ELLIPTIC COMPLEXES AND INDEX THEORY

VISHWAMBHAR PATI

1. SOBOLEV THEORY ON R"

As general references for this section, see the books [Nar], Ch.3, [Gil], Ch.1, [Hor], Ch I, IT and [Rud], Ch.
6.7.

1.1. Test functions and distributions. We introduce some standard notation. For a multi-index o« =
(a1, .., o) of length n, the symbol | a [:= >, a;, and a! := aq!, .., a,!.
For derivatives, we denote:

o [ O\ o\ [0 1
= (o) (an) - 2= (65) 2= 750

will be denoted simply by z¢.

Finally z{'25?..x

Qn
n

We can define some standard function spaces on R™. For us, functions will always be complex valued.

Definition 1.1.1 (Standard function spaces on R™). . The function spaces defined below are all complex
vector spaces, and to define a topology on them, it is enough to define convergence to zero.
(i):
C*°(R"™) = {smooth functions on R"}

Define f, — 0 if df,, — 0 uniformly on compact sets for all | « |> 0. This space is also sometimes
denoted £ by analysts.

(ii):
CER™) ={f e C*([R"): 1i_{n dif=0 forall |a|>0}

This is the space of all smooth functions whose derivatives of all orders vanish at infinity. The topology
in this space is the subspace topology from C°°(R"). It is often denoted &.

(iif):
C(R™) = {f € C°(R") : support f is compact}

Its topology is defined by f,, — 0 if there exists a compact set K such that suppf,, C K for all n and
d? f,, — 0 uniformly on K for all | @ |> 0. Note that this is not the subspace topology from C>°(R™), for if
we define a take a non-zero function ¢ on R with compact support [—1, 1] say, and let f,(z) = ¥ (z —n),
(which has support [n — 1,n + 1] ), then f,, — 0 in C*°(R), but not in C°(R). It is, in fact easily seen
to be strictly finer than the subspace topology. This space is denoted D by analysts, and also called the
space of test functions.

(iv):
SR") = {f € CX(R") : sup | 2%d}f(z) |< Cap forall|a|, | 3]0}

rER™

This is called the Schwartz space of rapidly decreasing functions. Define the topology by declaring f,, — 0

if
sup | 2%d? f,(x) |— 0
zER™

for each | a |, | B> 0.
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It is an easy exercise to see that there are natural inclusions:
C(R™) c S(R™) € Cg°(R™) € C*°(R™)
all of which are continuous, and all of which are strict. The reader may also check that the inclusion C2° C C'*

is dense, (by using multiplication with cutoff functions ¢, which are identically 1 on a ball of radius n and
identically zero outside a ball of radius say 2n), and hence all the inclusions above are dense.

On S or C¢°, we may introduce the L,-norm defined by:

1, = ([ 171 as)

for 1 < p < co. Upon completing either of these two spaces with respect to this norm, one gets the Banach
space L,(R™). For p = oo, this is false, as can be seen by looking at the non-zero constant functions. Lo (R™)
is got by taking all measurable functions on R™ which are essentially bounded.

1.2. The Fourier Transform and Plancherel Theorem. In the sequel we will simply write C'*° for
C>(R™), and so on, if no confusion is likely. Also, to eliminate annoying powers of 2, we introduce the
measure (volume element) dz on R™ by the formula:

dr = (27r)_"/2dx1...dxn

Definition 1.2.1. For f € &, define the Fourier Transform of f by the formula
f(&) = A fx)e™*dx

which makes sense for any f € Ly, and in particular for f € S. Here {&.x = ), &x; is the usual Euclidean inner
product of vectors in R™. Similarly, for f € S, define the Inverse Fourier Transform of f by the formula:

O =f(=&= [ flx)e“da

R’Vl
Finally, for f,g € S, define the convolution product
frg(@):= [ fle—ygly)dy= | [f(=2)9(z+x)dz
R" R7

It is easy to verify (taking limits inside the integral sign after appealing to Lebesgue’s Dominated Convergence
Theorem) that f * g is also in S, and that f*g=gx* f.

Before proving the main proposition of this section, we need a couple of useful lemmas. Note that the
Gaussian function

is in S. Also its integral [, ¢(z)dz = 1.

Lemma 1.2.2. For the Gaussian ¢ above, we have 12 = 1.

Proof: We have:
~ ) ||?
CRR e
112 (z+i&) (z+i€)
_ e_aT /e +18) (ris o

Let z = (x4, ..,x,) and £ = (&1, .., &, ). By choosing a rectangular contour in C with vertices —a, a, —a+1i&1,a+
i&1, noting that the integral of the holomorphic function e~#1/2 around this contour is zero, and also that the
contributions along the vertical edges (—a+it) and (a+it) for 0 <t < & (if & > 0) (resp. & <t <0if £ <0)
converge to zero as a; — 00, we see that:

/e_(‘”1+i51)2/2dm1 :/e_””?/zdxl =27
R

R
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apply the argument variable by variable to conclude that:

. . n _ riif)2
/ o~ (0 Hi€).(04i6) /2 g _ (%)75//“./6 P N
n R JR R

which proves our assertion. O

Lemma 1.2.3 (Approximate identities). Let ¢ € S, such that ¢(z) > 0 for all z and [ ¢(x)dz = 1. For € > 0,
define the approximate identity or mollifier:

Pe(x) = e "d(x/e)

Then for any f € S, we have f * ¢. converges uniformly to f as e — 0.

Proof: Since fRn ¢edx =1 for each € > 0, we have:

| (Fxge)(@) = fl2) | = ‘/qbe(y) (f(z —y) —f(w))dy‘

IN

/ | 6ely) (Flx — ) — F(2)) | dy

Let C' > 0 be such that [ | f(z) | dz < C. Now let > 0 be any positive number. Choose a § > 0 (by uniform
continuity of f) such that | f(z —y) — f(z) |< n for all | y |< §, and all z. Then

/ | 6ely) (Fl@ — ) — F(@)) | dy <7 /
ly|<é

be(y)dy <m [ ¢c(y)dy =n
ly| <o R”

for all € > 0.

Now choose an €y > 0 small enough so that fly\>5 ¢c(y)dy < n/2C for € < €. Then, we have:

/| 6 U=y ) [y < / 6.(1)(2C)dy <7

ly|>4
for € < ¢9. Combining the integrals for |y| < § and |y| > §, we get:

| fxde(z) — f(x) |<2n for all € < ¢
independent of x. That is, f * ¢. — f uniformly as e — 0. a

Remark 1.2.4. It follows from the above that one can take any non-negative compactly supported function
¢ and define the approximate identities ¢.. Similarly, by starting with the Gaussian ¥ defined above, we get
that the functions:

Yelr) = nemlel e

are approximate identities.

Proposition 1.2.5. We have the following facts about the Fourier transform on the Schwartz class S.

(i): The map f +— fis an isomorphism of & with itself, of order 4. In fact,
A A AV
(7) @ =f), (F) @ =f() foran fes
(The second formula is called the Fourier Inversion Formula.)
(ii): For all multi-indices «,
DM@ =¢F DEFE) = (- @ p)”

In particular, by the first formula, if P is an n-variable polynomial with complex coefficients, then for
the constant coefficient differential operator P(D) we have:

(P(D)) = P(&)f
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(iii):

~

Fa=(f=9)", Fxg=(f9)"

(iv): (Plancherel Theorem) The map f — £ is a unitary isomorphism of S to itself with respect to Ly-norm.
Thus (in view of (i) above), it extends to a unitary isomorphism of Ls(R™) to itself.

(v): (Riemann-Lebesgue Lemma) There is an inclusion:
(Li(R™))" € Co(R")

where the space on the right is the space of all continuous functions vanishing at oo, with the topology
of uniform convergence on compact sets.

Proof: We first prove (ii). Since all derivatives of f € S are also in S, and hence Lebesgue integrable, one can
use the Lebesgue Dominated Convergence Theorem, and differentiate under the integral sign to get:

Defle) = [ Dg (@) de
= [yl pa)dn = (1) @)

In particular, we have that fis a smooth function. This proves the second part of (ii). To prove the first part,
one uses repeated integration by parts and the fact that all derivatives of f vanish at co to conclude that:

DA = —iE.;EDa d _ _1\la] D2 —i€.x d
(D = [ e D@ = . | (pree) fayaa
= £f(§)
This proves (ii). Thus we also have (P(D)f)" = P(f)f From (ii) it also follows that
D¢ f =+l ) = (D (" )"

and since the function on the right is bounded by the L; norm of D%(xPf) (a Schwartz class function), it
follows that f € S as well.

(v) is easy by noting that for an L' function f, we have: H]?H = SUDgcpn 17(6)] < | fIl;, and that for any

L, function f, there is a sequence of f,, € S with ||f — f,.||; — 0. Which implies that ]/”; — funiformly, SO
that since f, € S, we have limg_, o, f(§) = 0. This proves (v).

