex vector bundles with some Hermitian metrics, arising from a
Hermitian metric on the bundles TCM and E.

To check that this is an elliptic complex, one needs to calculate the symbol of ∂
E

. We note that the the
complex vector bundle (T 0,1M)∗ can be identified with the real cotangent bundle T ∗M , by forgetting its
complex structure, and with this notation ∂ = i

∑
j dzj

∂
∂zj

∧ (−), so that its symbol is given by:

σL(∂)(ξ) =
i

2
σL


∑

j

dzj(Dxj
+ iDyj

) ∧ (−)


 =

i

2

∑

j

dzj(ξ
1
j + iξ2j ) =

i

2
ξ ∧ (−)

where ξ =
∑
j ξjdzj =

∑
j(ξ

1
j + iξ2j )dzj ∈ T 0,1(M)∗. The reason that σL(∂)(ξ) is exact for ξ 6= 0 is the same

as that for the de Rham complex above, so we omit the argument.

9.5. The Hodge Theorem for Elliptic Complexes.

Definition 9.5.1. Let P denote an elliptic complex:

..... → C∞(M,Ei)
Pi−→ C∞(M,Ei+1) → ....

on a compact Riemannian manifold M . We define the i-th cohomology of this complex to be the C-vextor
space:

Hi(M,P) :=
kerPi

ImPi−1

For example, in the case of the de-Rham complex of Example 9.4.4 above, this gives the de Rham cohomology
of M (with complex coefficients). In the case of the twisted Dolbeault complex of Example 9.4.5 above, it
gives the (p, q)-Dolbeault cohomology with coefficients in E, and is denoted by Hp,q(M,E), which algebraic
geometers write as Hq(M,Ωp(E)) for reasons we needn’t explore here.

Theorem 9.5.2 (Hodge Theorem for Elliptic Complexes). Let P be an elliptic complex on a compact Rie-
mannian manifold M . Let ∆i

P : C∞(M,Ei) → C∞(M,Ei) be the Laplacian introduced in the Lemma 9.4.2.
Then:

(i): Hi(M,P) ' ker ∆i
P , and this cohomology is a finite dimensional space.

(ii): (Kodaira-Hodge decomposition) The L2-space of sections L2(M,Ei) = H0(M,Ei) admits the L2-
orthogonal direct sum decomposition:

L2(M,Ei) = ker ∆i
P ⊕ P ∗

i (Hd(M,Ei+1)) ⊕ Pi−1(Hd(M,Ei−1))

where each space on the right is a closed Hilbert subspace.
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Proof: Let us first prove (ii), and then (i) will follow as a consequence. Since P is an elliptic complex, by the
Lemma 9.4.2, the operators

∆i
P : C∞(M,Ei) → C∞(M,Ei)

are elliptic operators of the same order 2d ≥ 2, where d = ordPi ≥ 1. Also by its definition, it is self-adjoint.
By (i) of Proposition 8.4.8, the kernel

Hi
P := ker ∆i

P

is a finite dimensional subspace inside C∞(M,Ei), and therefore a finite-dimensional closed subspace of
Hd(M,Ei) for all d. Let π : L2(M,Ei) = H0(M,Ei) → Hi

P be the L2-orthogonal projection. Then for

all f ∈ L2(M,Ei), we have f − π(f) ∈ Hi,⊥
P . Then let

GiP : L2(M,Ei) → L2(M,Ei)

denote the Green operator from Proposition 8.4.8. By (a) of (iii) in that proposition, we have:

∆i
PG

i
P (f − π(f)) = f − π(f)

Again, by (a) of (iii) of the Proposition 8.4.8, we have GiP (π(f)) = 0, since π(f) ∈ ker ∆i
P . Thus we have:

f = π(f) + ∆i
PG

i
P (f) = π(f) + P ∗

i (PiG
i
P f) + Pi−1(P

∗
i−1G

i
P f) for all f ∈ L2(M,Ei)

By the construction of the Green operator in 8.4.8, GiP f ∈ H2d(M,Ei), which implies that PiG
i
P f ∈ Hd(M,Ei+1).

Similarly, P ∗
i−1G

i
P f ∈ Hd(M,Ei−1). The computation above therefore shows that:

L2(M,Ei) = Hi
P + Pi−1(Hd(M,Ei−1) + P ∗

i (Hd(M,Ei+1)

We denote the last two spaces above by ImPi−1 and ImP ∗
i respectively.

To check that the decomposition is orthogonal, we easily check that Hi
P = kerPi∩kerP ∗

i−1 from the definition

of ∆i
P . Hence for α ∈ Hi

P , we have:

(α, P ∗
i β) = (Piα, β) = 0

for all β ∈ Hd(M,Ei+1). Hence Hi
P is orthogonal to ImP ∗

i . Similarly, it is orthogonal to ImPi−1. Finally, if
we have α = Pi−1β and γ = P ∗

i δ, then:

(α, γ) = (Pi−1β, P
∗
i δ) = (PiPi−1β, δ) = 0

since PiPi−1 = 0. This shows that ImP ∗
i and ImPi−1 are also mutually orthogonal. We need to check that

both these images are closed. Note that if α ∈ L2(M,Ei) and α ∈ Hi
P + Pi−1(Hd(M,Ei−1)), then Piα = 0.

Conversely, if Pi : L2(M,Ei) → H−d(M,Ei+1) annihilates α, we write:

α = α1 + Pi−1β + P ∗
i γ

by the decomposition above, where γ ∈ Hd(M,Ei+1). Now note that Piα = 0 implies that the element
PiP

∗
i γ ∈ H−d(M,Ei+1) is zero. This implies that under the natural pairing 〈−,−〉 of Hd(M,Ei+1) and

H−d(M,Ei+1) (see (iii) of Proposition 4.2.2), we have:

〈γ, PiP ∗
i γ〉 = (P ∗

i γ, P
∗
i γ)0 = 0

which implies that P ∗
i γ = 0, and α ∈ Hi

P +ImPi−1. Thus ImP ∗
i is precisely the orthogonal complement of the

subspace kerPi in L2(M,Ei), and since the orthogonal complement of any subspace is closed, we have ImP ∗
i is

closed. Similarly, ImPi−1 is the orthogonal complement of kerP ∗
i−1 in L2(M,Ei) and also closed. This proves

(ii).

In fact, since both GiP and ∆i
P map smooth forms to smooth forms, as do Pi−1 and P ∗

i , and Hi
P ⊂

C∞(M,Ei), we can restrict the decomposition above to obtain:

C∞(M,Ei) = Hi
P ⊕ Pi−1(C

∞(M,Ei−1)) ⊕ P ∗
i (C∞(M,Ei+1))

which is L2-orthogonal, but of course left hand space and the two right hand spaces are no longer closed in
L2(M,Ei). Again it is readily checked that

ker {Pi : C∞(M,Ei) → C∞(M,Ei)} = Hi
P ⊕ Pi−1(C

∞(M,Ei−1))

which implies that

Hi(M,P) =
ker {Pi : C∞(M,Ei) → C∞(M,Ei)}

Pi−1(C∞(M,Ei−1))
= Hi

P
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and, indeed the natural composite map:

Hi
P → ker {Pi : C∞(M,Ei) → C∞(M,Ei)} → Hi(M,P)

is the required isomorphism. This proves (i), and the theorem follows. 2

Corollary 9.5.3 (Hodge-deRham Theorem). By the Theorem 9.5.2 above applied to the elliptic de Rham
complex of Example 9.4.4 above, we have that the i-th de Rham cohomology of a compact manifold M
satisfies:

Hi
dR(M,C) ' Hi

where Hi = ker {∆i : Λi(M,C) → Λi+1(M,C)} is the space of harmonic i-forms on M . In particular, by the
above theorem, this cohomology is finite dimensional. This is, incidentally, provable by using the de Rham
theorem which is highly non-trivial, and the fact that a compact smooth manifold is a finite CW-complex,
which again uses non-trivial Morse Theory. That is, the finite dimensionality of the de Rham cohomology of
a compact smooth manifold, whichever way one chooses to prove it, is a very deep result.

Corollary 9.5.4 (Hodge-Dolbeault Theorem). By the Theorem 9.5.2 applied to the twisted Dolbeault com-
plex of Example 9.4.5, it follows that the twisted Dolbeault cohomology Hp,q(M,E) of a compact complex
manifold M and holomorphic coefficient bundle E satisfies:

Hp,q(M,E) ' Hp,q(M,E)

where the space on the right is the kernel of the Hodge-Dolbeault Laplacian 2 := ∂
E
∂
E∗

+ ∂
E∗
∂
E

inside
Λp,q(M,E). Again the theorem implies that this Dolbeault cohomology is finite dimensional. In the case
when E is the trivial line bundle M × C, and p = 0, the Dolbeault cohomology Hp,q(M,E) is simply denoted

H0,q

∂
(M) or simply H0,q(M). Then, by the above, the alternating sum:

n∑

q=0

(−1)q dim H0,q(M)

is finite. Again, that this is finite for the situation above has to be proved as above, and is a very deep fact.

9.6. Index of an elliptic complex. We observed in (a) of (iii) in Proposition 8.4.8 that for a formally
self-adjoint elliptic differential operator P : C∞(M,E) → C∞(M,E) of order d > 0, the (finite dimensional)
cokernel CokerP = (ImP )⊥ = kerP , so that the index of the Fredholm operator P : Hd(M,E) → H0(M,E)
is indP = dim kerP − dim CokerP = 0. Thus we won’t get any interesting index by considering the indices
of the elliptic (of order 2d) Laplacians ∆i

P of an elliptic complex P. On the other hand, a profound idea due
to Dirac (who introduced it to explain electron spin) suggests that we find a “square root” of the Laplacian to
get an interesting index.

What one does instead is construct an operator of order d as follows.

Definition 9.6.1 (The Dirac operator of an elliptic complex). LetM be a compact oreinted Riemannian man-
ifold, and let P be the elliptic complex:

... → C∞(M,Ei)
Pi−→ C∞(M,Ei+1) → .....

where Pi is a differential operator of order d > 0 for each i. Let us assume that this complex is of finite length,
i.e. Ei = 0 for i large enough. Define E+ = ⊕∞

i=0E
2i and E− = ⊕∞

i=0E
2i+1. Note that by the Remark 9.4.3,

the smooth complex vector bundles E+ and E− have the same rank. Then we define the following operators
of order d:

D+ := P+ + P ∗
− : C∞(M,E+) → C∞(M,E−)

D− := P− + P ∗
+ : C∞(M,E−) → C∞(M,E+)

where P+ := ⊕iP2i, P− = ⊕iP2i+1. These operators are called the Dirac operators of the elliptic complex P.
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Proposition 9.6.2. In the setting of the Definition 9.6.1 above, we have:

(i): D+ and D− are formal adjoints of each other, and are differential operators of order d.

(ii): The composite D−D+ = ⊕i≥0∆
2i
P and similarly the composite D+D− = ⊕i≥0∆

2i+1
P . Thus the two

term complex:

D+ : C∞(M,E+) → C∞(M,E−)

is an elliptic complex, with associated Laplacian being

∆+
P := D−D+ = ⊕i≥0∆

2i
P : C∞(M,E+) → C∞(M,E+)

This Laplacian ∆+
P is elliptic and (formally) self-adjoint. Similarly one can construct the other elliptic

formally self-adjoint Laplacian ∆−
P := D+ : D− acting on C∞(M,E−).

(iii): The operators

D± : Hd(M,E±) → L2(M,E∓)

are elliptic, and hence Fredholm. Their Fredholm index is given by:

indD+ =

∞∑

i=0

(−1)i(dim ker ∆i
P ) =

∞∑

i=0

(−1)i dim Hi(M,P) = −indD−

Proof: The assertion (i) is clear from the definitions.

(ii) is also clear from the definitions. The assertion that this two term complex is elliptic follows from the
fact that the associated Laplacian is precisely ∆+

P = ⊕i≥0∆
2i
P , which is elliptic, and formally self adjoint, by

the Lemma 9.4.2.

We have seen that a two term complex is elliptic iff the operator in this complex is elliptic, so D+ (and
hence its formal adjoint D−) is an elliptic operator. One easily checks that D+f = 0 iff ∆+

P f = D−D+f = 0
for f ∈ Hd(M,E+), by using the fact that

(D+f, g) = (f,D−g), for all f ∈ Hd(M,E+), g ∈ L2(M,E−)

which follows from the duality of Hd(M,E+) and H−d(M,E+) of (iii) in Proposition 4.2.2 and that the above
formula holds for f, g smooth (i.e. D+ and D− are formal adjoints of each other). Likewise for the adjoint
D−, we have f ∈ kerD− iff f ∈ ker ∆−

P . Hence the index of D+ and D− satisfy:

indD+ = dim kerD+ − dim kerD− =
∑

i≥0

(dim ker ∆2i
P − dim ker ∆2i+1

P ) =
∑

i≥0

(−1)i dim ker ∆i
P = −indD−

The fact that dim ker ∆i
P = dimHi(M,P) follows from (i) of the Hodge Theorem 9.5.2. The proposition

follows. 2

Note that for the De Rham complex of Example 9.4.4, the Dirac operator is d + d∗ = d + δ, and its index
is the Euler characteristic of M . For the twisted Dolbeault complex of Example 9.4.5, the associated Dirac

operator is ∂
E

+ ∂
E∗

, and its index is the quantity
∑
q(−1)qHp,q(M,E).

Remark 9.6.3. Aside from the fact that the Dirac operator construction leads to an interesting index, it
also shows that no generality is lost by considering two-term elliptic complexes instead of a general elliptic
complex of finite length. We will henceforth restrict ourselves to this setting for analytical considerations,
though finite length elliptic complexes will always be in the background because they arise from natural
geometric considerations, e.g. the de Rham complex, the twisted Dolbeault complex, and the signature and
spin complexes that will arise later.
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10. Heat kernels

10.1. Heat Operators on Compact Manifolds. We now confine ourselves to the setting of the Proposition
9.6.2. That is, we have two Hermitian smooth vector bundles E± on M , and elliptic operators of order d > 0
D+ and D− fulfilling all the conclusions of 9.6.2. In particular, by the Propositions 8.4.8 and 8.4.9, we know
that the spectra of ∆+

P and ∆−
P are discrete, with absolute values of eigenvalues | λn |≥ Cnδ for some δ > 0.

Actually, one can say more:

Proposition 10.1.1. In the setting of Proposition 9.6.2, the spectrum of ∆+
P and ∆−

P satisfies λn ≥ 0. Thus

if we arrange the eigenvalues of ∆+
P in non-decreasing order:

λ0 ≤ λ1 ≤ .... ≤ λn ≤ ....

we have constants C, δ > 0 so that λn ≥ Cnδ for all n. Likewise for ∆−
P .

Proof: Let en be a basis of L2-orthonormal smooth eigensections in L2(M,E+), for the elliptic self-adjoint
operator ∆+

P , via (d) of the Proposition 8.4.8. Then

λn = (∆+
P en, en) = (D−D+en, en) = (D+en, D

+en) ≥ 0

where the right equality follows from the fact that D+en is also smooth, and D+ and D− are formal adjoints
of each other by (i) of 9.6.2. The last assertion follows from the Proposition 8.4.9. 2.

Proposition 10.1.2. Let t ∈ (0,∞). Define the operator e−t∆+
P by defining its action on the eigensections en

of the last proposition by e−t∆+
P en = e−tλnen (i.e. by “functional calculus”). Then this extends to a bounded

self-adjoint operator:

e−t∆+
P : L2(M,E+) → L2(M,E+)

called the heat operator of ∆+
P . For all t ∈ (0,∞), this operator is infinitely smoothing, gets defined on

Hd(M,E+) for all d, and when viewed as an operator Hd → L2, is compact, for all d. The analogous statement

holds for e−t∆−
P .

Proof: Write an element f ∈ L2(M,E+) as:

f =

∞∑

n=0

anen

where
∑
n | an |2= ‖f‖2

< ∞. Since we have λn ≥ Cnδ by the last Proposition 10.1.1, we have e−tλn ≤ e−tCnδ

for all n. Since t > 0, it follows that there is a constant A(t) such that e−tλn ≤ A(t) for all n. Thus:
∑

n

| e−tλnan |2≤ A(t)2
∑

n

| an |2

and the heat operator e−t∆+
P is a bounded operator on L2(M,E+), with operator norm ≤ A(t). It is self-adjoint

since ∆+
P is formally self adjoint, and smooth functions are dense in L2(M,E+).

To see that it is infinitely smoothing, note that by the Corollary 6.2.3 (Garding inequality) applied to the
elliptic operator Q := (∆+

P )k (which is of order 2kd), we have that the Sobolev 2kd-norm is given by:

‖en‖2
2kd = ‖Qen‖2

0 + ‖en‖2
0 = (λkn + 1)

Again, since t > 0 and λn ≥ Cnδ, it easily follows that

∞∑

n=0

e−2tλn(λkn + 1) ≤ Bk(t) < ∞
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Thus, for the partial sum gN :=
∑N
n=0 e

−tλnanen, we will have

‖gN‖2kd ≤
N∑

n=0

e−tλn | an | ‖en‖2kd =

N∑

n=0

e−tλn(λkn + 1)1/2 | an |

≤
(

N∑

n=0

e−2tλn(λkn + 1)

)1/2( N∑

n=0

| an |2
)1/2

≤ Bk(t)
1/2 ‖f‖0

From which it follows that e−t∆+
P f ∈ H2kd(M,E+) for all k, which implies that it is smooth by the Sobolev

Lemma (iv) of Proposition 4.2.2.

Since e−t∆+
P is infinitely smoothing, it is in Ψd−1(M) for all d, and a bounded operator Hd(M,E+) into

H1(M,E+) for all d. By Rellich’s Lemma (vi) of 4.2.2, since the inclusion H1 ⊂ H0 = L2(M,E+) is compact,

e−t∆+
P : Hd(M,E+) → L2(M,E+)

is a compact operator for all d. 2
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Proposition 10.1.3 (Some facts about the Heat Operator). In the setting of the previous proposition, we
have the following:

(i): The for f ∈ L2(M,E+), we let fH+ denote the orthogonal projection π(f) to the finite dimensional
∆+-harmonic space ker ∆+ = ⊕i≥0 ker ∆2i

P by the Kodaira-Hodge decomposition of (ii) in 9.5.2. Then

lim
t→0

e−t∆+

f = f ; lim
t→∞

e−t∆+

f = fH+ for all f ∈ L2(M,E+)

where the convergence, of course, is in the L2-norm.

(ii): If f ∈ C∞(M,E+), then e−t∆+

f converges to fH+ as t → ∞ and to f as t → 0 in the norm ‖−‖k,∞
for all k.

(iii): For t > 0, there is a smooth integral kernel:

k+
t ∈ C∞(M ×M, homC(π∗

2E
+, π∗

1E
+))

(where π1, π2 are the first and second projections of M ×M to M) satisfying:

(e−t∆+

f)(x) =

∫

M

k+
t (x, y)f(y)dV (y) for all f ∈ C∞(M,E+)

(iv): For t ∈ (0,∞), the sum
∑∞
i=0 e

−tλi , called the trace of the heat operator for obvious reasons, and

denoted by tr e−t∆+

is given by the integral:

tr e−t∆+

=

∫

M

tr k+
t (x, x)dV (x)

Analogous facts obtain for e−t∆−

.

Proof: Let en be L2-orthogonal eigensections for ∆+ corresponding to the eigenvalues λn. Assume that
in our non-decreasing arrangement of eigenvalues λ1 = λ2 = ...λp = 0, so that {en}pn=1 is an orthonormal

basis for H+. Also λp+1 > 0. Now expand f ∈ L2(M,E+) as f = fH+ +
∑
n≥p+1 anen. Then e−t∆+

f =

fH+ +
∑
n≥p+1 e

−tλnanen, and:
∥∥∥e−t∆+

f − fH+

∥∥∥
2

=
∑

n≥p+1

e−2tλn | an |2≤ e−2tλp+1

∑

n≥p+1

| an |2≤ e−tλp+1 ‖f‖2

which clearly shows, since λp+1 > 0, that limt→∞ e−t∆+

f = fH+ and the second assertion of (i) follows.

For the first assertion, note that:
∥∥∥e−t∆+

f − f
∥∥∥

2

=
∑

n≥p+1

(e−tλn − 1)2 | an |2

Now, given any ε > 0, choose an N > p + 1 such that
∑
n≥N+1 | an |2≤ ε. Also since λn ≥ λp+1 > 0 for

n ≥ p + 1 by the Proposition 10.1.1, we can choose η > 0 so that (e−tλn − 1)2 ≤ ε for t ∈ (0, η) and all the
finitely many n satisfying p+ 1 ≤ n ≤ N . Then we estimate:

∑

n≥p+1

(e−tλn − 1)2 | an |2 ≤
∑

p+1≤n≤N
(e−tλn − 1)2 | an |2 +C

∑

n≥N+1

| an |2

≤ ε ‖f‖2
+ Cε for 0 < t < η

which proves that limt→0 e
−t∆+

f = f in L2 and the first assertion of (i) follows.

Now we prove (ii). In view the Sobolev Embedding Theorem (iv) of Proposition 4.2.2, and the Corollary
6.2.3 (Garding-Friedrichs inequality applied to the elliptic operator ∆+k of order 2kd), it is enough to show
that that for f ∈ C∞(M,E+) (contained in H2kd(M,E+) for all k ≥ 1):

(a): (∆+)ke−t∆+

f converges to (∆+)kf in L2(M,E+) as t → 0 (resp. converges to (∆+)kfH+ , which
incidentally is zero for k ≥ 1, as t → ∞) and,
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(b): e−t∆+

f converges to f in L2(M,E+) as t → 0 (resp. converges to fH+ in L2(M,E+) as t → ∞).

The statement (b) follows from (i) above. For the statement (a), note that (∆+)ke−t∆+

f = e−t∆+

(∆+)kf ,
and ∆+ k(fH+) = (∆+ kf)H+ , and thus (a) follows by applying (i) to the section ∆+ kf ∈ L2(M,E+). This
proves (ii).

Now we give the construction for k+
t . For the smooth eigensection en of E+ corresponding to the eigenvalue

λn, denote by e∗
n the section of E+∗ = hom(E+,C) defined by e∗

n(x)(w) = 〈w, en(x)〉x for w ∈ E+
x (remember

Hermitian metrics are linear in the first slot, and conjugate linear in the second!). Then e∗
n(y)⊗ en(x) becomes

a smooth section of hom(π∗
2E

+, π∗
1E

+), its value at a an element v ∈ E+
y = (π∗

2E
+)(x,y) being the element

e∗
n(y)(v)en(x) = 〈v, en(y)〉 en(x) ∈ E+

x = (π∗
1E

+)(x,y).

Define the formal sum:

kt(x, y) =

∞∑

i=0

e−tλn(e∗
n(y) ⊗ en(x))

Note that L2(M ×M, hom(π∗
2E

+, π∗
1E

+)) has a canonical L2-inner product arising out of the natural tensor
product Hermitian metric on the bundle hom(π∗

2E
+, π∗

1E
+). The corresponding global inner product on

M × M (with respect to the volume element of the product Riemannian metric) has the orthonormal basis
{e∗
m(y)⊗ en(x)}. So the series above certainly converges in L2-norm, by the estimate λn ≥ Cnδ of Proposition

10.1.1. To show that this kernel is a smooth section on M ×M , we apply the elliptic operators ∆+ k
y × ∆+ j

x

for arbitrary j and k, and note that the differentiated series will have coefficients λk+jn e−tλn , to which again
λn ≥ Cnδ may be applied, to show that this differentiated series is again L2 over M ×M . Now appeal to the
Sobolev Lemma and Garding-Friedrichs as always.

To see it is the required kernel, we compute its effect on each em:
∫

y∈M
kt(x, y)em(y)dV (y) =

∞∑

n=0

e−tλn

∫

y∈M
e∗
n(y) ⊗ en(x)(em(y))dV (y)

=

∞∑

n=0

e−tλnen(x)

∫

y∈M
〈en(y), (em(y)〉 dV (y) =

∞∑

n=0

e−tλnen(x)(en, em) = e−tλmem(x)

since (en, em) = δnm by L2-orthornormality of en’s. This shows that the integral operator defined by kt has the

same effect on each em as the heat operator e−t∆+

, and the two operators are therefore the same on L2(M,E+).
This proves (iii).

To see (iv), we first define what we mean by tr k+
t (x, x). kt is a smooth section of the bundle

homC(π∗
2E

+, π∗
1E

+). The maps π1 and π2 agree on the diagonal, and indeed if one identifies the diagonal ∆M

inside M×M with M via the map (x, x) 7→ x, the bundles π∗
2E

+ and π∗
1E

+ both get identified with the bundle
E+. Thus restricting the smooth section k+

t to the diagonal gives the smooth section, denoted by k+
t (x, x), of

the bundle homC(E+, E+). On this bundle there is the natural trace map:

tr : homC(E+, E+) → C

Tx 7→
∑

i

〈Tx(fi), fi〉x

where fi is any 〈−,−〉x orthonormal basis of E+
x , (viz. it is the invariant trace of Tx : E+

x → E+
x ).

Now we simply calculate, for x ∈ M , and fi some 〈−,−〉x-orthonormal basis of E+
x :

tr k+
t (x, x) =

∑

i

∞∑

n=0

e−tλn 〈(e∗
n(x) ⊗ en(x))(fi), fi〉x

=

∞∑

n=0

e−tλn

∑

i

〈〈fi, en(x)〉 en(x), fi〉x

=

∞∑

n=0

e−tλn

∑

i

| 〈en(x), fi〉x |2=
∞∑

n=0

e−tλn ‖en(x)‖2
x
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which implies that:
∫

M

tr k+
t (x, x)dV (x) =

∞∑

n=0

e−tλn

∫

M

‖en(x)‖2
x dV (x) =

∞∑

n=0

e−tλn(en, en) =

∞∑

n=0

e−tλn

since en’s form an orthonormal basis with respect to the global inner product (−,−). This proves (iv), and
the proposition follows. 2

Remark 10.1.4. The proof of assertion (ii) of the foregoing proposition reflects a classical fact about the heat

operator e−t∆+

, which is that it starts with an arbitrarily irregular f (a distribution, i.e. in some Hs(M,E+))
at t = 0, and makes it smooth at any positive time t > 0. Indeed as t → ∞, it converts the irregular f into
its smooth harmonic part fH+ . Thus it time-evolves the irregular initial data f into a smooth section for any
t > 0, and into its smooth harmonic part as t → ∞.

Remark 10.1.5. We explicitly constructed the kernel for the heat operator e−t∆+

. However, it is a fact
that an operator (defined on distributional sections D′(M,E)) on a compact Riemannian manifold is infinitely
smoothing iff it is given by an integral operator with a smooth integral kernel. For convenience’s sake, let us
consider an operator K which maps Hs(M,C) → L2(M,C) as a bounded operator, for all s, and whose image is
contained in C∞(M,C). We know that on Rn, the Dirac distribution δx is a compactly supported distribution
lying in H−k(Rn) for all k > n/2 (see the Corollary 3.2.2). If M is of dimension n, since the support of δx is
x, it becomes an element of H−k(M) for all n > k/2 (by using a partition of unity definition of Hs(M)). Thus
K(δx) is a smooth function. Define:

k(y, x) := K(δx)(y)

One now has to verify that this is the required integral kernel. For the converse, one has to verify that integral
operators with smooth integral kernels on a compact manifold are infinitely smoothing, by differentiating under
the integral sign using compactness of M , or using the Sobolev Embedding Theorem coupled with clever uses
of integral inequalities.

As we have remarked earlier, integral operators with smooth integral kernels do not give rise to infinitely
smoothing operators on non-compact manifolds. For example, the Fourier transform on R is an integral
operator with smooth kernel e−iξ.x, but converts a smooth function like (1+x2)−1 into a non-smooth function.

Proposition 10.1.6 (Facts about the heat kernel).

(i): The section k+
t (x, y) defined in (iii) of the Proposition 10.1.3 satisfies the pointwise adjointness formula:

〈
k+
t (x, y)v, w

〉
x

=
〈
v, k+

t (y, x)w
〉
y

for v ∈ (π∗
2E

+)(x,y) = E+
y , w ∈ (π∗

1E
+)(x,y) = E+

x

(ii): k+
t (x, y) satisfies the heat equations

(
∂

∂t
+ ∆+

x

)
k+
t (x, y) = 0 =

(
∂

∂t
+ (∆+)∨

y

)
k+
t (x, y) for t ∈ (0,∞), (x, y) ∈ M ×M

where

(∆+)∨ : C∞(M,E+∗) → C∞(M,E+∗)

is the pointwise dual of ∆+ with respect to the Hermitian metric 〈−,−〉 on E+.

(iii): If f ∈ L2(M,E+) is a square integrable section, we have seen in the Proposition 10.1.2 that e−t∆+

f

is smooth in x. It is also smooth in t for t ∈ (0,∞), and if we define F (x, t) := e−t∆+

f , the F satisfies:
(
∂

∂t
+ ∆+

)
F (x, t) = 0 for t ∈ (0,∞), x ∈ M

F (x, 0) := lim
t→0

F (x, t) = f

There are completely analogous statements for k−
t and ∆−.
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Proof: To see (i), we note that for v ∈ E+
y , w ∈ E+

x :

〈(e∗
n(y) ⊗ en(x))(v), w〉x =

〈
〈v, en(y)〉y en(x), w

〉
x

= 〈v, en(y)〉y 〈en(x), w〉x
and interchanging the roles of x and y, v and w, we have:

〈(e∗
n(x) ⊗ en(y)(w), v〉y = 〈w, en(x)〉x 〈en(y), v〉y

Since the right hand sides of the two equations above are complex, conjugates of each other, we have:

〈(e∗
n(y) ⊗ en(x))(v), w〉x = 〈v, e∗

n(x) ⊗ en(y)(w)〉y
from which (i) follows by multiplying by e−tλn and summing over n.

To see (ii), note that since the series for kt(x, y) is absolutely and uniformly convergent in both variables, as
are the differentiated series with respect to ∂t = ∂

∂t and ∆+
x and ∆+

y (from the eigenvalue estimate λn ≥ Cnδ),
we can apply these operators term by term. Hence:

∂t(
∑

n

e−tλne∗
n(y) ⊗ en(x) =

∑

n

(−λne−tλne∗
n(y) ⊗ en(x)

−
∑

n

e−tλne∗
n(y) ⊗ ∆+

x en(x) = −∆+
x (kt(x, y))

Also, from the equation ∆+
y en(y) = λnen(y), one finds that for the pointwise adjoint operator ∆+∨

y defined by
the adjoint formula:

〈
∆+∨ψ, f

〉
=
〈
ψ,∆+f

〉
, f ∈ C∞(M,E+), ψ ∈ C∞(M,E+∗)

one easily finds that (∆+)∨e∗
n = λne

∗
n, and the second formula of (ii) follows as well.

To see (iii) note that if f ∈ L2(M,E+), we may write f =
∑
n anen, with

∑
n | an |2= ‖f‖2

< ∞.
Furthermore, F (x, t) =

∑
n e

−tλnanen is a series which lies in Hs(M,E+) for all s, and converges in ‖−‖s for
each s (meaning the Sobolev s-norm of the tails

∑
n≥N e

−tλnanen converges to 0 for all s, by the facts that

λn ≥ Cnδ, and ‖en‖2
2kd = λkn + 1). Hence the series on the right converges in ‖−‖∞,k for all k, by the Sobolev

Embedding Theorem (iv) of 4.2.2. Hence if one applies ∂t, or ∆+ term-by-term to this series, the resulting
series converge to ∂t(F (x, t)) and ∆+F (x, t) respectively. However, upon term by term differentiation we have:

∂t(e
−t∆+

f) = −
∑

n

λne
−tλnanen = −

∑

n

e−tλnan∆
+en = ∆+(e−t∆+

f)

since ∆+ and e−t∆+

commute. This proves that ∂tF (x, t) + ∆+F (x, t) = 0. The fact that limt→0 F (x, t) = f
follows from (i) of Proposition 10.1.3. The proposition follows.

An analogue of (iii) can be proved for f ∈ Hs(M,E+) and any s, (i.e. for all distributional sections
f ∈ H−∞(M,E+) = D′(M,E+), but we omit the proof. It is completely analogous, because f can still be
expanded in a Fourier series

∑
n anen. One needs to note that en need no longer be orthonormal in ‖−‖2kd,

but we still have (en, em)2kd = (λkn + 1)δnm for all k 6= 0 (by proving the analogue of Corollary 6.2.3 for k ≤ 0,
which in turn stems from the duality of H2kd and H−2kd from (iii) of Proposition 4.2.2). 2

10.2. An integral formula for the index of D+. The following proposition is the key to the entire heat-
equation approach for the index theorem.

Theorem 10.2.1 (McKean-Singer). Let M be a compact Riemannian manifold, and P an elliptic complex
on M . Let:

D± : C∞(M,E±) → C∞(M,E∓)

be the corresponding Dirac operators, as in Definition 9.6.1, and let

k±
t (x, y) ∈ C∞(M ×M, homC(π∗

2E
±, π∗

1E
±))

denote the heat kernels of the heat evolution operators e−t∆± respectively, as in (iii) of the Proposition 10.1.3.
Then:

indD+ =

∫

M

(tr k+
t (x, x) − tr k−

t (x, x))dV (x) = −indD−
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In particular, the quantity on the right is an integer independent of t.

Proof: Let λn ≥ 0 and µm ≥ 0 be the eigenvalues of the two Laplacians ∆+ = D−D+ and ∆− = D+D−

respectively. Let the eigensections of ∆+ be denoted en, which are orthonormal in L2(M,E+) with respect to
its L2- inner product, which we denote by (−,−)+ (with (−,−)− denoting the L2-inner product on L2(M,E−)).

We now note that if en is an eigensection of ∆+ with eigenvalue λn, we have:

∆−D+en = (D+D−)D+en = D+(D−D+)en = D+(∆+en) = λnD
+en

so that D+en, if non-zero, is an eigensection of ∆− corresponding to the same eigenvalue λn.

Furthermore, for all n,m, by the fact that λn and λm are both real, and the adjointness of D+ and D−, we
have:

λn(en, em)+ = (D−D+en, em)+ = (D+en, D
+em)− = (en, D

−D+em)+ = λm(en, em)+

which implies in view of the foregoing that:

(i): If λn 6= 0 (i.e. λn > 0), the section D+en is a non-zero eigensection of ∆− corresponding to the same
eigenvalue λn as en.

(ii): For n 6= m we have D+em orthogonal to D+em.

Similar facts obtain for the eigensections fn ∈ C∞(M,E−) of the other Laplacian ∆−. From this it follows
that for λn 6= 0 and µm 6= 0, D+ maps the finite-dimensional λn-eigenspace of ∆+ isomorphically into a
subspace of the λn-eigenspace of ∆−, and D− similarly maps the finite-dimensional µm-eigenspace of ∆−

isomorphically into a subspace of the µm-eigenspace of ∆+. It follows that the non-zero eigenvalues λn > 0 of
∆+ are in bijective correspondence with the non-zero eigenvalues µm > 0 of ∆−, and also occur with exactly
the same multiplicity. Thus:

tr e−t∆+ − tr e−t∆−

=
∑

n

e−tλn −
∑

m

e−tµm =
∑

λn=0

1 −
∑

µm=0

1 = dim ker ∆+ − dim ker ∆−

But the left hand side of this equation is precisely:
∫

M

(tr k+
t (x, x) − tr k−

t (x, x))dV (x)

by (iv) of Proposition 10.1.3, and the right hand side of the equation is indD+ = −indD− by the proof of (iii)
in Proposition 9.6.2.

The last assertion is clear in view of the fact that indD+ is independent of t. The theorem follows. 2.

Now, in the sequel, the main aim is to identify the integrand

str kt(x, x) := tr k+
t (x, x) − tr k−

t (x, x)

called the supertrace of the heat evolution operator. This is impossible in full generality. However, one can do
what is called an asymptotic expansion in powers of t1/d (where d is the order of the differential operator D+)
for small times t, and using the fact that the left hand side is independent of t, compute just the coefficient of t0

(the constant term) in this symptotic expansion. That such an asymptotic expansion exists in general is proved
in Gilkey. However, since we shall be interested only in four specific elliptic complexes (the de-Rham, Twisted-
Dolbeault, Signature and Spin complexes), for each of which the corresponding Laplacian ∆+ = D−D+ is a
generalised Laplacian, i.e. a second order operator whose leading symbol is the same as that of the classical
Laplace-Beltrami operator, we will concentrate only on such elliptic complexes.

11. Fundamental solutions

To motivate whatever follows, we need to construct the heat kernel for the Laplacian ∆ = −∑j ∂
2
j on

Rn. Our assertion of the existence of a heat kernel in Proposition 10.1.3 doesn’t quite apply, since Rn is
non-compact, and does not have a discrete spectrum. But fortunately, one can explicitly write down the heat
kernel (or Gauss kernel as it is sometimes known) in the case of Rn.
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11.1. The Euclidean heat kernel.

Proposition 11.1.1 (Euclidean heat kernel). For x, y ∈ Rn, define the function:

kt(x, y) = (4πt)−n/2e−|x−y|2/4t

(i): kt(x, y) is symmetric in x and y, and is a fundamental solution to the heat equation, viz.,

(∂t + ∆x)kt(x, y) = 0 = (∂t + ∆y)kt(x, y)

(ii): For f ∈ L2(R
n) the function:

F (x, t) = e−t∆f :=

∫

Rn

kt(x, y)f(y)dy

is a smooth function of both t and x, and satisfies:

(∂t + ∆)F (x, t) = 0

(iii): Let y ∈ Rn, and let δy denote the Dirac distribution at y. Then there is a smooth function w(−, t) ∈
S(Rn) such that:

(a) (∂t + ∆)w(x, t) = 0 for all x ∈ Rn, t > 0

and

(b) lim
t→0

(f, w(−, t)) = f(y) for all f ∈ S(Rn)

This w(−, t) is called a fundamental solution of the heat equation on Rn with pole at y, and is uniquely
determined by the conditions (a) and (b).

(Caution: in this proposition, dy denotes Euclidean volume element dy = dy1...dyn, and is related to the
earlier volume element dV (y) of §1 by dV (y) = (2π)−n/2dy.)

Proof: Direct differentiation yields that:

∂t(t
−n/2e−|x−y|2/4t) =

(
t−n/2

| x− y |2
4t2

+ (−n/2)t−n/2−1

)
e−|x−y|2/4t

=

(−n
2

+
| x− y |2

4t

)
t−n/2−1e−|x−y|2/4t

∆x(t
−n/2e−|x−y|2/4t) = −t−n/2

∑

i

∂x,i

(
− (xi − yi)

2t
e−|x−y|2/4t

)
= t−n/2

∑

i

(
1

2t
− (xi − yi)

2

4t2

)
e−|x−y|2/4t

= t−n/2−1

(
n

2
− | x− y |2

4t

)
e−|x−y|2/4t

from which the statement (i) follows. For the second, note that if we denote the function:

ρt(x) = (2t)−n/2(e−|x|2/4t)

then F (x, t) = ρt ∗ f , where the convolution is the same as the one introduced in §1 (i.e. in the space variables,
with respect to the volume dV (y) = (2π)−n/2dy1...dyn). Since ρt is in the Schwartz class (since t > 0), and
f ∈ L2(R

n) = H0(R
n) implies f is a tempered distribution, it follows that the convolution F (x, t) is smooth

in the space variable x by the Lemma 1.4.7. and also that ∆xF (x, t) = (∆ρt) ∗ f .

In the time variable, one uses that ∂tρt(x) = (−n/2+ | x |2 /4t)t−1ρt(x) and the Dominated convergence
theorem to take ∂t under the integral sign and get

∂t(F (x, t)) = (∂tρt) ∗ f
Hence we have:

(∂t + ∆x)(F (x, t)) = (∂t + ∆)(ρt) ∗ f =

∫

Rn

(∂t + ∆y)kt(x, y)f(y)dy = 0

by applying (i). This proves (ii).
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To see (iii), note that the Dirac distribution δy is a tempered distribution (as we remarked in Example 1.3.5,
it is a compactly supported distribution), and so taking the convolution with the Schwartz class function ρt
for t > 0

w(x, t) := ρt ∗ δy
gives a smooth function (see Proposition 1.4.7). To see that it is in the Schwartz class, note that its Fourier
transform is ρ̂t(ξ)e

−iξ.y, which is in S(Rn) since ρ̂t is in S(Rn). If one writes down the formula for the
convolution of distributions, we find:

w(x, t) = δy(ρ
x
t ) = ρxt (y) = (2t)−n/2e−|x−y|2/4t = (2π)n/2kt(x, y)

which is clearly a smooth function of x ∈ Rn for t > 0. That it satisfies the heat equation is an immediate
consequence of (i) that (∂t + ∆x)kt(x, y) = 0 for t > 0. This shows (a) of (iii).

To see (b), note that for f ∈ S(Rn), we have

(f, w(−, t)) =

∫

Rn

f(x)w(x, t)dV (x) =

∫

Rn

ρt(x− y)f(x)dV (x) =

∫

Rn

ρt(y − x)f(x)dV (x) = (ρt ∗ f)(y)

and the proposition follows by noting that for φ(x) = ρ 1
2
(x):

∫

Rn

φ(x)dV (x) =

∫

Rn

ρ 1
2
(x)dV (x) =

∫

Rn

e−|x|2/2dV (x) = 1

and that by setting ε2 = 2t, we have

φε(x) = ε−nφ(x/ε) = (2t)−n/2ρ 1
2
(x/ε) = (2t)−n/2e−|x|2/2ε2 = (2t)−n/2)e−|x|2/4t = ρt(x)

But by the Lemma 1.2.3, we have φε are approximate identities, and φε ∗ f = ρt ∗ f → f uniformly on Rn,
for all f ∈ S(Rn). Thus (f, w(−, t)) → (ρt ∗ f)(y) has limit f(y) as t → 0. This proves (b). To see that
(a) and (b) uniquely determine w(−, t), let us assume u(−, t) ∈ S(Rn) also satisfies (a) and (b). Denoting
wt := w(−, t), ut := u(−, t) for notational convenience, note that the time derivative of the L2-norm of wt−ut
is given by (because both wt and ut are rapidly decreasing, Stokes Formula is applicable):

∂t(wt − ut, wt − ut) = −2(∆(wt − ut), wt − ut) = −2(d(wt − ut), d(wt − ut)) ≤ 0

and so ‖wt − ut‖2
is a non-increasing function of t. Also, by (b), for every f we have:

lim
t→0

(f, wt − ut) = f(y) − f(y) = 0

which means limt→0 ‖wt − ut‖ → 0, and by the fact that ‖wt − ut‖ is non-increasing in t, it follows that wt ≡ ut
for all t > 0. This proves the proposition.