To prove (i), define the operator T': S — S by T'f(x) = (f)/\(—.’lf) We need to show that T'f(z) = f(x) for
all z. First suppose f € S with f(0) = 0. Then, by the first order Taylor formula we may write:

T) = Z zjgi(z)

where g; are some smooth functions. Let ¢ be a non-negative compactly supported function which is identically
=1 in a neighbourhood of the origin. Then

)= 6@ w) 4 (1= ()0 = s + 3 (202

Since ¢ has compact support, the functions ¢g; € S. On the other hand, since ¢ = 1 near the origin, the
functions (J(‘l#) € S as well. Thus:

f = ijhj
j=1

where h; € S. However, by (ii) proved above, we have
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so that f = D g}% Thus:
J

Tf(0) = /”Z Jdg

But by the divergence theorem, the last integral is the limit:

lim h.vdu
R—o00 S(R)

where S(R) is the sphere of radius R, and v is the unit normal to S(R), and h = (hy, .., h,), and dy is the
suitably normalised measure on the sphere. Since ||h| decreases faster than all powers of R, and the volume
of S(R) grows as R"~!, the limit above is zero. This proves that T f(0) = f(0) for f(0) =

Now for f € S arbitrary, we write:

f=F10)0+ (= F(0)) = F(0)) +g
where 1 is the Gaussian. Clearly, g € S, with ¢g(0) = 0. Thus T'f(0) = f(0)(T%)(0) 4+ (T'g)(0). But since ¢ is
its own Fourier transform, have T (0) = ¢(0) = 1, and T'g(0) = 0 by the case done in the last para, we have
Tf(0) = f(0) for all f € S. Finally, to deduce the result for all pointb we just translate coordinates. That is,
for f € S, and a € R, define g(z) = f(x + a), so that g(0 (a), and g is also in S. Then

cecf(a) = g(0) = (Tg)(0) = / / € f (0 4 a)dads

_ / / e~ ET 6 1 (1) dde
= [ e
= (H"(~a) =Tf(a)

This proves the first part of (i). The second part (about the inverse Fourier transform) follows immediately.
Thus (i) is proved.

To see (iii), note that:

() / / e~ f(r)e €V g(y)drdy

= //e"'f'“”‘y)f(w—y)e‘“'yg(y)dmdy
_ / / e f (2 — y)g(y)dady = T+ 9(€)

where we have used Fubini to get the last line, because the double integral is absolutely convergent (since
fyg € S), and a change of variables in the second line. The second part of (iii) follows immediately from (i) by

replacing f and g by fand g respectively.

It ﬁnally remains to prove (iv), the Plancherel Theorem. We denote the Lo inner product of f and g by
= [ f(z)g(x)dz, which is C-linear in the first slot, and C-antilinear in the second. We compute for

9= [1@iwde = [ [1@erg)dyds
- / ( / f(fv)e“”'ydm> 9(y)dy

(f(==),9)
where Fubini is used to interchange the order integration in an absolutely convergent double integral. Replacing
f(=y) by g(y), we have g = f by (i) above, so that:

ﬁgGS

9,9) = (9:9)
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which shows (using (i)) that the Fourier transform is a unitary map on S with respect to Lg-norm. Thus it
extends to a unitary isomorphism of L?(R"), since S is dense in it. This proves the proposition. O

1.3. Distributions.

Definition 1.3.1 (Distributions). We define a distribution T on R™ to be an element of the topological vector
space dual of C2° = D. That is, T is a linear functional on C2° and continuous with respect to the topology on
it. The space of all distributions on R™ is clearly a complex vector space, and denoted D’. Distributions T' € D’
which extend to a continuous linear functional on the larger space S are called tempered distributions, and the
vector space of tempered distributions is denoted S’. Finally, distributions which extend as a continuous linear
functional on all of C'*° = & are called compactly supported distributions, and their vector space is denoted by
&’. Clearly, we have the inclusions of vector spaces:

&cscr
Here are some basic examples:

Example 1.3.2. Let f be a measurable and locally L, function on R”. Then f defines the distribution 7y € D’
by the formula:

Ty(g) = . f(x)g(x)dx for g € CF

which makes sense since g is compactly supported. By the way the topology is defined on C2° and the dominated
convergence theorem, it follows that Ts(g,) — 0 in C if g, — 0 in Cg°.

Example 1.3.3. Let f be a measurable function on R™ such that (1+ | 2 |)= f(=) is in L;(R"), for some
N € N. Such functions are called tempered functions. Then defining T; by the same formula as in the example
above, and letting g € S, we get a tempered distribution. The formula makes sense because, for the N as above:

f@g()da = [ (1 |2 )7 @)1 | o ) Vo(a)do

R

and we have that the function (1 + z|)Ng(x) is bounded since g € S, and (1+ | = |)"N f(z) is L. Again,
the proof of its continuity is a consequence of the Dominated Convergence Theorem, and the topology defined
earlier on S. In particular, since (1+ | x |)7"~! is integrable on R™, all polynomials, bounded continuous
functions, or continuous functions with at most polynomial growth define tempered distributions.

Note that if we take a function like f(x) = €®, it can be checked that this is a distribution which is not
tempered, so the inclusion 8’ C D’ is strict.

Example 1.3.4. Let f be a compactly supported function, and define an element T of £’ via the same formula
as in the above two examples, but g € £. It is checked easily that this is a compactly supported distribution.

If one wants to see a distribution which is not defined by a function, it is the very celebrated Dirac distribution
of the next example.

Example 1.3.5 (Dirac distribution). Define the distribution §, by the formula:
da(g) = g(a) for g€ C™

Again, it is trivial to check continuity, so that d, € £’.

Exercise 1.3.6. Show that the inclusion & C S’ is also strict.



ELLIPTIC COMPLEXES AND INDEX THEORY 7

Remark 1.3.7. A locally L'-function f which defines a tempered distribution (via integration against g € S)
need not be a tempered function in the sense of Example 1.3.3 above. For example, the locally L; function
€® sin e* defines a tempered distribution on R, (because it is the derivative of the bounded continuous function
— cos e”, which is therefore a tempered distribution by 1.3.3 above, and the fact proved in the next subsection
that all derivatives of tempered distributions are tempered distributions). However, it is not a tempered
function, as we check below. For each N, we have a Cy > 0 such that:
(14 |z )N e” |> One™?
for all « € [0,00), and thus we have an inequality of the integrals:
e | sin
/(1+ |z )™V | e*sine” | da > CN/ e/? | sine® | dx > CN/ i Y

R 1 o | VY
by a change of variables y = e*. The right hand integral is infinite by comparing with the infinite series
>, n~Y2. Some authors (e.g. Folland) define a tempered function to be a locally L; function which is a
tempered distribution, to avoid this inconsistency.

We will see later after defining convolutions that if f is a real-valued non-negative locally integrable function
on R™, then it is a tempered function in our sense if it is a tempered distribution. The rapid oscillation of say
e” sin e which causes the problem above is thereby eliminated.

As a final example of a distribution which is not a function, we have:

Example 1.3.8. Fix a multi-index «, and a point a € R™. Then the higher derivative Dgla at a clearly maps
€ — C in a continuous fashion with respect to the given topology, and defines a compactly supported distri-
bution. For o = (0,0, ..0), we recover the Dirac distribution. When we later define derivatives of distributions,
we will see that this distribution is nothing but £Dg4,.

Definition 1.3.9 (Support of a distribution). For an open subset U C R"™, we say that the distribution T' € D’
vanishes on U if T(f) = 0 for all f with compact support in U. For example, the Dirac distribution 4, vanishes
on R™\ {a}. Similarly the distribution Dg;  vanishes on R™\ {a}. By using a partition of unity subordinate to
an open covering {U; }ica, one easily sees that if a distribution T" vanishes on U; for each i € A, then it vanishes
on the union U = U;cpU;. Hence there is a largest open set U (possibly empty) on which a distribution T

vanishes. The complement of this open set is called support of T', and denoted supp 7.

Lemma 1.3.10 (£’ and distributions of compact support). A distribution 7' € D’ is in & iff supp T is com-
pact. (Hence the terminology “compactly supported distribution” for elements of £’.)

Proof: Suppose suppT = K a compact set. Let ) € D be a compactly supported smooth real-valued function
with 0 < <1 and ¥ =1 on K. For a function ¢ € &, define:

T(¢) = T(v¢)
Note that this definition is independent of the cut-off function v chosen above, for if v, is another cut-off
function satisfying the same properties as 1 above, then ¢ — ¥1¢ will be a smooth compactly supported
function whose support lies in K¢, so that suppT = K will imply that T'(¢¢) = T(¢14). Now if ¢, — 0 in
&, we have (on applying Leibniz formula for derivatives of products) that ¢, are compactly supported with

support contained in the fixed compact set L := supp ¢ for all n, and that D*(1¢,) — 0 uniformly on L. Thus
Yo, — 0 in D, and hence T(¢y,) = T () — 0 since T € D'. Thus T € &’.

Conversely, suppose supp 7' is not compact, so T' does not vanish on R™ \ B(0,n) for each ball B(0,n) of

radius n = 1,2,,,,. Thus there exists a function ¢,, with compact support K,, C R™\ B(0,n) with
T(¢pn) =Ap 0 for n=12..
Then it is trivial to verify that the functions f,, := \,,1¢,, converge to 0 in &, since on each compact set L C R,

we have f,, =0 on L for n large enough. On the other hand T'(f,,) = \,,'T(¢,) = 1 for all n, so that T is not
continuous on &, and hence T ¢ £’. The lemma follows. O
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More examples of distributions will emerge as soon as we define some basic operations on distributions.
Since tempered distributions are the ones of interest to us, we will concentrate mainly on them.

1.4. New distributions out of old. The most important operation on distributions is that of differentiation.
Historically, distributions were invented by Dirac, to differentiate functions which had singularities, i.e. points
of non-differentiability. Dirac realised that these are not going to be functions, but it was possible to do some
self-consistent manipulations with them, so he called them “generalised functions”. It took another thirty
years for Laurent Schwartz to rigorise these ideas mathematically, and thanks to him, every distribution can
be differentiated to get another distribution.

The starting point is to note that if f € £ and g € D, then we have

Dg f(x)g(x)dz = (~1)*1 | f(2)Dgg(x)de
R™ R

by using integration by parts, and noting that lim;|_. fg = 0 because of compact support of g. The same
identity holds if f € £ and of slow (at most polynomial, for all derivatives) growth in z, and g € S. Thus it
makes sense to make the:

Definition 1.4.1 (Derivative of a distribution). For T' € D', define the distribution DT by:
DYT(g) = (-1)*IT(Dg) g€ D

If g, — 0 in D, then by definition, D$g, — 0 in D as well, and hence DST defined as above is a continuous
linear functional on D. Hence it is also in D’. The factor (—1)/%l has been chosen for consistency with
derivatives of smooth functions, i.e. if f € £ = C°°, the distribution Ty defined by f will satisfy DgTy = Tpay,
viz. it is the distribution defined by DS f in view of the last paragraph. The derivative of a distribution is
often called a distributional derivative.

Exercise 1.4.2. For a fixed a € R, consider the distribution defined by the locally L, Heaviside function:
f*R — R
r — 0 for z<a
z — 1 for z>a

(This is just the indicator (or characteristic) function X[4,0c) of [a,00).) Show that the distributional derivative
% is the Dirac distribution 4.

Exercise 1.4.3. For T € &' a tempered distribution, DT is also tempered. If T € &’ is any compactly
supported distribution, then so is D¥T. For any distribution T' € D’, the support of the derivative obeys

supp DST C supp T

Definition 1.4.4 (Multiplication by a smooth function). If f € &, then the linear multiplication mapping
D — D defined by g — fg is clearly continuous. Thus we may define for a distribution 7' € D’ the product fT
by the formula:

fT(g) =T(fg) for gD

By the remark above, fT is also a distribution. Likewise for £, the mapping £ — & defined by g — fg
is continuous, and we can again define fT as a compactly supported distribution for T € £’ a compactly
supported distribution by the same procedure as above.

The story for tempered distributions is different. Multiplication by an arbitrary smooth function f does not
send the Schwartz space S to itself. The best we can do is to observe that if f is a smooth function of slow
growth (i.e. | D2f |< Cs(14 | z |)N¢ for each (), then g — fg is a continuous linear operator S — S. Hence,
by the procedure above, we can define fT for T € &’ and f a smooth function of slow growth.
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Finally, we come to convolution of functions and distributions. For a function g, we define:

g°(y) == g(z —y)

so that for smooth functions f, g, their convolution (whenever it is defined) maybe expressed as

(fxg)(z) = . f(y)g" (y)dy

By a change of variables, f x g = g = f. It is clear that the linear mapping g — ¢* is a continuous map which
takes £ to £, D to D and S to §. Taking our cue from this, it is natural to make the following definition:

Definition 1.4.5 (Convolution of a distribution with a function). Let T' € D be a distribution, and f a smooth
function of compact support. Then define the function f T by the formula:

(f+xT)(x)=T(f*) for fe&
Similarly, if T € &’ is a tempered distribution and f € S, or if T € £’ is a compactly supported distribution

and f € £ is any smooth function. These restrictions are natural, in view of the fact that even functions f, g
need to obey some decay conditions in order to be convolved.

Example 1.4.6 (Convolution with the Dirac distribution). Let g € £ be any smooth function, and dy be the
Dirac distribution. Then the convolution g * Jy is the function g. (This shows that the identity element for the
convolution product is a distribution). For, by definition,

(g% do)(x) = do(9") = g (0) = g(x)

Lemma 1.4.7. Whenever it makes sense by the definition above, the convolution f * T is a smooth function.
Furthermore, we have the identities:

D(f+T) = f+ DT = D*f « T

Proof: We just prove it for the first partial derivative with respect to xy, viz. 91 = iD;. Let e; denote the
unit vector (1,0, ..,0), and the case of f € D and T € D’. For a smooth function f € &, we have the Taylor
formula:

FoHy) = f2(y) = [z + her —y) — [z —y) = hg(z, h,y) + DPr(z, h.y)
where g and r are smooth in all the variables, and g(x,0,y) = (01 f)(x —y) = (01 f)*(y). Because the supremum
norm

sup [ r(z, h,y) [ C(K)
yEK, |h|<e

for any compact set K C R", it follows that, for a fixed x, and as a function of y:

fa:+hel _ fz
li | > 0,—)=(0f)*
hli%< W ) 9(x,0,—) = (91f)
uniformly on compact sets. Similarly all y-derivatives of the functions g, := fﬁhe%fﬂ converge uniformly to

the corresponding derivatives of (91 f)* on all compact sets as h — 0. If the function f is in D, and compactly
supported in K say, then it is easy to check that for all | A |< 1, the functions g are all supported in the

fixed compact set K’ =a — K + B(0,1), and g, — (01 f)* as h — 0 in D as well. Thus by the continuity and
linearity of T € D’ we have:

o(f xT) = lim (T(fmelz_T(fx)) =T [lim (fm—fﬂ —T((Onf)") = f*T

—0 h—0 h
Also note that we have:
(011)"(y) = 0y, /) (y) = Oy, [) (& — y) = =0y, (f*)(y)
so that:
oS+ T =T (D1f)") = ~T(O1f%) = (T)(f*) = [ +HT
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by the definition of derivative of a distribution. This proves the lemma. o

Exercise 1.4.8.
(i): Let T € D’ be a distribution, and let

plz,y) : R" xR" - C

be a smooth function of compact support in R2?, say supp p C K x K for some compact K C R"™. Thus,
the function [, _p. p(,y)dz is a smooth function (of y) in C2°(R™), which is supported in K. Then show

that
T (/xeRn p(w,y)dx) = /n T(p(x,y))dz

where on the right hand side, T is operating on the function p(z,y) considered as a function of y, and
thus T'(p(z,y)) is a function of x. (Hint: Find a sequence of Riemann sums, which are functions of y, say
Suly) == >, p(x;,y)A; where the A;’s are the volumes of cubes of side L covering the compact set K,
z; the centre of Aj, and show that S,, — [ p(z, —)dz inside D(R™), and use the continuity and linearity
of T.)

(ii): If f and g are compactly supported functions in D, show that p(z,y) := f(z)g(y—x) is in C(R"™ x R"™),
and conclude that f * g is a smooth compactly supported function, and by (i) above, we further have:

T(f+g) = / F@)T(F)dz = G+ T)(f)

where g(z) := g(—z) and g * T is a function being regarded as a distribution.

Here is an important application of convolutions of functions with distributions. We can use compactly
supported approximate identities (see the Lemma 1.2.3) to approximate any distribution 7' € D’ by smooth
functions of compact support. First we need a topology on D’ to make sense of the notion of approximation.

Definition 1.4.9 (Weak-star topology on D’). Say that a sequence of distributions 7;, — 0 in D’ if for each
¢ € D, the sequence T, (¢) — 0. This is the topology of pointwise convergence in any dual vector space, and is
usually called the weak-star topology. On the subspaces &’ (resp. £’) of tempered (resp. compactly supported)
distributions, we induce the subspace topology from this weak star topology on D’.

Proposition 1.4.10 (Approximation of distributions by compactly supported functions). The space of smooth
compactly supported functions D = C2°(R"™) is dense in the topological vector space D’ of distributions on R™.

Proof: We first make a remark about convolution with approximate identities (see the Lemma 1.2.3). Take
a real-valued ¢ € C°, with ¢(z) > 0 all # € R™ and [ ¢(x)dz = 1, supp¢ C B(0,1) and ¢(z) = ¢(—x)
(even function). Then supp ¢ C B(0,¢€), and for a compactly supported function g € C¢° with suppg = K a
compact set, we have:

supp(g * ¢c) C K¢ :={z: d(z,K) < ¢}
This is because if x is outside the set K€ on the right, (z — y) will lie outside K for all y € B(0, €), and hence

g(x — y) will be zero. For y &€ B(0,¢€), ¢.(y) will be zero. Thus the product g(z — y)¢.(y) will be identically
zero, and hence

gx00) = [ o= 9)on) =0
for x ¢ K°¢.

Now let T' € D’ be a distribution. Let ¢); > 0 be compactly supported cutoff functions which are identically

1 on B(0, ) and identically zero outside V; := B(0,j + 1), say. We claim that the distributions ;T converge
to T in D'. Indeed, for a fixed g € D

V;iT(g9) =T (¥j9) — T(9)
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because ;g = g for j large enough, g being compactly supported. So by the definition of the weak star
topology, we have ;T — T

Now we claim that the function ¢, * (1;T") is a smooth function compactly supported in Vi. We already
know by the Lemma 1.4.7 above that the convolution ¢, * (¢;T') is a smooth function. Clearly, it is a com-
pactly supported function iff it is a compactly supported distribution. To show that ¢, * ;1" vanishes on the
complement of VF, let g € D be a smooth function with supp g = L a compact set, and satisfying LNV = ¢.
Then, by (ii) of Exercise 1.4.8 above:

(6 % T)(g) = (¢e * ¥;T)(g) = Vi T(e * 9) = T(¥;(de * g)) (1)

By the first para above, supp (¢, * g) = L. The support of t; is contained in V;. Since LNV = ¢, we have
LeNV; = ¢, so the function of y given by 1; (e * g) above is the identically zero function, and so T" applied to
it is therefore zero. This shows that ¢.* ;T is a distribution compactly supported in Vf, and hence a smooth
function of compact support.