2

11.2. Fundamental solutions of the Heat equation for the Dirac Laplacians. Now let M be a compact
Riemannian manifold, and let D± be the Dirac operators introduced in Definition 9.6.1.

Definition 11.2.1 (Fundamental solutions). Let x ∈ M and let v ∈ E+
x . We say that a smooth section

w(−, t) ∈ C∞(M,E+) is a fundamental solution with pole (x, v) if:

(i): The section w(−, t) satisfies the heat equation for ∆+, viz.

(∂t + ∆+)w(x, t) = 0 for all x ∈ M, t > 0

(ii): limt→0(s, w(−, t)) = 〈s(x), v〉x for all s ∈ C∞(M,E+)

The second condition means that wt approaches the “Dirac distributional-section” (at the point x) which is
given by δxv as t → 0.

One can obviously make a similar definition for E− and ∆−.

Proposition 11.2.2 (Existence and uniqueness of fundamental solutions). Let M , E± be as above. Then
given v ∈ E+

x , there exists a fundamental solution with pole (x, v) to the heat equation for ∆+, and this
solution is unique. Likewise for E− and ∆−.
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Proof: We merely apply (iii) of the Proposition 10.1.3 to f = δxv, this “Dirac distributional section” δxv. We
also note that this f ∈ H−k(M,E+) for all k > n/2, and by the Remark 10.1.5, we will have that

w(z, t) =

∫

M

k+
t (z, y)δx(y)vdV (y) = k+

t (z, x)v

is a smooth section of E+ for t > 0. Indeed, the right hand side is clearly smooth in z since k+
t is smooth in z

(x is held fixed here) for t > 0. Furthermore, for t > 0, we have

(∂t + ∆+)(w(z, t)) = (∂t + ∆+
z )(k+

t (z, x)v) = 0

by using (ii) of Proposition 10.1.6.

For the convergence as t → 0, we have:

(s, w(−, t)) =

∫

M

〈s(z), w(z, t)〉z dV (z) =

∫

M

〈
s(z), k+

t (z, x)v
〉
z
dV (z)

=

∫

M

〈
k+
t (x, z)s(z), v

〉
x
dV (z) =

〈∫

M

k+
t (x, z)s(z)dV (z), v

〉

x

=
〈
(e−t∆+

s)(x), v
〉
x

where we have used the adjointness-symmetry property (i) of Proposition 10.1.6 to arrive at the second line.

Now, by (ii) of Proposition 10.1.3, we have by the smoothness of s that limt→∞ e−t∆+

s → s in the ‖−‖∞,0 (i.e

the convergence is uniform over M), which means that the limit at x satisfies:

lim
t→0

(e−t∆+

s)(x) = s(x)

and hence limt→0(s, w(−, t)) = 〈s(x), v〉x, and our assertion follows. Likewise for E− and ∆−.

To see uniqueness, just verbatim repeat the argument for uniqueness given in (iii) of the Proposition 11.1.1,
only noting that for wt − ut, we have:

−(∆+(wt − ut), wt − ut) = −(D+(wt − ut), D
+(wt − ut)) ≤ 0

by the formal-adjointness of D+ and D− proved in (i) of Proposition 9.6.2. 2

Exercise 11.2.3. For M = S1, and E+ = Λ0T ∗(M), E− = Λ1T ∗(M), D+ = d, D− = δ (i.e. the two
term deRham elliptic complex for S1, whose associated Dirac complex is itself), explicitly write down the heat
kernels k+

t and k−
t and carry out the verifications of all the preceding propositions in this subsection and the

previous one by hand.

12. Asymptotic expansions of the heat kernel

This approach is due to Minakshisundaram and Pleijel. First, assuming that one has an asymptotic ex-
pansion, one computes the coefficients in this expansion by substituting in the heat equation and equating
coefficients term-by-term. Then one appeals to elliptic estimates to prove that the formal procedure above
makes sense.

12.1. Asymptotic expansions.

Definition 12.1.1. Let f be any function on (0,∞). A formal series
∑∞
k=0 akt

nk (where nk ∈ Z) is said to be
an asymptotic expansion for f near 0 if:

(i): nk < nk+1 for all k (so that nk → ∞ as k → ∞), and,

(ii): For each l ≥ 0, there exists a Cl ≥ 0 such that
∣∣∣∣∣f(t) −

l∑

k=0

akt
nk

∣∣∣∣∣ ≤ Clt
nl+1

This will be denoted by f(t) ∼ ∑∞
k=0 akt

nk (Compare with asymptotic expansions of symbols introduced in
Definition 5.3.2).
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For example, for the function kt(x, y) = (4πt)−n/2e−|x−y|2/4t introduced above, regarded as a function of t,
we would have that:

(4π)−n/2
∞∑

k=0

( | x− y |2k
4k k!

)
t−n/2−k

is an asymptotic expansion near 0. Note that the expansion starts with t−n/2.

For a motivation, knowing the heat kernel on R for the Laplacian ∆ = −∂2
x, let us try to find an asymptotic

expansion for the heat kernel of the operator L = ∆ + b(x)∂x + c(x) where b and c are smooth functions. It is
in fact enough to find the fundamental solution: u(x, t) satisfying (∂t + L)u(x, t) = 0, and limt→0 u(x, t) = δx.
Then one gets the heat kernel by kt(x, y) = u(x− y, t) (verify!). To this end we have:

Proposition 12.1.2. Let L = ∆ + b(x)∂x + c(x) as above, where b and c are smooth functions on R. Then
there is an asymptotic fundamental solution to the corresponding heat equation (∂t + L)u(x, t) = 0. That is,
there is a formal series:

(4πt)−1/2e−x2/4t(u0(x) + tu1(x) + ...+ tkuk(x) + ...)

where uj(x) are smooth functions of x, with u0(0) = 1, such that for the partial sum

Sk(x, t) := (4πt)−1/2e−x2/4t




k∑

j=0

tjuj(x)




we have:

(∂t + L)Sk(x, t) = (4πt)−1/2e−x2/4ttkrk(x)

where rk(x) is a smooth function of x. Furthermore, uj(0) are algebraic expressions (i.e. polynomials) in the
jets (derivatives of all orders) of b and c at 0.

Proof: The idea is to determine the uj(x) by a recursive formula. So in the PDE (∂t + L)u(x, t) = 0, let us
substitute the series

(4πt)−1/2e−x2/4t
[
u0(x) + tu1(x) + t2u2(x) + ...

]

for u(x, t). The coefficient of tk in the expression within square-brackets is uk.

Note that the formal series on differentiating with respect to x is

∂xu(x, t) = (4πt)−1/2e−x2/4t
[
− x

2t
(u0 + tu1 + ...) + (u′

0 + tu′
1 + ...)

]

where u′
i denotes ∂xui. Note that the coefficient of tk in the expression within square-brackets is:

u′
k − x

2
uk+1

Differentiating again with respect to x, we have:

∂2
xu(x, t) = (4πt)−1/2e−x2/4t

[(
x2

4t2
− 1

2t

)
(u0 + tu1 + ...) − x

t
(u′

0 + tu′
1 + ...) + (u′′

0 + tu′′
1 + ...)

]

The coefficient of tk in the expression within square-brackets is:

x2

4
uk+2 − 1

2
uk+1 − xu′

k+1 + u′′
k

Taking the t-derivative, we have:

∂tu(x, t) = (4πt)−1/2e−x2/4t

[
(u1 + 2tu2 + 3t2u3 + ...) +

(
x2

4t2
− 1

2t

)
(u0 + tu1 + ...)

]

The coefficient of tk in the expression within square brackets is:

(k + 1)uk+1 +
x2

4
uk+2 − 1

2
uk+1 = (k +

1

2
)uk+1 +

x2

4
uk+2
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Now substitute this into the heat equation for L to get:

(∂t + L)u(x, t) = (∂t − ∂2
x + b(x)∂x + c(x))u(x, t) = (4πt)−1/2e−x2/4t

[ ∞∑

k=−2

αkt
k

]

where:

αk = (k +
1

2
)uk+1 +

x2

4
uk+2 − x2

4
uk+2 +

1

2
uk+1 + xu′

k+1 − u′′
k + b(x)u′

k − b(x)
x

2
uk+1 + c(x)uk

= xu′
k+1 +

(
k + 1 − xb(x)

2

)
uk+1 + Luk

Setting αk = 0 gives a recursive differential equation for uk+1 in terms of uk. That is, the equation:

xu′
k+1 +

(
k + 1 − xb(x)

2

)
uk+1 + Luk = 0 (25)

Since u−1 = 0 by definition, we have on substituting k = −1 in the equation (25) above the following
differential equation for u0:

u′
0 − b(x)

2
u0 = 0

which implies that u0 = Ae
− 1

2

∫
x

0
b(y)dy

for some constant A, and setting the requirement that u0(0) = 1 implies
that

u0 = e
− 1

2

∫
x

0
b(y)dy

More generally, consider the integrating factor:

Rk(x) = xk+1e
− 1

2

∫
x

0
b(y)dy

we get logRk(x) = (k + 1) log x− 1
2

∫ x
0
b(y)dy so that:

1

Rk(x)

d

dx
(Rk(x)uk+1) =

(
k + 1

x
− b(x)

2

)
uk+1 + u′

k+1 =
1

x

[(
(k + 1) − xb(x)

2

)
uk+1 + xu′

k+1

]
= − 1

x
Luk

by (25), so that

uk+1(x) =
−1

Rk(x)

(∫ x

0

Rk(y)

y
Luk(y)dy

)

gives the explicit recursive formula for uk+1 in terms of uk.

Now if we take the partial sum:

Sk(x) = (4πt)− 1
2 e−x2/4t

(
u0 + tu1 + t2u2 + ...+ tkuk

)

with uk defined as above, then write:

(∂t + L)Sk = (4πt)− 1
2 e−x2/4t

[
β−2t

−2 + ....βkt
k
]

since αj contains no contribution from the term tj+2uj+2, we have that the coefficient βj = αj for all j ≤ k−1.
Also βk = Luk, since the rest of the expression for αk involves uk+1.

So we finally have:

(∂t + L)Sk = (4πt)−1/2tke−x2/4t(Luk)

which implies the differential equation asserted for Sk.

We need to show that the uk’s defined above are smooth. We do this by induction. The function u0 =
exp(− 1

2

∫
b(y)dy) is clearly smooth by definition. Also the integrating factor Rk is given by:

Rk(x) = xk+1u0(x)

from the above proof. Hence if we inductively assume that uk is smooth, we will have:

−Rk(y)
y

Luk(y) = ykγk(y)
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where γk(y) = −u0(y)Luk(y) is smooth in y. Hence the integral:

−
∫ x

0

Rk(y)

y
Luk(y)dy =

∫ x

0

ykγk(y)dy = xk+1ρk(x)

where ρk(x) is a smooth function in x (using integration by parts, for example). Thus the formula for uk+1(x)
in the proof above reads

uk+1(x) =
1

Rk(x)

(
−
∫ x

0

Rk(y)

y
Luk(y)dy

)
=

1

Rk(x)
(xk+1ρk(x)) =

ρk(x)

u0(x)

which is clearly smooth in x since u0 is a nowhere vanishing smooth function. Note that adding a constant of

integration to the indefinite integral
∫ x
0
Rk(y)
y Luk(y)dy will destroy this property, because we need this integral

to yield the factor xk+1. Hence, by induction, all the uk are smooth.

The final assertion is that uk(0) are polynomial expressions in the various jets (higher derivatives) of b and

c at zero. Indeed, we claim that u
(r)
k (0) are all polynomials in the various jets of b and c at 0. We do this by

double induction on k and r. For k = 0, by definition u0(0) = 1, and u′
0(x) = b(x)

2 u0(x) implies by Leibnitz
rule that:

u
(r+1)
0 (0) =

1

2

∑

0≤j≤r

r!

(r − j)! j!
b(r−j)(0)u

(j)
0 (0)

so that induction on r shows that our claim is true for k = 0. Assume inductively that it is true for uk, i.e.

u
(r)
k (0) is a polynomial in the various jets of b and c at 0 for all r. Since L = −∂2

x + b(x)∂x + c(x), it follows

by the induction hypothesis that (Luk)
(r)(0) is also a polynomial in the various jets of b and c at 0 for all r.

From the equation (25) it follows that:

uk+1(0) =
1

k + 1
(Luk)(0)

so that the claim is true for uk+1(0). Differentiating the equation (25) (r + 1) times with respect to x yields:

xu
(r+2)
k+1 + (r + 1)u

(r+1)
k+1 +

(
k + 1 − xb(x)

2

)
u

(r+1)
k+1 +

∑

0≤j≤r
Aj(x)u

(j)
k+1 + (Luk)

(r+1) = 0

where Aj(x) is a polynomial in x, b(x), ..., b(j)(x). Setting x = 0 in this equation shows that:

(r + k + 2)u
(r+1)
k+1 (0) = −

∑

0≤j≤r
Aj(0)u

(j)
k+1(0) − (Luk)

(r+1)(0)

Since Aj(0) is a polynomial in the various jets of b at 0, and by the last para (Luk)
(r+1)(0) is a polynomial in

the jets of b and c at 0, the last equation above implies by induction on r that u
(r+1)
k+1 is a polynomial in the

jets of b and c at 0. The proposition follows. 2

Let us prove another technical lemma which will be used later on.

Lemma 12.1.3. Let g =
∑
i,j gijdxi ⊗ dxj be a Riemannian metric on a suitably small ball U around the

origin in Rn, and let gij be the corresponding metric on 1- forms, i.e. gij = g−1
ij is the matrix inverse of g. This

metric defines a Riemannian distance on this ball, which we denote by δ. Define a smooth function on U :

f(x, t) = (4πt)−n/2 exp

(−δ(0, x)2
4t

)

Then

∂tf −
∑

i,j

gij∂i∂jf =

(
1

t
a1 + a2

)
f

where ∂i = ∂
∂xi

, and a1, a2 are smooth functions of x, with a1(0) = 0.

Proof: Let us denote the scalar Laplacian (on functions) on U by ∆. We claim that

∆ = −
∑

i,j

gij∂i∂j + L
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where L is a 1st-order operator. This is because we saw in the Example 9.4.4 that σL(d) = iξ∧(−), and also by
(ii) of the Corollary 9.3.4 that σL(d∗) = (−iξ)∠(−), the adjoint of σL(d). Thus σL(d∗d) =| ξ |2=∑i,j g

ijξiξj .
Thus

∆ =
∑

i,j

gijDx,iDx,j + L = −
∑

ij

gij∂i∂j + L

where L =
∑
i αi(x)∂i + β(x) is a first-order operator.

Now note that for the first-order operator L =
∑
i αi(x)∂i + β(x) as above, we have

Lf = (4πt)−n/2
∑

i

αi(x)

[
− 1

4t
∂i(δ(0, x)

2) exp

(−δ(0, x)2
4t

)]
+ β(x)f =

(
1

t
c1(x) + c2(x)

)
f

where ci are smooth, and also

c1(0) =
−1

4

∑

i

αi(0)∂i(δ(0, x)
2)(0) =

−1

4

∑

i

αi(0)(
∑

j

gijxj)(0) = 0

since

δ(0, x) = ‖x‖ + o(‖x‖2
) = (

∑

i,j

gij(0)xixj)
1/2 + o(‖x‖2

)

where ‖x‖ denotes the norm of x in the tangent space T0(R
n) with respect to gij(0).

Thus it is enough to prove that:

∂tf + ∆f =

(
1

t
a1 + a2

)
f

where ai are smooth, and a1(0) = 0. Now it is convenient to use geodesic polar coordinates on U , i.e. polar
coordinates on T0(R

n) = Rn transferred to U by the exponential map. We may shrink U to guarantee that
the exponential map is a diffeomorphism of a neighbourhood of 0 in T0(R

n) onto U . In these polar coordinates
δ(0, x) = r, and

f(x, t) = (4πt)−n/2 exp

(−r2
4t

)

which is a radial function. It is also known that if x = exp0(x1, .., xn) is a vector in T0(R
n), then r2 =

δ(0, x)2 = ‖x‖2
=
∑
i,j gij(0)xixj . Thus for the function f(r, t), which does not depend on any of the other

polar coordinates v2, .., vn on the unit sphere, we have:

∂if = ∂rf
∂r

∂xi
=

1

r

∑

k

gik(0)xk∂rf

Differentiating again, multiplying with −gij and summing over i, j yields:

∆f = −∂2
rf − (n− 1)

r
∂rf

Now:

∂rf =
−r
2t
f

and so

∂2
rf =

−1

2t
f +

r2

4t2
f

Thus

∆f =
n

2t
f − r2

4t2
f

Finally,

∂tf = − n

2t
f +

r2

4t2
f

Hence ∂tf + ∆f = 0, which is of the required form. 2
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12.2. Generalised Laplacians. We will now look at elliptic operators of a special kind, because these will
be of primary interest in whatever follows.

In this section, E is to be thought of as either E+ or E−, the complex Hermitian vector bundles arising in
the Dirac complex. Also, the operator ∆E which will be cropping up in this section will be the operators ∆+

or ∆− in our future considerations.

Definition 12.2.1. Let E be a complex vector bundle on a compact Riemannian manifold M , with Hermitian
metric 〈−,−〉. Let P : C∞(M,E) → C∞(M,E) be a differential operator of order 2. We say that P is a
generalised Laplacian if:

(i): P is a formally self-adjoint, viz., (Pf, g) = (f, Pg) for all f, g ∈ C∞(M,E), where (f1, f2) is the usual
global Hermitian inner product on C∞(M,E) defined by:

(f1, f2) =

∫

M

〈f1(x), f2(x)〉x dV (x) fi ∈ C∞(M,E)

(ii): The leading symbol of P satisfies:

σL(P )(ξ) =| ξ |2 IEx
, ξ ∈ T ∗Mx

In future we will suppress IEx
from the notation, with the understanding that the scalar | ξ |2 means

that scalar times the identity endomorphism of (π∗E)ξ = Ex.

Remark 12.2.2. Using (i) of the Corollary 9.3.4, we have for a second operator that:

σL(P )(ξ) =
−1

2
(ad f)2P =

−1

2
[f, [f, P ]]

for f such that df(x) = ξ. Thus P is a generalised Laplacian iff P is formally self-adjoint of order 2 and:

[f, [f, P ]] = −2 | ξ |2= −2 | df |2

for each f ∈ C∞(M).

One can easily construct a generalised Laplacian P as above by using a connection ∇E on the bundle E
and the Levi-Civita connection ∇ on the Riemannian manifold M , as we see below.

First we recall that there is a trace map defined by:

tr : C∞(M,T ∗M ⊗ T ∗M) → C∞(M)

f 7→ f(g)

where g ∈ C∞(M,TM ⊗TM) is the Riemannian metric (on the cotangent bundle) given by g =
∑
i,j g

ij∂i⊗∂j
in local coordinates. By tensoring with IE , we get a map as below, which we also denote by tr,

tr : C∞(M,T ∗M ⊗ T ∗M ⊗ E) → C∞(M,E)

If s ∈ C∞(M,T ∗M ⊗ T ∗M ⊗ E), then in a local coordinate system xi at a point, we may write

s =
∑

i,j

s(∂i, ∂j)dxi ⊗ dxj

where s(∂i, ∂j) is a local smooth section of E. Then

trs =
∑

i,j

s(∂i, ∂j)dxi ⊗ dxj


∑

k,l

gk,l∂k ⊗ ∂l


 =

∑

i,j

s(∂i, ∂j)g
ij (26)

Now let
∇E : C∞(M,E) → C∞(M,T ∗M ⊗ E)
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be a connection on E. By taking the natural “tensor product connection” IT∗M ⊗ ∇E + ∇ ⊗ IE (where ∇ is
the Levi-Civita connection on T ∗M , we also get a connection:

∇T∗M⊗E : C∞(M,T ∗M ⊗ E) → C∞(M,T ∗M ⊗ T ∗M ⊗ E)

Definition 12.2.3 (The operator ∆E). Define the second order differential operator:

∆E = −tr(∇T∗M⊗E ◦ ∇E) : C∞(M,E) → C∞(M,E)

Lemma 12.2.4. The operator ∆E defined above is a generalised Laplacian.

Proof: First, if s ∈ C∞(M,E), we have, in local coordinates xi at a point:

∇Es =
∑

i

dxi ⊗ ∇E
i s

where we set ∇E
i s := ∇E

∂i
s to simplify notation.

Then we compute ∇T∗M⊗E of both sides:

∇T∗M⊗E∇Es =
∑

i

∇T∗M⊗E(dxi ⊗ ∇E
i s) =

∑

i

∇(dxi) ⊗ ∇E
i s+

∑

i

dxi ⊗ ∇E∇E
i s

=
∑

i,j

(
dxj ⊗ ∇j(dxi) ⊗ ∇E

i s+ dxi ⊗ dxj ⊗ ∇E
j ∇E

i s
)

where ∇ denotes the Levi-Civita connection. Now note that for a tangent vector Y :

∇j(dxi)(Y ) = ∂j(dxi(Y )) − dxi(∇jY ) = ∂jYi − dxi(∇jY )

Thus, for tangent vectors X =
∑
iXi∂i and Y =

∑
j Yj∂j , we have:

(∇T∗M⊗E∇Es)(X,Y ) =
∑

i,j

Xj(∂jYi − dxi(∇jY ))∇E
i s+

∑

i,j

XiYj∇E
j ∇E

i s (27)

Now again note that the second term of the equation (27) above is:

−
∑

i,j

Xjdxi(∇jY )∇E
i s = −

∑

j

Xj

∑

i

(∇jY )i∇E
i s = −

∑

j

Xj∇E
∇jY s = −∇E

∇XY s

Also:

∇E
X∇E

Y s =
∑

j

Xj∇E
j (
∑

i

Yi∇E
i s) =

∑

j

XjYi∇E
j ∇E

i s+Xj(∂jYi)∇E
i s

which are precisely the first and third terms of (27). In conclusion:

(∇T∗M⊗E∇Es)(X,Y ) = ∇E
X∇E

Y s− ∇E
∇XY s

Thus, by applying the equation (26) above, we find that:

∆Es = −
∑

i,j

gij

(
∇E
i ∇E

j −
∑

k

Γkij∇E
k

)
s

where the Christoffel symbols Γkij are defined by

∇i∂j =
∑

k

Γkij∂k

Since the leading symbols of ∇i is just ∂i, it follows that ∆E has the same leading symbol as the operator
given in local coordinates by:

−
∑

ij

gij∂i∂j =
∑

i,j

gijDx,iDx,j
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But his leading symbol precisely
∑
i,j g

ijξiξj =| ξ |2, the symbol of the Laplacian. So ∆E is a generalised
Laplacian. We remark here that the leading symbol depends only on the Riemannian metric g on M , and does
not depend on the connection ∇E on E. 2

Remark 12.2.5. We have already remarked in the proof of the Lemma 12.1.3 that for the usual Laplace-
Beltrami operator on functions, (i.e. the Laplacian on C∞(M) of the deRham complex) that σL(∆) =
−∑i,j g

ij(x)∂i∂j . Thus, from the above proposition it follows that no matter what connection one puts on E,
we have:

∆E = ∆ + L

where L is a first order differential operator. L, of course, will depend on E. We will study it in greater detail
later, and see the connection with the Bochner and Weitzenbock formulas.

12.3. Fundamental solutions of the Heat Equation for generalised Laplacians. By the Proposition
11.2.2, we have the existence and uniqueness of a fundamental solution w(x, t) to the Dirac Laplacians ∆±.
For the elliptic complexes we consider in the sequel, all of these Dirac Laplacians ∆± will be generalised
Laplacians. (Indeed, they will all arise as ∆E as in Definition 12.2.3, and Lemma 12.2.4 will imply that they
are generalised Laplacians). The proof of the existence and uniqueness of the fundamental solution w(x, t) used
the eigensections and eigenvalues of ∆±, which gives little information about the behaviour of the fundamental
solution, because one cannot explicitly compute these eigenvalues and eigensections.

The objective of this section is to gain more information by actual construction of the fundamental solution
of Proposition 11.2.2, by starting out with a Gaussian type fundamental solution as in Rn, and applying an
iterated approximation process using asymptotic solutions for generalised Laplacians. Because this iterative
procedure is explicit, it will in theory “solve” the problem of computing the fundamental solution.

Since by definition a generalised Laplacian ∆E has the same leading symbol as the Laplace-Beltrami operator
∆, it follows that

P = ∆ + L

where

L =

n∑

i=1

bi(x)∂i + c(x)

is a first order operator. We have a handle on the fundamental solution for ∆ by Lemma 12.1.3, we can try to
mimic the argument of Proposition 12.1.2 to obtain a fundamental solution for the heat equation:

(∂t + P )u = 0

by asymptotic methods.

Proposition 12.3.1. Let P : C∞(M,E) → C∞(M,E) be a generalised Laplacian on the compact Riemannian
manifold M . Let 0 be some preassigned point on M . Then, on a suitably small neighbourhood U of 0, there
is an asymptotic solution:

u(x, t) ∼ (4πt)−n/2 exp

(
−δ(0, x)

2

4t

)
(u0(x) + tu1(x) + ...tkuk(x) + ..)

where δ(0, x) is the Riemannian distance between 0 and x in the metric g, and uk(x) are smooth sections of E
on U . That is to say,

(∂t + P )Sk(x, t) = (4πt)−n/2 exp

(
−δ(0, x)

2

4t

)
tkrk(x) for x ∈ U, t ∈ (0,∞)

where Sk(x, t) is the partial sum
∑k
j=0 t

juj(x), and rk(x) is a smooth function on U . u0(0) can be given any

preassigned non-zero (vector) value v ∈ E0, and for all k, each component of uk(0) is a polynomial in the
vi(0) and the various jets of gij , bi and c at 0 (bi(x) and c(x) being the coefficients occurring in the first order
operator L := P − ∆ as in the last paragraph).
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Proof: First of all note that we may use a coordinate chart U around 0 on which E is trivial, and which is
diffeomorphic to Rn. So, we take M = Rn, and E the trivial bundle. By coordinatewise application, we can
also assume that E is the trivial line bundle. Since P is a generalised Laplacian, we can take:

P = ∆ + L = −
∑

i,j

gij(x)∂i∂j + L, where L =
∑

i

bi(x)∂i + c(x)

and bi(x) and c(x) are smooth. 0 is the origin in Rn. We will use the geodesic normal coordinates (x1, .., xn)
introduced in the proof of Lemma 12.1.3.

Now if f, v ∈ C∞(U) are two smooth functions, we have by Leibnitz’s formula:

P (fv) = −
∑

i,j

gij(x)∂i∂j(fv) +
∑

i

bi(x)∂i(fv) + c(x)(fv)

= −
∑

i,j

gij(x)(v∂i∂jf + 2(∂iv)(∂jf) + f∂i∂jv) +
∑

i

bi(x)(f∂iv + v∂if) + c(x)fv

= fPv − v
∑

i,j

gij(x)∂i∂jf − 2
∑

i,j

gij(x)(∂iv)(∂jf) + v
∑

i

bi(x)∂if (28)

Thus we have,

1

f
(∂t(fv) + P (fv)) = (∂tv + Pv) +

v

f
(∂tf −

∑

i,j

gij(x)∂i∂jf) − 2

f

∑

i,j

gij(x)(∂iv)(∂jf) +
v

f

∑

i

bi(x)∂if (29)

Now set f = f(x, t) = (4πt)−n/2 exp(−δ(0,x)2
4t ) in the above formula. By the Lemma 12.1.3, we have (upon

shrinking U if necessary) that:

∂tf −
∑

i,j

gij∂i∂jf =

(
1

t
a1 + a2

)
f

where ai are smooth, and a1(0) = 0. Also, since we are using geodesic normal coordinates, we have r2 =

‖x‖2
=
∑
i,j gi,j(0)xixj =

∑
i x

2
i . Now f being a radial function (i.e. only a function of r), we have:

1

f
∂if =

1

f
∂rf ∂ir = −2r

4t

xi
r

= −xi
2t

Substituting these two facts into the equation (29), we have:

1

f
(∂t(fv) + P (fv)) = (∂tv + Pv) + v

(
1

t
a1 + a2

)
− 2gij∂iv

(−xj
2t

)
+ v

∑

j

bj(x)
(
−xj

2t

)

which implies that:

(∂t(fv) + P (fv)) = f


∂tv + Pv) + u

(
1

t
a1 + a2

)
+
∑

j

xj
t

(∑

i

gij∂iv − 1

2
vbj

)
 (30)

Since we are using geodesic normal coordinates, the radial vector field ∂r has length one, and is in the same
direction as x =

∑
j xjej , where ej(x) =

∑
gij(x)∂i is an orthonormal frame at x ∈ U . Thus

∂r =
1

‖x‖
∑

j

xjej =
1

r

∑

i,j

gij(x)xj∂i

Substituting this into the equation (30) above, we get:

(∂t(fv) + P (fv)) = f


(∂tv + Pv) + u

(
1

t
a1 + a2

)
−


∑

j

xjbj
2t

v +
r

t
∂rv




 (31)

Now let v =
∑∞
k=0 t

kuk(x), so that

u(x, t) = fv = (4πt)−n/2 exp(
−δ(0, x)2

4t
)(
∑

k

tkuk(x))
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Since we want to satisfy (∂t+P )u = (∂t(fv)+P (fv)) = 0, we compute the coefficient of tk in the box-brackets
on the right hand side of equation (31) and set it equal to zero. The coefficient of tk on the right hand side of
equation (31) is

(k + 1)uk+1 + Puk + a1uk+1 + a2uk − 1

2

∑

j

bjxjuk+1 + r∂ruk+1

= r∂ruk+1 +


k + 1 + a1 − 1

2

∑

j

xjbj


uk+1 + a2uk + Puk

which leads to the recursive differential equation:

r∂ruk+1 +


k + 1 + a1 − 1

2

∑

j

xjbj


uk+1 + (P + a2)uk = 0 (32)

From the Lemma 12.1.3, we have a1(0) = 0, so we may write a1(x) =
∑
j xjAj(x) for some smooth functions

Aj by the first order Taylor expansion. We write x = ry where ‖y‖ = 1, i.e. y is on the unit sphere Sn−1.
Then let B(r, y) := −2

∑
j(yjAj(r, y) + yjbj(r, y)). If we also write Λ := P + a2, our equation above becomes:

r∂ruk+1 +

(
k + 1 − 1

2
rB(r, y)

)
uk+1 + Λuk = 0

This equation is an ODE in the variable r, with y ∈ Sn−1 being treated as a smooth parameter, and identical
to the earlier single-variable equation (25), with r playing the role of x, B(r, y) playing the role of the earlier
b(x), and Λ playing the role of the earlier L. Thus it is solved along any ray y = y0 ∈ Sn−1 by exactly the same
procedure as in the Proposition 12.1.2. The resulting uj are smooth in x, because of the inductive formula

uk+1(r, y) = − 1

Rk(x)

∫ r

0

Rk(x)Λuk(x)

‖x‖ d(‖x‖); Rk(x) = ‖x‖k+1
exp

(
−
∫ r

0

B(x)d(‖x‖)

)

using the same argument as in Proposition 12.1.2, after noting the fact that B and the coefficients of the
differential operator Λ are smooth in x (since bj(x), c(x), a1(x), a2(x) are all smooth in x).

To see the last assertion about uk(0), we have as before that uk(0) will be algebraic in the various jets of B
and the coefficients of Λ at 0. That is, they will be algebraic in the jets of gij , bj , c, a1 and a2 at 0. We just
need to show that the jets of a1 and a2 at 0 are algebraic in the jets of gij at 0. If we go back to the proof of
Lemma 12.1.3, we find that a1 and a2 defined there are precisely c1 and c2, where c1 and c2 are defined by:

c1(x) = −1

4

∑

i

αi(x)∂ir
2 = −1

2

∑

i

xiαi(x), c2(x) = β(x)

where

∆ = −
∑

i,j

gij∂i∂j +
∑

i

αi(x)∂i + β(x)

Now from the calculation of the Laplacian for the metric g = gij , one knows that αi(x) is an algebraic expression
in the first derivatives of g, and β(x) is an algebraic expression in the second derivatives of g. Hence the jets
of c1 and c2 at 0 are algebraic expressions in the jets of g at 0, from the equations for c1 and c2 above. The
proposition follows. 2

Proposition 12.3.2 (Duhamel’s Principle). Let M be a compact Riemannian manifold, and let

∆+ : C∞(M,E+) → C∞(M,E+)

be the Dirac Laplacian corresponding to an elliptic complex on M . Let us assume that ∆+ is of order 2. Let σt
be a smoothly varying section in C∞(M,E+), (i.e. σ(−) ∈ C∞((0,∞) ×M,p∗E+) where p : (0,∞) ×M → M
is the second projection). Then there exists a unique smooth solution ρt which is also smooth in t, satisfying:

(i): ρ0 = 0, and
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(ii): ρt satisfies the inhomogenous time-dependent heat equation:

(∂t + ∆+)ρt = σt

for all t ∈ (0,∞).

Likewise for E− and ∆−.

Proof: If σt = σ were independent of t, our ρt would be e−t∆+

σ. In general, we add up the contributions

e−(t−s)∆+

σs. That is, define:

ρt =

∫ t

0

e−(t−s)∆+

σsds

Note that the integral makes sense, since the integrand is smooth in s, and on differentiating both sides with
respect to t (and using the dominated convergence theorem), we have:

∂tρt = e−(t−t)∆+

σt +

∫ t

0

∂t(e
−(t−s)∆+

σs)ds

= σt −
∫ t

0

∆+(e−(t−s)∆+

σs)ds

= σt − ∆+ρt

The uniqueness follows from the fact that for another solution ut satisfying both (i) and (ii), we have:

∂t(ρt − ut) = −∆+(ρt − ut)

so that
∂t(ρt − ut, ρt − ut) = −2(∆+(ρt − ut), ρt − ut) = −2(D+(ρt − ut), D

+(ρt − ut)) ≤ 0

which shows that the L2-norm ‖ρt − ut‖2
is a non-increasing function of t. But since it is zero at t = 0 by (ii),

it follows that it is identically zero. 2.

Corollary 12.3.3. For the ρt found above, we have the Sobolev norm estimates:

‖ρt‖2k ≤ t sup
0≤s≤t

‖σs‖2k

for all k = 0, 1, 2...,.

Proof: We first note that for any f ∈ C∞(M,E+) and for all µ ≥ 0 we have e−µλi ≤ 1 for all the eigenvalues
λi ≥ 0 of ∆+, and consequently the inequality of L2-norms:∥∥∥e−µ∆+

f
∥∥∥ ≤ ‖f‖ for all µ ≥ 0

Now, by the Corollary 6.2.3 (Garding’s Inequality) it follows that:
∥∥∥e−µ∆+

f
∥∥∥

2

2k
=

∥∥∥∆+ ke−µ∆+

f
∥∥∥

2

+
∥∥∥e−µ∆+

f
∥∥∥

2

=
∥∥∥e−µ∆+

(∆+ kf)
∥∥∥

2

+
∥∥∥e−µ∆+

f
∥∥∥

2

≤
∥∥∆+,kf

∥∥2
+ ‖f‖2

= ‖f‖2
2k for all µ ≥ 0

Hence

‖ρt‖2k ≤
∫ t

0

∥∥∥e−(t−s)∆+

σs

∥∥∥
2k
ds ≤

∫ t

0

‖σs‖2k ds ≤ t sup
0≤s≤t

‖σs‖2k

and the corollary follows. 2

Now we can prove that “asymptotic fundamental solutions” converge to real fundamental solutions. More
precisely, we have:
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Proposition 12.3.4. In the setting of the previous proposition, let wt be the unique fundamental solution to
the heat equation for the Dirac operator ∆+, with pole at (x, v) (whose existence was proved in the Proposition
11.2.2). Let ut be a smooth section, varying smoothly in t (see last proposition for definition) which satisfies:

(i): For all s ∈ C∞(M,E+), we have

lim
t→0

(s, ut) = 〈s(x), v〉x

(That is ut converges to the Dirac distributional section δxv as t → 0), and

(ii):

(∂t + ∆+)ut = tNrt(x)

where rt is a smooth section of E+, smoothly varying for t ∈ (0,∞) and continuous in t ∈ [0,∞) and
uniformly bounded in the Sobolev 2k-norm ‖−‖2k for t ∈ [0, T ] and some T > 0 and some k ≥ 0. (This
means ‖rt‖2k ≤ C for all t ∈ [0, T ], where C is a positive constant.)

Then we have:

‖wt − ut‖∞,l ≤ Clt
N+1 for all l < 2k − n/2 and all t ∈ (0, T ]

where Cl > 0 is some constant.

Proof: By the Duhamel Principle Proposition 12.3.2, there exists a smoothly varying smooth section ρt of E+

satisfying:

(∂t + ∆+)ρt = tNrt

and also satisfying ρ0 = 0. Then the smoothly varying section wt := ut − ρt satisfies:

(∂t + ∆+)wt = (∂t + ∆+)ut − (∂t + ∆+)ρt = tNrt − tNrt = 0

Also, for any smooth section s ∈ C∞(M,E+), we have:

lim
t→0

(s, wt) = lim
t→0

(s, ut) = 〈s(x), v〉x

since ρ0 = 0.

Thus wt is the unique fundamental solution of the heat equation with pole at (x, v). It follows that ut = ρt+wt
and by the Corollary 12.3.3

‖wt − ut‖2k = ‖ρt‖2k ≤ t sup
0≤s≤t

∥∥sNrs
∥∥

2k
= tN+1 sup

0≤s≤T
‖rs‖2k for t ∈ (0, T ]

By the hypothesis on the Sobolev 2k-norm ‖rs‖2k for s ∈ [0, T ] it follows that for t ∈ [0, T ] we have:

sup
0≤s≤T

‖rs‖2k ≤ C for all s ∈ [0, T ]

Thus it follows that:

‖wt − ut‖2k ≤ CtN+1 for all t ∈ (0, T ]

Now one uses Sobolev’s Embedding Theorem (iv) of Proposition 4.2.2 which asserts that

‖−‖∞,l ≤ C ‖−‖2k for all l < 2k − n/2

to get the assertion for ‖−‖∞,l with l < 2k − n/2. 2
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Theorem 12.3.5 (Asymptotic fundamental solution for the heat equation of a generalised Dirac Laplacian).
Let

∆+ = D−D+ : C∞(M,E+) → C∞(M,E+)

be the Dirac Laplacian of the Dirac complex defined by an elliptic complex P on the compact Riemannian
manifold M of dimension n. Assume that ∆+ is a generalised Laplacian in the sense of Definition 12.2.1. Let
v ∈ E+

a be some vector, and let wt be the fundamental solution to the heat equation for ∆+ with pole at (a, v),
which exists and is unique by the Proposition 11.2.2. Then there exists an asymptotic fundamental solution
u(x, t) = ut(x) with pole at (a, v) which is given by a formal series:

u(x, t) = (4πt)−n/2 exp

(
−δ(x, a)

2

4t

)(
u0(x) + tu1(x) + t2u2(x) + ...+ tkuk(x) + ...

)
x ∈ M, t ∈ (0,∞)

where δ(x, a) denotes the Riemannian distance between x and a, and ui(x) are smooth functions of x. The
value u0(a) = v, and in a suitable local coordinate neighbourhood of a the and local framing of E+, for every
k, each component of the vector uk(a) is a polynomial in the p-jets at the point a of gij and the coefficients
bi, c occurring in the first-order operator:

∆+ +
∑

ij

gij∂i∂j =
∑

l

bl(y)∂l + c(y)

This asymptotic solution satisfies:

(i): For each smooth section s ∈ C∞(M,E+),

lim
t→0

(s, ut) = 〈s(a), v〉a

(ii): Given any positive integer N > 0, for the partial sum

Sm(x, t) := (4πt)−n/2 exp

(
−δ(x, a)

2

4t

)( m∑

k=0

tkuk(x)

)

we have:

(∂t + ∆+)Sm(x, t) = tNrm,t(x) for all m ≥ N + n/2

where rm,t(x) = rm(x, t) is a smoothly varying section in C∞(M,E+) and continuous for t ∈ [0,∞).
Indeed, rm(x, 0) ≡ 0. If we fix some T > 0, then its Sobolev 2k-norm on M satisfies:

‖rm,t‖2k ≤ Ck,m for all 2k ≤ m−N − n/2 and all t ∈ [0, T ].

Finally,

(iii): For the T > 0 in (ii) above, we have the norm estimate:

‖wt − Sm(−, t)‖l,∞ ≤ Clt
N+1

for each 0 ≤ l ≤ m−N − n and all t ∈ (0, T ].

Likewise for ∆− and E−.

Proof: Let U be a neighbourhood of a ∈ M such that U is diffeomorphic to a neighbourhood of 0 in
Rn = Ta(M) via the exponential map expa : Ta(M) → M of the Riemannian manifold M . Since ∆+ is a
generalised Laplacian by hypothesis, we may further guarantee that U is small enough for the Proposition
12.3.1 to apply to P = ∆+.

By restricting to a ball around a contained in U , we may assume without loss of generality that U = B(a, 3ε).
Then, by that Proposition we have a formal series:

ũ(x, t) ∼ (4πt)−n/2 exp
(
−δ(a, x)2/4t

)
(ũ0 + tũ1 + ...+ tkũk + ...)

where ũi(x) are smooth functions defined on U . Furthermore, ũ0(a) = v, and in a suitable framing of E+ on
U , each component of each ũk(a) is a polynomial in the p-jets of gij , bi, c at a. Also on U we have, by the
proof of Propositions 12.1.2 and 12.3.1 that:
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(∂t + ∆+)S̃m(x, t) = (4πt)−n/2tm exp
(
−δ(x, a)2/4t

)
Λũm(x)

where Λ = ∆+ + a2 is also a generalised Laplacian defined on U . If m ≥ N + n/2, the function

r̃m(x, t) := tm−N−n/2 exp
(
−δ(x, a)2/4t

)
Λũm(x) (33)

is a smoothly varying section of E+
|U , continuous and uniformly bounded in the norm ‖−‖x of E+

x , for all x ∈ U

and all t ∈ [0, T ]. That is,

sup
x∈U, t∈[0,T ]

‖r̃m(x, t)‖x < ∞

Note that the equation (33) above implies that r̃m(x, 0) ≡ 0 for m > N + n/2. Since

∂i(t
p exp(−δ(x, a)2/4t)) =

(
p− xi

2

)
tp−1 exp(−δ(x, a)2/4t)

on U , we see that for m ≥ N + n/2 + 2k, the L2-norm:

‖∂αr̃m‖2
0,U :=

∫

x∈U
‖∂αr̃m(x, t)‖2

x dV (x)

will be finite and uniformly bounded for all | α |≤ 2k ≤ m−N − n/2. Thus the Sobolev 2k-norm of r̃m(−, t)
on U satisfies:

‖r̃m(−, t)‖2k,U ≤ Ck,m for all 2k ≤ m−N − n/2, and all t ∈ [0, T ]

Thus we have:

(∂t + ∆+)S̃m(x, t) = tN r̃m(x, t) for all x ∈ U, and m > N + n/2 (34)

with r̃m(x, t) a smoothly varying section of E+
|U for t ∈ (0,∞), continuous in t ∈ [0,∞), and uniformly bounded

in Sobolev norm ‖−‖2k,U by a positive constant Ck,m for all t ∈ [0,∞) and all 2k ≤ m−N − n/2.

The first step is to globalise ũ(x, t) for all x ∈ M . We do this via a cut-off function. Let

ψ : R → [0,∞)

be a smooth function such that ψ(s) ≡ 1 for | s |≤ ε and ψ(s) ≡ 0 for | s |≥ 2ε.

To simplify notation, denote r := r(x) := δ(x, a). Then define:

u(x, t) = ψ(r(x))ũ(x, t)

so that

u(x, t) ∼ (4πt)−n/2 exp

(
−δ(x, a)

2

4t

)(
u0(x) + tu1(x) + ....+ tkuk(x) + ....

)

where uk(x) := ψ(r)ũk(x). Since ψ(r(x)) is identically 1 on B(0, ε), the function ψ(r(x)) is a smooth function
of x, and hence the uk’s defined above are smooth functions of x on all of M . Furthermore:

uk(x) = ũk(x) for δ(x, a) ≤ ε

= 0 for δ(x, a) ≥ 2ε

Hence the statement about uk(a) follows from the corresponding statements about ũk(a).

For notational convenience, denote:

f(x, t) := (4πt)−n/2 exp

(
−δ(x, a)

2

4t

)
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Since ψ is supported in U , we have for a smooth section s ∈ C∞(M,E+):

lim
t→0

(s, ut) = lim
t→0

∫

M

〈s(x), u(x, t)〉x dV (x) = lim
t→0

∫

U

〈s(x), ψ(r(x))ũ(x, t)〉x dV (x)

= lim
t→0

∫

U

〈ψ(r(x))s(x), ũ(x, t)〉x dV (x)

= lim
t→0

∫

U

〈ψ(r(x))s(x), f(x, t)ũ0(x)〉x dV (x) = 〈ψ(a)s(a), v〉a
= 〈s(a), v〉a

because ψ(a) = 1 and ũ0(a) = v by the Proposition 12.3.1, and f(x, t) is an approximate identity at x = a for
compactly supported smooth sections in U , and ψ(r(x))s(x) is a smooth section compactly supported in U .
This proves (i) of the Theorem.

Now we prove (ii). We have by definition that Sm(x, t) = ψ(r(x))S̃m(x, t). Hence

∂tSm(x, t) = ψ(r)∂tS̃m(x, t) for all x ∈ M (35)

where the right hand side is interpreted to be identically zero for x 6∈ U (i.e. δ(x, a) ≥ 3ε).

On the other hand,

∆+(ψ(r)S̃m(x, t)) = ψ(r)∆+S̃m(x, t) + µ(r)LS̃m(x, t) (36)

where

µ(r) := a(r)ψ′(r) + b(r)ψ′′(r)

and L (=
∑
i αi(x)∂i + β(x) in U , and ≡ 0 oustside some V ⊃ B(0, 2ε)) is some first order linear differential

operator in the space variables on M . We already understand the first term, from the foregoing discussion,
and we need to estimate the second term. Since

S̃m(x, t) = f(x, t)

m∑

k=0

tkũk(x)

we compute for x ∈ U :

LS̃m(x, t) =

[
n∑

i=1

αi(x)∂i(x) + β(x)

]
f

m∑

k=0

tkũk(x)

= (Lf)

m∑

k=0

tkũk(x) + f

m∑

k=0

tk(L− β(x))ũk(x)

= f

(
1

t
c1(x) + c2(x)

) m∑

k=0

tkũk(x) + f

m∑

k=0

tkwk(x)

= t−1f(x, t)Pm(x, t) for x ∈ U

where Pm(x, t) is a polynomial of degree m in t whose coefficients are smooth sections of E+
|U . Note that we

have used the first paragraph of the Lemma 12.1.3 to substitute Lf = ( 1
t c1 + c2)f .

Since ψ′(r) and ψ′′(r) identically vanish for 0 ≤ r ≤ ε and r ≥ 2ε, it follows that µ(r) ≡ 0 for 0 ≤ r ≤ ε and
r ≥ 2ε.

Consider the section:

hm(x, t) := t−N−1µ(r)f(x, t)Pm(x, t)

Since f(x, t) ≤ (4πt)−n/2e−ε2/4t for r ≥ ε and t ∈ [0,∞), and µ(r) vanishes identically for r ≤ ε and r ≥ 2ε,
it follows that the section above is a smooth section of E+ with compact support in the annulus ε ≤ r ≤ 2ε,
for every N ≥ 0 and all t ∈ [0,∞). At t = 0, it is the identically zero function. Hence we may write:

µ(r)LS̃m(x, t) = tN (t−N−1µ(r)f(x, t)Pm(x, t)) = tNhm(x, t) for all x ∈ M, and all m ≥ 0 (37)
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where hm(x, t) = t−N−1µ(r)f(x, t)Pm(x, t), Pm being a polynomial of degree m in t whose coefficients are
smooth sections in the variable x ∈ M , hm(x, t) ≡ 0 for r(x) = δ(x, a) ≤ ε and r(x) ≥ 2ε and all t ∈ [0,∞),
with hm(x, 0) ≡ 0 on M .

To get a hold on the Sobolev 2k-norm of hm(x, t), note that Pm is a polynomial of degree m in t, whose
coefficients are smooth sections. Also each spatial derivative of f(x, t) will yield (t−1a1 + a2)f , and any spatial
derivative of µ(r) will again yield a smooth function compactly supported in the annulus ε ≤ r ≤ 2ε. Hence,
for the L2-norm:∫

M

‖∂αxhm(x, t)‖2
x dV (x) ≤ Ct−N−1−|α|

∫

ε≤r≤2ε

f(x, t)2dV (x) ≤ Ct−N−1−|α|e−ε2/2t for t ∈ [0, T ]

Thus we have:

sup
t∈[0,T ]

‖hm(−, t)‖2k < ∞ for all k (38)

Now we can combine all the equations (34), (35), (36) and (37) to compute:

(∂t + ∆+)Sm(x, t) = (∂t + ∆+)ψ(r)S̃m(x, t) = ψ(r)(∂t + ∆+)S̃m(x, t) + µ(r)LS̃m(x, t)

= ψ(r)(tN r̃m(x, t)) + tNhm(x, t)

= tNrm(x, t) (39)

for all x ∈ M , all m ≥ N + n/2 and all t ∈ (0,∞), and rm(x, t) := ψ(r)r̃m(x, t) + hm(x, t). Also,

(a): From the equations (34) and (37) it follows that rm(x, 0) = ψ(r(x))r̃m(x, 0) + hm(x, 0) ≡ 0.

(b): From the statement following equation (34), the fact that

‖ψ(r)r̃m(−, t)‖2k ≤ C ‖r̃m(−, t)‖2k,U

and from the inequality (38), it follows that:

sup
t∈[0,T ]

‖rm(−, t)‖2k ≤ Ck for all 2k ≤ m−N − n/2

This establishes (ii) of the Theorem. The final assertion (iii) now follows from the Corollary 12.3.3. 2

Example 12.3.6 (The Circle). For the circle, one can explicitly write down the heat kernel, and the funda-
mental solution by tinkering with the fundamental solution for R.

Let S1(R) denote the circle of radius R around the origin in R2, and let θ ∈ (−π, π) denote the usual angle
coordinate in the open set S1(R)\{−R}. The Riemannian metric is R2dθ2, and the corresponding Riemannian
volume of S1(R) is 2πR. We consider the Dirac complex of the de-Rham complex of the circle, viz. with
E+ = Λ0(T ∗

C
S1(R)), E− = Λ1(T ∗

C
S1(R)) and D+ = d, D− = δ, and ∆+ = δd = −R−2∂2

θ the scalar Laplacian
on functions. Since gij = g11 = R−2, the scalar Laplacian on functions is ∆+ = −∑ij g

ij∂i∂j = − 1
R2 ∂

2
θ .

Denote
f(θ, t) := (4πt)−1/2 exp(−R2θ2/4t)

For x ∈ S1(R) and t > 0, define:

u(x, t) =
∑

n∈Z

f(θ + 2nπ, t)

where x = Re2πiθ. Note that by definition above, which “logarithm” of x we take is immaterial for the definition
of u. We first need to check that the series above converges for each x ∈ S1(R), and each t > 0. But this is
clear, since for t > 0, the factor of exp(−n2R2π2/t) will occur in the n-th term, and the series will converge
very rapidly and indeed uniformly and absolutely. Likewise with the t-derivative and all θ-derivatives of the
series. So it is permissible to differentiate term-by-term and integrate term by term etc.

Since (∂t −R−2∂2
θ )f(θ, t) = 0, it follows that u(x, t) satisfies the heat equation. Note that

lim
t→0

t−
1
2 exp(−R2n2π2/t) = 0 for all n 6= 0, t > 0
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Also, for any smooth function s ∈ C∞(S1(R)), we can lift s to a smooth function s̃ which is compactly
supported in say U = (−2π,+2π), with s(Reiθ) = s̃(θ) for θ ∈ (−π, π). Then it is easy to check that:

lim
t→0

∫ ∞

π

s̃(θ)f(θ, t)Rdθ = 0, lim
t→0

∫ −π

−∞
s̃(θ)f(θ, t)Rdθ = 0

because f(θ, t) ≤ (4πt)−1/2 exp(−R2π2/4t) ≤ C exp(−α/t) for θ ≥ π and θ ≤ −π, where α and C are some
positive constants.

From the two observations above, we have:

lim
t→0

(s, ut) = lim
t→0

∫ π

−π
s(Reiθ)(4πt)−1/2 exp(−R2θ2/4t)Rdθ

= lim
t→0

∫ π

−π
s̃(θ)(4πt)−1/2 exp(−R2θ2/4t)Rdθ

= lim
t→0

∫ ∞

−∞
s̃(x/R)(4πt)−1/2 exp(−x2/4t)dθ = s̃(0) = s(Rei0)

Hence, by the uniqueness statement of the Proposition 11.2.2, applied to that u(x, t) is the fundamental
solution to the heat equation with pole at (Rei0, 1). By suitably translating the space variable of u(x, t), one
can write down the fundamental solution with pole at any other point (x, 1).

Now we can determine all the coefficients ui(a) in the asymptotic expansion of the fundamental solution,
where a = Rei0 = R ∈ S1(R). Since

u(x, t) =
∑

n∈Z

f(θ + 2nπ, t)

and for n 6= 0, the term f(θ+2nπ, t) contains the factor (4πt)−1/2 exp(−R2n2/4t) ≤ Ce−α/t for some C,α > 0,
we find that:

lim
t→0

t−kf(θ + 2nπ, t) = 0 for all k ≥ 0 and n 6= 0

In other words,

u(x, t) ∼ (4πt)−1/2 exp(−R2θ2/4t) as t → 0

Now Rθ = δ(a, x), the Riemannian distance between a = Rei0 and x = Reiθ in S1(R). So we find, on
comparing the expression for u(x, t) in the Proposition 12.3.5 that

u0(a) = 1, ui(a) = 0 for all i ≥ 1

This fact has a lot of interesting consequences. Note that the eigenvalues of ∆+ are precisely λn = n2/R2,
and the corresponding (normalised) eigenfunctions are en(θ) = (2πR)−1/2ei nθ, where n ∈ Z. From the the
construction of the fundamental solution of ∆+ (from the heat kernel in (iii) of Proposition 10.1.3 and the
fundamental solution in Proposition 11.2.1, we have:

u(x, t) = k+
t (x, a) =

∑

n∈Z

e−tλne∗
n(a) ⊗ en(x) = (2πR)−1

∑

n∈Z

e−tn2/R2

ei nθ where x = Reiθ, a = Rei0

Since our asymptotic expansion for u(x, t) just consists of the first term and no others, it follows that the
partial sum:

Sm(x, t) = (4πt)−1/2 exp(−R2θ2/4t) for all m ≥ 0

Then (iii) of the Theorem 12.3.5 (for l = 0, say) now tells us that
∥∥∥∥∥(2πR)−1

∑

n∈Z

e−tn2/R2

ei nθ − (4πt)−1/2 exp(−R2θ2/4t)

∥∥∥∥∥
0,∞

≤ CtN+1 for t ∈ (0, T ] m ≥ N + 1

which implies that

(2πR)−1
∑

n∈Z
e−tn2/R2

ei nθ ∼ (4πt)−1/2 exp(−R2θ2/4t) as t → 0 for each θ ∈ (−π, π)
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Setting θ = 0 in the above formula, one obtains Jacobi’s asymptotic formula
∑

n∈Z
e−tn2/R2 ∼ (2πR)(4πt)−1/2 = R

√
π/t as t → 0 (40)

So here is a beautiful college-level mathematical formula that uses the asymptotic expansion of the heat kernel
on a compact Riemannian manifold for its proof!

Also note that the left hand side of (40) is precisely the trace of the heat operator e−t∆+

, so the Jacobi
formula above says that:

lim
t→0

(4πt)1/2
(
tr e−t∆+

)
= 2πR = Vol (S1(R))

Thus the t → 0 asymptotics of the trace of the heat operator encodes the Riemannian volume of S1(R). Indeed,
this is a general fact, as we see below.

Proposition 12.3.7 (You can hear the volume of a manifold). For the scalar Laplacian ∆ : C∞(M,C) →
C∞(M,C), we have:

lim
t→0

(4πt)n/2
(
tr e−t∆) = Vol(M)

Proof: We first remark that for the scalar Laplacian ∆ on any compact Riemannian manifold, the eigenvalues
λn ≥ 0, because

λn = (∆en, en) = (δden, en) = (den, den)

where {en} is an orthonormal basis of smooth eigenfunctions, with en belonging to the eigenvalue λn. Because
the operator ∆ is elliptic and formally self-adjoint, the Proposition 8.4.9 shows that λn ≥ Cnδ, and the
existence of the heat kernel:

kt(x, y) ∈ C∞(M ×M,C)

defined by kt(x, y) =
∑
n e

−tλne∗
n(y)en(x) goes through exactly as in (iii) of Proposition 10.1.3. The funda-

mental solution w(x, t) of the heat equation with the pole (a, 1), with a ∈ M is as before given by

wa(x, t) = kt(x, a)

Then, since the asymptotic expansion and Duhamel Principle carry over to generalised Laplacians on any
bundle E (in this case the trivial bundle M × C), we have the conclusions of Theorem 12.3.5 in this setting as
well, though it was stated for Dirac Laplacians.

We also have:

tr(e−t∆) =
∑

n

e−tλn =

∫

M

e−tλn

∫

M

e∗
n(a)en(a)dV (a) =

∫

M

kt(a, a)dV (a)

On the other hand, we have by (iii) of Theorem 12.3.5 that:

‖kt(−, a) − Sam(−, t)‖0,∞ = ‖wat (x) − Sam(x, t)‖0,∞ ≤ CtN+1 for m ≥ N + n, t ∈ (0, T ]

where Sam(x, t) is the partial sum of the asymptotic solution ua(x, t) with pole (a, 1). On setting x = a, this
implies that:

∣∣∣∣∣kt(a, a) − (4πt)−n/2
m∑

k=0

uk(a)t
k

∣∣∣∣∣ ≤ CtN+1 for all m ≥ N + n, t ∈ (0, T ] (41)

Note that s(a) = limt→0(s, u
a(−, t)) for all s ∈ C∞(M). Letting fa(x, t) = (4πt)−n/2 exp(−δ(x, a)2/4t) we

also have s(a) = limt→0(s, f
a(−, t)) for all s ∈ C∞(M). Since ua(x, t) = fa(x, t)(u0(x) +O(t)), we have

s(a) = lim
t→0

(s, ua(x, t)) = lim
t→0

(s, fa(−, t)u0(−)) = lim
t→0

(u0s, f
a(−, t)) = u0(a)s(a)
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which implies that u0(a) = 1. (In fact, we remarked in the proof of Theorem 12.3.5 that u0(a) = ũ0(a) = v
from the Proposition 12.3.1, if ua is the asymptotic fundamental solution with pole (a, v)). Thus, from the
equation (41) above, it follows that:

∣∣∣∣∣(4πt)
n/2kt(a, a) −

m∑

k=0

tkuk(a)

∣∣∣∣∣ ≤ CtN+1+n/2 for all m ≥ N + n, t ∈ (0, T ]

which implies that

lim
t→0

(4πt)n/2tr e−t∆ = lim
t→0

(4πt)n/2
∫

M

kt(a, a)dV (a) = lim
t→0

∫

M

u0(a)dV (a) = Vol(M)

and the proposition follows. 2

13. Clifford Algebras and Spin Structures

13.1. Clifford Algebras.

Definition 13.1.1. Let V be an inner product space, with a symmetric bilinear form 〈−,−〉. The Clifford
algebra on V , denoted Cl(V ) is an associative unital R-algebra together with an R-linear map:

φ : V → Cl(V )

satisfying:

(i): φ(v)2 = − 〈v, v〉 .1 for all v ∈ V .

(ii): If ψ : V → A is any R-linear map into an associative unital algebra A satisfying ψ(v)2 = − 〈v, v〉 1A
for all v ∈ V , then there exists a unique R-algebra homomorphism ψ̃ which makes the diagram:

V
φ→ Cl(V )

ψ ↘ ↓ ψ̃
A

commute.

By the usual abstract nonsense, this universal property makes it unique upto R-algebra isomorphism. To
construct it, let T (V ) := ⊕∞

i=0(⊗iV ) be the full real tensor algebra on V . Let 1 ∈ ⊗0V = R be its identity
element. Let I be the two-sided ideal generated by the set

S := {v ⊗ v + 〈v, v〉 1 : v ∈ V = ⊗1V ⊂ T (V )}
Define Cl(V ) = T (V )/I, and let the map φ be the composite:

V = ⊗1V ↪→ T (V ) → T (V )/I
Clearly, by definition, φ(v)2 = (v ⊗ v)( mod I) = − 〈v, v〉 1, where 1 ∈ R is the image of 1 ∈ T (V ). It is
trivially checked that the universal property of the definition above holds for φ : V → Cl(V ). We will denote
the product of a, b ∈ Cl(V ) as a.b or even ab if no confusion is likely.

Proposition 13.1.2. We have the following facts about the Clifford algebra:

(i): The map φ : V → Cl(V ) is injective. Hence we may regard V as a subspace of Cl(V ).

(ii): With the identification of (i) above,

v.w + w.v = −2 〈v, w〉 1 for all v, w ∈ V ⊂ Cl(V )

(iii): If {ei}ni=1 is any R-basis of V , then the products

eI := ei1 .ei2 ....eik

where I = (i1 < i2 < .. < ik) is a multiindex with 0 ≤ k ≤ n (and eI := 1 for the empty multiindex I
with k = 0), constitute an R-basis for Cl(V ). In particular, dim Cl(V ) = 2n.
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(iv): There is a natural Z2-grading on Cl(V ) defined by setting Cl0(V ) to be the image of the subspace
⊕∞
k=0(⊗2k(V )) ⊂ T (V ) and Cl1(V ) to be the image of ⊕∞

k=0(⊗2k+1(V )) ⊂ T (V ). With this grading
Cl(V ) is a so-called superalgebra, i.e. satisfies:

Cli(V ).Clj(V ) ⊂ Clk(V ) where k = i+ j( mod 2)

(v): There is a canonical vector space isomorphism (not an algebra homomorphism):

Cl(V ) → Λ∗V

which takes v.w to v ∧ w for all v, w ∈ V .
(vi): For the identically zero inner product 〈−,−〉 ≡ 0, the Clifford algebra Cl(V ) is the exterior algebra

Λ∗V .

Proof: To see (i), define the degree deg x of an element x ∈ T (V ) by expanding into homogeneous components

x = ⊕ixi, xi ∈ ⊗iV

to be the largest i such that xi 6= 0. Clearly, deg(x⊗ y) = deg x+deg y, and hence the degree of every element
in the ideal I is at least 2. Thus V ∩ I = {0} in T (V ), and the map φ : V → Cl(V ) is injective. This proves
(i). We may therefore write v instead of φ(v) for v ∈ V .

To see (ii), note that for v, w ∈ V ⊂ Cl(V ), we have by the definition of Cl(V ):

−(〈v, v〉 + 〈w,w〉 + 2 〈v, w〉)1 = − 〈v + w, v + w〉 1 = (v + w)2 = v.v + w.w + v.w + w.v

from which it follows that v.w + w.v = −2 〈v, w〉 1.

To see (iii), we use (ii) to see that eI of the form stated are a spanning set for Cl(V ), since any word
ej1 .ej2 .....ejk of any length may be reduced, by using the commutation relations:

ei.ej + ej .ei = −2 〈ei, ej〉 1

to a word of length at most n. Their linear independence is left as an exercise. (iv), (v) and (vi) are also
straightforward, and their proof is omitted. 2

Notation: From now on, when we write Cl(V ), it will be understood that V is an inner product space with
a positive definite inner product 〈−,−〉. Hence, we may always choose an orthonormal basis {ei}ni=1 of V , and
the commutation relations for the basis elements will read:

ei.ej + ej .ei = −2δij 1 ≤ i, j ≤ n

Example 13.1.3. If we take V = R, with its usual euclidean inner product 〈x, y〉 = xy, then Cl(R) = C, for
it is generated as an R-algebra by e1 satisfying e21 = −1.

If we take V = R2 with its usual euclidean inner product, then Cl(V ) is generated as an R-algebra by
{e1, e2}, satisfying:

e21 = e22 = −1, e1e2 = −e2e1
Setting e1 = i, e2 = j, e1e2 = k, we find that

Cl(V ) = R.1 ⊕ R.i⊕ R.j ⊕ R.k

subject to the relations i2 = j2 = k2 = −1, and ij = k, jk = i, ki = j. Thus Cl(R2) = H, the (non-
commutative) algebra of quaternions.

Exercise 13.1.4 (Some Clifford Algebras).

(i): Show that for V = R3, with its usual euclidean inner product, we have Cl(V ) ' H ⊕ Hη where
η := e1e2e3. The first summand H is the span of 1, i := e1e2, j := e2e3, k := e3e1, and the second
summand is the span of η, iη, jη, kη. Multiplication is given by:

(a+ bη)(c+ dη) = (ac+ bd) + (ad+ bc)η a, b, c, d ∈ H
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(ii): Prove that Cl(R2) ⊗R C = H ⊗R C = C(2), the algebra of 2 × 2 complex matrices. Explicitly, the
isomorphism is given by:

i⊗ 1 7→
( √

−1 0
0 −

√
−1

)
; j ⊗ 1 7→

(
0

√
−1√

−1 0

)
; k ⊗ 1 7→

(
0 −1
1 0

)

where the matrices on the right are the Pauli spin matrices.

Remark 13.1.5. It is possible to write down a complete list of all the real Clifford algebras Cl(Rn), because
of the remarkable periodicity theorem which states that:

Cl(Rn+8) = Cl(Rn) ⊗R R(16)

where R(n) denotes the matrix algebra of n × n real matrices. This reduces us to finding out Cl(Rn) for
n = 1, .., 8, whose list is as below:

n : 1 2 3 4 5 6 7 8
Cl(Rn) : C H H ⊕ Hη H(2) C(4) R(8) R(8) ⊕ R(8) R(16)

For a proof of this fact, see the paper ”Clifford Modules” by Atiyah- Bott-Shapiro.

We need a little more machinery associated with a Clifford algebra. The first is the involution ∗ defined as
follows:

Definition 13.1.6 (The involution ∗). Let V be a real positive definite inner product space, and Cl(V ) its
Clifford algebra. There is an involution ∗ on the full tensor algebra T (V ) whose effect on decomposable tensors
is:

(a1 ⊗ a2 ⊗ ....⊗ ak)
∗ = ak ⊗ ak−1 ⊗ ....⊗ a2 ⊗ a1

This involution clearly preserves the set S = {v ⊗ v + 〈v, v〉 1 : v ∈ V } defined in the beginning of this section,
and since (α⊗ β)∗ = β∗ ⊗α∗, we see that ∗ preserves the two-sided ideal I generated by S. Hence it descends
to an involution of Cl(V ) = T (V )/I. If we let {ei}ni=1 be an orthonormal basis for V with respect to 〈−,−〉,
then for the basis of Cl(V ) introduced in (iii) of Proposition 13.1.2, we have:

(ei1 .ei2 .....eik)∗ = eik .eik−1
.....ei2 .ei1

Clearly, ∗ is the unique involution of Cl(V ) satisfying:

v∗ = v for v ∈ V ⊂ Cl(V ) and (a.b)∗ = b∗.a∗ for all a, b ∈ Cl(V )

As an exercise, the reader may explicitly compute the involution ∗ on the Clifford algebras Cl(R), Cl(R2) and
Cl(R3) that were determined above.

Definition 13.1.7 (Supercommutators). For a superalgebra A = A0⊕A1 (such as the Clifford algebra), define
the supercommutator of two homogeneous elements x, y ∈ A by:

[x, y]s := xy − (−1)(deg x)(deg y)yx

Extend to arbitrary elements of A by linearity in each slot. For example, if A = Λ∗V = Λev ⊕ Λodd, then the
supercommutator of any two elements is 0.

For a superalgebra A as above, define the supercentre of A by:

Zs(A) := {x : [x, y]s ≡ 0 for all y ∈ A}

Lemma 13.1.8. Let V be a positive definite inner product space. Then the supercentre of the Clifford algebra
Cl(V ) consists of the scalars R.1.
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Proof: It is clear that R.1 ⊂ Zs(Cl(V )), since the supercommutator of any scalar with any element is just
the usual commutator, and the scalars commute with everything in Cl(V ). On the other hand, we claim that
if [x, v]s = 0 for all v ∈ V , then x is a scalar. For, write x = x0 + x1, with xi ∈ Cli(V ) in terms of its
homogeneous components. Then [x, v]s = [x0, v]s + [x1, v]s, and since v has homogeneous degree 1, we have
[x0, v]s is homogeneous of degree 1, and [x1, v]s is homogeneous of degree 0. Thus both [x0, v]s and [x1, v] are
individually 0, for all v ∈ V . So it is enough to prove that if x ∈ Zs(Cl(V )) is homogeneous and [x, v]s = 0 for
all v ∈ V , then x = λ.1.

Let {ei} be an orthonormal basis of V . Write the homogeneous element x as x = a+ e1.b, where a and b are
independent of e1 (by using the basis eI of Cl(V ) constructed in (iii) of 13.1.2). Then deg a = deg x = deg b+1.
Hence

[x.e1]s = [a, e1]s + [e1b, e1]s = ae1 − (−1)deg ae1a+ e1be1 − (−1)deg abe21

= ae1 + (−1)deg a(−1)deg aae1 + (−1)deg bbe21 + (−1)deg a+1be21

= (−1)deg b2be21 = (−1)deg a2b

So that [x, e1]s = 0 implies that b = 0. Thus x = a+ e1b = a is independent of e1. By the same reasoning, it
is independent of ei for all i, and hence a scalar. This proves the lemma. 2

Remark 13.1.9. Note that the usual centre of Cl(V ) is usually much larger than the scalars. For example,
in Cl(R) = C, the centre is all of Cl(R).

13.2. The Groups Pin and Spin. Let V = Rn with its usual positive definite euclidean inner product.
Recall the involution ∗ introduced in Definition 13.1.6.

Definition 13.2.1 ( Pin(n) and Spin(n) ). Define the group

Pin(n) := {x ∈ Cl(V ) : x is homogeneous, xx∗ = x∗x = (−1)deg x, xV x∗ ⊂ V }
Further define

Spin(n) = Pin(n) ∩ Cl0(V )

Note that by definition, x∗ = x−1 for all x ∈ Spin(n). Also, since the group Cl×(V ) of invertible elements in
Cl(V ) is an open subset of the euclidean space Cl(V ), and the operation of Clifford multiplication is algebraic
(by using a basis) and hence smooth, it follows that the closed conditions defining Pin(n) and Spin(n) make
them closed subgroups of Cl×(V ). Hence both are Lie groups by Cartan’s theorem.

Note that by definition, there is an action of Pin(n) on V = Rn given by:

ρ : Pin(n) → GL(n,R)

where ρ(x)v = xvx∗. We have the following proposition.

Proposition 13.2.2 (Basic facts on Pin(n), Spin(n) and ρ).

(i): ρ(Pin(n)) ⊂ O(n,R). The sequence:

1 → Z2 → Pin(n)
ρ→ O(n,R) → 1

is exact. (Here Z2 = {+1,−1} ⊂ Spin(n) ⊂ Pin(n))

(ii): Any element x ∈ Pin(n) may be expressed as a Clifford product:

x = v1v2...vk

where vi are some unit vectors in V .
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(iii): ρ(Spin(n)) ⊂ SO(n) and the sequence

1 → Z2 → Spin(n)
ρ→ SO(n) → 1

is exact. An element x ∈ Spin(n) iff it is a Clifford product x = v1...vk with vi unit vectors in V , and k
is even.

(iv): Spin(n) is connected.

(v): The Lie algebra map ρ̇ maps the element 1
4

∑
i6=j aijeiej ∈ Cl(V ) to skew-symmetric matrix [aij ] in

the lie algebra Lie(Spin(n)) = so(n) thus identifying the above Lie algebra with a subspace of Cl(V ).

Proof: Note that for v ∈ V ⊂ Cl(V ), we have ‖v‖2
.1 = −v2. Further, for x ∈ Pin(n), we have ρ(x)v ∈ V as

well, so that

‖ρ(x)v‖2
.1 = −(ρ(x)v)2 = −(xvx∗xvx∗) = −(−1)deg xxv2x∗

= (−1)deg xx ‖v‖2
.1.x∗ = (−1)2 deg x ‖v‖2

.1 = ‖v‖2
.1

which proves the first assertion of (i).

If ρ(x) = IdV for x ∈ Pin(n), then xvx∗ = v for all v ∈ V . That is, xv = (−1)deg xvx. That is, the
supercommutator [x, v]s = 0 for all v ∈ V . In the proof of Lemma 13.1.8, we remarked that this forces x = λ1
and deg x = 0. Thus x∗ = λ.1, and xx∗ = (−1)deg x.1 = 1 implies that λ2 = 1, or λ = ±1. So ker ρ = Z2.

If we let {ei}ni=1 be an orthonormal basis for V = Rn, we note that e∗
i = ei, and hence eie

∗
i = −1 =

(−1)deg e1 .1. Clearly ρ(ei)ei = eieiei = −ei Also we have:

ρ(ei)ej = eiejei = −e2i ej = ej for j 6= i

Thus eiV e
∗
i ⊂ V , and ei ∈ Pin(n) for all i. The above calculation shows that ρ(ei) is orthogonal reflection

about the hyperplane (Rei)
⊥ in V . Since each unit vector v ∈ V can be completed to an orthonormal basis,

it follows that every unit vector v ∈ V ⊂ Cl(V ) is in Pin(n), and ρ(v) is just the reflection about the
hyperplane (Rv)⊥ ⊂ V . Since the group O(n,R) is generated by relections about hyperplanes, it follows that
ρ : Pin(n) → O(n,R) is surjective. This proves the exact sequence of (i), and (i) follows.

For any x ∈ Pin(n), we have ρ(x) ∈ O(n,R), and indeed we saw in the last paragraph that ρ(x) = ρ(v1...vn)
for some unit vectors vi. This means that x = ±v1...vk = (±v1)..vk, and (ii) follows.

Since deg (v1...vk) = k mod 2, from (ii) it follows that an element x ∈ Pin(n) lies in Cl0(V ) iff x can
be expressed as a Clifford product of an even number of unit vectors. Since the set of elements in O(n,R)
expressible as products of an even number of reflections is precisely SO(n), all the assertions of (iii) follow
trivially from (i) and (ii).

Since an element x ∈ Spin(n) is expressible as a Clifford product

x = v1....v2m

where vi ∈ V are unit vectors, to connect x by a path in Spin(n) to the identity element 1, it is enough to
connect the pairwise doublet elements v2i−1v2i to 1 by a path yi(t) in Spin(n) (so that

∏m
i=1 yi(t) will be

required path connecting x to 1). So let v, w be unit vectors in V , and let us find a path in Spin(n) connecting
v.w to 1. If w is linearly dependent on v, then v.w = ±1, and it is trivial to connect it to 1. So assume w and v
are linearly indpendent. Let e be a unit vector in the span Rv+ Rw which is perpendicular to v. Then letting
e(t) be a path of unit vectors in V joining w to e, we see that v.w can be joined to v.e by the path v.e(t) in
Spin(n).

Hence, we may assume without loss of generality that the unit vectors v and w are orthogonal, and exhibit
a path joining v.w to 1 in Spin(n). Consider the path:

x(t) = (cos t)1 + (sin t)v.w
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we clearly have x∗(t) = (cos t)1 + (sin t)w.v and

x(t)x∗(t) = [(cos t)1 + (sin t)v.w][(cos t)1 + (sin t)w.v]

= (cos2 t+ sin2 tv.w.w.v)1 + sin t cos t(v.w + w.v) = (cos2 t+ (−1)2 sin2 t)1 + cos t sin t(2 〈v, w〉)
= (cos2 t+ sin2 t)1 + cos t sin t(0) = 1

It is also easy to check that x(t)V x(t)∗ ⊂ V , (In fact ρ(v.w) is some planar rotation, and ρ(x(t)) joins that
planar rotation to the identity element of SO(n)). Thus x(t) is the required path joining v.w to 1, and (iv)
follows.

To see (v), let {ei}ni=1 be an orthonormal basis for V = Rn. For i 6= j, note that

(eiej)
2 = −eieiejej = −(−1)(−1) = −1

so that (eiej)
2m = (−1)m and (eiej)

2m+1 = (−1)meiej . Hence if we take the exponential:

exp(teiej) = 1 + teiej +
t2

2!
(eiej)

2 + ...

=

(
1 − t2

2!
+
t4

4!
+ ..

)
1 +

(
t− t3

3!
+
t5

5!
+ ..

)
eiej

= (cos t)1 + (sin t)eiej

We have seen above that this is precisely the path joining 1 to eiej in Spin(n). We can compute its derivative
at t = 0 as

d(exp(teiej)

dt |t=0
= (− sin t.1 + (cos t)eiej)|t=0 = eiej

which shows that all these elements eiej for i 6= j lie in the Lie algebra of Spin(n). Since the span of {eiej}i<j
is of dimension n(n−1)

2 , which is precisely the dimension of so(n) = Lie(Spin(n)), it follows that this last Lie
algebra is the linear span of {eiej}i<j . To get the isomorphism even more explicitly, note that

ρ(exp(teiej))ei = (cos t+ sin teiej)ei(cos t+ sin tejei) = (cos2 t)ei + (sin2 t)(eiejeiejei) + 2 sin t cos t(eiejei)

= (cos2 t− sin2 t)ei + (2 sin t cos t)ej = (cos 2t)ei + (sin 2t)ej

Similarly, one verifies that
ρ(exp(teiej))ej = (− sin 2t)ei + (cos 2t)ej

and also that since eiej commutes with ek for all k 6= i, k 6= j, we have ρ(exp(teiej))ek = ek for all k 6= i, k 6= j.
As a consequence,

ρ(exp(teiej)) =

(
cos 2t − sin 2t
sin 2t cos 2t

)

where the matrix on the right is a rotation in the ei, ej plane of V . Thus

ρ̇(eiej) =
d(ρ(exp(teiej))

dt |t=0
= 2

(
0 −1
1 0

)

So that ρ̇
(∑

i<j aijeiej

)
= 2[aij ] and thus

ρ̇


1

4

∑

i6=j
aijeiej


 = [aij ]

for a skew-symmetric real matrix [aij ]. This proves (v), and the proposition follows. 2



110 VISHWAMBHAR PATI

Example 13.2.3. It is easy to check that Pin(1) = Z2, and Spin(1) = {1}. Note that Cl(R2) = H, and the
operation ∗ on Cl(R2) is the map defined by i∗ = e∗

1 = e1 = i, j∗ = e∗
2 = e2 = j and k∗ = (e1e2)

∗ = e2e1 =
−e1e2 = −k. Also Cl0(R2) = R1+Rk, and Cl1(R2) = Ri+Rj. If x = a1+ bk ∈ Cl0 (resp. x = ai+ bj ∈ Cl1),
then xx∗ = a2 + b2 (resp. −a2 − b2), and also x(αe1 + βe2)x

∗ ∈ V in both cases. Hence Pin(2) = S1 × Z2, and
Spin(2) = S1 = {a1 + bk : a2 + b2 = 1}. It is also verified easily that for x = (cos t)1 + (sin t)k ∈ Spin(2):

ρ ((cos t)1 + (sin t)k) =

(
cos 2t sin 2t

− sin 2t cos 2t

)

so that the map ρ : Spin(2) = S1 → SO(2) = S1 is just the squaring map.

Finally, since Cl0(R3) = H = R1 + Ri + Rj + Rk where i = e1e2, j = e2e3 and k = e3e1 (see Exercise
13.1.4), we have 1∗ = 1, i∗ = −i, j∗ = −j and k∗ = −k. Thus, for a quaternion x = a1 + bi+ cj + dk ∈ Cl0,
x∗ = a1 − bi − cj − dk, the conjugate quaternion, and xx∗ = 1 implies a2 + b2 + c2 + d2 = 1, viz., x is a
unit length quaternion. It is again clear that xV x∗ ⊂ V , so that Spin(3) is the group of unit quaternions,
homeomorphic to S3. Further, one easily computes that the homomorphism ρ : Spin(3) → SO(3) is given by:

ρ(a+ bi+ cj + dk) =




(a2 + c2) − (b2 + d2) 2(cd− ab) 2(bc+ ad)
2(ab+ cd) (a2 + d2) − (b2 + c2) 2(bd− ac)
2(bc− ad) 2(bd− ac) (a2 + b2) − (c2 + d2)




Note that ρ(−x) and ρ(x) are the same, as they should be. Also, recalling the central element η = e1e2e3 ∈
Cl1(R3) we see that η∗ = e3e2e1 = −η, so that ρ(η)ei = −ηeiη = −ηηei = −ei. Thus ρ(η) = −I ∈ O(3,R),
and also Pin(3) = Spin(3)

∐
Spin(3)η = Spin(3) × Z2, since η is central.

13.3. Spin structures on manifolds. Let M be a connected oriented Riemannian manifold of dimension n.
There is the orthonormal oriented frame bundle:

SO(n) → P → M

whose fibre is
Px = {oriented orthonormal frames in TxM} ' SO(n)

Definition 13.3.1. We say that M has a spin structure if there exists a principal Spin(n) bundle P̃ → M and

a double-covering map ρ : P̃ → P so that the following diagram commutes:

Spin(n) → P̃ → M
ρx ↓ ↓ ρ Id ↓
SO(n) → P → M

There is a handy criterion for the existence of a spin structure on M , as also a way of parametrising all
possible spin structures on M . Namely,

Proposition 13.3.2. The oriented Riemannian manifold M as above has a spin structure iff the second
Stiefel-Whitney class w2(M) = 0. Furthermore, if there does exist a spin structure on M , then the set of all
spin-structures on M is in bijective correspondence with H1(M,Z2).

Proof: Let SO(n)
i→ P → M be the principal SO(n) bundle as above, and consider the Serre spectral sequence

of this fibration with Z2 coefficients. Then:

Ep,q2 = Hp(M,Hq(SO(n),Z2)) ⇒ Hp+q(P,Z2)

Note that we have the exact sequence:

0 → E0,1
3 → E0,1

2
d2→ E2,0

2 → E2,0
3 → 0

since d2 : E−2,2
2 → E0,1

2 and d2 : E2,0
2 → E4,−1

2 are zero maps, the spectral sequence being first quadrant. For

the same reason, dr : E0,1
r → Er,2−r

r and dr : E2,0
r → Er+2,1−r are zero maps for r ≥ 3, and so E0,1

3 = E0,1
∞

and E2,0
3 = E2,0

∞ . Since

E0,1
∞ = F 0(H1(P,Z2))/F

1(H1(P,Z2))
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and F 0(H1(E,Z2)) = H1(E,Z2), we have a natural quotient map H1(E,Z2) → E0,1
∞ = E0,1

3 . Noting that

E0,1
2 = H0(M,H1(SO(n),Z2)) = H1(SO(n),Z2) and E2,0

2 = H2(M,H0(SO(n),Z2)) = H2(M,Z2), we have
the exact sequence:

H1(P,Z2)
i∗→ H1(SO(n),Z2)

δ→ H2(M,Z2) (42)

The first map is i∗ by applying the functoriality of the Serre spectral sequence to the inclusion of a point into
M , and called an “edge homomorphism”. The image δ(1) of the generator 1 ∈ H1(SO(n),Z2) = Z2 is the
Stiefel-Whitney class w2(M). Also, ker δ = Im i∗ by exactness of (42).

M has a spin structure iff there is a double cover P̃
ρ→ P which makes the diagram of Definition 13.3.1

commute.

Double covers of P are in 1-1 correspondence with index 2 subgroups of π1(P ), which is in bijective correspon-
dence with homZ(π1(P ),Z2). But this last group is precisely H1(P,Z2). Hence ρ is an element of H1(P,Z2).
Since the diagram of Definition 13.3.1 commutes, the restriction of the double cover ρ : P → M to a point
x ∈ M must correspond to the nontrivial double-cover ρx : Spin(n) → SO(n). Now the double cover ρx is rep-
resented by the unique generating element 1 ∈ homZ(π1(SO(n)),Z2) = H1(SO(n),Z2) = Z2. By functoriality,
it follows that i∗(ρ) = 1. Now, there exists such a ρ ∈ H1(P,Z2) satisfying i∗(ρ) = 1 iff δ(1) = w2(M) = 0, by
the exactness of the sequence (42). This proves that M has a spin structure iff w2(M) = 0, and the first part
of the proposition follows.