We now claim that for a fixed j, the family of distributions (compactly supported smooth functions by the
above) ¢ x1;T converge to ¢;T in D" as € — 0. By the Lemma 1.2.3 and the fact that suppty; = V; a compact
set, we have ¢;(¢. * g) — ;g uniformly on V; as ¢ — 0. Hence the right hand side of the equation (1) above
converges to T'(1;g) as € — 0 by the continuity of T', and the claim follows.

Since ¢;T — T in D’ as j — oo, and the compactly supported smooth functions ¢, * ;T — ;T as € — 0,
it follows that C'°(R™) is dense in D’. O

Now we come to one of the chief reasons why the Schwartz space S and tempered distributions were

introduced. We have already observed in (ii) of the Proposition 1.2.5 that
EDIF=+(DYE ) for feS
Hence if f, — 0 as n — oo in S, 2°D%f, — 0 uniformly on R", for all o, 8. By Leibnitz’s rule for the
derivatives of products, it follows that Dg(z” f,) — 0 uniformly on R™. Thus ||Dg (2 f,)||, = 0. By the fact
that ||g]|, < |lg|l; for g € S and the equation above it follows that
|e*neF.
That is, fn — 0in § as n — oco. Thus, with the topology introduced earlier on S, we have:
8= S

is a continuous linear map of topological vector spaces. Hence it makes sense to make the following:

N ||D§t(ﬂcﬁf))A||oO = HDg(ilfﬁfn)H1 —0 as n— oo

Definition 1.4.11 (Fourier transform of a tempered distribution). Let 7" € S§" be a tempered distribution.
Define the Fourier transform T by the formula:

T(g) =T(g) for ge 8
By the remarks above, T is also a tempered distribution. We leave it as an easy exercise to check that this
definition is consistent with the definition for functions, i.e. for an L!-function (which defines the tempered
distribution Ty via integration as indicated in the Example 1.3.3), then we have T? = i’; (Just mimic the
proof of (iv) of Proposition 1.2.5 without the complex conjugation).

Analogously, since the inverse Fourier transform and transform differ by reflection of the function, we define
the inverse Fourier transform TV of a tempered distribution T' by the formula:

TV(9)=T(g") for ge8

We have the following proposition about the distributional Fourier transform. .
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Proposition 1.4.12. Let T € S8’ be a tempered distribution. Then the Fourier transform™: S’ — S’ satisfies:

(i): The map ~ is a continuous linear isomorphism of &’ of period 4, and we have

(T)Y =T forall TedS'

(ii): For a polynomial P = P(Xj, .., X,,), we have:
(P(D)D)" = P(OT, (P(2)T)" = P(~D)T

(iff): If f € Ly(R™), then Tr=Ty.

(iv): (¢ T)" =T for ¢ € S.

Proof: If T,, — T in &', we have by definition that T (9) = T(g) for each g € S. That is, fn(g) — f(g),
for each g € S, which again, by definition, implies T — T in &'. This shows that the Fourier transform
is a continuous map. The rest of (i),(ii) and (iii) follow immediately by applying the relevant parts of the
Proposition 1.2.5.

To see (iv), note that: B
(6xT)"(g) = (¢+T)(g) =T(¢+7)

by (ii) of Exercise 1.4.8. But by (iii) of Proposition 1.2.5, we have ¢+ § = ¢+ § = (ag)/\7 so the last expression
above is precisely (T’ )(gf)g) (¢T)( ). The proposition follows. a

To deduce some more crucial facts about f, we need an elementary but very useful lemma about “locally
convex topological vector spaces”.

Lemma 1.4.13. Let V be a topological vector spaces whose topology is defined by a “family of seminorms”
{Patacn, viz., a sequence x,, € V converges to zero iff p,(z,) — 0 for all &« € A. Then a linear map T : V — C
is continuous iff there exists a constant C' > 0 and a finite subfamily p,,, .., P, of seminorms such that:

k
| Tz |< CZpaj(x) forall x € V
i=1

Proof: We define the “semiball” (?) in V around 0 with respect to the seminorm p, in the obvious manner:
B,(0,€) ={z €V : po(z) < €}

and note that by the definition of a seminorm all of these are convex sets, and since each p, is continuous,
they are open. Hence their finite intersections are also convex, open, and contain x. Define a new topology T
on V by declaring a neighbourhood base of 0 to be the family of finite intersections:

N(©O):={nf, B, (0,&): ¢ >0, {a1,..,ar} CA, k=1,2,....}

and the neighbourhood base around = by N(x) := x + N(0). It is clear that if p,(z,) — 0 for all @ € A,
then x,, — 0 in the topology T, because x, will eventually lie in every basic neighbourhood. On the other
hand, if there exists an & € A such that p,(x,) does not converge to zero, then there exists an € > 0 and some
subsequence z,,, such that p,(z,,) > € for all k. That is, x,, & Ba(x,€) for all k, so the sequence {z,} will
fail to eventually belong to this open neighbourhood B, (0, €), and hence does not converge to 0 in the topology
T. Thus T is exactly the topology defined by the family of seminorms {p, }aea-

Since T is continuous, there is an open neighbourhood U of 0 such that | Tz |< 1 for all x € U. Since
N(0) is a neighbourhood basis of 0, we may assume without loss of generality that U = N*_, B,,(0,¢;). Set
e =mini<;<x{e} and C = e L.
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Let z € V. If po,(z) = 0 for all j =1,.., k, then by the definition of U, it follows that Az € U for all A > 0,
and by the choice of U it follows that | T(Az) |[= A | Tz |< 1 for all A > 0, so that T = 0, and certainly

k
| Tz |=0< Czpai(x)

i=1
for C' as above. On the other hand, if p,,(z) > 0 for some j, observe that | y |= ex/z _1 Do, () satisfies
Pa, (y) < €forall j=1,.,k, sothat y € U and | Ty |< 1. Which is the same as saying that:

| Ta [< (e Zpa

So, since C' = ¢!, we have the desired inequality in both cases, i.e. for all x € V, and the lemma follows. O

Remark 1.4.14 (: Caution!). The topology of the topological vector space £ is determined by the family of
seminorms

{Pax i DPax(f):=sup|DSf|, a amulti-index, K a compact subset of R"}
reK

Similarly, the Schwartz space S is defined by the family of seminorms:

{Pap: Pap(f):= sup |manf |, a, 8 multi-indices}
reR™

However, the topology of D is not given by the family of seminorms which define £. As we noted in (iii) of the
Definition 1.1.1, if we take a fixed compactly supported function ¢ # 0 supported on [—1,1] C R, then define
fo(x) =¢(xz — n) by translating, we have p, g f, — 0 for each a and K, but f,, / 0in D.

Proposition 1.4.15. Let T' € & be a compactly supported distribution. For £ € R™, denote e¢(z) := el =
ex(§). Then the tempered distribution T is the function:

T(€) = T(e-¢)

It is a smooth function of slow growth (see the Definition 1.4.4).

Proof: Let us first check the identity above, whose right side, viz the function v(€) := T'(e_¢) makes sense
because T is in €. Then let K := supp T be the compact support of T' (in view of the Lemma 1.3.10), and let
(&) be a compactly supported function which is identically 1 on K. It is trivial to check that YT = T. Now
let g € D be a compactly supported function. Then

Tlo) = vT@ =T [v(6) [ alwle-ctads| =7 | [v©)a(a)e-r(aa
[ s@rwe s = [ g@)0T) etz
= [s@1e-ndo = [ gz =1,(9)

by using (i) of the Exercise 1.4.8 applied to the compactly supported function p(x, &) = (&)g(z)e—_.(&).

Now the smoothness of the function v () easily follows by applying continuity of 7', and that T is compactly
supported so acts on all smooth functions. To check slow growth, we first note that for the family of seminorms

{Pa,r : @ a multi-index and L a compact subset of R"}
which define the topology of £, we have:
Pa,r(r’e_¢) = sup | Dg(ae™ ) [< O(L)(14 | € YV (*P)
zEL

By the Lemma 1.4.13, since T is continuous, there exists a finite subfamily pa],, L; such that

| D{v(€) |=| £T(Dfe—¢) |=| T2 e—¢) |<CZ Pay (7P ¢) <CZC )1+ [ €D
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which is clearly bounded by C(1+4 | £ ) for N = max; N(«a;,3). The proposition follows. O

Since the constant function 1 is a locally L; function satisfying (1+ | = |)™V.1 € L1(R") for all N > n,
by the Example 1.3.3 it is a tempered distribution. The Dirac distribution is in fact a compactly supported
distribution, and hence a tempered distribution. Thus it makes sense to take the Fourier transforms of these
distributions. Indeed we have the:

Corollary 1.4.16. The Dirac distribution dy and the constant function 1 are Fourier transforms of each other.