From the previous para, it also follows that spin structures on M are in 1-1 correspondence with the inverse
image (i∗)−1(1) ∈ H1(P,Z2), where 1 ∈ H1(SO(n),Z2) = Z2 is the generator. But (i∗)−1(1) is the set-theoretic
complement of (i∗)−1(0) = ker i∗ in H1(P,Z2), and has the same cardinality as ker i∗. We claim that this kernel
is isomorphic to H1(M,Z2).

Consider the tail-end of the homotopy exact sequence of the fibration SO(n) → P → M , we have:

π1(SO(n))
i∗→ π1(P )

π∗→ π1(M) → 1

so that taking homZ(−,Z2) of this sequence, and noting homZ(π1(X),Z2) = H1(X,Z2) by Hurewicz and
Universal Coefficient Theorems, we have the exact sequence:

0 → H1(M,Z2) → H1(P,Z2)
i∗→ H1(SO(n),Z2)

This shows that ker i∗ ' H1(M,Z2), and the proposition is proved. 2

Corollary 13.3.3. Every 2-connected Riemannian manifold is an orientable spin manifold.

Example 13.3.4 (Real projective spaces). The real projective space RP(n) is spin iff n ≡ 3 mod 4. It is well
known that T (RP(n)) ⊕ ε1 ' (γ1 ∗)n+1, where γ1 is the tautological line bundle on RP(n), and ε1 the trivial
line bundle. Thus the total Steifel-Whitney class of RP(n) is given by

w(RP(n)) = (1 + x)n+1

where x ∈ H1(RP(n),Z2) is the generator, and the first Stiefel-Whitney class of γ1 ∗. So

w2(RP(n)) =
(n+ 1)n

2
x2

Now RP(n) is orientable iff n = 2k + 1, and in this event w2(RP(n)) = (k + 1)(2k + 1)x2. This is zero iff k is
odd, i.e. iff n = 2(2m+ 1) + 1 = 4m+ 3.
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Example 13.3.5 (Complex projective spaces). The complex projective space CP(n) is spin iff n is odd. For,
there is again the equivalence of complex vector bundles:

T (CP(n)) ⊕ ε1C ' (γ1 ∗)n+1

where γ1 is the complex tautological line bundle on CP(n). Thus the total Chern class of CP(n) is given by

c(CP(n)) = (1 + x)n+1

where x ∈ H2(CP(n),Z) is the generator, and the first Chern class of γ1 ∗. This shows that the first Chern
class

c1(CP(n)) = (n+ 1)x

It is a fact that w2 of a complex vector bundle considered as a real bundle is the mod 2 reduction of its first
Chern class. Hence w2(CP(n)) = 0 iff (n+ 1) is even, i.e. iff n is odd.

Exercise 13.3.6. Using the identity T (Gk(R
n)) ' hom(γk, γk,⊥), and arguments similar to the ones above,

investigate which real grassmannians are spin. Likewise for complex grassmannians.

14. Representations

14.1. Clifford Modules. Let V be a real inner product space with positive definite inner product 〈−,−〉.
Let Cl(V ) be the corresponding Clifford algebra.

Definition 14.1.1. Let F = R or C. We say that an F-vector space S is an F-Clifford module if there is a
unital R- algebra homomorphism:

ρ : Cl(V ) → homF(S, S)

Example 14.1.2. Letting S = Cl(V ), and letting ρ(x)y = x.y (left Clifford multiplication by x) or ρ(x)y =
y.x∗ (right Clifford multiplication by x∗) turns CL(V ) into an R- Clifford module. These are called the left
(resp. right) regular representations.

A very important R-Clifford module over Cl(V ) is the exterior algebra Λ∗V . To describe it, we let {ei}ni=1

be an orthonormal basis of V with respect to 〈−,−〉. We also have the R-linear Hodge-star operator

∗ : Λk(V ) → Λn−k(V )

which is defined on the basis elements of Λk(V ) by:

∗(ei1 ∧ ei2 ∧ ... ∧ eik) = (−1)σej1 ∧ ej2 ... ∧ ejn−k

where {i1, ..., ik, j1, .., jn−k} = {1, 2, .., n}, and (−1)σ is the sign of the permutation σ = (i1 i2 ..., j1, .., jn−k).
We note that with this definition,

α ∧ ∗β = 〈α, β〉ωV
where ωn = e1 ∧ ..∧ en ∈ Λn(V ) is the oriented volume element of V , and 〈α, β〉 is the canonical inner product
on Λk(V ) induced by 〈−,−〉 on V (it is the inner product which makes {ei1 ∧ei2 ....∧eik} an orthonormal basis
for Λk(V )). It is readily checked that this inner product on Λk(V ) and the oriented volume element ωV do not
depend on the choice of orthonormal basis, and hence the ∗-operator is invariantly defined. It is easily checked
that the square ∗ ◦ ∗ is scalar multiplication by (−1)k(n−k) on Λk(V ).

Definition 14.1.3 (Interior multiplication). For v ∈ V , and α ∈ Λk(V ), define the element:

vyα := (−1)nk+n(∗(v ∧ ∗α)) ∈ Λk−1(V )
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Lemma 14.1.4. Interior multiplication above satisfies the following:

(i): 〈v ∧ α, β〉 = 〈α, vyβ〉 for α ∈ Λk(V ), β ∈ Λk+1(V ), and v ∈ V .

(ii): The composite:

Λk(V )
vy→ Λk−1(V )

vy→ Λk−2(V )

is zero.

(iii): For a vector v ∈ V , and α ∈ Λk(V ), we have:

v ∧ (vyα) + vy (v ∧ α) = 〈v, v〉α

Proof: By the discussion on the ∗-operator, we have

〈v ∧ α, β〉ωV = (v ∧ α) ∧ ∗β = (−1)kα ∧ v ∧ ∗β
= (−1)k(−1)(n−k)kα ∧ (∗∗)(v ∧ ∗β) = (−1)nkα ∧ ∗[∗(v ∧ ∗β)]

= (−1)nk(−1)n(k+1)+nα ∧ ∗(vyβ) = 〈α, vyβ〉ωV
which proves (i). Thus interior multiplication vy (−) is the adjoint to v ∧ (−) with respect to 〈−,−〉 on Λ∗(V ).

Since v ∧ (v ∧ α) ≡ 0, the adjoint formula (i) implies (ii).

We note that for the basis vector e1, and an element β ∈ Λ∗ such that β does not involve e1 anywhere,
e1yβ is orthogonal to all γ not involving e1, since 〈e1yβ, γ〉 = 〈β, e1 ∧ γ〉 = 0. Further 〈e1yβ, e1 ∧ γ〉 =
〈β, e1 ∧ e1 ∧ γ〉 = 0. It follows that e1yβ = 0, if β does not involve e1. On the other hand e1y (e1 ∧ γ) = γ
for all γ not involving e1, as is easily checked again by taking inner products of both sides with various τ ,
and using (i). Now, for a general α ∈ Λk(V ), write α = γ + e1 ∧ β, where β and γ do not involve e1. Then
e1 ∧ α = e1 ∧ γ. Also e1yα = β. Hence

e1y (e1 ∧ α) + e1 ∧ (e1yα) = e1y (e1 ∧ γ) + e1 ∧ β = γ + e1 ∧ β = α

Since any unit vector v can be completed to an orthonormal basis, the above formula is true for all unit vectors
v ∈ V . For a general v, apply this formula to v

‖v‖ , and (iii) follows. 2

Proposition 14.1.5. The exterior algebra Λ∗(V ) is an R-Clifford module over Cl(V ). The action is uniquely
determined by the action of v ∈ V ⊂ Cl(V ), and that in turn is given by:

v.α = v ∧ α− vyα for α ∈ Λ∗(V )

Finally, the action of v ∈ V above is skew-symmetric with respect to the natural inner-product 〈−,−〉 on
Λ∗(V ).

Proof: We define the action:
v.α := v ∧ α− vyα

To extend this action to all of Cl(V ), by the universal property of Clifford algebras, we need to check that
v2α = v.v.α = − 〈v, v〉α for all α ∈ Λ∗(V ). However:

v.v.α = v ∧ (v ∧ α− vyα) − vy (v ∧ α− vyα)

= −v ∧ (vyα) − vy (v ∧ α) = − 〈v, v〉α
by using (ii) and (iii) of the previous Lemma 14.1.4.

Finally, by using (i) of the previous Lemma 14.1.4, we have

〈v.α, β〉 = 〈v ∧ α, β〉 − 〈vyα, β〉 = 〈α, vyβ〉 − 〈α, v ∧ β〉 = − 〈α, v.β〉
which shows that the action of v ∈ V is skew symmetric with respect to 〈−,−〉. Hence the proposition. 2



114 VISHWAMBHAR PATI

Exercise 14.1.6. Show that:

vy(w1 ∧ w2 ∧ ... ∧ wk) =

k∑

i=1

(−1)i 〈v, wi〉w1 ∧ w2 ∧ ...ŵi... ∧ wk

where the hat denotes omission. (Simplest to just use a basis, or the adjointness formula 〈v ∧ α, β〉 = 〈α, vyβ〉
in (i) of 14.1.4.)

Lemma 14.1.7. The representation of Cl(V ) on Λ∗(V ) above has the following further properties:

(i): The map

σ : Cl(V ) → Λ∗(V )

x 7→ x.1

is an R-vector space isomorphism, called the symbol map. For a multiindex I = (i1 < i2 < ... < ik), we
have σ(ei1ei2 ..eik) = ei1 ∧ ei2 ∧ ... ∧ eik .

(ii): The inverse of σ is the R-linear map c : Λ∗(V ) → Cl(V ) called the quantisation map. It obeys
c(ei1 ∧ ei2 ∧ ... ∧ eik) = eI .

(iii): The representation above complexifies to a representation:

Cl(V ) := Cl(V ) ⊗R C → Λ∗
C(V ) = Λ∗(V ) ⊗R C = Λ∗(VC)

and the symbol and quantisation maps extend to the complexifications.

(iv): [Action of the volume element] Give Rn its usual euclidean inner product and denote the corresponding
Clifford algebra Cl(Rn) as Cln. Let ωn = e1...en be the volume element of Cln. Then:

(a): ωnv + vωn = 0 for n even and ωnv = vωn for n odd and all v ∈ Rn. Hence, for n odd, ωn
commutes with everything and is a central element in Cln. For n even, ωn commutes with Cl0n and
anticommutes with Cl1n.

(b): ω2
n = (−1)p where p =

[
n+1

2

]
, the integral part of n+1

2 . Hence ω2
n = −1 for n ≡ 1, 2 mod 4 and

ω2 = 1 for n ≡ 0, 3 mod 4.

(c): The action of ωn on Λ∗(V ) is related to the Hodge-star operator by:

ω.φ = (−1)nk+
k(k−1)

2 ∗ φ for φ ∈ Λk(V )

(v): [Chirality element] In the complexification Cln = CLn ⊗R C, define the complex volume element or
chirality element:

τn := (
√

−1)pωn where p =

[
n+ 1

2

]

the box brackets denoting the greatest integer part. By (b) of (iv) above

τ2
n = 1 for all n

Since ωn is central for all n ≡ 1 mod 2, we have τn is central for all n ≡ 1 mod 2. τn is related to the
Hodge-star operator by:

τn.φ = ip+k(2n+k−1) ∗ φ for φ ∈ ΛkC(Rn)

In particular, if n = 4m and k = 2m, we have τnφ = ∗φ. (Chirality coincides with Hodge-star on middle
dimension for n = 4m).
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Proof: Note that, denoting the Cl(V ) action with a dot, we have:

ei.1 = ei ∧ 1 − eiy1 = ei for 1 ∈ Λ0(V )

and so for I = (i1 < i2 < ... < ik), it follows that:

eI .1 = ei1ei2 ..eik .1 = (ei1ei2 ..eik−1
).eik = (ei1ei2 ..eik−2

).(eik−1
∧ eik − eik−1

yeik)

= (ei1ei2 ..eik−2
).(eik−1

∧ eik) = .... = ei1 ∧ ei2 ∧ .... ∧ eik
because ely(ej1 ∧ ej2 ∧ ..ejm) = 0 if l 6= ji for all i. This proves (i).

(ii) follows immediately from (i), since c = σ−1. c is called the quantisation map because all supercom-
mutators are 0 in Λ∗(V ), but not in Cl(V ), and c puts a “non- supercommuting” algebra structure on the
supercommutative algebra Λ∗(V ).

(iii) is obvious from definitions.

For (iv), note that for any n, eiej + ejei = 2δij implies that

eiωn = (−1)n−1ωnei

so we have (a) of (iv). We also have:

ω2
n = ωn−1enωn−1en = (−1)n−1ω2

n−1e
2
n = (−1)nω2

n−1

So that ω2
4k+4 = ω2

4k+3 = −ω2
4k+2 = −ω2

4k+1 = ω2
4k = ....ω2

0 = 1, and (b) follows.

To see (c) of (iv), note that if eI = ei1 ..eik ∈ Cln, and J is any multi-index with J = {1, 2, .., n} \ I, then
eIeJ = (−1)σωn where σ is the permutation

σ = (i1, i2, ..., j1, .., jn−k)

Also note that eIeI = (−1)
k(k+1)

2 . Now by (a)

ωneI = (−1)k(n−1)eI .ωn = (−1)k(n−1)+σeIeIeJ

= (−1)k(n−1)+
k(k+1)

2 [(−1)σeJ ] = (−1)nk+
k(k−1)

2 [(−1)σeJ ]

Now apply both sides to 1 ∈ Λ0 to get (c).

(v) follows immediately from the definition of τn and (iv). When n = 4m, p =
[
n+1

2

]
= 2m, and for k = 2m

the exponent

p+ k(2n+ k − 1) = 2m+ 2m(8m+ 2m− 1) = 16m2 + 4m ≡ 0 mod 4

so that ip+k(2n+k−1) = 1, and τ4mφ = ∗φ for φ ∈ Λ2m
C

(Rn). This proves the lemma. 2

Corollary 14.1.8. If W is a R-Clifford module over Cln, and n ≡ 0, 3 mod 4, then W = W+ ⊕ W− as an
R-vector space, where W± = (1 ± ωn)W is the (±1)-eigenspace of the volume element action ωn.( ). If n ≡ 3
mod 4, the centrality of ωn ensures that W± are both R-Clifford submodules of W . If n ≡ 0 mod 4, then W±

are R-modules over Cl0n.

Analogously, since τ2
n = 1, every C-Clifford module W over Cln splits into (±1)-eigenspaces W± of the

chirality element τn for all n, both being C-subspaces. Again, if n ≡ 3 mod 4, τn is central, and W± are
C-Clifford submodules. If n ≡ 0 mod 4, the subspaces W± are modules over Cl0n.

Proof: Obvious from (b) of (iv) and (v) of the Lemma 14.1.7 above. When n ≡ 0 mod 4, we note that ωn
(resp. τn) anticommutes with all v ∈ V , and hence commutes with Cl0. Thus W± is a R (resp. C) module
over Cl0n. 2

Definition 14.1.9. Let F = R or C. We will say that an F-Clifford module over Cl(V ) is irreducible if the
only F- Clifford submodules of S are S and {0}.
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Remark 14.1.10. If n ≡ 3 mod 4, then for an irreducible R (resp. C)-Clifford module W over Cln, the
volume element ωn (resp. chirality τn) either acts as +1 (viz. W = W+) or as −1 (viz. W = W−), and W+

and W− (if both exist) are distinct irreducible modules. This is obvious because of the Corollary 14.1.8 which
asserts that W± are F-Clifford submodules of W when n ≡ 3 mod 4, by the centrality of ωn (resp. τn). Also,
since Cln module equivalence will preserve the sign of ωn.( ) (resp. τn.( )), it follows that modules on which
these operators act as +1 are not isomorphic to those on which they act by −1.

Lemma 14.1.11 (Complete reducibility of Clifford modules). Every F-Clifford module is a direct sum of ir-
reducible F-Clifford submodules.

Proof: We define the Clifford group in Cl(V ) to be the group:

Γn := {±eI : I = (i1 < i2 < ... < ik); 0 ≤ k ≤ n}
which is of order 2n+1. For example, Γ2 is the Hamilton group {±1,±i,±j,±k}. Denote the element −1 ∈ Γn
by ν. If we let R[Γn] denote the real group algebra over Γn, we have a surjective R- algebra homomorphism:

ρ : R[Γn] → Cl(V )

eI 7→ eI

ν 7→ −1

Thus there is a 1-1 correspondence between F-modules over Cl(V ) and F-modules over R[Γn] on which the
element ν acts as −1. So let S be a F-module over Cl(V ). Then, via ρ, S is a F-module over the algebra
R[Γn], i.e. a F-module over the Clifford group Γn. By averaging over the finite group Γn, there alway exists
a Γn-invariant positive definite real (if F = R), resp. complex sesquilinear (if F = C) inner product 〈−,−〉.
on the F-module S. Thus every Γn F-submodule will have a Γn-invariant orthogonal complement with respect
to 〈−,−〉. It follows that S decomposes into the orthogonal direct sum of finitely many irreducible Γn F-
submodules Si. Thus Si are irreducible R[Γn] F-submodules. Since ν is acting as −1 on S, it is acting as −1
on each Si, so each Si is a Cl(V ) F-submodule. It is clearly irreducible over Cl(V ) since it is irreducible over
R[Γn]. The lemma follows. 2

So it remains to identify what the irreducible Cl(V ) F- modules are. This will be addressed in the following
proposition.

Proposition 14.1.12. For n ≡ 0, 1, 2 mod 4, there is exactly one irreducible R-module over Cln. For n ≡ 3
mod 4, there are two distinct irreducible R-modules over Cln. They are distinguished by the fact that on one
the volume element ωn acts as (+1), and on the other as (−1). The dimensions of these modules are readable
from the following list:

n : 8k + 1 8k + 2 8k + 3 8k + 4 8k + 5 8k + 6 8k + 7 8k + 8

dn : 24k+1 24k+2 24k+2 24k+3 24k+3 24k+3 24k+3 24k+4

For n ≡ 0 mod 2, there is exactly one irreducible C-module over Cln, of C-dimension 2n/2. For n ≡ 1

mod 2, there are exactly two irreducible C-modules over Cln, each of C-dimension 2
n−1

2 . They are distinguished
by the fact that on one the chirality element τn acts as (+1) and on the other as (−1).

Proof: We recall the list:

n : 1 2 3 4 5 6 7 8
Cln : C H H ⊕ H H(2) C(4) R(8) R(8) ⊕ R(8) R(16)

and the fact that Cln+8 ' Cln ⊗R R(16) from the Remark 13.1.5. Also note that by (i) of Exercise 13.1.4,
we have Cl3 = H ⊕ ωH, with ω2 = (e1e2e3)

2 = 1 and ω a central element. This algebra may be rewritten as
(1 + ω)H ⊕ (1 − ω)H, where (1 + ω)(1 − ω) = 0, so that Cl3 = H ⊕ H. Note that ω(1 ± ω) = (1 ± ω), so that
the two summands in Cl3 are distinguished by the sign of the action of ω.
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The corresponding fact is also true of Cl7, though we haven’t computed it thus far. However, assuming
that Cl6 = R(8), it is easy to check that Cl07 ' Cl6, by taking eIe7 7→ ±eI and eJ 7→ eJ for all subsets
I, J ⊂ {1, 2, .., 6}. Now it is easy to check that Cl17 = ωCl07, and Cl7 = Cl07⊕ωCl07 = (1+ω)R(8)⊕(1−ω)R(8) '
R(8) ⊕ R(8). So again, the two summands of Cl7 are distinguished by the sign of Clifford multiplicaton by ω.

From this list it follows that Cln is a matrix algebra K(k) over K = R or C or H for n = 1, 2, 4, 5, 6, 8 and a
sum of two copies of the same matrix algebra K(k) for n = 3, 7. Also, since K(k) ⊗R R(m) = K(mk), it follows
by the 8-periodicity above that Cln is a matrix algebra K(k) for n ≡ 0, 1, 2, 4, 5, 6 mod 8, i.e. n 6≡ 3 mod 4,
and a direct sum of two identical matrix algebras K(k) for n ≡ 3, 7 mod 8, i.e. n ≡ 3 mod 4.

It is well known that the K-matrix algebra K(k) is simple, and has exactly one irreducible R-module over
it, namely Kk, with the obvious left action by matrix multiplication. The direct sum of two copies of K(k)
has two distinct irreducible modules over it, viz. Kk with one action from the first summand, and the other
action from the second summand. Thus by the foregoing, the two irreducible modules for n ≡ 3 mod 4 are
distinguished by the sign of the action of ωn = e1...en. Letting dn denote the R-dimension of these irreducible
modules, we have the following table:

n : 1 2 3 4 5 6 7 8
dn : 2 4 4 8 8 8 8 16

It follows that Cln+8 = Cln ⊗ R(16) will have exactly one irreducible R-module for n 6≡ 3 mod 4 and two
distinct ones for n ≡ 3 mod 4. The dimensions of these modules are read off from the above table, and the
inductive formula dn+8 = 16dn arising out of periodicity.

Denote an irreducible R-Clifford module over Cln as Wn. Then by the remarks above and the list at the
top we have:

n 1 2 3 4 5 6 7 8
Wn C H H± H2 C4 R8 R8

± R16

where the subscript ± on W3 and W7 signifies two distinct irreducible modules, both isomorphic as vector
spaces to the entry in that slot. This implies by the periodicity Wn+8 = Wn⊗R R16 that we have the following
list of irreducible R-Clifford modules Wn over Cln whose R-dimension is dn:

n : 8k + 1 8k + 2 8k + 3 8k + 4 8k + 5 8k + 6 8k + 7 8k + 8

Wn : C24k

H24k

H24k

± H24k+1

C24k+2

R24k+3

R24k+3

± R24k+4

dn : 24k+1 24k+2 24k+2 24k+3 24k+3 24k+3 24k+3 24k+4

The complex modules are much simpler to describe. Noting that an R- algebra homomorphism:

ρ : Cl(V ) → homC(W,W )

automatically extends to the complexification Cl(V ) := Cl(V ) ⊗R C, we see that a C-Clifford module becomes
a Cl(V ) module. Noting that C ⊗R C = C ⊕ C, and H ⊗R C = C(2) (see (ii) of Exercise 13.1.4), we get the
following list of complex Clifford algebras from the real list above:

n : 1 2 3 4 5 6 7 8
Cln : C ⊕ C C(2) C(2) ⊕ C(2) C(4) C(4) ⊕ C(4) C(8) C(8) ⊕ C(8) C(16)

which means we have:

Cln = C(2k) ⊕ C(2k) for 1 ≤ n = 2k + 1 ≤ 8

= C(2k) for 1 ≤ n = 2k ≤ 8

Note that for n = 3, 7, the two summands in Cln are distinguished by the sign of multiplication by the central
volume element ωn. Note also that the chirality elements (see definition in (v) of Lemma 14.1.7) are given by
τ3 = −ω3 and τ7 = ω7. Hence, for n = 3, 7, the two summands in Cln are distinguished by the sign of the
action of multiplication by the chirality τn.
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Since R(16) ⊗R C = C(16), it follows that

Cln+8 = Cln+8 ⊗R C = Cln ⊗R R(16) ⊗R C = Cln ⊗R C(16) = Cln ⊗R (C ⊗C C(16))

= (Cln ⊗R C) ⊗C C(16) = Cln ⊗C C(16)

Thus there is exactly one irreducible C-Clifford module over Cln when n is even, and two inequivalent
irreducible C- Clifford modules over Cln when n is odd. Again, when n is odd, the two inequivalent modules
are distinguished by the sign of the action of the chirality τn.

Combining the two facts above, we obtain:

Cln = C(2
n−1

2 ) ⊕ C(2
n−1

2 ) for n ≡ 1 mod 2

= C(2
n
2 ) for n ≡ 0 mod 2

Since the matrix algebra C(k) is simple, there is exactly one irreducible C-module over it, viz. Ck with the
obvious action by matrix multiplication. Similarly, over the direct sum algebra C(k) ⊕ C(k), there are exactly
two irreducible ones (each isomorphic as a C-vector space to Ck), coming from the action of the two distinct
summands. As noted above, the two summands are distinguished by the sign of the chirality oeprator τn. This
proves the proposition. 2

Remark 14.1.13. Note that from the proposition above, since dn < 2n for all n ≥ 3, it follows that the
R-Clifford module Λ∗(Rn) of dimension 2n described in Proposition 14.1.5 is irreducible iff n = 1 or n = 2.
For the same reason the left and right regular representations of Cln on itself is irreducible iff n = 1 or 2.

To further analyse the real and complex representations of Cln, we introduce the notion of a graded Clifford
module. That is,

Definition 14.1.14. Say that W is a Z2-graded F-Clifford module over Cl(V ) (or a Cl(V ) F-supermodule) if
W = W 0 ⊕W 1, with W i as F-vector subspaces satisfying:

Cli(V )W j ⊂ W k where k = i+ j mod 2

A C-supermodule over Cl(V ) can be naturally regarded as a Cl(V ) := Cl(V ) ⊗R C C-supermodule.

Example 14.1.15. If we regard Cl(V ) = Cl0(V )⊕Cl1(V ) as a module over itself via left regular representation
(or right regular multiplication), it becomes a Cl(V ) supermodule. Analogously, the decomposition Cl(V ) =
Cl(V )0 ⊕ Cl(V )1 makes Cl(V ) a C-supermodule over Cl(V ) via left or right regular representation.

Example 14.1.16 (The exterior algebra again). We noted in Proposition 14.1.5 that the exterior algebra
Λ∗(V ) is a Cl(V ) module. Hence the summands Λe(V ) = ⊕n

i=0Λ
2i(V ) = Cl0V.1 and Λo(V ) = ⊕n

i=0Λ
2i+1(V ) =

Cl1(V ).1 gives Λ∗(V ) the structure of a Cl(V )-supermodule, by considering the foregoing example.

In entirely analogous fashion, Λ∗
C
(V ) := Λ∗(V ) ⊗R C becomes a Cl(V ) supermodule via the decomposition

Λ∗
C
(V ) = Λe

C
(V ) ⊕ Λo

C
(V ) into even and odd degree forms.

Example 14.1.17. Let n ≡ 0 or n ≡ 3 mod 4. By the Corollary 14.1.8 the left R-Clifford module Cln
decomposes into the (+1) and (−1) eigenspaces of ωn. We denote this decomposition as:

Cln = Cl+n ⊕ Cl−n where Cl±n := (1 ± ωn)Cln and n = 4m, 4m+ 3

This is a different Z2 grading from the earlier Cl0 ⊕ Cl1 grading. Indeed, for n = 4m + 3, the element
(1 + ω4m+3) is in Cl+, but not in Cl0 or Cl1, since 1 ∈ Cl0 and ω4m+3 ∈ Cl1. Similarly, for n = 4m, the
element (1 − ω4m) ∈ Cl− but not in Cl1.

When n = 4m, we have eiω4m = −ω4mei for all i, and so aω4m = −ω4ma for all a ∈ Cl1, and aω4m = ω4ma
for all a ∈ Cl0. Thus, for n = 4m, we have that Cl4m = Cl+4m⊕Cl−4m is a Cl4m R-supermodule. (Unfortunately,
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the corresponding fact is untrue for n = 4m + 3 since ω4m+3 is central, so Cl1 preserves both Cl+ and Cl−

instead of interchanging them). However, the above grading on Cl4m has some bearing on Cl(R4m+1), as we
shall see soon.

Example 14.1.18 (Signature grading). Let V = R4m, and consider the R-Clifford module Λ∗(R4m) over
Cl4m. By the previous example, Cl4m = Cl+4m ⊕Cl−4m becomes a Cl4m supermodule via action of left Clifford
multiplication, the decomposition being determined by the sign of multiplication by ω4m. Since Λ∗(R4m) =
Cl4m.1, it follows that:

Λ∗(R4m) = Λ+(R4m) ⊕ Λ−(R4m)

where Λ±(R4m) := Cl±4m.1. This makes Λ∗(R4m) a Cl4m supermodule, by the previous example. Similar
considerations apply to Λ∗

C
(R4m) which becomes a Cl4m C-supermodule via the grading:

Λ∗
C(R4m) = Λ+

C
(R4m) ⊕ Λ−

C
(R4m)

This last grading is called the signature grading because the Clifford action of τ4m coincides with the Hodge-star
operator in the middle dimension Λ2m

C
, by the last statement in (v) of Lemma 14.1.7.

It is helpful to have an explicit model for the complex Clifford modules. This is the content of the next
proposition.

Proposition 14.1.19 (The irreducible complex Cl2m modules). Let V = R2m with the usual euclidean inner
product 〈−,−〉. Extend this inner product by complex linearity to 〈−,−〉 on the complexification VC = V ⊗R

C = C2m (i.e. this inner product is not positive definite on VC, being C-linear in both variables). Let P be the
complex subspace of VC defined by:

P := C − span{e2j−1 − ie2j : 1 ≤ j ≤ m}
Then set S = Λ∗(P ), a C-vector space with dimC S = 2m. Then S = S+ ⊕S− is a Cl2m C-supermodule which
is irreducible. S± are the ±1-eigenspaces with respect to the (non-central) chirality element τ2m, and turn out
to be S+ = ΛevP and S− = ΛoP . Finally:

Cl2m = Cl2m ⊗R C = homC(S, S)

Proof: First note that VC, being a complexification, comes with the natural complex conjugation v⊗λ 7→ v⊗λ
for v ∈ V . Also, P is a real-form of VC, i.e.

VC = P ⊕ P

where P denotes the complex conjugation of P inside VC. Now we claim that the subspace P is isotropic, i.e.
〈v, w〉 ≡ 0 for all v, w ∈ P . For,

〈e2j−1 − ie2j , e2k−1 − ie2k〉 = 〈e2j−1, e2k−1〉 + i2 〈e2j , e2k〉 = δjk − δjk ≡ 0 for all 1 ≤ j ≤ m

Now define a basis of P by:

fj :=
1√
2
(e2j−1 − ie2j) 1 ≤ j ≤ m

so that 〈
fj , fk

〉
=

1

2
(〈e2j−1, e2k−1〉 + 〈e2j , e2k〉) =

1

2
(δjk + δjk) = δjk

which shows that {f j} is a basis of P which is dual to the basis {fj} of P . This identifies P with the complex
dual P ∗.

Define the action of P on Λ∗P by

v ◦ φ :=
√

2v ∧ φ for v ∈ P, φ ∈ Λ∗P

Note that (v ◦ (v ◦ φ)) = 2(v ∧ v ∧ φ) ≡ 0 = 〈v, v〉φ for all v ∈ P , and φ ∈ Λ∗P .

Define the action of P ∗ on S = Λ∗P by duality:

〈v ◦ φ, ψ〉 := − 〈φ, v ◦ ψ〉 = −
√

2 〈φ, v ∧ ψ〉 = −
√

2 〈vyψ, φ〉
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Hence setting v◦φ = −
√

2vyφ defines an action of P ∗ = P on Λ∗P , which also satisfies v◦(v◦φ) ≡ 0 = − 〈v, v〉φ.

Now, we need to verify the Clifford relations. We have already seen that fi ◦ fi ◦ φ ≡ 0 = 〈fi, fi〉φ for all i.
Also fi ◦ fj ◦ φ + fj ◦ fi ◦ φ = 2(fi ∧ fj + fj ∧ fi) ∧ φ = 0 = −2 〈fi, fj〉φ. Similar relations hold for f i’s. We
just need to check the mixed relations, viz.,

fk ◦ (fj ◦ φ) + f j ◦ (fk ◦ φ) = −2fk ∧ (fjyφ) − 2fjy(fk ∧ φ)

= −(e2k−1 − ie2k) ∧ [(e2j−1 − ie2j)yφ] − (e2j−1 − ie2j) ∧ [(e2k−1 − ie2k)yφ]

= − [e2k−1 ∧ e2j−1y + e2j−1 ∧ e2k−1y]φ− [e2k ∧ e2jy + e2j ∧ e2ky]φ

+ i [e2k ∧ e2j−1y + e2j−1 ∧ e2ky]φ+ i [e2j ∧ e2k−1y + e2k−1 ∧ e2jy]φ

= − 〈e2k−1, e2j−1〉φ− 〈e2j , e2k〉φ = −2δkjφ = −2
〈
fk, f j

〉
φ

since the relation (iii) in Lemma 14.1.4 implies that (v ∧ wyφ + w ∧ vyφ) = 〈v, w〉φ. Similarly one checks for
fk ◦ fj ◦ φ

This shows that the action “◦′′ makes Λ∗P a Cl(VC) = Cl(V ) C-module. This module, call it S, is irreducible,
because its complex dimension is the complex dimension of Λ∗P , i.e. 2m. In the second part of Proposition
14.1.12, we saw that the dimension of the unique Cl2m Clifford C-module is 2m. Hence this must be that
module, provided we check that the action is not trivial, and that is obvious.

We also recall that τ2
2m = 1, and this module Λ∗P will split into the (±1)-eigenspaces Λ±P of the chirality

element τ2m. Since τ2m anticommutes with all v ∈ VC, τ2m commutes with Cl02m and anticommutes with Cl12m.
Hence Cl02m ◦ Λ±P ⊂ Λ±P and Cl12m ◦ Λ±P ⊂ Λ∓P . In other words, the grading Λ∗P = Λ+P ⊕ Λ−P makes
Λ∗P a C- supermodule over Cl2m. That is S = S+ ⊕ S−, with S± := Λ±P .

It is also useful to identify Λ+P and Λ−P explicitly. To compute the action of the chirality element τ2m,
first note that

fjf j = 2−1(e2j−1 − ie2j)(e2j−1 + ie2j) = 2−1(−1 − 1 + 2ie2j−1e2j) = (−1 + ie2j−1e2j)

and similarly f jfj = −1 − ie2j−1e2j it follows that ie2j−1e2j = 1
2 (fjf j − f jfj), so that

τ2m = im(e1e2)(e2e3)..e2m−1e2m = 2−m
m∏

j=1

(
fjf j − f jfj

)

Write a k-form φ ∈ ΛkP as

φ = α1 + f1 ∧ β1

where α1 and β1 are independent of f1. Then f1 ◦ φ =
√

2f1 ∧ α1, and f1 ◦ φ = −
√

2f1y(f1 ∧ β1) = −
√

2β1.
Thus:

f1 ◦ (f1 ◦ φ) = −2f1y(f1 ∧ α1) = −2α1

and

f1 ◦ (f1 ◦ φ) = −2f1 ∧ β1

Thus

(f1f1 − f1f1)(α1 + f1 ∧ β1) = 2(α1 − f1 ∧ β1)

Identical formulae hold for fj and f j , so that we have the following consequence for a decomposable form
φ = fI := fi1 ∧ fi2 ∧ ... ∧ fik :

(fjf j − f jfj)fI = −2fI whenever j ∈ I

(fjf j − f jfj)fI = 2fI whenever j 6∈ I

It follows that τ2m ◦ fI = 2−m.2m(−1)k(+1)m−kfI = (−1)kfI . Hence τ2m acts as (−1)k on ΛkP . Thus
S+ = Λ+P = ΛevP and S− = Λ−P = ΛoP .
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Finally, consider the map:

ρ : Cl2m → homC(S, S)

x 7→ x ◦ ( )

Note that:

homC(S, S) = (Λ∗P )∗ ⊗ Λ∗P = Λ∗P ∗ ⊗ Λ∗P

= Λ∗P ⊗ Λ∗P = Λ∗(P ⊕ P ) = Λ∗(VC)

Both sides have complex dimension 22m, and it is easy to check that ρ has no kernel (exercise!). This proves
that ρ is an isomorphism and the proposition follows. 2

By a magical occurrence, the graded pieces of the unique irreducible Cl2m supermodule S above are the two
distinct irreducible modules over Cl2m−1. More precisely:

Corollary 14.1.20 (Irreducible C-modules over Cl2m−1). There is an isomorphism Cl0n+1 ' Cln of R-algebras
which complexifies to an isomorphism Cl0n+1 ' Cln. If we consider the graded pieces S± of the irreducible
Cl2m C-supermodule S of the previous Proposition 14.1.19, we have that S± are both C-modules over Cl02m.
Under the isomorphism above, they are C-modules over Cl2m−1. Their complex dimensions are 2m−1, and
they are precisely the two distinct irreducible C-modules over Cl2m−1.

Proof: The map f : Rn → Cl0n+1 is defined by ei 7→ eien+1 for i = 1, 2, .., n. Now f(ei)
2 = (eien+1)

2 = −1,
and for i 6= j

f(ei)f(ej) + f(ej)f(ei) = eien+1ejen+1 + ejen+1eien+1 = eiej + ejei = 0

So by the universal property of Clifford algebras, it extends to a R- algebra homomorphism Cln → Cl0n+1.
It is an isomorphism because it is clearly injective and both sides have the same dimension. Likewise for the
complexifications.

Note that under the isomorphism f : Cl2m−1 → Cl02m, we have for the chirality element:

f(τ2m−1) = imf(e1...e2m−1) = im(e1e2m)(e2e2m)...(e2m−2e2m)(e2m−1e2m)

= (−1)m−1ime1e2(e2m)2e3e4(e2m)2..., e2m−3e2m−2(e2m)2(e2m−1e2m)

= (−1)m−1(−1)m−1ime1....e2m = ime1e2...e2m = τ2m

Hence the module S+ over Cl02m becomes a module over Cl2m−1 via the isomorphism f , and since f(τ2m−1) =
τ2m, it follows that τ2m−1 acts as +1 on S+. Similarly, τ2m−1 acts as (−1) on S−. Since dimC S = 2m, and
dimC S

± = 1
2 dimC S = 2m−1, it follows that S± are the two inequivalent Cl2m−1 irreducible C-modules. The

corollary follows. 2

Notation: Let us denote the two distinct irreducible Cl2m−1 C-modules by S+
2m−1 and S−

2m−1, both of complex

dimension 2m−1. Let us denote the unique irreducible Cl2m C-module (which is a supermodule) by S2m, of
complex dimension 2m. We note by the Corollary 14.1.20 that the graded pieces S±

2m (both of complex
dimension 2m−1) are precisely S±

2m−1 as C-vector spaces, and their module structure over Cl02m is precisely

their module structure over Cl2m−1 under the identification Cl2m−1 ' Cl02m.

14.2. Complex spin representations. We first note that since Spin(n) ⊂ Cln ⊂ Cln, any Cln C-module
will give a C-module over Spin(n) by restricting the action, because the group mutiplication on Spin(n) is the
Clifford multiplication in Cln. A similar remark applies to Pin(n), but they are of less concern to us here.

Proposition 14.2.1. On the spinor group Spin(2m), there are two inequivalent irreducible C-modules (=com-
plex representations). They are denoted by ∆±

2m, and are distinguished by the sign of the chirality element
imω2m (where ω2m resides in Spin(2m)). Both are of complex dimension 2m−1, and are called the half-spin
representations. They do not descend to SO(2m).

On the spinor group Spin(2m− 1), there is exactly one irreducible C-module, of dimension 2m−1, and is
denoted ∆2m−1. It does not descend to SO(2m− 1).
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Proof: First note that ω2m ∈ Cl02m, and since it is a product of unit vectors ei, lies in Pin(2m). Thus
ω2m ∈ Spin(2m), and for a C-module over Spin(2m), the action of imω2m makes sense. Now, by the Proposition
14.1.19, there is the unique C-supermodule S2m over Cl2m, with graded pieces S±

2m. Both of these graded
pieces are C-modules over Cl02m. Hence both are modules over Spin(2m) ⊂ Cl02m. Call them ∆±

2m. They
are distinguished by the sign of the chirality action imω2m, (or imρ(ω2m) to be more precise, where ρ is the
representation on S2m).

It is clear that Cl02m is generated as an algebra by elements of Spin(2m) (indeed all elements eI with | I |
even are in Spin(2m)), it follows that if these modules ∆±

2m are reducible as Spin(2m) modules, they will be
reducible as Cl02m modules. That is S±

2m will be reducible as Cl2m−1 modules. But we have seen in Corollary
14.1.20 that they are precisely the two irreducible Cl2m−1 modules. Thus ∆±

2m are both irreducible C-modules
over Spin(2m). Their dimensions are given by:

dimC ∆±
2m = dimC S

±
2m = 2m−1

It is also clear from the construction of the C-supermodule S = Λ∗P over Cl2m in Proposition 14.1.19 that
−1 ∈ Cl2m acts as (−IdS) on S, and hence (−1) ∈ Spin(2m) acts as −Id on both S±

2m, so neither representation
∆±

2m descends to SO(2m).

For the odd spin representations, we start out with the two distinct irreducible C-modules S±
2m−1 over

Cl2m−1. This time around, the volume element ω2m−1 is of odd parity, and lives in Cl12m−1. Hence ω2m−1 does
not live in Spin(2m− 1). Hence the action of Spin(2m− 1) is completely determined by the action of Cl02m−1

on S±
2m−1.

We claim that the action of Cl02m−1 is identical on both the irreducibles S±
2m−1. Indeed if we let αn : Cln →

Cln be the involution defined by extending the map v → (−v) of V = Rn to Cln, we have Cl0n (resp. Cl−n is the
(+1) (resp. (−1))-eigenspace of αn. Since ω2m−1 ∈ Cl12m−1, it follows that α2m−1(ω2m−1) = −ω2m−1. Hence

α2m−1 interchanges the +1 and −1 eigenspaces of τ2m−1 on Cl2m−1, and so interchanges Cl±2m−1, the two

summands of Cl2m−1. Thus Cl02m−1 is the diagonal subalgebra in the direct sum Cl2m−1 = Cl+2m−1 ⊕Cl−2m−1 =

C(2m−1)⊕C(2m−1). Hence the two distinct irreducible modules C2m−1

, coming from the action of each matrix
algebra summand, will receive the same action from the diagonal Cl02m−1. Hence the claim.

So we may define ∆2m−1 to be either S+
2m−1 or S−

2m−1 (it doesn’t matter which) with Spin(2m− 1) action
being the restriction of the Cl2m−1 action. The proofs of the other statements are similar to the even case
above. 2

14.3. Inner products, orthogonality and unitarity.

Definition 14.3.1. Let W be an R-module (resp. C-module) over Cl(V ), and let (−,−) be a positive definite
inner product (resp. positive definite hermitian inner product) on W . (We are using a different symbol to
distinguish it from the euclidean inner product 〈−,−〉 on V with respect to which the Clifford algebra Cl(V )
is defined.) We say that W is a self-adjoint module over Cl(V ) if

(x.v, w) = (−1)deg x(v, x∗w) for all v, w ∈ W, x homogeneous ∈ Cl(V )

where ∗ is the anti-isomorphism defined in Definition 13.1.6. This is clearly equivalent to

(e.v, w) = −(v, e.w) for all e ∈ V, v, w ∈ W.

i.e. the Clifford action of vectors should be skew-adjoint with respect to (−,−).

Example 14.3.2. By the last remark above, the second part of Proposition 14.1.5 implies that the action of
Cl(V ) on Λ∗(V ) is self-adjoint, with the inner product (−,−) on Λ∗(V ) being the natural inner product 〈−,−〉,
induced by the one on V .
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Example 14.3.3. We recall the construction of the unique irreducible C-supermodule S2m over Cl2m (equiv-
alently Cl2m) in Proposition 14.1.19. Recall that VC = P ⊕ P , where V = R2m. We already have the
complexification 〈−,−〉 on Λ∗(VC) of the real inner product 〈−,−〉 on Λ∗(V ) (alluded to in the foregoing
example). This is an inner product on Λ∗(VC) = Λ∗(V ) ⊗ C which is complex linear in both slots. This
inner-product satisfies:

〈
φ⊗ λ, ψ ⊗ µ

〉
=
〈
φ⊗ λ, ψ ⊗ µ

〉
= 〈φ, ψ〉λµ = 〈φ, ψ〉λµ = 〈φ⊗ λ, ψ ⊗ µ〉 for all φ, ψ ∈ Λ∗(V )

that is,

〈φ, ψ〉 =
〈
φ, ψ

〉
for all φ, ψ ∈ Λ∗(VC) = Λ∗(V ) ⊗ C (43)

We have the complex conjugation P → P , which maps Λ∗P → Λ∗P inside Λ∗(VC). So define a hermitian inner
product on S2m = Λ∗P by:

(φ, ψ) :=
〈
φ, ψ

〉
for φ, ψ ∈ Λ∗P

For e ∈ V ⊂ VC, we have e = e. Let φ = w1 ∧ w2... ∧ wk ∈ Λ∗P , with wi ∈ P . Then, by Exercise 14.1.6:

eyφ = ey(w1 ∧ w2... ∧ wk) =
∑

i

(−1)i 〈e, wi〉 (w1 ∧ w2... ∧ ŵi ∧ .. ∧ wk)

=
∑

i

(−1)i〈e, wi〉 (w1 ∧ w2.. ∧ ŵi ∧ ... ∧ wk) = eyφ

using e = e and the equation (43) above. Now, using the definition of the Clifford action in Proposition 14.1.19
and (i) of Lemma 14.1.4, we compute:

(e.ψ, φ) =
√

2
〈
e ∧ ψ, φ

〉
=

√
2
〈
ψ, eyφ

〉
=

√
2
〈
ψ, eyφ

〉
= −(ψ, e.φ)

which shows that Clifford multiplication by elements of V is skew- adjoint with respect to this hermitian inner
product (−,−), and hence the module S2m is self-adjoint over Cl2m.

Exercise 14.3.4. Are the irreducible modules S±
2m−1 self- adjoint as Clifford modules over Cl2m−1 ?

Here is an important property of self-adjoint Clifford modules.

Proposition 14.3.5. Let W be a self-adjoint R-module (resp. C- module) over Cln with respect to the
positive definite real (resp. positive definite hermitian) inner product. Then if we consider W as a module over
Spin(n) ⊂ Cln, the resulting representation

ρ : Spin(n) → GL(W )

is orthogonal (resp. unitary).

Proof: From (iii) of the Proposition 13.2.2, we have g ∈ Spin(n) implies deg g = 0 and g∗g = 1, so that by
self adjointness of W ,

(g.w1, g.w2) = (w1, g
∗gw2) = (w1, w2) for g ∈ Spin(n), wi ∈ W

which proves the proposition. 2

Corollary 14.3.6. The representation of Spin(n) on Λ∗(Rn) is a (special) orthogonal representation. The two
complex half-spin representations ∆±

2m of Spin(2m) are unitary representations.
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14.4. Decomposition formulae for Spin(2m) representations. We would now like to relate the left
Spin(2n) module Cl2m, the left Spin(2m) module Λ∗

C
(R2m), as well as the lifted representations of SO(2m)

modules Λ∗
C
(R2m) and its SO(2m)-submodules Λev

C
, Λo

C
, Λ±

C
etc., with the irreducible half-spin representations

∆±
2m constructed in the Proposition 14.2.1.

Proposition 14.4.1.

(i): Consider Cl2m as a left module over itself, by left multiplication. Then Cl2m decomposes into 2m

irreducible Cl2m-modules Vε where ε = (ε1, ε2, .., εm) with each εi = ±1. Each Vε is isomorphic to the
unique irreducible supermodule S2m as a Cl2m-module. Vε further decomposes into the two complex
subspaces V ±

ε via the chirality left action of τ2m, so that V ±
ε ' S±

2m.

(ii): Consider Cl2m as a Spin(2m) complex module by the restricted left Clifford multiplication action from
Cl2m. Then as a Spin(2m) module we have Cl2m = 2m∆+

ε ⊕ 2m∆−
ε , where ∆±

ε are isomorphic to the
distinct irreducible half-spin representations ∆±

2m respectively, as Spin(2m) modules.

(iii): The complex exterior algebra Λ∗
C
(R2m) considered as a Cl2m module as in Proposition 14.1.5 has a

decomposition into irreducibles analogous to (i) over Cl2m, and a decomposition analogous to (ii) above,
as a Spin(2m) module.

Proof: Consider the elements of Cl2m defined by:

αj := ie2j−1e2j j = 1, 2, ...,m

Then it easily follows that:

(a) αjαk = αkαj for all 1 ≤ k, j ≤ m

(b) α2
j = 1 for all 1 ≤ j ≤ m

Now consider the right-multiplication action of αj on Cl2m. By (a) and (b) above, Cl2m breaks up into
simultaneous eigenspaces Vε, where αj acts by εj on Vε, and εj = +1 or −1. Since right and left multiplication
commute, each Vε is a left Cl2m-submodule of Cl2m under left action. Noting that

e2j−1αj = ie2j−1e2j−1e2j = −ie2j−1e2je2j−1 = −α2je2j−1

it follows that right multiplication by e2j−1 will map Vε isomorphically to Vε′ as a Cl2m-module where ε′k = εk
for k 6= j and ε′j = −εj . Thus all the Vε are isomorphic to V(+1,+1,..,+1) as Cl2m-modules. Thus dimC Vε =
1

2m dimC Cl2m = 2m. It follows for reasons of dimension that each Vε is irreducible and Vε ' S2m as a left
Cl2m-module.

Thus Vε = V +
ε ⊕ V −

ε , where V ±
ε are the (±1)-eigenspaces of left multiplication by chirality τ2m. Clearly

V ±
ε ' S±

2m as Cl02m- modules.

Now (ii) is clear by setting ∆±
ε = V ±

ε with Spin(2m) action being restriction of Cl02m action and the
Proposition 14.2.1.

(iii) follows by noting that Λ∗
C
(R2m) = Cl2m.1 where 1 ∈ Λ0

C
(R2m). The proposition follows. 2

Definition 14.4.2 (Some Cl2m-bimodules). We note that Cl2m has both a left Cl2m-module structure by
left multiplication, and a right Cl2m-module structure by right multiplication, which can be thought of as
a left module structure by x.z := zx∗. Hence Cl2m may be thought of as a Cl2m ⊗ Cl2m left-module, viz.
(x⊗ y) ◦ z := x.z.y∗. Such a thing is called a Cl2m-bimodule.

Now we recall the algebra isomorphism:

Cl2m → homC(S2m, S2m)

from Proposition 14.1.19. On the right side, we can again produce two Cl2m-module structures. Namely
(x.T )(w) := xT (w) for x ∈ Cl2m and w ∈ S2m, and also (x ◦T )(w) = T (x∗w) for x ∈ Cl2m and w ∈ S2m. This
is again a Cl2m bimodule structure, or left Cl2m ⊗ Cl2m-module structure given by (x⊗ y) ◦ T = xT (y∗−).
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We now have the following proposition:

Proposition 14.4.3. The isomorphism Cl2m ' homC(S2m, S2m) is an isomorphism of Cl2m ⊗ Cl2m modules
(i.e. Cl2m-bimodules). In particular, by restricting to the diagonal subalgebra Cl2m ⊂ Cl2m ⊗ Cl2m, we have
that the adjoint action of Cl2m on itself is the same as the adjoint action of Cl2m on homC(S2m ⊗ S2m) by
x.T := x.T.(x∗−).

Proof: We note that Cl2m = C(2m) as an algebra, and so Cl2m ⊗ Cl2m = C(2m) ⊗ C(2m) = C(22m). But
C(22m) is precisely Cl4m. Thus a Cl2m ⊗ Cl2m left-module structure (or Cl2m-bimodule structure) is precisely
a left Cl4m-module structure. Since dimC Cl2m = 22m = dimC(S2m, S2m), and both of these Cl4m modules
are non-trivial, it follows that both modules are isomorphic as Cl4m-modules to the unique irreducible Cl4m-
module S4m. That is, they are isomorphic as Cl2m ⊗ Cl2m-modules, proving the first assertion. The second
assertion clearly follows from the first. 2

Now we can consider the lifted modules from SO(2m). That is, let

ρ : Spin(2m) → SO(2m)

be the 2-covering defined in the Proposition 13.2.2. Then the modules Λ∗
C
(R2m) is a natural SO(2m) module

by the action which is defined on decomposables in Λk by :

g.(v1 ∧ v2 ∧ ... ∧ vk) = (gv1 ∧ gv2... ∧ gvk)
Clearly this action preserves Λev

C
and Λo

C
. Also it is easily checked that this action preserves the volume element

e1 ∧ e2 ∧ ... ∧ en, as well as the positive definite inner product 〈−,−〉 on Λ∗
C
(R2m), so it commutes with the

Hodge-star operator ∗. Hence Λ±
C

are also SO(2m) submodules of Λ∗
C
(R2m). Thus for W being any of these

SO(2m)-modules, the composite map:

Spin(2m)
ρ→ SO(2m) → homC(W,W )

makes W into a “lifted” Spin(2m)-module.

Proposition 14.4.4 (Decomposition of lifted Spin(2m)-modules). We have the following identities:

(i): The lifted Spin(2m) module Λ∗
C
(R2m) is isomorphic to Cl2m (with adjoint action of Spin(2m)) as

a Spin(2m)-module. It is isomorphic to ∆2m ⊗ ∆2m (where Spin(2m) acts by tensor product action
(x.(v ⊗ w)) := xv ⊗ xw). That is, the lifted module Λ∗

C
(R2m) has a “square root” ∆2m.

(ii): The isomorphism in (i) above maps the Spin(2m)-submodule Λ+
C

(resp. Λ−
C

) of the lifted module

Λ∗
C
(R2m) isomorphically to the Spin(2m)-submodule ∆+

2m ⊗ ∆2m (resp. ∆−
2m ⊗ ∆) of ∆2m ⊗ ∆2m.

(iii): The isomorphism of (i) above maps the lifted Spin(2m)-submodule Λev
C

of Λ∗
C
(R2m) isomorphically to

the submodule ((−1)m∆+
2m⊗∆+

2m)⊕((−1)m∆−
2m⊗∆−

2m) of ∆2m⊗∆2m. Similarly, it maps the submodule
Λo

C
isomorphically to ((−1)m∆+

2m ⊗ ∆−
2m) ⊕ ((−1)m∆−

2m ⊗ ∆+
2m) of ∆2m ⊗ ∆2m.

Proof: We note that for the C-basis element ei1 ∧ ei2 ... ∧ eik of Λ∗
C
(R2m), the lifted action of x ∈ Spin(2m) is

given by:
x.(ei1 ∧ ei2 ... ∧ eik) := ρ(x)ei1 ∧ ρ(x)ei2 ∧ ... ∧ ρ(x)eik = xei1x

∗ ∧ xei2x∗... ∧ xeikx∗

Now, under the C-vector space isomorphism of “quantisation” (see (ii) of Proposition 14.1.7) identifying
Λ∗

C
(R2m) with Cl2m, the element on the right goes to

xei1x
∗xei2x

∗...xeikx
∗ = x(ei1ei2 ....eik)x∗

which is precisely the adjoint action of Cl2m on itself. Hence the lifted Spin(2m) module Λ∗
C
(R2m) is isomorphic

to Cl2m with adjoint Spin(2m) action.

We have seen in the second assertion of the Proposition 14.4.3 above that the Cl2m-module Cl2m with adjoint
action is isomorphic to the Cl2m-module homC(S2m, S2m) (also with adjoint action of Cl2m.) Restricting both
modules to Spin(2m) shows that Cl2m with adjoint action is isomorphic to homC(∆2m,∆2m) = ∆2m ⊗ ∆∗

2m
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as a Spin(2m) module. We can identify the contragredient module ∆∗
2m with the right action by x∗ (= x−1)

with the left-module ∆2m with left action by x. This proves (i).

We know that the chirality element τ2m commutes with all elements in Cl02m, and hence τ2m(xyx∗) =
x(τ2my)x

∗ for x ∈ Cl02m, and in particular x ∈ Spin(2m). Also τ2
2m = 1 implies that the splitting of Cl2m as

a lifted Spin(2m) module into (±1)-eigenspaces Cl±2m makes Cl±2m into Spin(2m)-submodules. So we need to
know the (±1)-eigenspaces of ∆2m ⊗ ∆2m under left multiplication by τ2m. By the Proposition 14.4.3, this is
just the action τ2m(x⊗ y) = τ2mx⊗ y. Thus the splitting is ∆±

2m ⊗ ∆2m. So Cl±2m = ∆±
2m ⊗ ∆2m. Using the

isomorphism of Λ∗
C
(R2m) with Cl2m, we get (ii).

For (iii), note that the conjugation action of ω2m satisfies

ω2meiω
∗
2m = −eiω2mω

∗
2m = −(−1)2mei = −ei

which shows that ρ(ω2m) acts as +1 on eI with I of even cardinality and (−1) on I of odd cardinality. Under
the identification of Λ∗

C
(R2m) with Cl2m by (i), we find that Λev

C
is the submodule corresponding to (+1)-

eigenspace of ρ(ω2m), and Λo
C

the (−1)- eigenspace of ρ(ω2m). So it remains to identify, in view of (i), the
±1-eigenspaces of the operator ω2m ⊗ ω2m on ∆2m ⊗ ∆2m. Note that since ω2m commutes with Cl02m, it
commutes with all of Spin(2m), and so these ±1-eigenspaces are Spin(2m)- submodules of Λ∗

C
(R2m).

Since imω2m = τ2m, we have ω2m ⊗ ω2m = (−1)mτ2m ⊗ τ2m. Using the notation (−1)m∆+
2m := ∆+

2m for
m even, and ∆−

2m for m odd, (and a similar notation for (−1)m∆−
2m) we find that the +1-eigenspace (resp.

(-1)-eigenspace) of ω2m⊗ω2m is clearly ((−1)m∆+
2m⊗∆+

2m)⊕((−1)m∆−
2m⊗∆−

2m) (resp. ((−1)m∆+
2m⊗∆−

2m)⊕
((−1)m∆−

2m ⊗ ∆+
2m)). This proves (iii) and the proposition follows. 2

There is a fact about the “derived” adjoint action we shall need later on:

Proposition 14.4.5. The vector subspace spanned by {eiej : i < j} inside the real Clifford algebra CL(V ) is
denoted by C2(V ) (Recalling the quantisation map c of (ii) in Proposition 14.1.7, C2(V ) = c(Λ2(V )). Then

(i): C2(V ) is a Lie algebra under the commutator [x, y] = xy − yx in Cl(V ).

(ii): The map τ : C2(V ) → so(V ) defined by τ(a)v = [a, v] is an isomorphism of Lie algebras.

(iii): Define the exponential map of C(V ) by:

expC : C(V ) → C(V )

x 7→ 1 + x+
x2

2 !
+ ...+

xk

k !
+ ...

Then expC(C2(V )) = Spin(V ).

Proof: By directly using e2i = −1 and eiej = −ejei we compute:

[eiej , ekel] = 0 if i < j, k < l, {i, j} ∩ {k, l} = φ or (i, j) = (k, l)

= −2eiel if i < j = k < l

= 2ejel if i = k, j 6= l

which shows that C2(V ) is a Lie algebra and (i) follows.

Note also that

[eiej , ek] = −2ei for i < j = k

= 2ej for k = i < j

= 0 for k 6= i, k 6= j

This clearly shows that τ(eiej) for i < j preserves V = spanR{ei}, and hence maps to gl(V ). Since τ(eiej) =
2(Eji − Eij), (Eij being the matrix with 1 in the (ij)- spot and zeros elsewhere), and since the combinations
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the set {(Eji −Eij) : i < j} constitutes a basis of so(V ), it follows that τ is a vector space isomorphism. That
it is a Lie algebra isomorphism follows easily from the fact that

[τ(x), τ(y)]v = τ(x)([y, v]) − τ(y)([x, v]) = [x, [y, v]] − [y, [x, v]] == −[v, [x, y]] = τ([x, y])v

by the Jacobi identity. This proves (ii).

In the course of proving (v) of Proposition 13.2.2, we found that expC(teiej) = cos t.1+sin t(eiej) for i 6= j,
and consequently Lie(Spin(V )) was precisely C2(V ). Now the exponential of C2(V ) is going to be a connected

Lie- subgroup G ⊂ Cl×, and of dimension n(n−1)
2 . Also its Lie algebra is C2(V ). Since a connected compact

Lie group is precisely the exponential of its Lie algebra, it follows that G = expC V = Spin(V ), and (iii) follows.

There is another crucial proposition which allows us to recover any Cl2m-supermodule as a tensor product
with the irreducible Cl2m supermodule S2m.

Proposition 14.4.6. Let W be any Cl2m-module with chirality grading W±. Then there exists a C-vector
space V such that W ' S2m ⊗C V as a Cl2m-supermodule. This V is uniquely determined by W , and is called
the twisting space for the supermodule W .

Proof: In the statement, we are treating V as an ungraded C-vector space, and equipping S2m ⊗C V with the
obvious left Cl2m-module structure defined by. x.(s ⊗ v) = xs ⊗ v. The supermodule structure on S2m ⊗C V
is defined by (S2m ⊗C V )0 := S+

2m ⊗ V and (S2m ⊗C V )1 := S−
2m ⊗ V (chirality grading). That this is a left

Cl2m-supermodule structure on S2m ⊗C V follows from the corresponding fact about S2m.

Consider the functor F from the category C of finite dimensional Cl2m-supermodules to itself, defined by
W 7→ S2m ⊗C homCl2m

(S2m,W ). Here homCl2m
(S2m,W ) is the ungraded C-vector space of Cl2m-module

morphisms of S2m → W , and the tensor product S2m ⊗C homCl2m
(S2m,W ) is made into a Cl2m-supermodule

as in the last paragraph. There is the natural transformation of functors φ : F → IdC defined by

φW : F(W ) = S2m ⊗C hom(S2m,W ) → W

s⊗ T 7→ T (s)

Note that both functors F and IdC are additive with respect to direct sums in C. Also, on an irreducible Cl2m-
supermodule W , we have homCl2m

(S2m,W ) ' CφW , where φW : S2m → W is the unique Cl2m-supermodule
isomorphism between S2m → W , since Cl2m has a unique irreducible module S2m, and the only Cl2m-module
maps between these finite dimensional irreducibles are {λφW }λ∈C (these statements follow from the Schur
lemma). Thus the natural transformation of functors F → IdC is a natural equivalence on the full subcategory
of irreducibles.

By Lemma 14.1.11 asserting complete reducibility of all Cl2m-modules, and the additivity of both functors
F and IdC , it follows that φW is a natural equivalence of functors on all of C. Also, the isomorphism φW :
F(W ) → W is explicitly given by s⊗ T 7→ T (w), by the definition of φW . 2

Example 14.4.7. For instance, we saw in Proposition 14.4.3 that as a left Cl2m-module, Cl2m ' homC(S2m, S2m).
This last module may be rewritten as S2m⊗CS

∗
2m, so that the twisting space in this case is S∗

2m. By the Proposi-
tion 14.4.6 above, there follows the curious fact that homCl2m

(S2m,Cl2m) ' S∗
2m = homC(S2m,C) as a C-vector

space.
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14.5. Supertraces. A useful book-keeping device, which walks the bridge between an index and a trace, is
the supertrace.

Definition 14.5.1. Let W be a Cl2m-module. Recall the chirality element τ2m ∈ Cl2m defined by imω2m.

Give W the Z2-grading W± = (±1)- eigenspace of τ2m, which is the same grading as in its supermodule
structure over Cl2m. We have seen that Cl02mW

± ⊂ W± since τ2m(av) = aτ2m(v) for all v ∈ W,a ∈ Cl02m.
Similarly, Cl12mW

± ⊂ W∓, since τ2m(av) = −aτ2mv for all v ∈ W,a ∈ Cl12m. For a ∈ Cl2m, consider the
endomorphism a.(−) of W , and define the supertrace

strW (a) = trW (τ2ma) = trW+a− trW−a if a ∈ Cl02m

= 0 if a ∈ Cl12m

The formulas on the right for homogeneous elements in Cl02m or Cl12m follow from the fact that for a ∈ Cl+2m,
τ2ma acts as a : W+ → W+, and as (−a) : W− → W−, whereas for a ∈ Cl−2m, τ2ma acts as (−a) : W+ → W−

and a : W− → W+, and is “off-diagonal”.

Note that for any Cl2m-module W , the supertrace strW gives a linear functional on Cl2m.

The following lemma characterises all supertraces on Cl2m. We define T : Λ∗
C
(R2m) → C be the projection

into the top degree forms (as a multiple of ω2m). Also recall the symbol map σ : Cl2m → Λ∗
C
(R2m)

Lemma 14.5.2. Let W be any Cl2m-module. If ψ : Cl2m → C is any linear functional which vanishes on all
supercommutators in Cl2m, then ψ = λ(strW ) for some λ ∈ C. Finally:

strW (a) = (−i)m(dimC W )(T ◦ σ(a))

Proof: Recall that the grading on the module W is given by the (±1)-eigenspaces of τm, viz. W±. Since τ2m
commutes with Cl02m and anticommutes with Cl12m, it follows that this grading makes W a supermodule. The
supercommutator of a, b ∈ Cl2m was defined in Definition 13.1.7. Since strW is linear, it suffices to show that
strW vanishes on supercommutators of homogeneous elements. If a ∈ Cl02m (resp. b ∈ Cl12m), we can write it
as a block-matrix in the W+ ⊕W− decomposition as:

a =

(
a+ 0
0 a−

)
resp. b =

(
0 b−

b+ 0

)

Now if a ∈ Cl02m and b ∈ Cl12m, then the supercommutator [a, b]s ∈ Cl12m, and will have supertrace 0, by the
definitions above. Similarly for a ∈ Cl12m and b ∈ Cl02m. So assume both a, b ∈ Cl02m, or both a, b ∈ Cl12m.
Then, in the first case, [a, b]s = ab− ba, which has the block matrix expression:

[a, b]s =

(
[a+, b+] 0

0 [a−, b−]

)

which implies strW [a, b]s = trW+([a+, b+]) − trW−([a−, b−]) = 0. In the second case, when both a, b ∈ Cl12m,
then [a, b]s = ab+ ba, which has the matrix expression:

[a, b]s =

(
a−b+ + b−a+ 0

0 a+b− + b+a−

)

so that:

strW [a, b]s = trW+(a−b+ + b−a+) − trW−(a+b− + b+a−)

= trW+(a−b+) − trW−(b+a−) + trW+(b−a+) − trW−(a+b−) = 0

noting that both W+ and W− are isomorphic as C-vector spaces. (Left action by any ei interchanges W+ and
W−.)

Thus
strW [a, b]s ≡ 0 for all a, b ∈ Cl2m
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Define Ck :=
∑k
i=0 c(Λ

k
C
(R2m)). That is, Ck is the subspace of Cl2m spanned by all basis elements eI with

|I| ≤ k. We now claim that C2m−1 ⊂ [Cl2m,Cl2m]s. For if eI is any basis element with |I| ≤ 2m − 1, then
there exists a j such that j 6∈ I. Letting |I| = k, we compute:

[ej , ejeI ]s = e2jeI − (−1)1.(k+1)ejeIej = −eI − (−1)2k+1eIe
2
j = −2eI

which shows that every eI with |I| ≤ 2m−1 is a supercommutator, and the claim follows. Hence the supertrace
satisfies str (C2m−1) ≡ 0. Since the quotient Cl2m/C2m−1 ' C is one dimensional, it follows that strW descends
to this 1-dimensional quotient.

Since strW τ2m = trW (τ2
2m) = dim W 6= 0, it follows that the supertrace strW gives an isomorphism of

Cl2m/C2m−1 → C. It also follows, since strW is not the zero map, that the dimension of Cl2m/[Cl2m,Cl2m]s
cannot be zero, and since it is ≤ dimC Cl2m/C2m−1 = 1, must be 1. Thus [Cl2m,Cl2m] = C2m−1.

The second assertion of the statement is now clear, since any linear functional annihilating all supercommu-
tators descends to the 1-dimensional space Cl2m/[Cl2m,Cl2m]s.

Now note that T ◦ σ : Cl2m → C is a linear functional on Cl2m, and annihilates C2m−1, since ker T =∑
i≤2m−1 Λi = σ(C2m−1). Hence it annihilates [Cl2m,Cl2m]s, and by the last para T ◦ σ and strW are scalar

multiples of each other on Cl2m. Indeed, by evaluating both on τ2m, we saw that

strW (τ2m) = trW (τ2
2m) = dim W

whereas T ◦ σ(τ2m) = im. This implies that strW = (dim W )(−i)m(T ◦ σ). The lemma follows. 2

Corollary 14.5.3. The proof above showed that C2m−1 = [Cl2m,Cl2m]s.

15. Clifford Bundles and Dirac operators

From now on, let M be a compact oriented Riemannian manifold of dimension 2m. PSO → M will denote
its oriented orthonormal frame bundle, with structure group SO(2m).

15.1. Clifford bundles, Clifford modules and the Spinor bundle.

Definition 15.1.1. The Clifford bundle of M is the complex vector bundle π : Cl(M) → M whose fibre at
x ∈ M is the complex Clifford algebra Cl(T ∗

xM), where T ∗
x (M) is given the real positive definite inner product

〈−,−〉x from the Riemannian metric induced on the cotangent bundle. It can be viewed as the associated
vector bundle:

PSO ×SO(2m) Cl(R2m)

where SO(2m) has the obvious action on Cl(R2m∗) (defined by e∗
i 7→ f∗

i := g.e∗
i for g ∈ SO(2m), where e∗

i is
an orthonormal basis for R2m∗).

Since the vector bundle Λ∗
C
(T ∗M) → M is the associated bundle:

PSO ×SO(2m) Λ∗(R2m∗) → M

and the symbol map σ and quantisation map c are SO(2m)- equivariant, we get global vector bundle maps:

σ : Cl(M) → Λ∗
C(T ∗M)

called the symbol map of M , and

c : Λ∗
C(T ∗M) → Cl(M)

called the quantisation map of M .
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Remark 15.1.2. We note that the action of SO(2n) on Cl2m is the descended action from the Spin(2m)
action on Cl2m by conjugation. Hence the fibre of Cl(M) is the module ∆2m ⊗ ∆2m, by (i) of Proposition
14.4.4.

In the light of the Proposition 14.4.6, it is desirable to have a bundle ∆ → M on M with the fibre ∆2m (or
what is the same thing, S2m), so that any bundle of Clifford modules on M (such as Λ∗

C
, Λ±

C
, Λev

C
, Λo

C
) can be

written as a tensor product ∆ ⊗C V , where V is a twisting bundle.

Unfortunately, this cannot be done unless we assume a Spin(2m) structure on M , because the representation
∆2m of Spin(2m) (or for that matter the representation S2m of Cl2m) does not descend to a representation of
SO(2m). Hence there is no way to start with the principal bundle PSO and get an associated bundle with fibre
∆2m or S2m.

Definition 15.1.3. Let M be a Riemannian oriented manifold of dimension 2m, and assume it has a spin
structure. Let Pspin → M denote the principal Spin(2m)-bundle over M , (see Definition 13.3.1). Then consider
the associated complex vector bundle of rank 2m:

Pspin ×Spin(2m) ∆2m → M

where ∆2m = ∆+
2m ⊕ ∆−

2m is the irreducible Cl2m supermodule S2m with restricted action of Spin(2m), and
∆±

2m are the two irreducible half-spin representations (see Proposition 14.2.1). This is called the spin bundle
over M , and denoted S(M) → M . It is the direct sum of the half spin bundles S±(M) → M , which are
analogously defined as the associated rank 2m−1 complex vector bundles:

Pspin ×Spin(2m) ∆±
2m → M

respectively.

Proposition 15.1.4. We have the following facts about the spin bundles:

(i): There exists a bundle map c : Cl(M) ⊗C S(M) → S(M) called Clifford multiplication whose restriction
to fibres is the natural map Cl(T ∗Mx) ⊗ S2m,x → S2m,x defining the Cl(T ∗Mx)-module structure on
S2m,x. For notational simplicity, we denote c(a, v) as a.v. Finally Cl0(M).S±(M) 7→ S±(M) and
Cl1(M).S±(M) 7→ S∓(M).

(ii): The spin bundle S(M) → M is a hermitian vector bundle with a natural hermitian metric (−,−). The
direct sum decomposition S(M) = S+(M) ⊕ S−(M) is orthogonal with respect to (−,−).

(iii): The Clifford action defined in (i) above is self-adjoint in the sense of Definition 14.3.1. In particular,
we have:

(αx.v, w) = −(v, α∗
xw) for αx ∈ T ∗

x (M), v, w ∈ S(M)x

Proof: First note that if we let Spin(2m) act by conjugation on Cl2m (call this representation τ), then
ρ(−1) = ρ(+1), and so τ = µ ◦ ρ where ρ : Spin(2m) → SO(2m) is the double covering homomorphism, and µ
is the representation of SO(2m) on Cl2m described in Definition 15.1.1. Thus

Pspin ×τ Cl2m = Pspin ×ρ SO(2m) ×µ Cl2m = PSO ×µ Cl2m = Cl(M)

Now, there is the map defining Clifford module action on S2m:

Cl2m ⊗C S2m → S2m

which is Spin(2m)-equivariant (since g(x⊗ v) = gxg∗ ⊗ gv 7→ gxg∗.gv = g.v). Hence there is a natural map of
vector bundles:

(Pspin ×τ Cl2m) ⊗ (Pspin ×Spin(2m) S2m) → Pspin ×Spin(2m) S2m

i.e. a bundle map Cl(M) ⊗ S(M) → S(M). It clearly restricts on fibres to what we claimed, by its definition.
Also the last statement of (i) follows since S2m is a Cl2m- supermodule. This proves (i).

For (ii), construct the metric on each fibre by taking the hermitian metric (−,−) constructed on S2m

in the Example 14.3.3. This makes the representation of Spin(2m) on S2m = ∆2m unitary, by Proposition
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14.3.5. Hence the associated bundle Pspin ×Spin(2m) S2m is a hermitian vector bundle. Also note that since

ω2m ∈ Spin(2m), we have ω2mv = i−mτ2mv = i−mv for v ∈ S+
2m, and ω2mw = i−mτ2mw = −i−mw for

w ∈ S−
2m. Thus, by the unitarity of Spin(2m) action on S2m, we have:

(v, w) = (ω2mv, ω2mw) = (i−mv,−i−mw) = −i−m(−i)−m(v, w) = −(v, w)

which implies (v, w) = 0 for v ∈ S+
2m and w ∈ S−

2m. Then (ii) follows, because the representation of Spin(2m)
on S2m is unitary.

(iii) is a direct consequence of the Example 14.3.3, which showed that S2m is a self-adjoint Cl2m module
with respect to (−,−). 2

Now we are ready to abstract all the facts proved above into a definition.

Definition 15.1.5. Let E → M be complex vector bundle over an oriented Riemannian manifold of dimension
2m, with a hermitian metric (−,−). Say that this bundle is a Clifford module over M if:

(i): There is a (−,−)-orthogonal decomposition E = E+ ⊕ E− into two complex sub-bundles.

(ii): There is a vector bundle Clifford multiplication or Clifford action map:

c : Cl(M) ⊗ E → E
such that for each point x, the restriction cx : Cl(T ∗

xM) ⊗ Ex → Ex gives Ex the structure of a Cl(T ∗
xM)

supermodule, with graded pieces E±
x . (In particular, the ranks of E+ and E− are equal, and E is a bundle

of even rank).

(iii): The action of the Clifford algebra Cl(T ∗
xM) on Ex is self-adjoint with respect to the hermitian inner

product (−,−) on Ex.

Example 15.1.6. Clearly, for M a spin manifold of dimension 2m, the spin bundle S(M) → M is a Clifford
module over M , by Proposition 15.1.4

Example 15.1.7. Let M be an oriented Riemannian manifold, not ncessarily spin. The complexified exterior
algebra bundle Λ∗

C
(T ∗)(M) → M is a Clifford module over M . For, we define the Clifford action fibre by fibre

as the action which extends the action:

T ∗
x (M) ⊗ Λ∗

C(T ∗M) → Λ∗
C(T ∗M)

α⊗ φ 7→ α ∧ φ− αyφ

That this extends to an action of Cl(T ∗
xM) is the content of Proposition 14.1.5. One makes the natural

hermitian extension of the Riemannian inner product 〈−,−〉 on the real exterior algebra Λ∗(T ∗M), setting
(φ⊗ λ, ψ ⊗ µ) = 〈φ, ψ〉λµ, and appeals to the last part of Proposition 14.1.5 to show that the Clifford action
is self-adjoint.

As expected, there are two possible gradings E± available on this bundle E = Λ∗
C
(T ∗M). There is the global

volume element ωM ∈ C∞(M,Cl(M)), given in a coordinate chart U of x by ωM,x := e1(x).e2(x)....e2m(x)
where {ei} is a local orthonormal frame for T ∗M on U (this definition is independent of coordinate charts,
indeed ωM corresponds to the Riemannian volume form on M under the symbol isomorphism). Similarly, there
is the global chirality element τM := imωM .

The first grading then is the even-odd grading, in which the graded pieces Λev
C

and Λo
C

come from the
pointwise action of conjugation by ωM,x ∈ Spin(2m) ⊂ Cl(M)x (see the proof of (iii) in Proposition 14.4.4.
Another example comes from taking the graded pieces Λ+

C
and Λ−

C
corresponding to the ±1 eigenspaces of

im+k(k−1)∗ (or pointwise left action by τM,x, if we identify Cl2m with Λ∗
C
).
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Example 15.1.8. The Clifford bundle of M , viz Cl(M) → M is a Clifford module, with Clifford action being
left multiplication.

Note also that the Clifford bundle Cl(M) has two possible Z2-gradings as a Clifford bundle (see Example
14.1.17, both of which equip the typical fibre Cl(M)x with the structure of a Cl(T ∗

x )-supermodule. The obvious
is the chirality Z2-grading Cl(M)± which corresponds under the symbol isomorphism to the decomposition
Λ±

C
fo the exterior algebra bundle (see previous Example). This grading coincides with the chirality coming

from left multiplication by τM . On the other hand, there is the parity Z2-grading Cl(M) = Cl0(M) ⊕ Cl1(M)
(corresponding to Λev

C
and Λo

C
under symbol isomorphism), which comes from conjugation by ωM .

Here is the reason for introducing the spin bundle S(M) → M

Proposition 15.1.9. Let M be an oriented spin manifold of dimension 2m, and let S(M) → M be the spin
bundle on it. Then, for any Clifford module W → M on M , there is a hermitian complex twisting vector bundle
V → M such that W ' S(M) ⊗C V. Note that this isomorphism is an isomorphism of Clifford modules on M ,
i.e. the graded structure and hermitian structure is also preserved.

Proof: Define the bundle V = homCl(M)(S(M),W) and appeal to Proposition 14.4.6. That the Clifford action
matches follows from that proposition, because the map of vector spaces:

φW : S2m ⊗C homCl2m
(S2m,W ) → W

s⊗ T 7→ T (s)

being an isomorphism of Cl2m-modules, is in particular Spin(2m) equivariant. Thus it globalises to a vector
bundle isomorphism φW .

Recall the hermitian metric (−,−)S on S2m, which was defined in Proposition 15.1.4. We just need to
put a bundle metric (−,−)V on V so that when the tensor product S(M) ⊗C V is equipped with the tensor
product hermitian metric (−,−)S ⊗ (−,−)V , the Clifford module isomorphism φW is an isometry with the
given hermitian metric (−,−)W on W.

We note that for a vector space V with any hermitian inner product (−,−)V on it, the tensor product
hermitian inner product on S2m ⊗ V , defined by:

(s⊗ S, t⊗ T )S2m⊗V := (s, t)S(S, T )V

automatically obeys self-adjointness with respect to Clifford action, because the Clifford action is self-adjoint
with respect to the natural metric (−,−)S on S2m, by the Example 14.3.3.

We note that if W is an irreducible Cl2m-module with a positive definite hermitian inner-product (−,−)W
with respect to which the Cl2m action is self-adjoint, then we claim that this self-adjointness property determines
(−,−)W uniquely upto a non-zero complex scalar. For if (−,−)′ is another hermitian inner-product with respect
to which the Cl2m action is self-adjoint, then we have a C-linear isomorphism A : W → W such that:

(w1, w2)
′ = (Aw1, w2)W for all w1, w2 ∈ W

Also for c ∈ Cl2m, we have

(cAw1, w2)W = (−1)deg c(Aw1, c
∗w2) = (−1)deg c(w1, c

∗w2)
′ = (cw1, w2)

′ = (A(cw1), w2)W

Thus A : W → W is a map of Cl2m-modules, and by irreducibility of W , must be a scalar (Schur Lemma),
and since A is an isomorphism, the scalar must be non-zero.

If W is irreducible, and φW : S2m → W is an isomorphism of Cl2m-modules, it follows that there is a scalar
αW 6= 0

αW (w1, w2)W = (φ−1
W (w1), φ

−1
W (w2))S for all w1, w2 ∈ W

or equivalently

(s, t)S = αW (φW (s), φW (t))W for all s, t ∈ S2m
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Note that αW gets determined by the equation:

trφ∗
WφW =

2m∑

i=1

(φW ei, φW ei)W = α−1
W

2m∑

i=1

(ei, ei)S = α−1
W 2m

where {ei} is an orthonormal basis of S2m with respect to (−,−)S .

Now let S = λφW and T = µφW ∈ V = homCl2m
(S2m,W ) = CφW . Define the hermitian inner product on

V given by:

(T, S)V := α−1
W λµ = 2−mtr(φ∗

WφW )λµ = 2−mtrS∗T

Then we have:

(s⊗ S, t⊗ T )S2m⊗V = (s, t)S(S, T )V = αW (φW (s), φW (t))Wα
−1
W λµ

= (λφW (s), µφW (t))W = (S(s), T (t))W

which shows that the isomorphism S2m ⊗ V → W given by s⊗ S → S(s) is an isometry.

For a general W , break it into irreducibles Wi, and note that V = homCl2m
(S2m,W ) = ⊕iVi, and equip each

summand Vi := homCl2m
(S2m,Wi) with the hermitian inner product above. To globalise to Clifford modules W

is obvious, since the inner product (T, S) = 2−mtrS∗T (the normalised Hilbert-Schmidt norm) is invariantly
defined, independent of frames.

2

Example 15.1.10. Let M be a spin manifold, with the spin bundle S(M) → M , and its half-spin sub-bundles
S±(M) → M . Then, as a direct consequence of the module identities of Proposition 14.4.4, and the fact that
the isomorphisms there are isomorphisms of Spin(2m)-modules (i.e. Spin(2m)-equivariant isomorphisms), there
are the following bundle identities of associated vector bundles, indeed, of Clifford modules:

(i): Cl(M) ' Λ∗
C
(T ∗M) ' S(M) ⊗ S(M).

(ii): Λ±
C

(M) ' S±(M) ⊗ S(M).

(iii): Λev
C

(M) ' (−1)mS+(M) ⊗ S+(M) ⊕ (−1)mS−(M) ⊗ S−(M) and
Λo

C
(M) ' (−1)mS+(M) ⊗ S−(M) ⊕ (−1)mS−(M) ⊗ S+(M).

Remark 15.1.11.

(i): Note that the identity (i) above says that the spin bundle S(M) is in some sense the “square-root”
bundle of the exterior algebra (or Clifford) bundle on M , if M is a spin manifold.

(ii): The chirality grading on S(M)⊗S(M) comes from left action of τM on the first factor, and predictably
leads to the grading Cl(M)± discussed in (ii) of Example 15.1.8. The other grading, which also restricts
fibrewise to a Cl(T ∗

xM)-supermodule structure corresponds to the parity or Cl0, Cl1(M) grading (coming
from conjugation by ωM , see Example 15.1.8 above), and has no simple relation to the chirality grading,
as is evidenced by the complicated formula in (iii) of Example 15.1.10 above.
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15.2. Clifford connections.

Definition 15.2.1 (Levi-Civita connection). If M is an oriented Riemannian manifold of dimension 2m, there
is an SO(2m)-connection on the principal SO(2m) bundle PSO → M . This means that:

(i): There is a so(2m)-valued 1-form [ωij ] ∈ Λ1(P )⊗so(2m) := C∞(Λ1(T ∗P )⊗so(2m)). This merely means
that [ωij ] is a 2m× 2m skew-symmetric matrix of 1-forms ωij on P .

(ii): If we think of PSO has having right SO(2m)-action, then the matrix of 1-forms ω := [ωij ] must satisfy:

R∗
gω = gωg−1 = (Adg)ω for all g ∈ SO(2m)

(iii): [Torsion-free condition] Let σ : U → PSO|U be a smooth local section of P over an open set U ⊂ M .
For x ∈ U , σ(x) is an orthonormal frame at x. So σ is a local orthonormal frame field over U , and
can be regarded as a (2m)-row vector of 1-forms σ = (σ1, .., σ2m), with σi,x(X) = Xi where Xi the i-th
component of X ∈ TxM in the frame σ(x). Then we require the following identity of 2-forms on U :

dσi +
∑

j

(σ∗ωij) ∧ σj = 0

for each smooth section σ : U → PSO|U over U . This connection is called the Levi-Civita connection on
PSO.