Proof: By the above Proposition 1.4.15, we have
00(€) = dofe-¢) = 1

for all €. The fact that T = 8§y then follows from the Fourier inversion formula in (i) of the Proposition 1.4.12,
since § and 1 are invariant under the reflection z +— —z. One can check it directly as well, for if g € S, we
have:

(g) = 1(3) = / Gz = 5(0) = g(~0) = 9(0) = do(g)

O

Exercise 1.4.17. Using (ii) of the Proposition 1.4.12, show that polynomials in £ = (1, ..,&,,) are exactly the
Fourier transforms of tempered distribution defined as finite linear combinations of derivatives of the Dirac
distribution &g, namely distributions T of the form:

k
T = Z CkDgi(So
=1

where «; are some multi-indices, and ¢; € C.
Indeed, we have the following interesting characterisation of distributions whose support is a point.

Proposition 1.4.18 (Distributions with point support). Let a € R™, and let T € D’ with suppT = {a}.

Then
k
T =Y cxD3d,
=1

where d, is the Dirac distribution at a, a; are some multi-indices, and ¢; € C.

Proof: By translation, we may assume that a = 0. Let ¥ € D be a cutoff function such that ¢y > 0, ¢ =1
on B(0,1) and ¢ = 0 outside B(0,1). Since T is supported in the point {0}, it follows that T((1 — v¥)¢) = 0
for all ¢ E &, and hence T(¢) = T(¢¢) for all ¢ € £. Note that by Leibnitz’s formula for the derivatives of a
product, we have for a compact set K and a a multi-index, the inequality:

Pasc(¥6) = sup | D°(v9) |< C > sup | DY

18I<|af 1211

where C depends on supjj,<; | D74 | for various | v |<| a|.

Combining the above fact with the Lemma 1.4.13, we have an inequality:

| T(¢) |=| T(¢) |<02pa7 (W¢) <C D sup | D(x)| forall ¢ €& (2)

i=1 ‘a|<NH$H<1

where N = maxi<i<x | @; |. Now we make the following:

Claim: Let ¢ € € such that D*¢(0) = 0 for all | & |[< N. Then T(¢) = 0.
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Consider the sequence of functions ¢y € £ defined by
or(x) = ¢(x)(1 —Y(kz)), xe€R"

where ¢ is the cut-off function defined in the first paragraph. The fact that D*¢(0) = 0 for | o |[< N will
imply by Taylor’s formula for D¢ around the origin that there exists a § > 0 such that

| DP¢(a) |< C M1 forall ||zl <6, |BI<N

Note that the function ¢ (kxz) and all its derivatives are supported in the ball B(0,1/k), and for k large enough,
this ball is contained in B(0,d).

Now let o be a multi-index such that | o |< N. Then we have
1
| DY(p(x)(kz)) |=0 for |z| > o and all k

On the other hand, for ||z| < ¢, and k large enough so that 1 < d, we have:

| D(p(x)p(ke)) | < C Y | D¢(x) || D*Pi(ka) |

1BI<le

< O D [l VTR Dy
1BI<le

< C Z (k—l)N-Q—l—W\k\al—W
1BI<le

S Okla\iN?l S Ok71
Summing up, we have:

sup | D*(¢n(x) — ¢p(x)) |= sup | D*(p(x)y(kx)) |[< Ck™ for |a|< N and k >>0
rER™ rER?

Plugging this fact into the inequality (2) above, we find that: limg_,o | Top — T |= 0, i.e.
lim T'(¢x) = T(¢)
k—o0

Now note that ¢ are compactly supported in the region {1/2k < ||z|| < oo}, and hence compactly supported
in R™\ {0}. Since suppT = {0}, T'(¢x) = 0 for all k. Thus T(¢) = limg—00 T(¢x) = 0 and our claim follows.

Now, to show that T = ZIOLK N CaD%00, it is enough to show that the Fourier transform Tisa polynomial
(see the preceding Exercise 1.4.17). By the Proposition 1.4.15, we have for the N chosen above that

~ —i(&.x)]F
TE)=T(e¢) = T ngN[(k!)]ms
= Z (,i)la\w: Z Cal®
0<|al<N o! 0<|al<N

since T'(¢) = 0 by the Claim above (all its derivatives of order < N vanish at 0). This proves the proposition.
O

Finally, we have the following description of compactly supported distributions.

Proposition 1.4.19. Let T € & be a compactly supported distribution. Then there exists a continuous
function g € Cp(R™) such that:

k
T= Z c¢iDytg
i=1
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Proof: By the Proposition 1.4.15, the Fourier transform T is a smooth function, say F', of slow growth. That
is, there exist C' > 0 and N such that:

| FE) 1< c+1en”
Since (1+ | £1?)7% is in L'(R") for any s > n/2, it follows that the function:

G =1+ €))MF(©)
is in LY(R") for M = N + n, say. So, by the Riemann-Lebesgue lemma (v) of Proposition 1.2.5 above, the
function g = G¥ = G" is in Cp(R"™), and G = 3. Also

F(©) = (1 * Zg?) G() = PO)T(E) = (P(D)9)"(©

where P(¢) = (1+ | € |?)M is a polynomial, by (ii) of Proposition 1.2.5. But then:
T=(T)"=F'=((P(D)9)")" = P(D)g

which proves the proposition. O

Remark 1.4.20 (Tempered distributions given by non-negative Ly ;0. functions). We saw with the example
of e” cose” in the Remark 1.3.7 that an L; ;.. function which is a tempered distribution is not necessarily a
tempered function in the sense of Example 1.3.3. However, if f € Ly jo.(R™), and f is non-negative, then the
distribution 7T’y defined by f is a tempered distribution implies that the function f is a tempered function in
the sense of Example 1.3.3. For it is enough to prove, for example, that for some N, (1+ | z |)~% f is integrable
on say {| x |> 2}, because every locally integrable function is integrable on B(0,2). Let ¢ € C2°(R) be a real
valued non-negative function with 1) = 1 on the interval [—1/2,1/2], and = 0 outside the interval [—1,1]. For
a > 2, define on R™ the radially symmetric non-negative function:

wa(m) = ¢(| €T | —CL)

which is compactly supported in the annulus {a — 1 <| z |< a4 1}. Since v, are radially symmetric, it is easy
to check that the Schwartz seminorms of these functions are majorised as:

Pas(¥a) = sup | anc€¢a < (a+ 1)|(X\ | (951# |< Cﬁ(a"’ 1)|a|

where Cjp is independent of a. Now, since f is a tempered distribution, we apply the Lemma 1.4.13 above to
conclude that for a > 2 we have:

k
/ f@de < [ F@a@ds <3 pap ($e) < Clat+ DY
—3<|z|<at+3 R"

i=1
for some N, and C independent of a. That is, the integral of f on the annulus {a — % <Jzl|<a+ %} is of
polynomial growth in a. From this it is easy to check that f is a tempered function.

As a consequence of the above discussion, a function f € L1 j,. is a tempered function iff | f | is a tempered
distribution.

2. DISTRIBUTIONS AND PARTIAL DIFFERENTIAL EQUATIONS

2.1. Motivation from Electrostatics. We recall that in electromagnetism, the Maxwell equations imply
that for a smooth charge distribution g € C*°, the scalar electrostatic potential is given by a function ¢, where
¢ is a solution to the inhomogeneous Laplace equation

3
Ap==3 o=y
i=1

Classically, it was known that the potential due to a unit point charge at the origin was given by ¢(z) = C' | z |~!
by the inverse square law, so the potential at x due to the “infinitesimal” charge element g(y)dy situated at y
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would be C' | z — y |~ g(y)dy. Since the scalar potential is additive, the total potential at = due to the entire
charge distribution would be the integral:

b(x) = C / |2~y | gly)dy 3)

This looks like the convolution of the “function” C' | # |~! and g. Only C | 2 |~! is not a function. It is however,
a tempered distribution, indeed it is a tempered function as is easily checked by using polar coordinates. So
although the expression in (3) above doesn’t quite make sense unless we justify the convergence of the integral
above, we can try to see if it can be recast as a convolution of a the tempered distribution C' | z |~! which will
(a) rigorise and (b) generalise the above heuristic argument.

2.2. Fundamental solutions.

Definition 2.2.1. Let L be a linear differential operator with constant coefficients on R™. That is, L = P(D)
where P is an n-variable polynomial. We say that the distribution 7" is a fundamental solution of L if

LT =6

as an identity of distributions. We are not suggesting that they exist in general. If, however, T is a tempered
distribution, then its Fourier transform T must also be a tempered distribution, so also LT. By taking the
Fourier transform of LT = ¢y and applying (ii) of Proposition 1.4.12 and Corollary 1.4.16 we see that T must
satisfy the identity:

PET =1

of tempered distributions. More on this later.

The reason to look for fundamental solutions is the following proposition.

Proposition 2.2.2. Let g € S be a rapidly decreasing function, and assume that T is a tempered distribution
which is a fundamental solution of L = P(D). Then the smooth function ¢ := g * T' is a smooth solution of
L¢ = g. Similarly, if g € D is a compactly supported function and T is any distributional fundamental solution
to L.

Proof: By the Lemma 1.4.7, we have in all the cases cited above that ¢ is a smooth function. Furthermore,
by the same lemma, and the Example 1.4.6, we have:

L(¢) = P(D)(g*T) =g+ P(D)T =g*do =g

This proves our proposition. O

This is a “soft analysis” method of solving the inhomogeneous equation L¢ = ¢, given a fundamental
solution. Finding a fundamental solution, however, is not a “soft” activity. We illustrate with a few examples
below.

Let us define the following linear first order differential operators on R?:
= 1 1
0:= 5(&—1—2’8,,), 0= 5(8$—i8y)

(The operator 0 is called the Cauchy-Riemann operator). Note that 400 = 400 = —A where A = —92 — 85 is
the Laplace operator on the plane.