Definition 15.2.2 (Covariant differentiation in associated bundles). Let ρ : SO(2m) → GLC(V ) be a com-
plex representation of SO(2m) on a complex vector space V . Let V := P ×ρ V be the associated complex
vector bundle. For a connection on PSO → M as above, one gets a covariant differentiation operator for every
open set U ⊂ M :

∇ : C∞(U,V) → C∞(U, T ∗M ⊗ V)

which is a C-linear map satisfying the Leibnitz Rule:

∇(fs) = f∇ s+ df ⊗ s for all f ∈ C∞(U), s ∈ C∞(V)

To define the above covariant differentiation, it is enough to do it on trivialising neighbourhoods U ⊂ M for
PSO (and of course check that the definition is independent of trivialisations). If we fix a basis {ei} of the
vector space V , then for each smooth local section σ : U → PSO over a trivialising neighbourhood U ⊂ M for
PSO, we get a local framing ẽi := ρ(σ)ei of the vector bundle V|U . In view of the Leibnitz Rule, it is enough
to define ∇ẽj , and these are defined by:

∇ẽj :=
∑

i

ρ̇(σ∗ω)ij ⊗ ẽi

which is often abbreviated to ∇ẽj :=
∑
i ωij ⊗ ẽi, where ω := ρ̇(ω) is a gl(V )-valued 1-form on U , called the

Cartan connection 1-form. If X ∈ T ∗
x (M) is a (real) tangent vector at x, and s a section of V, we can define;

∇Xs := Xy∇s
In a local trivialising neighbourhood we have: ∇X ẽj =

∑
i ωij(X)ẽi. We can also define ∇X for X a real

tangent vector field on M .

We finally note that if ex 7→ gαβ(x)ex is a coordinate change on Uα∩Uβ for the principal bundle PSO, where
gαβ : Uα∩Uβ → SO(2m), then if ωα and ωβ are the matrix-valued Cartan 1- forms on Uα and Uβ respectively,
then there is the transformation formula:

ωα = Ad(gαβ)ω
β + dgαβ .g

−1
αβ

where the product in the second term on the right is a matrix product.
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Lemma 15.2.3. If the representation ρ : SO(2m) → V is unitary with respect to a hermitian inner product
(−,−)V on V , the associated bundle V := PSO×ρV is a hermitian vector bundle, with hermitian inner product
denoted (−,−). The covariant derivative on V associated to the Levi-Civita connection on PSO is a unitary
connection. It satisfies:

X(s, t) = (∇Xs, t) + (s,∇Xt) for s, t ∈ C∞(M,V), X ∈ C∞(M,TM)

Proof: As noted in Example 15.1.7 above, the hermitian inner product (−,−) on V is defined as follows. Let
[e, v], [e′, w] ∈ Vx, with e = e′g and g ∈ SO(2m). Then define:

([e, v], [e′, w]) = ([e, v], [e, ρ(g)w]) := (v, ρ(g)w)V

To check this is well-defined, we choose a different representative [eh−1, ρ(h)v] for [e, v], with h ∈ SO(2m),
then e′ = (eh−1).(hg), and so

([eh−1, ρ(h)v], [e′, w]) = (ρ(h)v, ρ(hg)w)V = (ρ(h)v, ρ(h)ρ(g)w)V = (v, ρ(g)w)V = ([e, v], [e′, w])

since ρ(h) is a unitary automorphism of V . This shows the definition of (−,−) is independent or representatives
in the first slot. Similarly for the second slot.

To check the second fact, note that if we start with the (−,−)V -orthonormal frame {ej} for V , and s → σ(x).1
a local section on on some trivialising neighbourhood U for PSO, then the frame {ẽj,x} = {[1, ρ(σ(x))ej ]} is
orthonormal in Vx for all x ∈ U (since σ(x) ∈ SO(2m) and hence ρ(σ(x)) ∈ U(V )). Hence, for a smooth vector
field X ∈ C∞(U), we have:

(∇X ẽi, ẽj) + (ẽi,∇X ẽj) =
∑

k

((ρ̇(ω(X))kiẽk, ẽj) + (ẽi, ρ̇(ω(X))kj ẽk))

=
∑

k

(
ρ̇(ω(X))kiδkj + ρ̇(ω(X))kjδki

)

= ρ̇(ω(X))ji + ρ̇(ω(X))ij = 0 = X(δij) = X(ẽi, ẽj)

since ρ̇(ω(X))ij is skew-hermitian (ρ̇ : so(2m) → u(V )). Now write a section s ∈ C∞(U,V) as s =
∑
i siẽi

and t ∈ C∞(U,V) as t =
∑
j tj ẽj for smooth functions si, tj ∈ C∞(U) and use Leibnitz’s Rule to conclude the

result on U ⊂ M , and hence globally. 2

Corollary 15.2.4. Let M be a compact oriented Riemannian manifold of dimension 2m. Then all of the
complex vector bundles associated to the principal bundle PSO, namely Λ∗

C
(T ∗M), Cl(M), Λev

C
, Λo

C
, Λ±

C
carry

a natural associated connection or covariant derivative, called the Levi-Civita connection. This Levi-Civita
connection is a unitary connection with respect to the hermitian inner product (−,−) introduced on them as
above (see Example 15.1.7), by the foregoing Lemma 15.2.3.

In the sequel, when we write ∇ or ∇X for any of these bundles without any further decorations, it is
understood to mean covariant derivative with respect to the Levi-Civita connection on them.

Remark 15.2.5. There are the following immediate observations:

(i): The volume form ω := dV ∈ Λn
C
(M) is covariantly constant, where ω = e1 ∧ e2 ∧ ... ∧ en in a local

orthonormal frame {ei} . This is because the Levi-Civita connection is compatible with the extended
hermitian metric on Λ∗

C
T ∗(M). Indeed, by definition of (−,−) on Λ∗

C
(T ∗
xM), we have (ω(x), ω(x))x ≡ 1

for all x ∈ M , and also ω = ω, since it is a real differential form. So, for any real tangent vector
field X ∈ C∞(M,TM), ∇Xω is also a real differential n-form (i.e. equal to its conjugate). Hence
∇Xω = f(x)ω for some smooth real valued function f on M . Unitarity of the Levi-Civita connection
gives:

0 = X(ω(x), ω(x))x = (∇Xω(x), ω(x))x + (ω(x),∇Xω(x))x = 2f(x)

which implies ∇Xω ≡ 0.
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(ii): We have noted following the Definition 15.1.1 the vector bundle isomorphisms given by the symbol and
quantisation maps between Cl(M) and Λ∗

C
(T ∗M), which arise out of the SO(2m)- equivariant symbol

and quantisation maps of Cl2m and Λ∗
C
(R2m). Since this last map is an isometry between the hermitian

inner products 〈−,−〉, on both sides, it follows that the quantisation and symbol maps of bundles are
bundle isometries with respect to (−,−). The proof of (i) above can then be repeated verbatim for
Cl(M), to show that ∇X(ωM ) ≡ 0 and ∇X(τM ) ≡ 0, where ωM is the global volume element in Cl(M)
and τM the global chirality element as defined in Example 15.1.7.

(iii): From the fact that the derived representation

ρ̇ : so(2m) → EndC(ΛkC(Rm)

is a derivation, and satisfies:

ρ̇(X)(v1 ∧ v2 ∧ ... ∧ vk) =
∑

i

(vi1 .... ∧ ρ̇(X)vi ∧ .. ∧ vk)

one immediately obtains that for X ∈ Tx(M):

∇X(ω1 ∧ .... ∧ ωk) =
∑

i

(ω1 ∧ ... ∧ (∇Xωi).. ∧ ωk)

Analogously, for the Clifford bundle Cl(M), we have the derivation formula:

∇X(ω1...ωk) =
∑

i

ω1...(∇Xωi)...ωk)

Definition 15.2.6 (Clifford connections). Let E → M be a Clifford module over M , in the sense of Definition
15.1.5. We say that a connection (i.e. covariant differentiation) ∇E on E is a Clifford connection if:

(i): (Metric compatibility) It is a unitary connection with respect to the given hermitian inner product
(−,−) on E , and

(ii): (Clifford compatibility) For all smooth sections c of Cl(M) and s of E , we have:

∇E
X(c.s) = (∇Xc).s+ c.∇E

Xs

and another way of saying it is that the commutator of the covariant derivative and Clifford multiplication
operators:

[∇E
X , c.(−)] = (∇Xc).(−)

where the right hand side denotes Clifford action by the (Levi-Civita) covariant derivative ∇Xc.

Remark 15.2.7. Note that a Clifford connection as above on E will preserve E±, if E± are the (±1)-eigenspaces
from left action by the global chirality τM ∈ C∞(M,Cl(M)). For if s ∈ E is a smooth section, then by (ii) in
the above definition:

∇E
X(τM .s) = (∇XτM .s) + τM .(∇E)s = τM .(∇Es)

since ∇XτM ≡ 0 by (ii) of Remark 15.2.5 above. Thus covariant differentiation ∇E
X commutes with left Clifford

action by τM , and thus maps the (±1)-eigenspaces E± of τM . In particular, it restricts to connections on E±,
and these connections are also Clifford compatible.

Example 15.2.8. Regarding the bundle Cl(M) → M as a Clifford module via left multiplication (with either
the chirality grading Cl±, or the parity grading Cl0,Cl1), the Levi-Civita connection defined in Corollary
15.2.3 above is a Clifford connection. The property (i) is metric compatible, as remarked there. The Clifford
compatibility comes from the last statement in (iii) of Remark 15.2.5 above. Similarly, the Levi-Civita conection
on all of the other Clifford modules discussed in Corollary 15.2.3 is a Clifford connection.
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Example 15.2.9 (The Spin-connection on S(M)). We recall the spin bundle S(M), and the half-spin bundles
S±, which were introduced in Definition 15.1.3. These are not bundles associated to the principal bundle PSO,
as we noted earlier. To put a connection on them, we need a connection on the principal Spin(2m)-bundle
Pspin. So assume in this example that M is a compact Riemannian manifold of dimension 2m with a spin
structure, and let Pspin → M be its principal spin bundle.

In (ii) and (iii) of Proposition 14.4.5, we noted that Lie(Spin(2m)) = C2(V ) = spanR{eiej : i < j}. Also we
saw that the map τ : C2(V ) → so(2m) satisfies:

τ(eiej) = 2(Eji − Eij)

Indeed, this τ is precisely the derivative ρ̇ of the map ρ : Spin(2m) → SO(2m), because

ρ̇(eiej) =
d

dt |t=0
(ρ(expC(teiej)) =

d

dt |t=0
(ρ(cos t.1 + sin teiej))

=
d

dt t=0
Rij2t = 2(Eji − Eij)

where Rijθ is the counter-clockwise rotation by θ in the 2-plane Rei ⊕ Rej , by using the last paragraph in the
proof of (iv) Proposition 13.2.2.

Since ρ ◦Rg = Rρ(g) ◦ ρ : Pspin → PSO, we have:

ρ∗ ◦Rg∗ = Rρ(g)∗ ◦ ρ∗ : TPspin → TPSO (44)

Denote the map x 7→ gxg−1 on a Lie group G as AdGg, and its derivative at 1 ∈ G simply as Ad g : g → g

where g := Lie(G) = T1(G). Now, recalling the homomorphism ρ : Spin(2m) → SO(2m) (also denoted by the
same symbol ρ, in keeping with the definition of a spin structure), we see that the homomorphism:

ρ ◦ AdSpin(2m)g : Spin(2m) → SO(2m)

is the same as the homomorphism:

AdSOρ(g) ◦ ρ : Spin(2m) → SO(2m)

for all g ∈ Spin(2m). By equating the derivative at the identity 1 ∈ Spin(2m) of both these maps and noting
that ρ̇ = Dρ(1) = τ , we have:

τ ◦ Ad g = Ad (ρ(g)) ◦ τ (45)

Now define a C2(V )-valued 1-form on Pspin by:

ω̃ := τ−1(ρ∗ω)

where ω ∈ Λ1(P, so(2m)) is the Levi-Civita connection 1-form on PSO, and ρ : Pspin → PSO is the double
covering map. We need to check ω̃ satisfies the correct translation property. Using equations (44) and (45),
we have:

R∗
gω̃(v) = ω̃(Rg∗v) = τ−1 [(ρ∗ω)(Rg∗v)] = τ−1[ω(ρ∗Rg∗v)]

= τ−1[ω(Rρ(g)∗ρ∗v)] = τ−1
[
(R∗

ρ(g)ω)(ρ∗v)
]

= τ−1Adρ(g)[ω(ρ∗v)] = Ad(g)τ−1[ω(ρ∗v)]

= Ad(g)[(τ−1ρ∗ω)(v)] = Ad(g)ω̃(v)

This connection form on Pspin is called the spin connection.

If σ̃ : U → Pspin|U is a local section of Pspin on a coordinate chart U ⊂ M , then σ := ρ ◦ σ̃ : U → PSO|U
will be a local section for PSO. Then

σ̃∗ω̃ = τ−1σ̃∗ρ∗ω = τ−1σ∗ω
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Let σ∗ω be given by the Cartan connection matrix of 1-forms (see Definition 15.2.2) [ωij ] on U , so we can
write σ∗ω :=

∑
i<j ωijEij , where ωij are 1-forms on U . Since τ−1(Eij) = 1

2eiej , it follows that the Cartan

connection 1-form on U for the spin connection ω̃ is given on U by:

ωsp = σ̃∗ω̃ =
1

2

∑

i<j

ωijeiej (46)

as an element of C∞(U,C2(V )) where we are making the identification C2(V ) = Lie(Spin(2m)).

Now that we have a Spin(2m)-connection on Pspin, all associated vector bundles get a connection by the
same procedure as before. That is, if µ : Spin(2m) → GL(V ) is any representation, and V = Pspin ×µ V is
the associated bundle, then giving the Cartan 1-forms on a trivialising coordinate neighbourhood U ⊂ M for
Pspin by

ωV
ij := µ̇(ωsp)ij

will define covariant differentiation ∇V on V. Again if the representation is unitary, the bundle will be hermitian,
and µ̇ : C2(V ) → u(n) implies that the connection ∇V will be compatible with this hermitian metric, i.e. will
be a unitary connection.

Letting V := ∆2m = S2m, the complex spin-representation defined in Proposition 14.2.1, we have the
spin-bundle S(M) defined in Definition 15.1.3 as the associated bundle P ×µ ∆2m. Here we are denoting this
representation by µ, and since we saw in (ii) and (iii) of Proposition 15.1.4 that the representation of Cl2m
was self-adjoint with respect to the hermitian inner-product of ∆2m, and that this representation is unitary,
viz. µ : Spin(2m) → U(∆2m). Since the connection form µ̇(ω̃) takes values in u(∆2m), the spin connection on
S(M) is a unitary connection, and metric compatibility follows by definition.

To check Clifford compatibility, we need compute the commutator of the Cartan coefficients on an open
set U , i.e. the skew-hermitian matrix [ωS ] = [µ̇(ωsp)ij ] and Clifford multiplication by c ∈ Cl(M)U . Note
that µ : Spin(2m) → U(∆2m) is the restriction of the Clifford action µ : Cl2M → EndC(∆2m). Also with the
identification of Lie(Spin(2m)) = C2(V ), it follows that:

[µ̇(x), µ(c)] =

[
d(µ(expC tx)

dt |t=0
, µ(c)

]
=

d

dt |t=0
(µ[expC tx, c]) = µ

[
d expC tx

dt |t=0
, c

]

= µ([x, c]) for x ∈ C2(V ), c ∈ Cl2m

Now, for a section s ∈ S(M)|U , c a smooth section for Cl(M)|U and X a smooth real vector-field on U ,
where U is a trivialising neighbourhood for Pspin, we have :

[∇S
X , c]s = ∇S

X(c.s) − c.∇S
Xs = ωS(X)(c.s) − c.ωS(X)s

= µ̇(ωsp(X))µ(c)s− µ(c)(µ̇(ωsp(X))s = ([µ̇ωsp(X), µ(c)]) s

= (µ[ωsp(X), c])s = µ(τ(ωsp(X))c)s (by (ii) of 14.4.5)

= µ
(
[ωSO(X)]c

)
s = (∇Xc).s

which shows Clifford compatibility of the spin connection ∇S .

Thus the spin connection on S(M) is a Clifford connection.

Proposition 15.2.10. Let M be a spin manifold of dimension 2m, and Let V → M be any hermitian complex
vector bundle with the inner-product (−,−)V , and a unitary connection ∇V on it. Then the tensor product
bundle:

E := S(M) ⊗C V
equipped with the natural Clifford action, and the natural hermitian inner product (−,−)E := (−,−)S⊗(−,−)V
is a Clifford module on M . The tensor product connection ∇E of the spin connection ∇S and ∇V is a Clifford
connection on this bundle.
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Proof: The Clifford action is given by:

c.(s⊗ v) = c.s⊗ v for c ∈ Cl(M), s ∈ S(M), v ∈ V
Clearly the supermodule structure is E± = S±(M) ⊗C V. The tensor product hermitian inner product is given
on decomposable elements by:

(s⊗ v, t⊗ w)E := (s, t)S(v, w)V
Since S+(M) and S−(M) are orthogonal under (−,−)S , it easily follows that E+ and E− are orthogonal under
(−,−)E .

To check self-adjointness of Clifford action, it is enough to do it on decomposable elements, and for that we
have:

(c.(s⊗v), t⊗w)E = (c.s⊗v, t⊗w)E = (c.s, t)S(v, w)V = (−1)deg c(s, c.t)S(v, w)W = (−1)deg c(s⊗v, c.(t⊗w))E

by the self-adjointness of the Clifford module S(M).

The tensor product connection ∇E is unitary because we again check on decomposable sections that:

(∇E
X(s⊗ v), t⊗ w)E + (s⊗ v,∇E(t⊗ w))E = (∇S

Xs⊗ v + s⊗ ∇Vv, t⊗ w)E + (s⊗ v,∇S
Xt⊗ w + t⊗ ∇Vw)E

=
[
(∇S

Xs, t)S + (s,∇S
Xt)S

]
(v, w)V + (s, t)S

[
(∇V

Xv, w)V + (v,∇V
Xw)V

]

= [X(s, t)S ] (v, w)V + (s, t)S [X(v, w)W ] = X((s⊗ v, t⊗ w)E)

To check Clifford compatibility, again:

∇E
X(c.(s⊗ v)) = ∇E

X(c.s⊗ v) = ∇S
X(c.s) ⊗ v + c.s⊗ ∇Vv = (∇Xc.s+ c.∇S

Xs) ⊗ v + c.s⊗ ∇Vv

= (∇Xc.s⊗ v) + c.(∇S
Xs⊗ v + s⊗ ∇Vv) = (∇Xc).(s⊗ v) + c.∇E

X(s⊗ v)

using the Clifford compatibility of ∇S proved in Example 15.2.9 above. This proves the proposition. 2
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Corollary 15.2.11. Let M be a spin manifold of dimension 2m, and let E → M be a Clifford module (over the
Clifford bundle Cl(M) → M). Then there exists a hermitian complex vector bundle V → M with a compatible
unitary connection ∇V such that the bundle E ' S ⊗ V as Clifford modules over M , and E becomes a Clifford
module with a Clifford connection given by the tensor-product connection of the spin connection ∇S and ∇V .
Indeed, every Clifford connection on E is obtained in this way.

Proof: By the Proposition 15.1.9, we have a complex hermitian vector bundle V → M such that E ' S(M)⊗V
as Clifford modules. Since V has a hermitian metric, it has a compatible unitary connection ∇V (by using
partitions of unity, for example).

Define the connection ∇E as the tensor-product connection of spin-connection ∇S and ∇V . Then we are
done by the Proposition 15.2.10 above.

To see the last assertion, note that for any finite dimensional module E over Cl2m, we have an isomorphism
of Cl2m-modules by Proposition 14.4.6:

E ' S2m ⊗C V for V := homCl2m
(S2m, E)

By breaking up E into irreducibles Ei ' S2m as before, and noting that homCl2m
(Ei, Ej) is one dimensional,

it is trivial to check that the natural map:

homC(V, V ) → homCl2m
(E,E) = homCl2m

(S2m ⊗C V, S2m ⊗C V )

Λ 7→ IdS2m
⊗ Λ

is an isomorphism of complex vector-spaces. Since this isomorphism is canonical (basis-independent), we have
an isomorphism of complex vector bundles:

homCl2m
(E , E) ' homC(V,V)

Now if ∇E denotes the tensor product connection defined above, and ∇̃E is another Clifford connection, it
follows by Leibnitz’s rule that:

(
∇E − ∇̃E

)
(fs) = f

(
∇E − ∇̃E

)
s for all f ∈ C∞(M), s ∈ C∞(M, E)

which shows that
(
∇E − ∇̃E

)
= α for some smooth section α ∈ C∞(T ∗M ⊗ homC(E , E)). The Clifford com-

patibility condition shows that [α, c] ≡ 0 for all smooth sections c ∈ C∞(M,Cl(M)), i.e. α ∈ C∞(M,T ∗M ⊗
homCl2m

(E , E). By the above, this last space is isomorphic to C∞(M,T ∗M⊗homCl2m
(V,V)), so that α = 1⊗β

for some section β ∈ C∞(M,T ∗M ⊗ homCl2m
(V,V)). This shows that ∇̃E is given by:

∇̃E = ∇E − α = (∇S) ⊗ 1 + 1 ⊗ ∇V − 1 ⊗ β = ∇S ⊗ 1 + 1 ⊗ (∇V − β)

which is the tensor product connection of ∇S and ∇̃V := ∇V − β. This proves the last assertion. 2

Definition 15.2.12. We say that a Clifford module E → M over M is a Dirac Bundle if it has a compatible
Clifford connection.

Example 15.2.13. The bundles Cl(M) → M , Λ∗
C
(T ∗M) → M , on an oriented Riemannian manifold of

dimension 2m are all Dirac bundles, by Example 15.2.8. The spin bundle S(M) → M on a spin manifold of
dimension 2m is a Dirac bundle, by Example 15.2.9 above.

The above Corollary 15.2.11 says that to generate any Dirac bundle on a spin manifold M of dimension
2m, it is enough to start with the prototypical spinor bundle S(M) → M with its natural structure as a Dirac
bundle, and then twist it with various hermitian bundles V → M (with compatible unitary connections).
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15.3. Dirac operator on a Dirac bundle.

Definition 15.3.1. Let E → M be a Dirac bundle on M , an Riemannian manifold of dimension 2m, with
chirality grading by E±. Let Cl(M) → M be the Clifford bundle of M . Denote by c the Clifford action on E :

T ∗(M) ⊗ E c→ E
Let ∇E denote the Clifford connection on E . The Dirac operator on E is the operator D defined by the
composite:

C∞(M, E)
∇E

→ C∞(M,T ∗M ⊗ E)
c→ C∞(M, E)

Since c(T ∗M ⊗ E±) ⊂ E∓, and by definition the Clifford connection preserves the subbundles E±, it follows
that the Dirac operator is also Z2-graded, and D = D+ ⊕D−, where

D± : C∞(M, E±) → C∞(M, E∓)

Remark 15.3.2 (Dirac operator in local coordinates). In a local coordinate chart, we may choose an or-
thonormal frame {ei}2m

i=1 of the cotangent bundle T ∗M . Then for a smooth section s ∈ C∞(M, E), we have

∇Es =

2m∑

i=1

ei ⊗ ∇E
ei
s

so that the Dirac operator is expressed as

Ds =

2m∑

i=

ei.∇E
ei
s

where the dot denotes Clifford action. Since ∇E
ei

are 1st order differential operators, it follows that D is a 1st
order ifferential operator.

Proposition 15.3.3 (Self-adjointness of the Dirac operator). Let M be a compact oriented Riemannian man-
ifold of dimension 2m, and let (−,−) denote the given hermitian inner-product on a Dirac bundle E → M .
Define the global L2-inner product on C∞(M, E) by (s, t)M :=

∫
M

(s(x), t(x))xdV (x). Then Dirac operator

D : C∞(M, E) → C∞(M, E) is formally self-adjoint with respect to (−,−)M . In particular D+ : C∞(M, E+) →
C∞(M, E−) and D− : C∞(M, E−) → C∞(M, E+) are adjoints of each other.

Proof: Fix a point x ∈ M , and fix a synchronous orthonormal frame in a nieghbourhood U of x, i.e. for the
Levi-Civita connection we have

(a) ∇ei(x) ≡ 0 (b) ei,x = ∂i,x =
∂

∂xi |x
for all i = 1, .., 2m

for some coordinate system (x1, ..., x2m) on U . By the self-adjointness of Clifford multiplication with respect to
the pointwise hermitian inner product, unitarity and Clifford compatibility of the connection, and synchronicity
of the frame {ei}, we have:

(ei∇E
ei
s, t)x = −(∇E

ei
s, ei.t)x = −ei(s, ei.t)x + (s,∇E

ei
(ei.t)x

= −ei(s, ei.t)x + (s, (∇ei
ei).t)x + (s, ei.∇E

ei
t)x

= −∂i(s, ∂i.t)x + (s, ei.∇E
ei
t)x

Summing over i we find:
(Ds, t)x − (s,Dt)x = −δσ(x)

where σ is the 1-form v 7→ (s, v.t)x =
∑
i(s, ei.t)e

∗
i on U , and δσ(x) =

∑
i ∂i(s, ei.t)x = ±(∗d ∗ σ)(x) (i.e. the

divergence of σ). Integrating over M , and noting that
∫
M

(δσ)dV =
∫
M
δσ ∧ (∗1) == ±

∫
M
σ ∧ d(∗1) = 0, we

have:
(Ds, t)M = (s,Dt)M

and our assertion follows. The last statement is clear from the fact that the restriction of D to C∞(M, E±)
are D± respectively. 2
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Corollary 15.3.4. With the hypothesis of the previous proposition, the second order differential operator:

D2 : C∞(M, E) → C∞(M, E)

is formally self-adjoint with respect to (−,−)M . Its restrictions, namely the composites D+D− and D−D+ :

C∞(M, E±)
D±

→ C∞(M, E∓)
D∓

→ C∞(M, E±)

are self-adjoint.

15.4. Weitzenbock Formulas. We need to assert that the square of the Dirac operator on a Dirac bundle
is a generalised Laplacian. To this end, we have the following.

Definition 15.4.1. Let E → M be a Dirac bundle, and let ∇E be its Clifford connection. Then for two real
tangent vector fields X,Y ∈ C∞(M,Tx(M)), we define a 2-form ΩE ∈ C∞(Λ2T ∗M ⊗ homC(E , E)) by:

ΩE(X,Y ) ⊗ s = ∇E
X∇E

Y s− ∇E
Y ∇E

Xs− ∇E
[X,Y ]s

The 2-form ΩE is called the curvature of the Clifford connection ∇E or just the Clifford curvature of E .

That the object on the right side of the definition defines a 2-form follows by changing X to fX and Y to
gY where f and g are two smooth functions, and calculating by Leibnitz’s rule that:

[
∇E
fX ,∇E

gY

]
− ∇E

[fX,gY ] = fg
([

∇E
X ,∇E

Y

]
− ∇E

[X,Y ]

)

Exercise 15.4.2 (Clifford curvature in local coordinates). Let {si} be an orthonormal frame of E|U with re-
spect to (−,−), the hermitian inner prroduct on E , where U ⊂ M is a trivialising neighbourhood of E . Then
we may write:

∇Esj =

rkCE∑

i=1

ωijsi

where ωij is the skew-hermitian matrix of Cartan connection 1-forms on U . Apply the definitions to show that
ΩE is another skew hermitian matrix of 2-forms given by:

ΩE
ij = dωij +

rkCE∑

l=1

(ωil ∧ ωlj − ωlj ∧ ωli)

which is often abbreviated in the notation:

Ω = dω + [ω, ω]

Proposition 15.4.3 (Weitzenbock for a Dirac Bundle). Let E → M be a Dirac bundle on an oriented com-
pact Riemannian manifold of dimension 2m. Then the square of the Dirac operator is given by:

D2 = ∇E∗∇E +
1

2
ΩE

Proof: We again fix a point x ∈ M and choose a synchronous frame {ei} for TM|U for some neighbourhood
U of x. Then note that we have [ei, ej ]x = [∂i,x, ∂j,x] = 0 for all 1 ≤ i, j ≤ 2m, and also (∇ei

ej)(x) = 0 for the
Levi-Civita connection on TM . Then denote∇E

ej
by ∇E

j , and similarly for the Levi-Civita covariant derivative
∇ej

by ∇j . We first note that:

∇E : C∞(M, E) → C∞(M,T ∗M ⊗ E)

has a global L2-adjoint:

∇E∗ : C∞(M,T ∗M ⊗ E) → C∞(M, E)
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which satisfies:

(∇Es, ω ⊗ t)M = (s,∇E∗(ω ⊗ t))M for all ω ∈ Λ1(M,C), s, t ∈ C∞(M, E)

(Note that the hermitian inner product on T ∗
C
M ⊗E is taken to be the tensor product hermitian inner-product

of the hermitian inner products on the two factors.) In fact, we claim that in terms of the synchronous frame
at x defined above, we have:

∇E∗(e∗
i ⊗ t)(x) = −(∇E

i t)(x) (47)

To verify this, we write ∇Es =
∑
j e

∗
j ⊗ ∇E

j s, then:

(∇Es, e∗
i ⊗ t)x =

∑

j

(e∗
j ⊗ ∇E

j s, e
∗
i ⊗ t)x =

∑

j

(ej , ei)x(∇E
j s, t)x

= (∇E
i s, t)x = ei(s, t)x − (s,∇E

i t)

=
∑

j

ej(s, ejy(e∗
i ⊗ t))x + (s,∇E∗(e∗

i ⊗ t))x

= δσ(x) + (s,∇E∗(e∗
i ⊗ t))x

where σ is the 1-form defined by vx 7→ (s, vy(e∗
i ⊗t))x. Again, integrating over M and noting that

∫
M
δσdV = 0

by Stokes Theorem, we have our assertion.

Now we compute for a section s ∈ C∞(U, E) that:

D2s(x) =
∑

i

ei∇E
i


∑

j

ej∇E
j s


 =

∑

i,j

(ei∇iej) .∇E
j s+

∑

i,j

eiej∇E
i ∇E

j s

=
∑

i,j

eiej∇E
i ∇E

j s since (∇iej)(x) = 0

= −
∑

i

∇E
i ∇E

i s+
∑

i<j

ei.ej .(∇E
i ∇E

j − ∇E
j∇E

i s) (by Clifford relations on ei)

=
∑

i

∇E∗(e∗
i ⊗ ∇E

i s) +
1

2
ΩEs (since [ei, ej ](x) = 0 and by using (47) above)

= ∇E∗∇Es+
1

2
ΩEs

where ΩEs(x) =
[∑

i,j eiej .(∇E
i ∇E

j − ∇E
j∇E

i )s
]
(x) in our synchronous frame {ei} around x. This proves the

assertion. 2

Proposition 15.4.4 (Weitzenbock formula for the Spin Bundle). Let M be a compact spin manifold of di-
mension 2m, and let S(M) → M be the spin bundle on M with its natural structure as a Dirac bundle with
its spin connection ∇S (see Examples 15.2.9 and 15.2.13). Then for its Dirac operator D, we have:

D2 = ∇S∗∇S +
1

4

∑

i,j

k

where k is the scalar curvature function of the Riemannian metric on M .

Proof: In view of the Proposition 15.4.3 above, we need to calculate the curvature operator ΩS of the spin con-
nection ∇S . We recall from the Example 15.2.9 that the spin connection 1-form ω̃ ∈ C∞(Pspin, T

∗Pspin⊗ C2(V ))
is related to the connection 1-form ω ∈ C∞(PSO, T

∗PSO ⊗ so(2m)) by:

ω̃ = τ−1(ρ∗ω)

Since pullbacks commute with exterior differentiation and wedge products, and τ is an isomorphism of Lie
algebras, it follows that the curvature of ω̃ is related to the curvature Ω of ω by:

Ω̃ = τ−1(ρ∗Ω)
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Now pulling back everything onto a trivialising neighbourhood U for Pspin (resp. PSO) via a section σ : U →
Pspin|U (resp. (ρ ◦ σ : U → PSO|U ), and using that τ(eiej) = 2(Eji − Eij), we have:

Ωspin = σ∗(τ−1.ρ∗Ω) = τ−1((ρ ◦ σ)∗Ω)

= τ−1(
∑

i,j

ΩSOij Eij) = τ−1(
∑

i<j

ΩSOij (Eji − Eij)) =
1

2

∑

i<j

ΩSOij eiej

=
1

4

∑

i6=j
ΩSOij eiej

where ΩSOij is the Cartan curvature 2-form on U for PSO.

In terms of the synchronous frame {ei} of T ∗M around a point x one knows that the curvature form of the
Riemannian connection is related to the Riemannian curvature tensor by:

ΩSOij = −
∑

k 6=l
Rklijekel = −Rklijekel

where we have used the Einstein repeated summation convention. (The minus sign comes from the fact that
the Riemannian connection of the principal bundle PSO of frames in the cotangent bundle T ∗M is the negative
of that of the tangent bundle). It follows that:

ΩS = Ωspin = −1

4
Rklijeiejekel

=
1

4
(eiejelRklij)ek since Rllij = 0 and ekel = −elek for k 6= l

If i, j, l are distinct indices, eiejel = eleiej = ejelei, and also by the Bianchi identity, Rklij +Rkjli +Rkijl = 0.
SO all such terms will drop out of the sum above. Terms with i = j also vanish since Rklij is antisymmetric
in i, j. So the only terms remaining are those with i = l 6= j and i 6= l = j. The sum becomes:

ΩS =
1

4
(elejelRkllj + eielelRklil)ek =

1

4
(ejRkllj − eiRklil)ek

=
1

4
ej(Rkllj −Rkljl)ek = −1

2
(Rkljl)ejek

= −1

2
Rkjejek = −1

2
Riie

2
i =

1

2
k (since Ricci curvature Rij is symmetric)

which proves the proposition by substituting into the Weitzenbock formula in Proposition 15.4.3. 2

Corollary 15.4.5 (Bochner-Lichnerowicz). Let M be a compact spin manifold of dimension 2m, and with
everywhere strictly positive scalar curvature. Then the kernel of the Dirac operator on C∞(M,S(M)) is
trivial. (That is, M has no “harmonic spinors”).

Proof: Let s ∈ C∞(M,S(M)), with Ds = 0. By the Weitzenbock formula of Proposition 15.4.4, we have

0 = (Ds,Ds)M = (D2s, s) = (∇S∗∇Ss, s) +
1

4
(ks, s)M

If s 6= 0, the fact that k > 0 everwhere implies the right hand side is strictly positive, and we have a
contradiction. 2
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Corollary 15.4.6 (Weitzenbock for a Dirac bundle on a spin manifold). Let M be a spin manifold of dimen-
sion 2m, and let E → M be a Dirac bundle on M with Clifford connection ∇E . By the Corollary 15.2.11, we
have that E = S ⊗C V, where S → M is the spin bundle on M , and ∇E is the tensor product connection of the
spin connection ∇S on S, and a unitary connection ∇V on V. Then, for the Dirac operator DE we have the
Weitzenbock formula:

(DE)2 = ∇E∗∇E +
1

4
k +RV

where RV is the curvature operator of V defined by

RV(s⊗ σ) =
∑

i<j

ei.ej .s⊗ ΩV(ei, ej)σ =
∑

i<j

c(ei)c(ej)R(ei, ej)(s⊗ σ)

and k is the scalar curvature function of M .

Proof: By Proposition 15.4.3 above, we just have to compute the Clifford curvature ΩE in terms of the
curvatures ΩS and ΩV . First note that by definition of the tensor product connection:

∇E
X(s⊗ σ) = ∇S

Xs⊗ σ + s⊗ ∇V
Xσ for all X ∈ TxM, s ∈ C∞(M,S), σ ∈ C∞(M,V)

For real vector fields X,Y on M , the commutators

[∇S
X ⊗ 1, 1 ⊗ ∇V

Y ] = 0 = [∇S
Y ⊗ 1, 1 ⊗ ∇V

X ]

Hence

ΩE(X,Y )(s⊗ σ) =
([

∇E
X ,∇E

Y

]
− ∇E

[X,Y ]

)
(s⊗ σ)

=
(
[∇S

X ,∇S
Y ]s
)

⊗ σ + s⊗
(
[∇V

X ,∇V
Y ]σ
)

− ∇S
[X,Y ]s⊗ σ − s⊗ ∇V

[X,Y ]σ

= ΩS(X,Y )s⊗ σ + s⊗ ΩV(X,Y )σ

Now, in a local orthonormal frame {ei}:

ΩE(s⊗ σ) =
∑

i,j

c(ei)c(ej)Ω
E(ei, ej)(s⊗ σ)

= (
∑

i,j

ei.ejΩ
S
ijs) ⊗ σ +

∑

i,j

ei.ej .s⊗ ΩV
ijσ

=
k

2
s⊗ σ + 2

∑

i<j

(ei.ej .s) ⊗ ΩV
ijσ) =

k

2
s⊗ σ + 2RV(s⊗ σ)

by using the Bochner-Lichnerowicz formula for the spin bundle S deduced in Corollary 15.4.5. Our corollary
now follows from the Weitzenbock formula 15.4.3. 2

Corollary 15.4.7 (Bochner’s Theorem). Let M be a compact oriented Riemannian manifold of dimension
2m. For the Dirac bundle Λ∗

C
M → M , the Dirac operator D is the operator d+ δ, (viz. the Dirac operator of

the elliptic deRham complex). Furthermore:

(i): On 1-forms, we have the Bochner formula:

∆φ = ∇T∗M∗∇T∗Mφ+Rφ for φ ∈ Λ1(M,C)

where R is the Ricci-curvature operator of M .

(ii): If M has everwhere positive Ricci curvature (viz. R is a real positive definite symmetric matrix at each
point of M), then the first Betti number β1(M) := dimC H

1(M,C) vanishes (that is M has no nontrivial
harmonic 1-forms).



146 VISHWAMBHAR PATI

Proof: By definition, in a local orthonormal frame ei of T ∗M , we have:

D =
∑

i

c(ei)∇i

where ∇i = ∇ei
is with respect to the Levi-Civita connection. If we further assume the frame is synchronous

at x, then ∇ei,x = ∂i,x. The operator c(ei) of Clifford multiplication by ei on the Clifford module Λ∗
C
T ∗M is

given by (see Example 15.1.7):

c(ei)α = ei ∧ α− eiyα α ∈ Λ∗(M,C)

So, in a synchronous frame at x, the Dirac operator reads as:

Dα =
∑

i

ei ∧ ∂i,xα−
∑

i

eiy ∂i,xα = dα+ δα

(Note the minus sign appears because the “L2-adjoint of ∂i is −∂i” from integration by parts.) This proves
the first assertion.

To see the Bochner formula in (i), we appeal to the Weitzenbock formula from Proposition 15.4.3, and
apply it to the Dirac bundle E := Λ∗

C
(T ∗M). We note that by the above, D2 = (d + δ)2 = dδ + δd = ∆, the

Laplace-Beltrami operator. For the right side, we need to compute the Clifford curvature 1
2ΩE . We continue

with the synchronous frame above, and for the sake of convenience, we denote the operator ek ∧ (−) by ek, and
the operator eky(−) by ik. Note that:

ekil(em) + ilek(em) = ekδlm + il(ek ∧ em) = ekδlm + δklem − ekδlm = δklem

so that ekil = −ilek for k 6= l. Now, the Clifford curvature operator on a 1-form φ = φkek (using the repeated
summation convention) is given by:

ΩEφ = c(ek)c(el)Ω
E(ek, el)φ = −(ek − ik)(el − il)Rklrsφres

= (ekil + ikel)Rklrsφres = (ekil − ilek)Rklrsφres (since Rklrs = −Rlkrs)
= 2ekilRklrsφres = 2Rklrsφrekδls = 2Rklrlφrek = 2(Rkrφr)ek = 2Rφ

so that 1
2ΩEφ = Rφ and the Bochner formula (i) follows.

To see (ii), note that if φ ∈ Λ1(M,C) is a harmonic form with φ 6= 0, then ∆φ = 0 so that by the Bochner
formula:

0 = (∆φ, φ) = (∇φ,∇φ) + (Rφ, φ) > 0

by the hypothesis on R, a contradiction. Now, by (i) of the Hodge Theorem,

β1(M) = dimC H
1(M,C) = dimC ker ∆Λ1

so (ii) and the Corollary follow. 2

Corollary 15.4.8. Let E → M be a Dirac bundle, with associated Dirac operator D. Then the operator
(called the Dirac Laplacian of E):

D2 : C∞(M, E) → C∞(M, E)

is a generalised laplacian in the sense of Definition 12.2.1. In particular, the operators D−D+ : C∞(M, E+) →
C∞(M, E+) and D+D− : C∞(M, E−) → C∞(M, E−) are both generalised laplacians. The two term complexes
D± : C∞(M, E±) → C∞(M, E∓) are both elliptic 2- term complexes in the sense of Definition 9.4.1, and the
two operators D+D− and D−D+ are the Dirac Laplacians of this 2-term elliptic complex.

Proof: By the Weitzenbock formula Proposition 15.4.3, we have:

D2 = ∇E∗∇E +
1

2
ΩE

The last term 1
2ΩE is a zero-th order operator, locally given as 1

2

∑
i,j eiej .Ω

E
ij , where each Ωi,j is a 2-form. In

the proof of Weitzenbock’s formula, we also computed the adjoint of ∇E in a synchronous frame {ei}at x to
be:

∇E∗(ei ⊗ s)(x) = −∇is
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Consider the tensor product of the Levi-Civita connection ∇ and ∇E , and call it the connection ∇T∗M⊗E . We
claim that the composite:

C∞(M,T ∗M ⊗ E)
∇T ∗M⊗E

→ C∞(M,T ∗M ⊗ T ∗M ⊗ E)
−tr→ C∞(M, E)

is the same as

∇E∗ : C∞(M,T ∗M ⊗ E) → C∞(M, E)

(see Lemma 12.2.4). For, if we compute with the synchronous frame at x used in the proof of the Weitzenbock
formula in 15.4.3, we have:

∇T∗M⊗E(e∗
i ⊗ s)(x) = ∇e∗

i ⊗ s+ e∗
i ⊗ ∇Es = e∗

i ⊗
∑

j

e∗
j∇E

j s

since (∇ei)(x) = 0. Thus:

−tr∇T∗M⊗E(e∗
i ⊗ s)(x) = −tr(

∑

j

e∗
i ⊗ e∗

j∇E
j s)(x) = −(

∑

j

δij∇E
j s)(x) = −(∇E

i s)(x)

We computed in the proof of Weitzenbock that:

∇E∗(e∗
i ⊗ s)(x) = −(∇E

i s)(x)

Hence our assertion follows. Thus, in the notation of Lemma 12.2.4,

∇E∗∇E = −tr∇T∗M⊗E∇E = ∆E

By the Lemma 12.2.4, ∆E is a generalised laplacian. Hence D2 = ∆E + 1
2ΩE is also a generalised laplacian.

Since D+D− and D−D+ are restrictions of D2 to C∞(M, E−) and C∞(M, E+) respectively, they are also
elliptic second order differential operators.

Since D+ and D− are adjoints of each other by Proposition 15.3.3, the 2-term complex is an elliptic omplex
by 9.4.2. 2

16. The Atiyah-Singer Index Theorem

The goal now is to write down a formula for the index of a Dirac operator on a Dirac bundle. The idea
of the proof of the index theorem is to carefully examine the coefficient of the term independent of t in the
asymptotic expansion of the (super)trace of heat kernel for the Dirac laplacian, since integrating this over M
would compute the index of D, in view of Proposition 10.2.1. To handle the Dirac operator by bare hands is
quite an effort, and was carried out by Patodi, Atiyah-Bott-Patodi and Gilkey for the various classical Dirac
bundles. There is however a simple proof due to Getzler, following ideas of the physicists Alvarez-Gaume and
Witten, which replaces the Dirac laplacian by a much simpler operator by a scaling procedure.

Before we get into the proof of the index theorem, let us study this simpler operator.

16.1. The Quantum Harmonic Oscillator and Mehler’s Formula.

Definition 16.1.1. The quantum harmonic oscillator is the Schrodinger operator defined on C∞(R) by:

H := − d2

dx2
+ x2

Proposition 16.1.2 (Facts about the Harmonic Oscillator). H defined above is formally self-adjoint (on com-
pactly supported functions), and has a discrete positive spectrum λn = (n + 1

2 ), corresponding to smooth
eigenfunctions φn in the Schwartz class S(R) (which are defined in terms of the Hermite functions). Finally,
φn form an orthonormal Hilbert space basis for L2(R).

Proof: The formal self-adjointness on Cc(R) is clear since H = ∆ + x2, and both operators on the right are
formally self- adjoint. Also since

(Hφ, φ) = (∂xφ, ∂xφ) + (xφ, xφ)

for the L2(R) inner-product (−,−), it follows that the eigenvalues (if any) of H are non-negative.
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To get the discreteness of the spectrum, one uses the annihilation operator A = x+ ∂x and its adjoint, the
creation operator A∗ = x− ∂x. It is easily checked that:

AA∗ = H + I, A∗A = H − I

[A,A∗] = −2I

[H,A] = −2A, [H,A∗] = 2A∗

Then one defines the ground state of the oscillator as the function φ0 satisfying Aφ0 = 0 and ‖φ0‖ = 1. That
is,

(∂x + x)φ = 0

But this is a simple ODE, and by using the integrating factor of ex
2/2, and using the L2-normalisation, we

have

φ0 = π−1/4e−x2/2

Now all the other eigenfunctions are given inductively by applying the creation operator A∗ and normalising.
More precisely:

φk = (2k)−1/2A∗φk−1

Note that if φk−1 corresponds to eigenvalue λk−1, then

Hφk = (2k)−1/2HA∗φk−1 = (2k)−1/2 (A∗λk−1φk−1 + [H,A∗]φk−1)

= (λk−1 + 2)φk

So it remains to compute the eigenvalue of the ground state φ0. But

(−∂2
x + x2)e−x2/2 = ∂x(xe

−x2

) + x2e−x2/2 = e−x2/2

SoHφ0 = φ0, and λ0 = 1. This shows that λk = (2k+1). Since φ0 is is the Schwartz class, so is φk = C(A∗)kφ0.

We will skip the proof of the fact that φk form an orthonormal basis of L2(R). See standard texts on
Quantum Mechanics, which prove that φk is a polynomial times the Hermite function Hk. 2

Corollary 16.1.3. The associated heat operator (H + ∂t) on R has a smooth integral kernel pt(x, y) which
satisfies:

(i): (Hx + ∂t)pt(x, y) = 0 for all t > 0, and x, y ∈ R.

(ii): For all φ ∈ L2(R), and t > 0 the function F (x, t) := e−tHφ is a smooth function, given by the integral∫
R
pt(x, y)φ(y)dy. It satisfies:

lim
t→0

F (x, t) = lim
t→0

∫

R

pt(x, y)φ(y)dy = φ(x)

Proof: Follows by defining :

pt(x, y) =

∞∑

k=0

e−tλkφk(x)φk(y)

which is a convergent series for all t > 0 since the coefficients e−tλk die faster than all powers of t, and φk are
in the Schwartz class. The proof of the other assertions are analogous to the case of a positive elliptic operator
on a compact manifold (see (iii) of the Proposition 10.1.3 and (iii) of Proposition 10.1.6). 2

Now we can explicitly compute u(x, t) = pt(x, 0). Note that by definition, this is a fundamental solution to
the heat equation, satisfying:

(H + ∂t)u(x, t) = 0, lim
t→0

u(x, t) = δx

where δx is the Dirac distribution massed at x.
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Proposition 16.1.4 (Mehler’s Formula). The function u(x, t) defined by:

u(x, t) = (2π sinh 2t)−1/2 exp

(
−x

2 coth 2t

2

)

is a fundamental solution to the heat equation (H + ∂t)u(x, t) = 0.

Proof: By taking one’s cue from the Gaussian, we try:

u(x, t) = α(t) exp

(
−β(t)x2

2

)

Then compute derivatives:

−∂xu(x, t) = αβx exp

(
−βx

2

2

)

−∂2
xu(x, t) = αβ(1 − βx2) exp

(
−βx

2

2

)
= β(1 − βx2)u(x, t)

Hu(x, t) = (−∂2
x + x2)u(x, t) = (β + (1 − β2)x2)u(x, t)

∂tu(x, t) =

[
α′(t) − αβ

′

(t)x2

2

]
exp

(
−βx

2

2

)
=

(
α′(t)

α(t)
− β

′

(t)x2

2

)
u(x, t)

So if we arrange that:
α′

α
+ β = 0, β

′

/2 = (1 − β2)

Then u(x, t) would be a solution to the required heat equation (H + ∂t)u(x, t) = 0. The second equation leads
to: (

1

β + 1
− 1

β − 1

)
dβ = 4 dt

so that log
(
β+1
β−1

)
= 4t+ C, which implies (by taking C = 0) that

β(t) = coth 2t

The other equation now becomes:
α′(t) + α(t) coth 2t = 0

which is the same as: sinh 2tα′(t)+cosh 2tα(t) = 0, which is rewritten as 2 sinh 2tα′(t)α(t)+2 cosh 2tα2(t) = 0.
But this implies:

d

dt
(α(t)2 sinh 2t) = 0

Thus α(t) = C(sinh 2t)−1/2, for some constant C. Now as t → 0, α(t) ∼ C(2t)−1/2 and β(t) ∼ 1/2t, so that

u(x, t) ∼ C(2t)−1/2e−x2/4t as t → 0. We choose C = (2π)−1/2, so that u(x, t) approaches the Euclidean heat
kernel as t → 0. Hence:

u(x, t) = (2π sinh 2t)−1/2 exp

(
−coth 2t x2

2

)

and we certainly have (H + ∂t)u(x, t) = 0. Also, as t → 0, u(x, t) → (4πt)−1/2 exp(−x2/4t), the Euclidean
heat kernel on R, and we know by the Proposition 11.1.1 that the Euclidean heat kernel tends to δx as t → 0.
(Actually, more precise estimates are needed to justify these limits in the space of tempered distributions S ′(R),
but we leave these details to the reader). The proposition follows. 2

Corollary 16.1.5 (Mehler’s Formula II). Let us define the 2nd order differential operator on C∞(R) given
by:

H := −∂2
x +

a2x2

16
+ b

where a, b ∈ R. Then a fundamental solution to (H + ∂t)v(x, t) = 0 is given by:

v(x, t) = (4πt)−1/2

(
at/2

sinh (at/2)

) 1
2

exp
(
−(at/2) coth (at/2)(x2/4t) − bt

)
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Proof: First we try to find a solution to (H + ∂t)v(x, t) = 0 by tinkering with the fundamental solution of the
foregoing proposition. So let u(y, s) be the fundamental solution satisfying:

(−∂2
y + y2 + ∂s)u(y, s) = 0 (48)

where u(y, s) is as in the statement of Proposition 16.1.4 above. Define:

v(x, t) = e−btu(λ1/2x, λt) = e−btu(y, s) where y := λ1/2x, s := λt

Then:
∂tv(x, t) = −be−btu(y, s) + e−btλ∂su(y, s)

which implies

(∂t + b)v(x, t) = λe−bt∂su(y, s) (49)

Now for the space derivatives:

(−∂2
x + λ2x2)v(x, t) = λ

(
− 1

λ
∂2
x + λx2

)
v(x, t)

= λ(−∂2
y + y2)e−btu(y, s) = λe−bt(−∂2

y + y2)u(y, s) (50)

Adding the equations (49) and (50), we find:

(−∂2
x + λ2x2 + b+ ∂t)v(x, t) = λe−bt(−∂2

y + y2 + ∂s)u(y, s) = 0

from equation (48). Thus v(x, t) is a solution to the equation in the statement by setting λ = a/4. Thus by
using the explicit formula for u(y, s) derived in Proposition 16.1.4, the fundamental solution we seek is given
by:

v(x, t) = Ce−btu(
a1/2x

2
, at/4) = Ce−bt(2π sinh(at/2))−1/2 exp

[
− coth(at/2)(ax2/8)

]

= C̃(4πt)−1/2(at/2)1/2(sinh(at/2))−1/2 exp
[
−(at/2) coth(at/2)(x2/4t) − bt

]

Note that as limt→0
sinh(at/2)

(at/2) = 1, limt→0 bt = 0 and limt→0 cosh(at/2) = 1, which implies that

limt→0(at/2) coth(at/2) = 1. Thus v(x, t) above approaches the Euclidean heat kernel (4πt)−1/2 exp(−x2/4t) if

we set C̃ = 1 (Again pointwise limits are not good enough, one needs to use Lebesgue’s dominated convergence
theorem to make these assertions in S ′(R). We leave these matters to the reader.) This proves the corollary.
2

We would like to write a multivariate and matrix formulation of the above Mehler formula. First we make
a definition.

Definition 16.1.6. Denote by A the commutative algebra Λev
C

(R2m), with ∧ being the multiplication. Note
that any word of a1a2...ai of length i > m and with aj ∈ ⊕k≥1Λ

2k
C

(i.e. no aj has a constant term) vanishes.

Let R be a skew-symmetric 2m× 2m matrix whose entries are in Λ2
C
(R2m). Note that R is automatically a

nilpotent matrix, by the remark above. Hence all power series in tR for t ∈ (0,∞) are actually polynomials in
t. For such an R, define the A-valued function:

j(R) := det

(
eR/2 − e−R/2

R

)
= det

(
sinh(R/2)

(R/2)

)

Note that eR/2 − e−R/2 is the series (=polynomial) (of A-valued matrices) given by 2 sinh(R/2), and involving
only odd powers of R, whence 1

2 (eR/2 − e−R/2) = sinh(R/2) = (R/2)α(R), for another polynomial α(R) with
leading coefficient 1. Then j(R) is the determinant of α(R).

Indeed, if t is small enough, the series:

α(tR) = I +
t2R2

223!
+
t4R4

245!
+ ...
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is a polynomial, and an invertible element, since every term except the first is nilpotent. Its determi-
nant j(tR) := det(α(tR)) is a unit in A, and again a polynomial in t. Then one can define j(tR)−1/2 =
[det(α(tR))]−1/2 as a formal power series

(j(tR))−1/2 = 1 +

∞∑

i=1

tifi(R)

where fi are polynomials in the entries of R. This formal power series is again a polynomial in t since j(tR)−I
is a nilpotent element.

Now we consider the symmetric matrix

β(tR) := (tR/2) coth(tR/2)

Then it defines an A-valued symmetric bilinear form (or quadratic form) on R2m by the formula:

〈x|(tR/2) coth(tR/2)|y〉 :=

2m∑

i,j=1

xi(tR/2) coth(tR/2)ijyj

Again, we have a power series expansion for (tR/2) coth(tR/2) in terms of even powers of t, which starts with

I (since cosh(tR/2), and tR/2
sinh(tR/2) = α(tR)−1 both have even power series starting with I). So the quadratic

form above has a power series expansion:

〈x|(tR/2) coth(tR/2)|x〉 = ‖x‖2
+

∞∑

k=1

t2kck〈x|R2k|x〉

Since R is nilpotent, this power series is again a polynomial.

Proposition 16.1.7 (Mehler’s Formula III). Let R be a skew-symmetric 2m× 2m matrix, and let F be any
N × N matrix, both matrices having coefficients in Λ2

C
(R2m). Set A := Λev

C
(R2m). Note both matrices are

constant with respect to x ∈ R2m.

Define the generalised harmonic oscillator to be the operator defined on C∞(R2m,A ⊗ EndC(CN )) by:

H(f ⊗ T ) = −




2m∑

i=1


∂i +

1

4

∑

j

Rijxj




2

f


⊗ T + f ⊗ F.T for f ∈ C∞(Rn,A), T ∈ EndC(CN )

Then the associated heat operator (H + ∂t) has a fundamental solution pt(x,R, F ) defined by:

pt(x,R, F ) = (4πt)−mj(tR)−1/2 exp

(−1

4t
〈x|(tR/2) coth(tR/2)|x〉

)
exp(−tF )

with limt→0 pt(x,R, F ) = δx(1 ⊗ Id). (Note that by the discussion in Definition 16.1.6 above, j(tR),
〈x|(tR/2) coth(tR/2)|x〉 and exp(−tF ) are all polynomials in t, by the nilpotency of the matrices R and F ).

Proof: As remarked in the discussion following Definition 16.1.6, the power (j(tR))−1/2, 〈x|(tR/2) coth(tR/2)|s〉,
and exp(−tF ) are all polynomials in t, whose coefficients are polynomials in the coefficients of R and F , be-
cause the entries of R and F are in Λ2

C
(R2m), and any word a1a2..ai of length i > m with ai ∈ ⊕i≥1Λ

2i
C

(R2m)
vanishes. Suppose we verify the formula:

(H + ∂t)pt(x,R, F ) = 0

for R and F matrices with real entries. Since (H + ∂t)pt(x,R, F ) is an analytic function of Fij and Rij , it will
follow that the equation (H + ∂t)pt(x,R, F ) = 0 for all F with complex entries Fij and all skew-symmetric
matrices R with complex entries Rij . That is, we will have an identity of power series in Rij and Fij . Hence this
identity will hold when we substitute F a nilpotent matrix with entries in Λ2

C
(R2m), and R an antisymmetric

matrix with entries in Λ2
C
(R2m). So we may assume without loss of generality that R is a real antisymmetric

matrix, and F is a matrix with real entries. Note that all the power series (in t) occurring above in the
expression for pt(x,R, F ) converge for small values of t at least.
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Note that R ∈ Λ2(R2m) = so(2m), and there is a matrix P ∈ SO(2m) which conjugates R into the Cartan
subalagebra of so(2m). That is, there is a change of orthonormal basis (given by P ) for R2m so that PRP t = S
is in block diagonal form, where the i-th block of S is:

Si :=

(
0 −ai
ai 0

)

Since j(tR) is the determinant of α(tR), we will have j(tR) = j(tS). Setting y = Px, we find that the quadratic
form:

〈x|(tR/2) coth(tR/2)|x〉 = 〈(tR/2) coth (tR/2)x, x〉 = 〈P (tR/2) coth(tR/2)x, Px〉
= 〈(tS/2) coth(tS/2)Px, Px〉 = 〈y|(tS/2) coth(tS/2)|y〉

Finally, note that

∂

∂x i
+

1

4

∑

j

Rijxj =
∑

j

∂yj
∂xi

∂

∂y j
+

1

4
(Rx)i =

∑

j

Pji∂y,j +
1

4
(P tSPx)i

= [P t(∂y +
1

4
Sy)]i

which implies that the “norm” of the “vector (∂x + 1
4Rx) is the same as that of (∂y + 1

4Sy), that is:

∑

i


 ∂

∂xi
+

1

4

∑

j

Rijxj




2

=
∑

i


 ∂

∂yi
+

1

4

∑

j

Sijyj




2

Of course F will not change, so under the change of variables x 7→ y = Px, the form of the operator H will
remain the same, with R replaced by S and x replaced by y. Hence proving that(H + ∂t)pt(x,R, F ) = 0 is
equivalent to proving that (H + ∂t)pt(y, S, F ). Hence we may assume without loss of generality that R is in
block diagonal form.

But once R is in block diagonal form, we are reduced to showing the identity for m = 1. Indeed, defining
the 2 × 2 block operator:

Hi = − (∂2i−1 − aix2i)
2 − (∂2i + aix2i−1)

2
+

1

m
F for i = 1, 2, ..,m

and denoting xi := (x2i−1, x2i), and its fundamental solution by pit(x
i, Si, 1

mF ), we note that pt(x, S, F ) =∏m
i=1 p

i
t(x

i, Si, 1
mF ) obeys the equation

Hpt =

m∑

i=1

(Hipt) =

m∑

i=1

(p1
t ...p̂

i
t..p

m
t )Hipit = −

m∑

i=1

(p1
t ...p̂

i
t..p

m
t )∂ip

i
t = −∂tpt

Also, as t → 0, each pi → δx2i−1,x2i
, and so p → δx, since the Dirac distribution in several variables is the

product of the Dirac distributions in each variable. Thus we need to only find the two variable solution pit.

Also note that the expression on the right, viz.

(4πt)−mj(tS)−1/2 exp

(−1

4t
〈x|(tS/2) coth(tS/2)|x〉 − tF

)

is exactly the expression:

=

m∏

i=1

(
(4πt)−1j(tSi)−1/2 exp

(−1

4t
〈xi|(tSi/2) coth(tSi/2)|xi〉 − tF/m

))

since determinants (like j(tS)) are mulplicative with respect to direct sum of (2 × 2)-blocks, and quadratic
forms are additive.

Thus we may as well assume that we are in R2. That is, m = 1, and

R =

(
0 −a
a 0

)
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In this event:

H = −(∂1 − 1

4
ax2)

2 − (∂2 +
1

4
ax1)

2 + F

= −(∂2
1 + ∂2

2) +
a

2
(x2∂1 − x1∂2) − a2

16
‖x‖2

+ F

=

(
−∂2

1 +

(
ia

4

)2

x2
1 +

F

2

)
+

(
−∂2

2 +

(
ia

4

)2

x2
2 +

F

2

)
+
a

2
(x2∂1 − x1∂2) (51)

On the other hand, by diagonalising R over C, we have:

j(tR) = det

(
etR/2 − e−tR/2

tR

)
=

(
sinh(iat/2)

(iat/2)

)(
sinh(−iat/2)

(−iat/2)

)
=

(
sinh(iat/2)

(iat/2)

)2

Similarly, the quadratic form:

〈x|(tR/2) coth(tR/2)|x〉 = (iat/2) coth(iat/2)x2
1 + (−iat/2) coth(−iat/2)x2

2 = (iat/2) coth(iat/2)(x2
1 + x2

2)

So the function:

pt(x1, x2) : = (4πt)−1j(tR)−1/2 exp(− 1

4t
〈x|(tR/2) coth(tR/2)|x〉 − tF )

=

2∏

j=1

[
(4πt)−1/2

(
iat/2

sinh(iat/2)

)1/2

exp

(
−(iat/2) coth(iat/2)

x2
j

4t
− tF/2

)]

is a fundamental solution for the operator

(−∂2
1 + (ia/4)2x2

1 + F/2) + (−∂2
2 + (ia/4)2x2

1 + F/2)

by the Corollary 16.1.5. (We have to soup up that Corollary to include all complex a, but that is straightfor-
ward). Also, since the function pt(x1, x2) is a function only of (x2

1 +x2
2) in the space variables, it is annihilated

by the operator (x2∂1 − x1∂2). Hence it is a fundamental solution of H in equation (51). This proves the
proposition. 2

16.2. The Heat Kernel and Index Density.

Proposition 16.2.1. Let E → M be a Dirac bundle on a compact Riemannian oriented manifold of dimension
2m. Then for the two term elliptic complex:

StrD := ind (D+) = dim kerD+ − dim kerD− =

∫

M

str kt(x, x)dV (x) = −indD−

where kt(x, x) is a self-adjoint endomorphism of Ex that maps E±
x to E±

x . Indeed, kt(x, y) is the integral

kernel which represents the heat-operator e−tD2

for the Dirac laplacian D2. (Note that for a endomorphism
T ∈ homC(Ex, Ex), which preserves the grading, we define the supertrace as in Definition 14.5.1, i.e. strT =
trT+ − trT−).

Proof: By the Corollary 15.4.8, the two term complex:

D+ : C∞(M, E+) → C∞(M, E−)

is an elliptic complex. By (iii) of the Proposition 10.1.3, the infinitely smoothing heat operators e−t∆±

=

e−tD∓D±

on C∞(M, E±) have integral heat kernels:

k±
t (x, y) ∈ C∞(M ×M, homC(π∗

2E±, π∗
1E±))

By the McKean-Singer Theorem 10.2.1, we have:

ind(D+) =

∫

M

(
tr(k+

t (x, x)) − tr(k−
t (x, x)

)
dV (x)

Now note that kt(x, x) : Ex → Ex can be defined as the operator which is k±
t (x, x) on E±

x , in which case, its
supertrace:

str kt(x, x) = tr k+
t (x, x) − tr k−

t (x, x)

by the definition of supertrace above. The proposition follows. 2.
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Now let us consider the case of a spin-manifold M . We have:

Lemma 16.2.2. Let M be a spin manifold of dimension 2m, and E be a Dirac bundle on it. By the Corollary
15.2.11 E is isomorphic as a Dirac bundle to S(M) ⊗C V, where S(M) → M is the spin bundle on M with
its spin connection ∇S , and V is a twisting bundle with some unitary connection ∇V , and ∇E is the tensor
product connection of these two connections. Then:

(i): There is an isomorphism of complex vector bundles:

homC(E , E) ' Λ∗
CT

∗M ⊗ homC(V,V)

(ii): For an endomorphism K := α ⊗ F ∈ homC(Ex, Ex) where α ∈ Λ∗
C
T ∗
xM and F ∈ homC(Vx,Vx), the

supertrace:

strEK = (−2i)mT (α)trV F

where T : Λ∗
C
(T ∗M) → Λ2m

C
(T ∗M) is the projection into the top-degree forms, introduced in Definition

14.5.1.

Proof: First note that the map:

Cl2m → homC(S2m, S2m)

c 7→ c.(−)

is an isomorphism by the last assertion in Proposition 14.1.19. Since this isomorphism is canonical, we have a
bundle isomorphism:

Cl(M) ' homC(S(M),S(M))

By the symbol map Cl(M) ' Λ∗
C
(T ∗M). Finally note that:

homC(E , E) ' homC(S(M) ⊗C V,S(M) ⊗C V) ' homC(S(M),S(M)) ⊗C homC(V,V)

' Λ∗
C(T ∗M) ⊗C homC(V,V)

This proves (i).

To see (ii), note that we may view

K ∈ Cl(M)x ⊗C EndC(Vx)
as the element c(α) ⊗ F , where c is the quantisation map identifying Λ∗

C
T ∗
xM with Cl(M)x, and c(α) means

the element of defined by Clifford multiplication by c(α) ∈ EndC(S(M)x). Then by definition:

strEK = strE(c(α) ⊗ F ) = trE(τ2m ◦ (c(α) ⊗ F )) = trE(τ2mc(α) ⊗ F ) = trS(τ2mc(α)).trVF = strS c(α).trVF

where τ2m is the chirality element in Cl(M)x. Now by the Lemma 14.5.2, we have

strSc(α) = (−i)m(dimC S)(T ◦ σ(c(α)) = (−2i)m(T (α))

Plugging this into the foregoing equation, we have (ii), and the lemma follows. 2

Proposition 16.2.3 (The index density). Let M be a compact spin manifold of dimension 2m. Let E → M
be a Dirac bundle on M , and D the corresponding Dirac operator. Note that D2 is a generalised Laplacian by
Corollary 15.4.8. For a ∈ M , there is an asymptotic expansion: 12.3.5:

kt(x, a) ∼ (4πt)−m exp

(
−δ(x, a)

2

4t

)( ∞∑

i=0

tiki(x)

)

where k0(a) = IdE . The the index of the Dirac operator is given by:

indD =

∫

M

strEkt(a, a)dV (a) = (4π)−m
∫

M

strEkm(a)dV (a) =

∫

M

ν(a, E)dV (a)

The quantity ν(a, E) is called the index density of the Dirac operator of E , and is is a polynomial in the jets of
the metric and the unitary connection ∇V on the twisting bundle V at the point a.
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Proof: As remarked earlier, we know from (iii) of the Proposition 10.1.3, that the smooth integral kernel
kt(x, y) exists, and by the Proposition 16.2.1,

indD =

∫

M

strEkt(a, a)dV (a)

Choose a local framing {ej,y} for E|U and y ∈ U a neighbourhood of a, and note that for a basis element

ej,a ∈ Ea, ujt (y) := kt(y, a)ej,a is the fundamental solution of e−tD2

with pole at (a, ej,a), by Proposition 11.2.2.
Thus

kt(y, a) =

dim E∑

j=1

ujt (y) ⊗ e∗
j,a

By the Theorem 12.3.5, there is an asymptotic expansion:

ujt (y) ∼ (4πt)−m exp

(
−δ(y, a)

2

4t

)( ∞∑

i=0

tiuji (y)

)

such that uj0(a) = ej ∈ Ea, and for all i, the vector uj(a) ∈ Ea is given as a polynomial in the jets of the
coefficients of the Clifford connection ∆E at a. (See the last statement of Theorem 12.3.5, and note that the
Dirac Laplacian is a generalised laplacian whose 0-th and 1st order terms involve the connection coefficients
of ∇E , by 15.4.8). By considering

∑
j u

j
t (y) ⊗ e∗

j,y, we have a corresponding asymptotic expansion for kt(y, a)
given by:

kt(y, a) = (4πt)−m exp

(
−δ(y, a)

2

4t

)( ∞∑

i=0

tiki(y)

)

with k0(a) =
∑
j u

j
0(a) ⊗ e∗

j,a =
∑
j ej,a ⊗ e∗

j,a = IEa
, and ki(a) all depending polynomially on the jets of the

connection coefficients of ∇E at a.

By (iii) of the Theorem 12.3.5 ∥∥∥ujt (y) − Sk(y)
∥∥∥
l,∞

≤ CtN+1

for a sufficiently long partial sum Sk of the asymptotic series for ujt (y), and so a corresponding statement holds
for kt(y, a). Since δ(a, a) = 0, it follows that the difference

∣∣∣∣∣

∫

M

strEkt(a, a)dV (a) − (4πt)−m
k∑

i=0

ti
∫

M

strEki(a)

∣∣∣∣∣ < CtN+1 < ε

for t < δ and k large enough depending on m and N . The first integral inside the modulus sign is the index of
D, and constant in t, so it follows that

indD =

∫

M

strEkt(a, a)dV (a) = (4π)−m
∫

M

strEkm(a)dV (a)

where km(a) ∈ EndC(Ea) depends polynomially on the jets of the connection coefficients of ∇E at a.

By (i) of the previous Lemma 16.2.2, we can write the endomorphism km(a) ∈ EndC(Ea) as:

(4π)−mkm(a) =

r∑

i=1

αi(a) ⊗ Fi(a) αi ∈ Λ∗
C(T ∗

aM), Fi(a) ∈ EndC(Va)

and by (ii) of the same Lemma,

strEkm(a) = (−2i)m
∑

i

T (αi(a))trVFi(a) =: ν(a, E)

Since the Clifford connection ∇E is the tensor product of the spin connection on S(M), and the unitary
connection ∇V , the polynomial dependence of ν(a, E) on the jets of the metric g onM and connection coefficients
of ∇V at a is clear from the corresponding fact about km(a) stated above. This proves the proposition. 2
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16.3. Local expression for ∇E . In the light of the Proposition 16.2.3, all we need to do now is to find out
ν(a, E) where

strEkm(a) = (−2i)m(T ⊗ tr)(km(a)) = ν(a, E)dV (a)

This is a purely a point-wise problem at each a ∈ M . So we introduce the geodesic normal coordinates on a
geodesically convex neighbourhood U of a (via the exponential map), with expa : TaM → M a diffeomorphism
of some neighbourhood W of 0 ∈ TaM with U , and expa(0) = a. This will give a local formula for the Dirac
operator DE on the neighbourhood W . If we can write the asymptotic expansion coefficient km(0) for the heat
kernel kt of DE from this expression, then one can compute its supertrace.

We first need a lemma about synchronous frames (which we have been using in for T ∗M in the past).

Lemma 16.3.1 (Synchronous framings). Let V → M be a complex vector bundle with a connection ∇, M a
Riemannian manifold. Then for a ∈ M , there exists a neighbourhood U of a, a trivialisation of V|U by sections
{sα}, and a coordinate system {xi} on U with a = (0, .., 0) such that:

(i): The Cartan connection coefficients of ∇ are given on U by:

∇sα = ω.sα =
∑

β

ωβαsβ

where ω is a 1-form with values in EndC(V ).

(ii): Denoting the curvature 2-form of ∇ by F , and denoting the curvature coefficients by:

F =
∑

i<j

Fijdxi ∧ dxj

with Fij(x) := F (∂i, ∂j)(x) ∈ End(Vx), we have:

ω(x) = −1

2

∑

i,j

Fij(0)xjdxi +O(| x |2)

where O(| x |2) is a 1-form with values in EndC(Vx) (i.e. a section in C∞(U,Λ1T ∗M ⊗ E)).

(iii): If ∇ is a unitary connection with respect to a hermitian metric (−,−) on V , we can choose {sα} to
be a frame that is orthonormal at each point of U .

Proof: We define the neighbourhood U to be a geodesically convex neighbourhood of a, and the coordinate
system via the exponential map. That is (x1, .., xn) are the coordinates of x = expa(x1, .., xn), so a = (0, .., 0).
Choose a frame {sα(0)} of Va, and for x = expa(x), define the framing {sα(x)} of Vx by parallel transport
of sα(0) to x along the radial geodesic expa(tx). In case the connection is unitary, choose {sα(0)} to be an
orthonormal frame of Va. In this event, since parallel transport preserves inner products, {sα(x)} will be an
orthonormal frame at x for all x ∈ U . Hence (i) and (iii) are automatic by this definition. We need to verify
(ii)

Clearly for every v ∈ Ta(M), denoting parallel translation along expa(tv) by P vt , we have:

(∇vsα)(0) = lim
t→0

P v−tsα(expa(tv)) − sα(0)

t
= lim
t→0

sα(0) − sα(0)

t
= 0

it follows that ωβα(0) = 0 for all α, β, that is:

ω(0) = 0 (52)

Define the radial vector field u :=
∑
j xj∂j , and by iu the operator uy(−). Since u(x) is tangent to the

radial geodesic at expa(tx) through x, it follows by the definition of sα that ∇usα ≡ 0 on U . Thus, for each
connection coefficient ωβα, we have iuωβα = 0. That is, iuω ≡ 0 on U . Writing ω =

∑
i ωidxi, we have:

0 = iuω(x) =
∑

i

xiωi(x) for all x ∈ U
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Let us take the derivative of this last equation with respect to xj . Then:
∑

i

(δijωi(x) + xi∂jωi(x)) = ωj(x) +
∑

i

xi∂jωi(x) = 0

From which it follows by again applying ∂i that:

∂iωj(x) + ∂jωi(x) +
∑

k

xk∂i∂jωk(x) = 0 for all x ∈ U

This shows that

∂iωj(0) = −∂jωi(0)

That is, the matrix ∂iωj(0) is skew-symmetric.

Since F = dω + ω ∧ ω, and ω(0) = 0, it follows that

F (0) =
∑

i<j

Fij(0)dxi ∧ dxj =
∑

i<j

dω(0) =
∑

i<j

(∂iωj − ∂jωi)(0)(dxi ∧ dxj) = −2
∑

i<j

∂jωi(0)dxi ∧ dxj

That is,

∂jωi(0) = −1

2
Fij(0)

Now we Taylor expand ω about 0, noting that by (52) that ωi(0) = 0 for all i = 1, .., n. Hence:

ω(x) =
∑

i

ωi(x)dxi =
∑

i,j

xj∂jωi(0)dxi +O(| x |2) = −1

2

∑

i,j

Fij(0)xjdxi +O(| x |2)

where O(| x |2) is a 1-form with values in End(Vx). This proves the lemma. 2

Lemma 16.3.2 (Local expression for ∇E). Let M be a spin manifold of dimension 2m, and E → M be Dirac
bundle on M , with E = S(M) ⊗C V, where S is the spin bundle on M , with its spin connection ∇S , V is the
twisting bundle with the twisting connection ∇V , and ∇E the tensor product connection. and let (x1, .., x2m)
denote the geodesic coordinate system given by expa in a geodesically convex neighbourhood U of a = (0, .., 0).
Also, for x ∈ U , let the bundle S be trivialised over U by parallel transport of an orthonormal frame sα of
Sa (with respect to ∇S). Similarly, let V be trivialised over U by parallel transport of an orthonormal frame
{vβ} of Va (with respect to ∇V). We will let {ei(x)} be local orthonormal frame for T ∗

xM obtained by parallel
transport of a fixed orthonormal frame ei(a) = ∂i,a along radial geodesics, with respect to the Levi-Civita
connection on T ∗M . Let ci = ei(a).(−) be Clifford multiplication on Ea by ei(a).

Then the covariant derivative ∇E is given by the formula:

∇E
i = ∇E

∂i
=

∂

∂xi
+

1

4

∑

j; k<l

xjRijkl(0)ckcl +
∑

k<l

fikl(x)ckcl + gi(x)

where:

Rijkl = 〈R(∂i, ∂j)ek, el〉 = Riemann curvature tensor of M

fikl(x) ∈ C∞(U), with fikl(x) = O(| x |2)
gi(x) ∈ C∞(U,EndC(V)) = C∞(U,EndCl(M)(E)) with gi = O(| x |)

(Here | x |2:=∑2m
i=1 x

2
i is the Euclidean norm of x.)

Proof: Using the geodesic (exponential) coordinate system above, we have a = (0, .., 0), so we will write 0 for
a.

Define orthonormal framings {sα} of S and {vβ} of V on a geodesically convex neighbourhood U of a as
stated above (and in the Lemma 16.3.1). By the fact that ∇E is the tensor product connection of ∇S and ∇V , it
follows that the framing {sα⊗ vβ} is a orthonormal framing of E on U , which is parallel along radial geodesics.
Likewise, for T ∗M|U , by the orthonormal frame field {ei(x)}, with the further provision that ei(0) = ∂i,0 (The
derivative of the exponential map expa : TaM → M is the identity map, so {∂i} can be taken as the image of
an orthonormal basis in Ta(M)).
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We first claim that with the above trivialisations of E and T ∗M on U , the operation of Clifford multiplication
c(ei(x)) by ei(x) ∈ T ∗

xM on Ex is the same as ci = c(ei(0)). That is, the Clifford multiplication c(ei(x)) is a
constant endomorphism of End(Vx) ' End(V0). This follows from the fact that ∇E is a Clifford connection,
and is seen as follows.

That is, let ∂r,x := expa∗(∂r) denote the radial vector field on U , and ei,r denote ei(expa(rx)). Let s be a
vector in E0, and let sr := s(expa(rx)) = Prs, where Pr denotes parallel transport from 0 to expa(rx) along
the radial ray r 7→ rx, with respect to ∇E . Since ∇E is a Clifford connection, we have:

∇E
∂r

(c(ei,r)sr) = c(∇∂r
(ei,r))sr + c(ei,r)∇E

∂r
(sr) = 0

because ei,r is parallel along expa(rx) with respect to the Levi-Civita connection ∇, and sr are parallel along
expa(rx) with respect to the Clifford connection ∇E by definition of sr. Now if we write:

c(ei,r)sα,r =
∑

β

Aβ,α(r)sβ,r

with respect to the parallel frame {sα,r} of Eexp(rx), then

0 = ∇∂r
(c(ei,r)sα,r) =

∑

β

(∂rAβ,α(r)) sβ,r

by Leibnitz rule, and since sβ,r is parallel. Hence ∂rAβ,α(r) = 0, and hence Aβα(r) = Aβα(0). Thus Clifford
multiplication c(ei,r) is a constant operator along the geodesic rays, with the trivialisation above. Hence the
claim.

Let us denote the Cartan connection 1-form on U for ∇S by ωS . Similarly denote the Cartan connection
1-form for ∇V as ωV . By definition,

ωE = ωS + ωV (53)

Now, because of the trivialisations we have chosen, we may appeal to the Lemma 16.3.1, we may write:

ωS(x) = −1

2

∑

i,j

FS
ij (0)xjdxi + f(x) (54)

where f(x) ∈ C∞(U,Λ1T ∗M⊗End(S) is O(| x |)2. We have already seen in the proof of Weitzenbock’s formula
in 15.4.3 for the spin bundle S that:

FS
ij (x) = ΩS

ij = −1

2

∑

k,l

Rijkl(x)c(ek(x))c(el(x))

so that:

FS
ij (0) = −1

2

∑

k<l

Rijkl(0)ckcl

where R is the Riemann curvature tensor of M . Finally, since by the constancy of Clifford multiplication on
U proved above, we have

Λ1(U) ⊗ End(S0) ' C∞(U,Λ1T ∗M ⊗ End(Sx))

via the isomorphism ω(x) ⊗ ckcl 7→ ω(x) ⊗ c(ek(x))c(el(x)). Thus we may write

f(x) =
∑

k<l

fkl(x)ckcl =
∑

i;k<l

fikl(x)ckcldxi

where fikl ∈ C∞(U) and fikl = O(| x |2). Substituting in equation (54) we find that:

ωS(x) =
∑

i


1

4

∑

j;k<l

Rijkl(0)xjckcl +
∑

k<l

fikl(x)ckcl


 dxi where fikl ∈ C∞(U) is O(| x |2) (55)

Now, applying the Lemma 16.3.1 to the twisting connection ∇V , we again find that with the framing and
coordinate system we have used:

ωV(x) = −1

2

∑

i,j

FV
ij (0)xjdxi + h
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where h ∈ C∞(U,Λ1T ∗M ⊗ End(V)) is O(| x |2). Thus

ωV(x) =
∑

i

gi(x)dxi (56)

where gi(x) := − 1
2

∑
j F

V
ij (0)xjdxi + hi ∈ C∞(U,End(V)) and also gi = O(| x |).

Plugging the equations (55) and (56) into (53), we find that:

ωE =
∑

i


1

4

∑

j;k<l

Rijkl(0)xjckcl +
∑

k<l

fikl(x)ckcl + gi(x)


 dxi

where fikl(x) ∈ C∞(U) is O(| x |2) and gi(x) ∈ C∞(U,End(V)) is O(| x |). Since ∇E
i s = ∂is + ωE(∂i)s, the

lemma follows. 2

16.4. u-scaling. We will let U be a neighbourhood of 0 in R2m which maps diffeomorphically onto a geodesi-
cally convex neighbourhood of a fixed point a ∈ M , where M is a spin manifold of dimension 2m. This U is
to be thought of as the same U encountered in all the Lemmas of the last subsection. Then, for x ∈ U , we will
have u1/2x ∈ U for all u ∈ (0, 1].

Definition 16.4.1 (The scaling operators). Let u ∈ (0, 1]. For a smooth section

α ∈ C∞((0,∞) × U,ΛiC(R2m∗) ⊗ End(V))

where V is a fixed complex vector space, define the operator:

δu(α) = u−i/2α(ut, u1/2x)

For an operator

T : C∞((0,∞) × U,Λ∗
C(R2m∗) ⊗ End(V)) → C∞((0,∞) × U,Λ∗

C(R2m∗) ⊗ End(V))

define the operator δuTδ
−1
u , which may often be denoted as Tu, by

δuTδ
−1
u α = δu(T (δ−1

u α))

Lemma 16.4.2. We have the following identities:

δuφ(x)δ−1
u = φ(u1/2x) for φ ∈ C∞(U)

δu∂tδ
−1
u = u−1∂t

δu∂iδ
−1
u = u−1/2∂i

δue(ω)δ−1
u := δu(ω ∧ (−))δ−1

u = u−1/2e(ω) for ω ∈ R2m∗

δui(ω)δ−1
u := δu(ωy (−))δ−1

u = u1/2i(ω) for ω ∈ R2m∗

Proof: If φ(x) ∈ C∞(U) is regarded as the operator of multiplication, then for α ∈ C∞((0,∞)×U,Λi(R2m∗)⊗
End(V)) we have:

[δuφ(x)δ−1
u (α)](t, x) = δu(φ(x)(ui/2α(u−1t, u−1/2x)

= u−i/2φ(u1/2(x))ui/2α(uu−1t, u1/2u−1/2t)

= φ(u1/2(x))α(t, x)

which proves the first identity. The next two are similar. For the fourth one, note:

[δue(ω)δ−1
u (α)](t, x) = δu(ω ∧ ui/2α(u−1t, u−1/2x) = u

−i−1
2 ui/2ω ∧ α(t, x) = u−1/2(e(ω)α)(t, x)

Similarly the last identity, since i(ω) reduces degree in Λ∗. 2
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Remark 16.4.3. We have defined the scaling δu(−)δ−1
u on 1-forms ω on U , viewed as endomorphisms e(ω) or

i(ω) of Λ∗
C
(R2m)⊗V. Our aim is to deform the Dirac Laplacian over U into the generalised harmonic oscillator

by letting the scaling factor u → 0.

We note here that in the local formula for ∇E
i derived in Lemma 16.3.2, the terms involving ck, cl signify

Clifford multiplication by ek and el, regarded as endomorphisms of S(M)a. That is, as elements of Cl(M)a =
EndC(S(M)a). Thus ckcl in not a nilpotent endomorphism, and the hope is that after scaling, it will become
a nilpotent endomorphism, indeed the element ek ∧ el in A = Λ∗

C
(T ∗Ma). That this is indeed the case is the

content of the next lemma.