Proposition 2.2.3 (Cauchy Problem). On R?, the tempered distribution 2(z +1iy)~! = 2/ is a fundamental
solution to 0. The tempered distribution —log | z | is a fundamental solution to A.

Proof: We recall that our volume element on R? is dV = (27)~!dxdy. By using polar coordinates, for example,
dV = (2m)~lrdrdf, and it is readily verified that 2/z and log | z | are tempered functions, and hence tempered
distributions by Example 1.3.3.



18 VISHWAMBHAR PATI

For f = P+ iQ a complex valued function, the 1-form fdz on R? denotes (P + iQ)(dx + idy) = (Pdx —
Qdy) + i(Qdx + Pdy). If W C R? is any open set, and  C W is a compact domain with smooth boundary
0f), then we have the Green Formulas:

Qdzx + Pdy = 277/ (0. P —0,Q) dV, Pdr — Qdy = —27T/ (0:Q + 0, P) dQ
Q Q

a0 o0
Since Of = (0, +i0,)(P +iQ) = 1(8,P — 9,Q) +i(9,P + 0,Q), we can write the two Green formulas above
for the 1-form fdz as the single formula:

fdz = Ami / (@f)dvV (4)
o0 Q

Now we claim that the tempered distribution % is a fundamental solution of 9 on R2.

For, let ¢ € S be a smooth function. Then note that on R? \ {0}, the smooth function 2 is holomorphic, so
that on R?\ {0} we have by the Leibnitz formula that 9(2¢/z) = (2/2)d¢. For e > 0, R > 0, let Q. p C R?\ {0}
denote the annulus € <| z [< R. Choose R >> 0 so that the support of ¢ is contained in B(0, R). We apply
Green’s formula (4) to the function f(z) = 2¢/z, W = R? — {0} and Q = Q, g, to obtain:

/Q (i) gV /Q Ef(%/z)dv = /Q G‘Rgfdv

1
yp= [ ) f(z)dz — . f(z)dz]

i 4
= o /S@zdz

where S(r) denotes the circle of radius r centred at the origin and oriented counterclockwise, and the integral
over S(R) vanishes because ¢ =0 on S(R) by the choice of R. From the fact that |, s(r) 4% /z = 2mi, it follows
that:

256dV = lim 280av = 1im - [ 23 s = g0

R2 % —0 Qe g z e—0 27 S(e) z
From this it follows that:

_ _ 2\ _
012/2)(0) = ~(2/2)00) = - [ (%) 800 = 0(0) = (o)
for all € S. Thus 9(2/2) = o, and the assertion for the Cauchy Riemann operator follows.
The statement for the Laplacian follows by first checking that log | z | is a tempered distribution, and obeys
the distributional identity:
2
40log | z |= (0. — i0,) (log(” + y*)) = ~
as distributions on R2. This is clear enough as an identity of functions on R? \ {0}, but has to be verified as
an identity of distributions on R?, which involves using the annuli 2, g etc., and writing down a d analogue of
the 0 Green’s formula that we had in (4) above. We leave these details to the reader.
Then it follows that:
A(=log |z |) =400(—1log | z |) = 0(4d1log | 2 |) = 0(2/2) = &

by the fact that (2/z) is a fundamental solution to d proved above. The proposition follows. O

Proposition 2.2.4 (Fundamental solutions to A on R™, n # 2). Let n # 2. A fundamental solution to A on
R™ is given by the tempered distribution:

(271.)”/27,—n+2

(2 —n)wp—1

where w,,_1 := Vol 771,
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Proof: There is the following special case of Stokes’s Theorem (=Gauss’s divergence theorem) for a do-
main ) with smooth boundary 02 contained in an open subset U C R", and a smooth vector field v(z) =

(1}1(.13), --7'Un(l‘)) on U.
Vi = (2m)~"/? V.U
[ (Sam) v —on 2 | e

where dS is the induced surface measure on 9f) from the Euclidean measure dx...dx, on R™, and v denotes
the outward normal vector field on 9. (The factor of (27)~™/? comes because for us dV = (27)~"/2dz; ...dx,,.)

If we substitute for v the particular vector field v = fVg, where f, g are smooth functions on U, we have
the formula:

[ vy - [ (Gagav =en 2 | (o
Q Q a0
where 0,9 := Vg.v is the normal derivative vector field of g on 9. (Remember that A = — 3. 92).

Interchanging the roles of f and g, and subtracting, we have the Green Formula:

[ (189 gnpiav = @m 2 [ (go,s - so,9)d o)
Q o9
Now note that the function f(z) := ||| ~""® = r~"*2 is tempered, and on a radially symmetric function it

is easily checked by using polar coordinates that:

A=—-0%—(n—1)r""o,
so that Af = A(r~"*2) = 0 on R™ \ {0}. Now let Q. g = {z : € < ||z|| < R}. If g is a smooth function of
compact support, and supp g C B(0, R), we will have g = 9,9 = 0 on the sphere S(R) of radius R. Thus from
the Green formula (5) it follows that:

A = —(2 —n/2 ay ds = (2 -n/2 aT ds = (2 —n/2 9 _ ) _n+1dS
[ rae = —en [ gugus = [ gois = @ny e [ g
= (277)—"/2(2—71)/

S(e)
It is clear that as € — 0, the expression above converges to

(2m) 722 = n)wn-19(0)
where wy,,_1 := Vol S(1) is the volume of the unit sphere in R™. Thus we have:

(APo) = [ A9V = (2m) /22 = mr-1du(o)

which shows that a fundamental solution is as asserted. O

g.€ 7S = (27)"2(2 — n) / glex)dS
(1)

Remark 2.2.5. In general there is nothing unique about a fundamental solution. For example, since the
Cauchy-Riemann operator 0 annihilates every holomorphic function f, the distribution 2/z + f(2) is also a
fundamental solution for 9. Likewise for the Laplacian A, adding on a harmonic function (i.e. a function
annihilated by A) will also provide a fundamental solution. For a general constant coefficient linear partial
differential operator L, all the fundamental solutions constitute the affine space:

¢+ker{L:D — D'}

where ¢ is one fundamental solution. It is a consequence of the elliptic reqularity theorem to be proved later
that any distribution in the kernel of 9 or A is actually a function, a smooth function in fact.
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3. SOBOLEV THEORY

We will define certain Hilbert spaces which provide the ideal ones for studying differential operators, and

more generally the “pseudodifferential operators” to be introduced later.

3.1. Sobolev Spaces.
Definition 3.1.1. Let s € R. The Sobolev space Hy(R™) is defined as:

HR")={feS": fis a measurable function and (14| € 1P)* | f(ﬁ) | d¢ < oo}
R’V‘L

For f,g € Hs(R™), their Sobolev inner-product is defined by

o~

(F9)ei= [ (1 [€PYTOFEE

which is finite by applying the Cauchy-Schwartz inequality.

Remark 3.1.2.

(i): By the Plancherel Theorem in (iv) of 1.2.5, we have Ho(R™) = Lo(R"™).

(ii): Note that for any s € R, we have that the function p, (&) := (1+ | £ |?)%/? is a slowly increasing function.
Thus mlutiplication by this function is an isomorphism & — S. Then if we define the linear operator:
Ag: S — &
fo= (psf)Y
it follows that this operator is a continuous isomorphism (with inverse A_;). Hence, in view of the
Plancherel Theorem (iv) of 1.2.5, we have the description:

Hy ={f €S8 :Af € L(R")}

and since Ay is an isomorphism, it follows that H is isomorphic to Lo as a Hilbert space. In particular
it is a separable Hilbert space.

(iii): For each t < s, we have (1+ | £ |2)! < (1+ | £ |?)%, so H, C H; for all s > t.

(iv): T € & is a compactly supported distribution,then by the Proposition 1.4.15, it follows that Tis a
function (namely T'(e_¢)) which is of slow growth. That means its modulus square is also a function of
slow growth, and it will be integrable against (1+ | £ |?)® for some s. Hence T will be in the corresponding
H,(R™). On the other hand every non-compactly supported Schwartz class function in in each Hj, but
not in &’.

(v): Not every tempered distribution is in some Hy. For, the constant function 1 is a tempered distribution,
but since its Fourier transform is g, which is not a function, 1 does not belong to any Hs. Thus in view
of (iv) above, we have strict containments:

& CH_o :=UyerH, CS

(vi): Since Ag is an isomorphism on S, and so A f € Lg for every f € S and every s, it follows that:
S C HOO = mSGRHS

Also since A; is a Hilbert space isometry of Hs to Hy = Lo, A;(S) =S, and S is dense in Lo, it follows
that S is dense in each Hj.

(vii): However, the containment:
SCHy :=NgH,
is also strict. For example, the function f(x) = (14 22)~! on R has the Fourier transform e~ /¢!, which is
integrable against all powers of (1+ | £ |?)*, so f € Hy. However, f ¢ S, because its Fourier transform
e~ 1€l is not smooth, so not in S.
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Exercise 3.1.3. Prove the slightly stronger statement than (vi) above, viz. that D = C° is dense in each
H;. Thus in view of (v) and this statement, one could also define H; as the completion of the inner product
spaces D or S with respect to the Sobolev inner product (—, —)s.

We now have a very elementary proposition about these Sobolev Spaces.

Proposition 3.1.4 (Some Facts on Sobolev Spaces).

(i): The inclusion Hy — H; for s > t, defined in (iii) of 3.1.2 is a continuous (=bounded) operator. If f € S,
the multiplication operator w — fu is a continuous (=bounded) operator.

(ii): If m > 0 is a non-negative integer, then on the vector subspace €N H,,(R™) of H,,, the Sobolev m-norm
is equivalent to the norm defined by:

12 = Z/ | Df I da

|a|<m

Thus for such an m, H,, can be described as the completion of S or D with respect to this norm.

(iii): If P is a polynomial of degree k, then for the linear constant coefficient differential operator P(D), we
have:
P(D):Hy; — Ho_,

is a continuous(=bounded) operator of Hilbert spaces.

(iv): The sesquilinear pairing:

SxS§ — C
extends to a sesquilinear pairing of Hy x H_g, also denoted (—, —) which satisfies:

| (f,9) |

o£ger. |lgll_g

(Lo 1< Ul gl s 1A

(—, —) is therefore a perfect pairing and identifies H_¢ with the Hilbert space dual (H)* of Hy.

Proof:
(i) is trivial from the fact for ¢t < s we have (14 | £ [?)! < (1+ | £ |?)® and all £&. The second statement is
also straightforward, and left as an exercise.

For (ii), we note that there exists a constant C' such that:

SHIEPm < S €IS Ca [P, eR

alm
from which it follows by (ii) of the Proposition 1.2.5 that:
(1+|§|m|f OP< DI 1DNNE PO+ [P F©) P
am

and all £ € R™. The result follows by integrating the above two inequalities over R™, and the Plancherel
Theorem (iv), 1.2.5.

~

(iii) is also clear from the fact that (P(D)f)" (€) = P(€)f(€), and that | P(¢) [2< C(14 | £ |?)* for some
C >0 and all £ € R”, if kK = deg P.

To see (iv), note that for f,g € S, we have by Plancherel:

(9) = (F5) = [FOa+ 16 2 Ty | ¢ Py < 71,131, = 11, ol
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by using the Cauchy-Schwartz inequality. To see that equality is achieved in the inequality, choose g such that

~

g = f(1+ | £]?)°. This yields the rest of (iv), and the proposition follows. |

Remark 3.1.5. (iii) of the Proposition 3.1.4 above is the reason for introducing Sobolev spaces, i.e. in order
to view differential operators as being bounded operators between Hilbert spaces.

3.2. Sobolev Embedding Theorem. There is a criterion for a function to be a k times continuously differ-
entiable function which can be stated in terms of Sobolev spaces.

Proposition 3.2.1 (Sobolev Embedding Theorem or Sobolev Lemma). Let k& > 0 be an integer. If s > k+ 7,
then:

(i): Hs(R™) C CE(R™), where the right hand space denotes the space of k times continuously differentiable
functions f with D¢ f vanishing at oo for all | a |< k.

(ii): [[Dgfll < Ca |l f]ls- Indeed if we define the norm

[flloox = sup [IDg fll
o<k

on C£°(R™), then the inclusion Hy C C§ of (i) above is continuous.

Proof: We first make the following:

Claim: If f € &' is a tempered distribution such that (D2 f)” is a function in L;(R"), then f € C¥(R™). Also,
105 flloe = suPgern [Dg f| < (DG )3

If g := (D2 f)" € L', then by the Riemann-Lebesgue Lemma (v) of Proposition 1.2.5, we have D2 f = gV is
in Co(R™). The last statement is clear from the fact that [|g"|., < [lg]l;-

In view of the above claim, all we have to do is show that if f € Hy(R") for s > k + %, then (Dg f)" is an
L function. But then:

/I(Dﬁf)A(f)ldé“ /If\“\f(&)l&z/lfl“ (Lt 1€ P2 | € )2 | 7o) | de

1/2
( [rer i 2>Sds) T

by the Cauchy-Schwartz inequality. Since:
€ P (14 € )7 < (1 € )
and s — k > n/2, the integral [ | £ [?® (14 | £ |*)~*d¢ is finite, and we therefore have:
D" Ny < ClIfI,

IN

which implies by the Claim above that:
1D flloe < ClIfllg forall |a[<k
This proves both (i) and (ii) and the proposition follows. a

Corollary 3.2.2. As a consequence of the entire subsection,we have the following chain of inclusions:
SCHowCH C&
each of which is strict. Note also that by the Sobolev Lemma above,
H, Cc C§°

Note also that the Dirac distribution do belongs to H_ for all s > 4 since (% =1, and

16oll_, = / (L4 | € [2)~*de < oo
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for all s > 5. In general, the more negative the s, the more singular the tempered distributions that will be
included in Hj.

Remark 3.2.3. The Sobolev Lemma above is crucial for proving regularity (smoothness) of distributional
solutions to elliptic differential operators.

Exercise 3.2.4. By the Sobolev Lemma, Ho, C C§°. Is C§° a subset of H_,?

3.3. Rellich’s Lemma. The other crucial lemma about the Sobolev spaces is a statement about the inclusion
H, C H, for s > t. Before we prove it we state the following lemma about locally compact metric spaces.

Proposition 3.3.1 (Arzela-Ascoli Theorem). Let X be alocally compact o-compact metric space (o-compactness
means X is a countable union of compact subsets). Let {fx} be a sequence of complex valued functions satis-

fying:

(i): {fr} is equicontinuous. That is for each x € X and each e > 0, there is a neighbourhood U, of = such
that | fr(x) — fx(y) |< € for all y € U, and all k.

(i1): {fx} is pointwise bounded, i.e. the set {fx(x) : k € N} is a bounded set for each z € X.

Then there exists a function f € C(X) and a subsequence {fi,, } of {fx} such that fi, — f uniformly on
compact sets.

Proof: See Rudin’s Real and Complex Analysis, or Folland’s Real Analysis: Modern Techniques and their
Applications. a

Proposition 3.3.2 (Rellich’s Lemma). Let s > ¢, so that Hy C Hy. Let {fi} be a sequence in Hy such that:

(i): There exists a compact set K such that for all k, the support of (the tempered distribution) fy is
contained in K.

(ii): {fx}ren is a bounded set in Hj.
Then there is a subsequence of {fi} which converges in Hy.

Proof: First note that for £, n € R™, we have by the triangle inequality that:

[EP<2(E=nP +1nf)
which implies that:
(A+[€) <20+ [€=n )+ |n )
Thus if s > 0, we have:
I+ EP)2 <O+ [E=n )21+ [0 )
where C' is a constant depending on s. Similarly, if s < 0, we can apply the above inequality to | s |[= —s and
interchange the roles of £ and 7 to obtain the so called Peetre inequality for all s

I+ [ €22 <O+ [€—n )12 |0 2)7/?

Since fr € Hs, by definition ﬁ is a function for each k. Let ¢ € D be a smooth compactly supported
function which is = 1 on K. Then fi = ¢fi as distributions, and by (iv) of the Proposition 1.4.12 we have

fi = ¢ * fi. Thus:
0| =1 @R 1= | [ ate - nfiman| < [ fote -t an
which together with Peetre’s inequality above implies that:
(14 [ € )2 | fu(®) 1< 0/ | G(& = m) A+ [ €= ) 1172 (1 | )2 Fu(n) | diy

for all s. Applying the Cauchy-Schwartz inequality to the integral on the right, we have:
1+ [ €172 | F@©) 1< Cligllg I1fll, < €7 for all k (6)
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since {fx} is a bounded sequence in H.
We note that since fk are compaetly supported dlstrlbuuons by the Proposition 1.4.15 they are smooth
functions. So, similarly, we have d; fk =d; (gb * fk) ]gzﬁ * fk, and again a corresponding argument shows that:
(14 [ € )2 [ dfu(€) < C” forall k

This shows that j?k and dj]?k are both uniformly bounded sequences of functions on each compact L C R™. In

particular, the sequence fj is pointwise bounded, and the condition (ii) of the Arzela-Ascoli Theorem 3.3.1 is
satisfied.

The uniform boundedness of all djfk implies by the Mean Value Theorem that on each compact L C R",
we have a uniform Lipschitz constant C satisfying:

| fie(@) = Fily) I< Cllz —y]
for all x,y € L and all k. This shows that the sequence of functions {fk} is equicontinuous, and condition (i) of

Arzela-Ascoli is satisfied. Thus there is a subsequence of {fk} which converges uniformly on compact subsets
of R™. For notational convenience, denote this subsequence by { f} as well.

Thus, for t < s, we have:

15 = 5l /Ifj L) (14| € [P

lgl<r

for all » > 0.

Since t — s < 0, we have:
I+ [EP) = A [EP) A+ <A+ (1 | €?)° for €27
Thus, by the equation (6) (applied to ]?] — fk replacing fk), we get that the first integral in (7) is majorised by
C(1+ r?)t=# for some C' > 0.

Given € > 0, choose r large enough that C(1 +r?)!=% < ¢ then the first integral is < e. The second integral

is < € by choosing k and j large enough, since fk converges uniformly on the compact set {§ < r}. This shows
that {f} is a Cauchy sequence in Hy, which is complete, so it converges. The proposition follows. O

Exercise 3.3.3. Again show by considering a sequence of translates of a fixed function of compact support
(whose supports thus march off to infinity) that the condition (i) of Rellich’s Lemma cannot be dropped.
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4. GLOBALISATION TO COMPACT MANIFOLDS

In the sequel, M will denote a paracompact, 2nd countable, Hausdorff, oriented, C°°-manifold of dimension
n. It is well known (by using partitions of unity) that such a manifold has a Riemannian metric on its tangent
bundle T'M, and by duality, on its cotangent bundle 7" M. We will very soon specialise to M compact.