Lemma 16.4.4 (The u-scaling on Cl2m). Note that the constant section ei on U corresponds to the endo-
morphism ei.(−) in EndC(S2m) = Cl2m. If one identifies Cl2m with the full exterior algebra Λ∗

C
(R2m), then ei

maps to ci = e(ei) − i(ei). The scaled Clifford section ci, by definition in Lemma 16.4.2, is:

δu(ci)δ
−1
u = δu(e(ei) − i(ei))δ

−1
u = u−1/2e(ei) − u1/2i(ei)

Now we may extend this definition all over Cl2m by setting:

δu(c1.c2)δ
−1
u = (δuc1δ

−1
u )(δuc2δ

−1
u )

since Clifford multiplication in Cl2m corresponds to composition of maps in EndC(S2m). Then we have:

(i): If c is a homogeneous element in Cl2m, that is c =
∑

|I|=k aIcI , where cI denotes the Clifford product

ci1 .ci2 ...cik in Cl2m, we have:

δucδ
−1
u = u−k/2[e(σ(c)) +O(u)] = u−k/2[σ(c) ∧ (−) +O(u)]

where σ is the symbol map.

(ii): For any c =
∑

|I|≤k fI(x)cI ∈ Cl(U), where fI ∈ C∞(U), and with leading homogeneous term of degree

k. Then
lim
u→0

ukδucδ
−1
u =

∑

|I|=k
fI(0)(eI ∧ (−))

Proof: We first prove (i). Let {ei} denote an orthonormal frame for T ∗(R2m), and let c(x) =
∑

|I|=k aI(x)cI
be homogeneous of degree k. Then, by definition, Then:

(δucδ
−1
u )(x) =

∑

|I|=k
aI(u

−1/2e(ei1) − u1/2i(ei1)).(u
−1/2e(ei2) − u1/2i(ei2))....(u

−1/2e(eik) − u1/2i(eik))

= u−k/2(
∑

I

aI e(ei1 ∧ ei2 ∧ ...eik) + (terms with uj with j ≥ −k/2 + 1)

= u−k/2(e(σ(c)) +O(u))

Now (ii) follows immediately from (i). 2

Proposition 16.4.5. Let M be a spin manifold of dimension 2m, and D : C∞(M, E) → C∞(M, E) be the
Dirac operator on the Dirac bundle E = S(M) ⊗ V. For each a ∈ M , there exists a coordinate chart U around
a, and framings of S, V and T ∗M such that:

(i): The rescaled covariant derivative ∇E,u := δu∇E
i δ

−1
u is given by:

∇E,u
i = u−1/2


∂i +

1

4

∑

j

Rijxj + ρ(u)




where Rij =
∑
k<lRijkl(a)ek∧el is the curvature 2-form (as an endomorphism of Λ∗

C
(T ∗
aM)), Rijkl being

the Riemann curvature tensor of M at a, and ρ(u) ∈ End(Va) is O(u1/2).
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(ii): The rescaled Dirac Laplacian is given by:

u(Du)2 := u(δuDδ
−1
u )2 = −

2m∑

i=1


∂i +

1

4

2m∑

j=1

Rijxj




2

+ F + g(u)

where F = ΩV(a) is the curvature 2-form of V at a, and g(u) ∈ End(Va) = O(u1/2).

(iii): The limit as u → 0 of u(Du)2) is given by:

lim
u→0

u(Du)2 = −
2m∑

i=1


∂i +

1

4

2m∑

j=1

Rijxj




2

+ F

the right hand side being exactly the generalised harmonic oscillator introduced in Proposition 16.1.7

Proof: We note that by the Lemma 16.3.2, and with the geodesically convex neighbourhood U of a and
synchronous framings of T ∗M and V constructed there, we have a = (0, .., 0) and:

∇E
i = ∇E

∂i
=

∂

∂xi
+

1

4

∑

j; k<l

xjRijkl(0)ckcl +
∑

k<l

fikl(x)ckcl + gi(x)

where:

Rijkl = 〈R(∂i, ∂j)ek, el〉 = Riemann curvature tensor of M

fikl(x) ∈ C∞(U), with fikl(x) = O(| x |2)
gi(x) ∈ C∞(U,EndC(V)) = C∞(U,EndCl(M)(E)) with gi = O(| x |)

Now, by the previous Lemma 16.4.2, δu∂iδ
−1
u = u−1/2∂i.

Next, since Rij :=
∑
k<lRijkl(0)ckcl ∈ End(Ea) = End(S2m) ⊗ End(Va) ' Cl(M)a ⊗ End(Va) = Λ∗T ∗

aM) ⊗
End(Va), so we have

δuckclδ
−1
u = u−1(ek ∧ el +O(u))

by (i) of the Lemma 16.4.4. On the other hand δuxjδ
−1
u = u1/2xj by the same Lemma. Thus :

δu(
∑

j

Rijxj)δ
−1
u = δu


∑

j; k<l

Rijkl(0)xjckcl


 δ−1

u = u−1/2(
∑

j

Rijxj + h(u))

where h(u) = O(u) and Rij :=
∑
k<lRijkl(0)ek ∧ el.

Since fikl(x) ∈ C∞(U) and O(| x |2), we have δufiklδ
−1
u = fikl(u

1/2x) = O(u). On the other hand we
observed above that δu(ckcl)δ

−1
u = u−1(ek ∧ el +O(u)). Thus

δufikl(x)ckclδ
−1
u = O(1)

Finally, since gi(x) ∈ End(V)x is O(| x |), we have:

δugiδ
−1
u = gi(u

1/2x) = O(u1/2)

Thus we write

ρ(u) := u1/2δu

(∑

k<l

fiklckcl + gi

)
δ−1
u + h(u)

and by the foregoing, we have ρ(u) = O(u1/2), and

δu∇E,u
i δ−1

u = u−1/2


∂i +

1

4

∑

j

Rijxj) + ρ(u)




with ρ(u) = O(u1/2). This proves (i).
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To see (ii), we use the formula for the Dirac Laplacian derived in Corollary 15.4.6, viz.

D2 = ∇E∗∇E +
1

2
ΩE = ∇E∗∇E +

1

4
k + ΩV

where ΩV is the curvature operator of V. Also, in the proof of the Corollary 15.4.8 and Lemma 12.2.4, we have
seen that the first term is:

∇E∗∇E = ∆E = −
∑

i,j

gij(∇E
i ∇E

j − ∇E
∇∂i

∂j
) = −

∑

i,j

gij(∇E
i ∇E

j −
∑

k

Γkij∇E
k)

where Γkij are the Christoffel symbols of the Riemannian metric on M with respect to the basis ∂i. Since

gij(a) = δij , we have gij(x) = δij + hij(x), where hij(x) = O(| x |).

Similarly, since ∇∂i
∂j(a) = ∇ei

ej = 0 for all i, j, we have Γkij(x) = O(| x |) by choice of synchronous framing
of T ∗M on U . Thus we may write:

∇E∗∇E = −
∑

i

∇E
i ∇E

i + (
∑

i,j

hij(x)∇E
i ∇E

j + gijΓ
k
ij∇E

k)

Thus, using (i) above, we have:

uδu(∇E∗∇E)δ−1
u = −

∑

i

(u1/2δu∇E
i δ

−1
u )2 +

∑

i,j

hij(u
1/2x)(u1/2δu∇E

i δ
−1
u )(u1/2δu∇E

j δ
−1
u )

+ u1/2gij(u
1/2x)Γkij(u

1/2x)(u1/2δu∇E
kδ

−1
u )

= −
∑

i


∂i +

1

4

∑

j

Rijxj + ρi(u)




2

+
∑

i,j

hij(u
1/2x)

(
∂i +

1

4

∑

l

Rilxl + ρi(u)

)(
∂j +

1

4

∑

l

Rjlxl + ρj(u)

)

+ gij(u
1/2x)Γkij(u

1/2x)

(
∂k +

1

4

∑

l

Rklxl + ρk(u)

)

Since ρi(u) = O(u1/2), hij(u
1/2x) = O(u1/2) and Γkij = O(u1/2), we have finally:

uδu(∇E∗∇E)δ−1
u = −

∑

i


∂i +

1

4

∑

j

Rijxj




2

+ δ(u) (57)

where δ(u) = O(u1/2).

Note that

uδukMδ
−1
u = uk(u1/2x) = ε(u) = O(u1/2) (58)

Finally, reverting to the Corollary 15.4.6, we have that

ΩV(s⊗ σ) = RV(s⊗ σ) =
∑

i<j

cicjs⊗ ΩV
ijσ

where ΩV
ij(x) = ΩV(ei, ej)(x) is the curvature endomorphism of Vx. Thus again appealing to (i) of Lemma

16.4.4:

uδuΩ
Vδ−1
u = u

∑

i<j

(δucicjδ
−1
u ΩV

ij(u
1/2x)

= u
∑

i<j

(u−1(ei ∧ ej +O(u))(ΩV
ij(0) +O(u))

=
∑

i<j

ΩV(0)(ei ∧ ej) + γ(u) = F + γ(u) (59)
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where γ(u) = O(u1/2), and F =
∑
i<j ΩV

ij(0)ei ∧ ej is the curvature endomorphism of V at a = 0.

Adding together the equations (57), (58) and (59), we arrive at (ii), with g(u) := δ(u) + ε(u) + γ(u) being
O(u1/2).

(iii) is immediate from (ii). The proposition follows. 2

Now we need to construct the u-scaled heat kernel for the u-scaled heat operator e−tuDu 2

. To this end, we
have the following:

Proposition 16.4.6. Let E → M be a Dirac bundle on the spin manifold M of dimension 2m, and D the
associated Dirac operator. Let k(t, x) be the fundamental solution for the heat operator of the Dirac laplacian:

e−tD2

: C∞(M, E) → C∞(M, E)

with pole at (a, IE) (as discussed in Proposition 16.2.3). Note that for each t, k(t, x) is a smooth section of
End(E) = Λ∗

C
T ∗M ⊗ EndCV. For x ∈ U , where U is the neighbourhood of a defined in Lemma 16.3.2 and its

sequel, set
r(u, t, x) := um(δuk)(t, x)

Then

(i):
(∂t + u(Du)2)r(u, t, x) = 0 for t ∈ (0,∞) x ∈ U

(ii): Denoting the identity map Id : Ea → Ea by Ia, we have:

lim
t→0

r(u, t, x) = δaIa

That is, r(u, t, x) is the fundamental solution for the heat equation of the (scaled) elliptic operator uDu 2 on
the neighbourhood U , with pole at (a, Ia).

Proof: We first check (i). Note that by Lemma 16.4.2 and that ∂tk = −D2k, we have:

∂t(r(u, t, x)) = ∂t(u
m(δuk)(t, x)) = um+1[(u−1∂t)δuk](t, x)

= um+1[(δu∂tδ
−1
u )(δuk)](x, t)

= um+1[δu∂tk](t, x) = um+1[δu(−D2k)](t, x)

= −um+1[(δuD
2δ−1
u )(δuk)](t, x) = −[u(Du)2(umδuk)](t, x) = −u(Du)2r(u, t, x)

This proves (i).

To see (ii), we note that by our asymptotic expansion for k(t, x), we have, denoting δ(x, a) =| x |:
k(t, x) ∼ (4πt)−m exp(− | x |2 /4t)[k0(x) +

∑

i≥1

ki(x)t
i]

where k0(a) = Ia. Then note that:

r(u, t, x) = um[δuk](t, x) = um(4πtu)−m exp(− | u1/2x |2 /4ut)[k0(u
1/2x) +

∑

i≥1

(ut)iδuki]

= (4πt)−m exp(− | x |2 /4t)[k0(u
1/2x) +

∑

i≥1

(ut)iδuki]

Now as t → 0, the euclidean heat kernel (4πt)−m exp(− | x |2 /4t) → δa. So the first term of the series on the
right has the limit we want, viz.

lim
t→0

(4πt)−m exp(− | x |2 /4t)k0(u
1/2x) = δak0(a) = δ0Ia

The other terms of course tend to 0 because they involve strictly positive powers of t. This proves (ii), and the
proposition. 2
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The relation of the fundamental solution r(u, t, x) to k(t, x) naturally implies a relation between their
asymptotic expansions. More precisely:

Proposition 16.4.7. Let U be a neighbourhood of a = 0 as in the last proposition. Let us denote the fibres
E0 =: E, V0 =: V , and the smooth function in C∞((0,∞) × U)

qt(x) := (4πt)−m exp(−δ(x, a)2/4t)
There exist Λ∗(R2m∗) ⊗ End(V )-valued polynomials γi(t, x) on (0,∞) × U such that:

r(u, t, x) ∼ qt(x)

∞∑

i=−2m

ui/2γi(t, x)

satisfying: ∥∥∥∥∥∂
j
t ∂

α
x (r(u, t, x) −

N∑

i=−2m

ui/2γi(t, x)

∥∥∥∥∥
∞

≤ C(N, j, α)uN

where ‖−‖∞ is the supremum norm on U . Furthermore, γi(0, 0) = 0 for i 6= 0, and γ0(0, 0) = IE .

Proof: By (iii) of the Proposition 12.3.5, we have the asymptotic expansion:

k(t, x) ∼ qt(x)

∞∑

i=0

tiki(x)

where each ki(x) ∈ C∞(U,EndC(E) = C∞(U,Λ∗
C
(R2m∗) ⊗ EndC(V )), and k0(0) = IV . The symbol “∼” means

that for the partial sum of the series on the right upto i = l we have a sup-norm estimate:
∥∥∥∥∥k(t, x) − qt(x)

l∑

i=0

ki(x)t
i

∥∥∥∥∥
∞

≤ Clt
N for all l > N + 2m, t ∈ (0, T ]

where the sup-norm is over U .

First we want to replace the smooth ki(x) by polynomials ψi(x) with coefficients in Λ∗(R2m∗) ⊗ EndC(V ).
Note that :

rke−r2/4t ≤ Ckt
k/2 for all r ∈ [0,∞)

which implies that:

‖x‖k e−‖x‖2/4t ≤ Ckt
k/2 for all x ∈ R2m

Thus, if we define the polynomials ψi(x) to be the Taylor polynomial of ki(x) of order 2(N +m− i), then by
Taylor’s theorem

| ki(x) − ψi(x) |≤ Ai ‖x‖2N+2m−2i
for x ∈ U

so that for some constants Bi independent of x and t:
∣∣∣∣∣qt(x)

l∑

i=0

ti(ki(x) − ψi(x))

∣∣∣∣∣ ≤
l∑

i=0

Aiqt(x) ‖x‖2N+2m−2i
= (4π)−m

l∑

i=0

Bit
−mtie−‖x‖2/4t ‖x‖2N+2m−2i ≤ CtN

Thus ∥∥∥∥∥k(t, x) − qt(x)

l∑

i=0

tiψi(x)

∥∥∥∥∥
∞

≤ Clt
N for all l > N + 2m, t ∈ (0, T ]

and now ψi(x) are polynomials in x with coefficients in EndC(E) = Λ∗
C
(R2m∗) ⊗ EndC(V ).

For an element of Λ∗
C
(R2m∗) ⊗ EndC(V ), let us denote the by α[p] the component of α in the summand

Λp(R2m∗) ⊗ EndC(V ).

Then the last sup-norm inequality above implies sup-norm inequalities for each p-component, viz.
∥∥∥∥∥k(t, x)[p] − qt(x)

l∑

i=0

ti(ψi(x))[p]

∥∥∥∥∥
∞

≤ Clt
N for all l > N + 2m, t ∈ (0, T ]
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which implies, on multiplying both sides by um−p/2, and resetting x 7→ u1/2x (which maps U to itself) and
t 7→ ut that:∥∥∥∥∥u

mu−p/2k(ut, u1/2x)[p] − umu−p/2qut(u
1/2x)

l∑

i=0

(ut)i(ψi(u
1/2x))[p]

∥∥∥∥∥
∞

≤ um−p/2Cl(ut)
N

for all l > N + 2m, t ∈ (0, T ],

Since umu−p/2k(ut, u1/2x) = umδuk(t, x)[p] = r(u, t, x)[p], and umqut(u
1/2x) = qt(x), the last inequality can be

rewritten as:∥∥∥∥∥r(u, t, x)[p] − u−p/2qt(x)
l∑

i=0

(ut)i(ψi(u
1/2x))[p]

∥∥∥∥∥
∞

≤ um−p/2+NClt
N for all l > N + 2m, t ∈ (0, T ]

We need to let l → ∞, and arrange the sum in the norm signs on the left hand side in powers of u. Note that
since ψi are polynomials, they will contribute non-negative powers of u1/2, so that uj/2 will be contributed
only by terms from i = 0 to i = j/2 + p/2, and j/2 will run from −p/2 onwards.

So define:

(γj)[p](x, t) := coefficient of uj/2 in u−p/2
j/2+p/2∑

i=0

(ut)iψi(u
1/2x)[p]

and rewrite the last inequality above for the particular value l = (j + p)/2 as:
∥∥∥∥∥∥
r(u, t, x)[p] − qt(x)

j+p∑

i=−p
ui/2γi(t, x)[p]

∥∥∥∥∥∥
∞

≤ um−p/2+NCjt
N for all (j+ p)/2 > N +2m, t ∈ (0, T ], u ∈ (0, 1]

Set γi(t, x) :=
∑2m
p=0 γi(t, x)[p], and note that p/2 ≤ m for all p, we have (j + p)/2 > N + 2m ⇔ j/2 − m >

N +m− p/2 = N ′ will be satisfied if we choose j > 2N ′ +2m. Replacing N ′ = N +m− p/2 by N , and noting
that tN is bounded on (0, T ], we then have the inequality:

∥∥∥∥∥r(u, t, x) − qt(x)

2N+2m∑

i=−m
ui/2γi(t, x)

∥∥∥∥∥
∞

≤ CuN for all N, t ∈ (0, T ] (60)

A similar argument maybe given for the derivatives ∂αi ∂
β
t r(u, t, x), which is omitted.

Now for the final statement about γi(0, 0). Since by definition

∞∑

j=−m
uj/2γj(x, t) =

∞∑

j=−m

2m∑

p=0

uj/2(γj)[p](x, t)

=

2m∑

p=0

∞∑

i=0

u−p/2(ut)iψi(u
1/2x)[p]

=

2m∑

p=0

(δuψ[p])(t, x) = δuψ(t, x)

where we define:

ψ(t, x) :=

∞∑

i=0

tiψi(x)

Now note that by the above definition,

(δuψ)(0, 0) =

∞∑

i=0

(u.0)iδuψi(0) = ψ0(0) = I0

Thus
∞∑

j=−m
uj/2γj(0, 0) = δuψ(0, 0) = I0
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which shows that γj(0, 0) = 0 for j 6= 0, and γ0(0, 0) = I0. This proves the proposition. 2

Now we can combine the Propositions 16.1.7, 16.4.5, 16.4.6 16.4.7 to deduce the following corollary.

Corollary 16.4.8. In the u-expansion

r(u, t, x) ∼ qt(x)

∞∑

j=−m
uj/2γj(t, x)

deduced in the last proposition, we have γj(t, x) ≡ 0 for j < 0. That is, the Laurent expansion in u1/2 of
r(u, t, x) about 0 has no poles. Secondly, qt(x)γ0(t, x) is a formal fundamental solution to the heat equation
for the generalised harmonic oscillator H in Mehler’s formula of 16.1.7 with pole at (0, I0). That is,

qt(x)γ0(t, x) = (4πt)−mj(tR)−1/2 exp

(−1

4t
〈x|(tR/2) coth(tR/2)|x〉

)
exp(−tF )

where R is the nilpotent matrix
∑
i<j Rijei ∧ ej ∈ Λ2(R2m∗).

Proof: By the Proposition 16.4.6 we have:

(∂t + u(Du)2)r(u, t, x) = 0 for t > 0, x ∈ U

Let γ−s(t, x) be the first term in the series r(u, t, x) = qt(x)
∑
j=−m u

j/2γj(t, x) which is not identically zero.

Since all space and time derivatives of r(u, t, x) are uniformly approximated on U upto an arbitrarily large
power of u by the space and time derivatives of some partial sum of the asymptotic series above (by Proposition
16.4.7 above), and the γi(t, x) are polynomials in t and x, it follows that the asymptotic series is a formal power
series solution to the scaled heat equation (∂t + u(Du)2, that is:

(∂t + u(Du)2)(qt(x)

∞∑

j=−s
(uj/2γj(t, x)) = 0

Denoting by H := −∑2m
i=1(∂i + 1/4

∑
j Rijxj)

2 +F the generalised harmonic oscillator introduced earlier, and

noting that by (ii) of Proposition 16.4.5 we have:

u(Du)2 = H +O(u1/2)

we have:

(∂t +H +O(u1/2))(qt(x)

∞∑

j=−s
(uj/2γj(t, x)) = 0

as an identity or formal power series in u. Since the lowest power of u occurring on the right is from the first
non-vanishing term of the formal series, we have

(∂t +H)(u−s/2qt(x)γ−s(t, x)) = 0

as an identity in (t, x). It follows that

(∂t +H)(qt(x)γ−s(t, x)) = 0

is a solution to the heat equation. That is, qt(x)γ−s(t, x) is a formal solution to the heat equation for the
generalised harmonic oscillator. From the Proposition 16.1.7, it follows that this solution is determined by its
initial value at (t, x) = (0, 0). But, from the Proposition 16.4.7, we have seen that γs(0, 0) = 0 for s 6= 0. It
follows that γ−s(t, x) ≡ 0 for all s > 0. The first assertion follows.

For the second assertion, the above reasoning shows that we have

(∂t +H)(qt(x)γ0(t, x)) = 0

with γ0(0, 0) = I0 by the last statement of Proposition 16.4.7. Since the fundamental solution for this harmonic
oscillator is unique, and

pt(x) = (4πt)−mj(tR)−1/2 exp

(−1

4t
〈x|(tR/2) coth(tR/2)|x〉

)
exp(−tF )

satisfies the same equation, with p0(0) = I0, we have the second assertion. The proposition follows. 2
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16.5. The Index Theorem.

Theorem 16.5.1 (Atiyah-Singer). Let M be a compact spin manifold of dimension 2m, and let E = S(M)⊗V
be a Dirac bundle on it, where S(M) → M is the spin bundle on M , with its unitary spin connection ∇S), V a
twisting complex vector bundle with a unitary connection ∇V on it, and the Clifford connection ∇E the tensor
product connection of ∇S and ∇V . Then the index of the Dirac operator D+ : C∞(M, E+) → C∞(M, E−) is
given by the formula:

ind(D+) =

∫

M

Â(M) ∧ ch(V)

Proof: By the Proposition 16.2.3 we have:

indD+ =

∫

M

strEkt(a, a)dV (a) = (4π)−m
∫

M

strEkm(a)dV (a)

where we have expanded asymptotically:

kt(x, a) ∼ (4πt)−m exp(δ(x, a)2/4t)

∞∑

i=0

tiki(x) (61)

By the Proposition 16.4.7 we have a neighbourhood U of a = 0 such that on U

r(u, t, x) = umδukt(x, 0) = um
2m∑

p=0

u−p/2k(ut, u1/2x)[p] =

2m∑

p=0

um−p/2k(ut, u1/2x)[p] (62)

Denote Ea = E0 = E, Sa = S, and Va = V .

By the Lemma 14.5.2, 16.2.3 we have

strE(α⊗ F )dV (a) = (−2i)mT (α)trV dV (a) = (−2i)mtrV ((α⊗ F )[2m])

where (α⊗ F ) is to be regarded as a differential form with coefficients in End(E) = Λ∗(R2m∗) ⊗ End(V ), and
trV is applied to these coefficients, and the 2m-component applies to α. In particular, for any element r in
End(E) = Λ∗(R2m∗) ⊗ End(V ), we have:

strE(k) = strEk[2m]

Applying this to the equation (62) above, and using the Corollary 16.4.8 we find that:

strEk(ut, 0) = strEk(ut, 0)[2m] = strEr(u, t, 0) = qt(0)strE




∞∑

j=0

uj/2γj(t, 0)


 (63)

On the other hand we have from (61) and Proposition 16.2.3 that scaling time by u does not affect the
integral over M , since only the time independent term qt(a)km(a) contributes to the integral. That is,

∫

M

strEkt(a, a)dV (a) =

∫

M

strE(qt(a)t
mkm(a))dV (a)) =

∫

M

(qut(a)(ut)
mkm(a))dV (a)

=

∫

M

strEkut(a, a)dV (a) for all u ∈ (0, 1], t ∈ (0, T ]

In particular, by substituting (63) into this relation, and noting that k(t, 0) = kt(a, a) by definitions, we have:
∫

M

strEkt(a, a)dV (a) = lim
u→0

∫

M

strEkut(a, a)dV (a) = lim
u→0

∫

M

strEk(ut, 0)dV (a)

= lim
u→0

∫

M

strEr(u, t, 0)dV (a) =

∫

M

strEqt(0)γ0(t, 0)dV (a)
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Since the left hand side is independent of t, we can evaluate the right hand side at t = 1. From the Corollary
16.4.8,

q1(0)γ(1, 0) = (4π)−mj(R)−1/2 exp(−F )

where R =
∑
ij Rijei ∧ ej is the nilpotent curvature form with Rij = 1

2Rijkl(a)ckcl, and F =
∑
i<j ΩV

i<jei ∧ ej
is the curvature form, (being regarded as a (dim V × dim V )-matrix whose entries are 2-forms, i.e. in the
nilpotent algebra A = Λ∗

C
(R2m∗)). By the Lemma 14.5.2, we have therefore:

strE(q1(0)γ(1, 0))dV = (4π)−m(strE(j(R)−1/2 exp(−F )) = (−2i)m(4π)−mtrV (j(R)−1/2 exp(−F ))[2m]

= (2πi)−m
(
trV (j(R)−1/2 exp(−F )

)
[2m]

where R = R0 = Ra, and F = F0 = Fa.

Now j(Ra)
−1/2 =

[
det
(

Ra/2
sinh Ra/2

)]1/2
is by definition the element Â(M)(a) =

∑2m
p=0 Â(M)[p](a) ∈ Λ∗

C
(M).

Similarly, the Chern character of V is defined by

ch(V)(a) =

2m∑

p=0

ch[p](V) = (2πi)−mtrVa
(exp(−F (a)))

so that

(2πi)−m
(
trV (j(R)−1/2 exp(−F )

)
[2m]

= Â(M) ∧ ch(V)[2m]

and so

ind(D+) =

∫

M

Â(M)ch(V)[2m] =:

∫

M

Â(M)ch(V)

and the theorem follows. 2

Corollary 16.5.2 (Atiyah-Singer). Let M be a compact spin manifold of dimension 2m. Then, for the Dirac
operator DS of the spin bundle S (called the Atiyah-Singer operator), we have:

ind(DS) = Â-genus of M :=

∫

M

Â(M)

Proof: Set E = S, and V = M × C, the trivial bundle of rank 1, whose chern character is 1, and apply the
Theorem 16.5.1 above. 2

Corollary 16.5.3 (Lichnerowicz). Let M be a compact spin manifold of everywhere strictly positive scalar

curvature. Then the Â- genus of M is zero.

Proof: By the Corollary 15.4.5, there are no harmonic spinors on M , i.e. dim ker DS = 0. In particular both

D+ and D− have vanishing kernels, so indD+ = 0. This implies Â(M) = 0 by the Corollary 16.5.2 above. 2

17. Some Consequences of the Index Theorem

Definition 17.0.4 (L-class). Let R =
∑
i<j Rijei ∧ ej denote the curvature form of an oriented Riemannian

manifold M of dimension 4m. Define the L-class of M to be

L(M) = (−2π)−m
(

det

(
R/2

tanh R/2

))1/2

We note that the justification for taking the square root of the determinant is identical to the one we had for

the Â(M) class, see Definition 16.1.6. Its top degree component, viz. L(M)[4m] turns out to be a polynomial
in the Pontragin forms of M , called the Hirzebruch L-polynomial.
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Theorem 17.0.5 (Hirzebruch Signature). Let M be a compact oriented manifold of dimension 4m. Then the
cup product pairing:

∪ : H2m(M,R) ⊗H2m(M,R) → R

is symmetric, and its signature is a homotopy invariant of M called the signature of M , and denoted σ(M).
There is the following integral formula:

σ(M) =

∫

M

L(M)[4m]

Proof: We first note that there is the chirality operator τ4m which acts on E := Cl(M) = Λ∗
C
(T ∗M), and

decomposes it into the ±1-eigenbundles E±. With its Levi-Civita connection, we know by 15.1.8 and 15.2.8
that this gives it the structure of a Dirac bundle, and indeed, in the proof of Bochner’s theorem 15.4.7, we saw
that the Dirac operator D = d+ δ. We just need to (a) show that the index of D is the signature σ(M), and
(b) identify the integrand which is the supertrace strE(kt(a, a))dV (a).

In (v) of Lemma 14.1.7, we showed that

τ4mφ = ip+k(8m+k−1)(∗φ) for φ ∈ Λk

where p =
[
4m+1

2

]
= 2m. Thus

τ4m = ε(k) ∗ on Λk where ε(k) := (−1)m+k(k−1)/2

In particular τ4m is a real operator on Λ∗
C
(T ∗M), and for the middle dimension m + 2m(2m − 1)/2 = m +

m(2m− 1) = 2m2, so τ4m agrees with ∗ on Λ2m. Hence we have:

Λ+
C
(T ∗M) = ⊕0≤k≤2m(1 + ε(k)∗)ΛkC(T ∗M) = ⊕2m≤k≤4m(1 + ε(k)∗)Λ4m−k

C
(T ∗M)

Λ−
C

(T ∗M) = ⊕0≤k≤2m(1 − ε(k)∗)ΛkC(T ∗M) = ⊕2m≤k≤4m(1 − ε(k)∗)Λ4m−k
C

(T ∗M)

We know that D(τ4mω) = −τ4mDω, since ∇Xτ4m = i2m∇Xω4m = 0 and τ2m anticommutes with ei in the
Clifford algebra. Hence

D ◦ ∗ = (±1) ∗ ◦D
From this it follows that ω ∈ Λk(M,C) is a form in the kernel of D2 = dδ + δd = ∆, iff ∗ω ∈ Λ4m−k(M,C) is
in the kernel of D2 = ∆ as well. Denoting the harmonic forms in Λk(M,C) by Hk, the above decompositions
imply that for ∆+ = D−D+ and ∆− = D+D− we have:

ker(∆+) = ⊕0≤k≤2m(1 + ε(k)∗)Hk

ker(∆−) = ⊕0≤k≤2m(1 − ε(k)∗)Hk

Now, for 0 ≤ k < 2m, since ∗ maps Hk isomorphically to the space H4m−k with Hk ∩ H4m−k = {0}, we see
that (1 + ε(k)∗)Hk and (1 − ε(k)∗)Hk are isomorphic for 0 ≤ k < 2m.

For k = 2m, we have ε(2m) = 1, and (1±ε(2m)∗)H2m are precisely the (±1)-eigenspaces of ∗ : H2m → H2m.
By the Hodge theorem, these are precisely the (±1)-eigenspaces of the star operator ∗ on H2m(M,C). Call
them H2m

± . Since:

〈α ∪ β, [M ]〉 =

∫

M

α ∧ β

it follows that the cup product pairing is positive definite (resp. negative definite) on the space H2m(M,R)+

which is the real form of H2m+ (since ∗ is a real operator) (resp. H2m(M,R)−, the real form of H2m−). Thus

ind(D+) = dimC(ker ∆+) − dimC(ker ∆−) = dimC H
2m+ − dimC H

2m−

= dimR H
2m(M,R)+ − dimR H

2m(M,R)− = σ(M)

Now it remains to identify the integrand. Since every manifold is locally spin, say on some coordinate chart
U , and so we have the identification:

Cl(M)|U = S(M)|U ⊗ S(M)|U

by (i) in Example 15.1.10. We need to apply the Atiyah-Singer theorem to get the local integrand, with V = S.
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We already know Â(M) =
[
det
(

R/2
sinh (R/2)

)]1/2
where R is the curvature operator. We need to compute

trV(exp(−F )) = trS(exp(−F ))

where F is the curvature form of S with respect to the connection ∇V = ∇S , i.e. the spin connection on S. We
have already seen that F = −R as elements of Λ2 ⊗ so(2m) ' Λ2 ⊗C2. So we need a formula for trS(exp(R)).
Note that R is a skew-symmetric 2m× 2m-matrix of 2-forms since the spin connection is unitary.

Since we are at a point a ∈ M , we replace Sa by S2m. First assume R ∈ EndC(S2m) is a skew-symmetric ma-
trix with real scalar entries, instead of 2-form entries. If we find a power series representation for trS2m

(exp(R))
in this case, then we can use the same power series representation when R has entries in Λ2

C
, since R would

then be nilpotent. (The same principle we applied in the proof of the Proposition 16.1.7).

First note that as a Cl2m-module by left multiplication, Cl2m breaks up into 2m identical copies of S2m, by
(i) of Proposition 14.4.1. Thus for an endomorphism R ∈ EndC(S2m) = Cl2m, we have:

trS(exp(R)) = 2−mtrCl2m
(exp(R))

Suppose R ∈ Cl2m is of the special block-diagonal form:

R = t1e1e2 + t2e3e4 + ...+ tme2m−1e2m

Then, since e2j−1e2j commutes with e2k−1e2k for j 6= k, we have:

exp(R) = exp(t1e1e2) exp(t2e3e4)... exp(tme2m−1e2m)

We have already seen in the proof of (v) in Proposition 13.2.2 that

exp(tje2j−1e2j) = cos tj .I + sin tje2j−1e2j

Note that e2j−1e2j acts as a skew symmetric matrix on the plane spanned by e2j−1 and e2j , and a skew-
symmetric matrix on the span of 1 and e2j−1e2j , and off-diagonal on all the rest of Cl2m. Thus it contributes
nothing to the trace of R. Similar reasoning applies to any product of distinct doublets e2j−1e2j . Thus one
sees that:

trCl2m
exp(t1e1e2) exp(t2e3e4)... exp(tme2m−1e2m) = trCl2m

cos t1 cos t2.... cos tmI = 22m
m∏

j=1

cos tj

Now the endomorphism R = t1e1e2 + t2e3e4 + ...tme2m−1e2m) is in C2(V ) = Lie Spin(2m) ' so(2m), and is
identified with the matrix with 2 × 2-blocks of the form:(

0 −2tj
2tj 0

)

whose eigenvalues are ±
√

−1(2tj). Thus cosh R/2 has eigenvalues cosh(±
√

−1tj) = cos tj . Hence det cosh R/2 =∏m
j=1 cos2 tj . As a consequence, we find that for R of the block diagonal form above:

trS2m
(exp(R)) = 2−mtrCl2m

(exp(R)) = 2−m22m (det cosh R/2))
1/2

= 2m (det coshR/2)
1/2

Now we can assert the same formula for any skew-symmetric 2m×2m-matrix by choice of suitable orthonormal
basis e1, ..., e2m, since both quantities of the equation above are unaffected by such a change.

Thus

Â(M) ∧ ch(V) = (2πi)−2m2m
[
det

(
R/2

sinhR/2

)
det (coshR/2)

]1/2
= (−2π)−m

[
det

(
R/2

tanh R/2

)]1/2
= L(M)

and we have the signature theorem

σ(M) =

∫

M

L(M)

from the Atiyah-Singer Theorem 16.5.1. 2
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We recall the definition of the Pfaffian of a 2m× 2m skew-symmetric real matrix A. We note that there is
a polynomial of degree m in the entries of A called the Pfaffian of A, and which satisfies:

(Pf(A))2 = det A

The easiest way to write an explicit formula for the Pfaffian in the entries of A is to note that by an orthogonal
transfomation we can bring A into a normal block diagonal form with m 2 × 2-blocks each of the kind:

(
0 −ai
ai 0

)

Then the Pfaffian is just
∏m
i=1 ai = (det A)1/2. If we define the 2-form associated with a skew-symmetric

matrix A, viz. ωA :=
∑
i<j Aijei ∧ ej then, at least for A of the form above, we see that

Pf(A)ω2m =
1

m!
(ωA ∧ ωA ∧ .... ∧ ωA)

An easy computation shows that an orthonormal change of basis ei 7→ Pei := fi results in transforming∑
i<j Aijei ∧ ej into

∑
k<l(PAP

t)k,lfk ∧ fl, and so the above formula holds good for all skew- symmetric A.

Expanding the right hand side, we find that

Pf(A) =
1

m !

∑

σ∈S2m

Aσ(1)σ(2)Aσ(3)σ(4)...Aσ(2m−1)σ(2m)

Definition 17.0.6 (Euler form). Let M be an oriented Riemannian manifold of dimension 2m. Let R =∑
i<j Rijei∧ej be its curvature 2-form, where each Rij is the skew-symmetric matrix 1

2

∑
k<lRijklckcl. We can

then regard R as a 2m×2m-skew-symmetric matrix whose (k, l)-entry is the 2-form Rkl = 1
2

∑
i<j Rijklei∧ ej .

Then define the Euler form of M by the formula:

e(M) =
1

(2π)m
Pf(R) =

1

(2π)mm!

∑

σ∈S2m

Rσ(1)σ(2) ∧Rσ(3)σ(4)... ∧Rσ(2m−1)σ(2m)

which is a 2m-form.

Theorem 17.0.7 (Gauss-Bonnet-Chern-Allendoerfer). For M an oriented compact Riemannian manifold of
dimension 2m, we have:

χ(M)(=Euler characteristic of M) :=

∫

M

e(M) =

2m∑

i=0

(−1)i dimC H
i(M,C)

Proof: In this case the Dirac bundle is E = Cl(M) = Λ∗
C
(T ∗M)), and the grading is not the chirality grading,

but the parity grading (which comes from conjugation by ω2m ∈ Spin(2m) when M is a spin manifold). That
is, E+ = Cl0(M) = Λev

C
(T ∗M), E− = Cl1(M) = Λo

C
T ∗M) (see (ii) of Remark 15.1.11). The Dirac operator

is of course d+ δ, as we saw in the proof of the Bochner theorem 15.4.7. Thus D2 = ∆, the Laplace-Beltrami
operator on M , and by the Hodge-deRham Theorem (Corollary 9.5.3), we have ker(D−D+) = ⊕m

i=0H
2i(M,C),

and ker(D+D−) = ⊕m
i=0H

2i+1(M,C). Thus

indD+ = dim ker(D−D+) − dim ker(D+D−) =

2m∑

i=0

(−1)i dimC H
i(M,C)

Again, to identify the integrand, we may use the fact that a coordinate chart U is spin, and decompose
Cl(U) = S(U) ⊗ S(U). However, to compute the supertrace, we have to compute with respect to this parity
grading.

In the decomposition E = S ⊗ V of a Dirac bundle on a spin manifold, we have assumed S is given the
chirality grading and V is ungraded. The integrand of the Atiyah-Singer index theorem (i.e. the index density)
has been calculated for this situation by using the fact that if α⊗ F is an endomorphism of a Clifford module
E = S2m ⊗ V , with α ∈ EndC(S2m) = Λ∗(R2m∗) and F ∈ EndC(V ), then
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strE(α⊗ F ) = trE(τ2m ◦ (α⊗ V )) = (−2i)m(α[2m] ⊗ trV F ) (64)

(See Lemma 14.5.2). In the present situation, E = S2m ⊗ S2m, which we are regarding as a graded module
with the grading operator ω2m ⊗ ω2m instead of the earlier grading operator τ2m ⊗ 1.

But then, if α⊗ F ∈ EndC(S2m) ⊗ EndC(S2m) = Λ∗
C
(R2m∗) ⊗ Cl2m, we have:

strE(α⊗ F ) := trE [(ω2m ⊗ ω2m) ◦ (α⊗ F )]

= trE [((i)−mτ2m ◦ α) ⊗ (ω2m ⊗ F )] = (−i)mtrS2m
(τ2mα)trS2m

(ω2m ◦ F )

= (−i)m(−2i)m(α)[2m]trS2m
(ω2m ◦ F )

= (−2)mα[2m]trS2m
(ω2mF )

(Note incidentally that trS2m
(ω2m ◦ F ) = (−i)mtrS2m

(τ2m ◦ F ) = (−i)mstrS2m
F )

So for a general endomorphism k ∈ EndC(E) = Λ∗ ⊗ Cl, we must modify the formula (64) by the formula:

strEk = (−2)m[trS2m
(ω2mk)][2m] (65)

where k is to be regarded as an element of Λ∗
C
(R2m) with coefficients in Cl2m = End(S2m), and the trace is to

be applied to the coefficients after composing with ω2m.

So in the Atiyah-singer theorem, we will have to make the corresponding modification of the integrand to
read:

ind (d+ δ) = (−2π)−m
∫

M

[
Â(M)trS(ω2m exp(R))

]
[2m]

Again, by the same reasoning as in the proof of Hirzebruch signature theorem 17.0.5,

trS(ω2m exp(R)) = 2−mtrCl(ω2m exp(R))

Taking R of the special form R =
∑m
j=1 tje2j−1e2j we had computed in the proof of 17.0.5 that

exp(R) =

m∏

j=1

((cos tj)I + (sin tj)e2j−1e2j)

which implies, since distinct doublets e2j−1e2j and e2k−1e2k commute, that:

ω2m exp(R) =

m∏

j=1

e2j−1e2j((cos tj)I + (sin tj)e2j−1e2j) =

m∏

j=1

((− sin tj)I + (cos tj)e2j−1e2j)

As in the proof of the Hirzebruch theorem again, only the scalar term contributes to the trace, and this trace
is

trCl(ω2m exp(R)) = (−1)m(22m)

m∏

j=1

sin tj

Hence

trS(ω2m exp(R)) = (−2)m
m∏

j=1

sin tj

On the other hand, R corresponds to the block (2m× 2m)-matrix whose 2 × 2 blocks are

(
0 −2tj

2tj 0

)

so that

det sinh(R/2) =

m∏

j=1

(sinh(itj))(sinh(−itj) =

2m∏

j=1

(i sin tj)(−i sin tj) =

m∏

j=1

sin2 tj

So we conclude that for R of the special form above,

(−2)m (det(sinh(R/2))
1/2

= trS(ω2m exp(R))
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Now once concludes the above formula for all skew-symmetric R as before, by change of orthonormal basis.
Hence the index theorem now reads:

ind(d+ δ) = (−2π)−m
∫

M

[
Â(M)trS(ω2m exp(R))

]
[2m]

= (−2π)−m
∫

M

[
det

(
R/2

sinh(R/2)

)1/2

.(−2)m (det(sinh(R/2))
1/2

]

[2m]

= (π)−m
∫

M

(det(R/2))1/2 = (2π)−m
∫

M

(det(R))1/2

=

∫

M

(2π)−mPf(R) =

∫

M

e(M)

This proves the proposition. 2
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