4.1. Smooth vector bundles and sections.

Definition 4.1.1 (Smooth vector bundles). A smooth manifold pair 7 : E — M, with 7 a smooth surjective
submersion is called a smooth (or C°°) real (resp. complex) vector bundle of rank k if:

(i): For each x € M, the fibre E, := 7~ !(x) is a real (resp. complex) vector space of real (resp. complex)
dimension k.

(ii): There exists an open covering {U;}52, of M and smooth diffeomorphisms ¢; : 7=1(U;) — U; x F*
(where F = R (resp. C)) making the following diagram commute:

Uy Y U x B
T\ v pry
U;

where pr; denotes projection into the first factor.

(iii): For each x € U;, and all 4, the composite map:
B, = (z) & {2} x F* — FF
is a linear isomorphism of real (esp. complex) vector spaces.
The smooth diffeos ¢; are called local charts or local trivialisations for the bundle, E is called the total space
and M the base space of the bundle. The conditions (ii) and (iii) above simply say that the restricted bundles

Eyy, : = Y(U;) — U; are trivial (i.e. product) bundles. When no confusion is likely, one simply writes E to
denote the bundle, instead of 7w : £ — M.

A smooth map s : M — FE is called a smooth section of E if m o s = id)y;. Using local trivialisations, it is
easy to see that sections of the restricted bundles |y, — U; are in bijective correspondence with F*-valued
smooth functions on Uj.

Example 4.1.2 (Some important bundles). Important examples of natural vector bundles on a smooth real
(resp. complex) n-dimensional manifold M are its real (resp. holomorphic) tangent bundle TM (resp. Tho M)
and cotangent bundle T*M (resp. Ty ,M. The local trivialsiations of these bundles arise naturally from
a smooth atlas (resp. holomorphic atlas). We will usually be taking a real manifold of dimension n and
complexifying its real tangent and cotangent bundles, which will then become complex vector bundles of rank
n denoted respectively by TcM and TEM. When M happens to a complex manifold of complex dimension n,
it can be viewed as a real manifold of dimension 2n, and TcM = Ty M ®ThoM and TEM = TYOM@TOM M,
where 710 is the complex dual of Ty, M and T°! the complex dual of Tj,,; M (the conjugate bundle to Ty, M).

When one takes tensor or exterior powers of these bundles, one obtains other smooth bundles: ®*TcM,
the bundle of contravariant k-tensors, or ®kTé‘M the bundle of covariant k-tensors, or APTEM, the bundle
of complex valued differential k-forms. These associated bundles have natural trivialisations arising from the
trivialisations of the tangent and cotangent bundles. For further details the reader may consult any standard
differential topology or differential geometry text.

By proceeding componentwise, one easily defines the function spaces of C*-valued smooth functions:
EFR") = &, E(R™)

and likewise DF(R™), or S¥(R)™. So also the spaces of vector valued distributions D'*(R"), tempered distri-
butions ' *(R™) and compactly supported distributions £ (R™).
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Now let E — M be a smooth complex vector bundle on a paracompact real manifold M of dimension n.
We can choose, by refining if necessary, a covering U of M by open sets {U;}5°; such that:

(i): U; is diffeomorphic to R™, and U; is compact, for each i.

(ii): E)y, is a trivial bundle for each 1.

Choose a partition of unity A; subordinate to the open cover U, so that supp \; is a compact subset of U;
for each 4, which is possible since M is paracompact. Then, if we denote the space of smooth sections of F by
C>™(M, E), in view of (i) and (ii) above we have a natural inclusion:

C®(M,E) — ﬁ EF(R™)

s o (A(dios),

Note that at each x € M, only finitely many entries on the right have a non-zero value. Indeed, each compact
subset K C M meets at most finitely many Uls, so that K N (supp \;) = ¢ for all but finitely many 4. If we
denote s; := A\;(¢; 0 s), we may define seminorms:

Pa,ic () = sup ( sup | Dg(si) |>
i\ KN(Supp \:)

where the quantiy in brackets on the right is the usual seminorm introduced earlier for £¥(R™). This defines a
topology on C*°(M, E).

Exercise 4.1.3. Verify that taking M = R", E a trivial real rank k vector bundle (so that C*°(M, E) = £F)
and a locally finite covering U by open balls {U;}22, (which are diffeomorphic to R™), and with ); being a
partition of unity subordinate to U, the topology that is defined as above on C*°(M, E) is the same as the
topology introduced earlier on £¥. (One needs to fix bounds on derivatives of \; on their compact supports
etc.)

Similarly for C°(M, E), the space of compactly supported smooth sections of E, we have the restriction of
the above inclusion:

C*(M,E) — &2,E%R")

S Zsi
i

where the s; are as above. We leave it as an exercise for the reader to define the topology on this space in a
manner that is consistent (in the sense of the exercise above). We just remark that if {s,} is a sequence of
smooth compactly supported sections all having support in some fixed compact set K C M, then s, ; above
will be identically zero for all ¢ such that ¢ ¢ F, where F = {i : U; N K # ¢} is a finite set independent of n,
and for each ¢ € F', all the s, ; will have support inside the compact set supp A\; N K.

Definition 4.1.4 (Distributions on manifolds). A continuous linear functional on C°(M, E) is called an E-
valued distribution on M, and the space of these is denoted as D'(M, E). Similarly, a continuous linear
functional on C*° (M, E) is called a compactly supported E-valued distribution on M, and their space denoted
E'(M,E). When FE is the trivial rank 1 (line) bundle on M, we just write D'(M) (resp. &'(M)) for the
respective spaces of distributions.

When M is compact, C3°(M, E) = C*(M, E), and compactly supported E-valued distributions are exactly
the same as F-valued distributions. One doesn’t really need the space of tempered distributions on a manifold,
their main use on R™ being the availability of Fourier transform, an operation that doesn’t make global sense
on a general manifold M.
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Example 4.1.5 (Currents on a smooth manifold). In the particular case when E = A""PT¥M, the space of
its smooth sections C°°(M, E) is denoted A”(M, C), and such a section is called a differential (n — p)-form.
FE-valued distributions on M are known as p-currents on M. Likewise, compactly supported p-currents are
elements of &'(M, A" PT{M). The reason for the indexing is that one may think of a differential p-form w as
a contnuous linear functional acting on the space A ”(M) via integration:

T,(1) := /Mw/\T T € NB(M)

where integration of an n-form on a singular n-cube is defined for the oriented manifold M as usual, and where
the support of 7 can be covered by a finite union of k-cubes with the right orientations (i.e. a k-chain) etc.
Clearly then, a differential p-form is a p-current by this indexing convention. Using the Stokes formula for a

singular k-chain:
[,
do

and the facts that (i) d(w A7) = dw A7+ (—1)9® “w A dr, and (ii) 7 € A~ P(M) implies that 7 = 0 on the
boundary of a sufficiently large k-chain covering the support of 7, the reader can easily check that by defining
the distributional exterior derivative of a p-current T by dT'(w) = (—1)P1T(dw) for w € A" "P(M) leads to the
consistency formula: dT,, = Ty,,.

Indeed, if we denote the space of p-currents by CP(M, C), there is the de-Rham complex of currents:
.= CP(M,C) -% cPT (M, C) —

with dod = 0, and the usual de-Rham complex is a subcomplex of this complex via the chain map w — T,,. It
is a fact (using an approximation theorem analogous to the Proposition 1.4.10 proved for R™) that this chain
map is a chain homotopy equivalence.

Similarly, the singular (n — p)-chain o may be regarded as a compactly supported p-current via integration:
T, (1) := /7’ for 7€ A"7P(M,C)
g

By Stokes’s theorem, the distributional derivative 0T, defined by 0T, (7) = T, (dr) leads to the usual boundary
operator on singular (n — p)-chains. In particular, an orientable (n — p)-dimensional submanifold N of M is
an (n — p) chain in M, and defines a p-current.

Analogously an infinite (Borel-Moore) locally finite (n — p)-chain maybe regarded as a p-current, acting on
AZ~P(M,C) via the same integration formula as above. Again, the distributional derivative defined as above
leads via Stokes to the usual geometric boundary. Thus p-currents (resp. compactly supported p-currents)
are general enough to include both (n — p)-Borel-Moore chains (resp. singular p-chains) and differential p-
forms (resp. compactly supported p-forms). One then shows that the cohomology of the complex of p-
currents C*(M,C) is the same as that of the Borel-Moore chain complex ABM = as well as the de Rham
complex A\"(M,C). Similarly for compactly supported currents. Thus follow the standard Poincare duality
isomorphisms of the Borel-Moore homology HP(M,C) and the de-Rham cohomology HYy(M,C)) (resp.

singular homology H,,_,(M,C) and compactly supported de Rham cohomology HY R7C(M ,C))

Remark 4.1.6. In all of the above, one has chosen a particular partition of unity, and a particular kind of
open covering. One needs to check that everything defined above for M is independent of these choices. One
can actually define £(U) and D(U) for any open subset U C R™. Then one shows that if U is a further locally
finite union of U;, an analogue of the exercise 4.1.3 will imply that the “patching definition” of D'(U) or &'(U)
is the same as the a priori definition. Then one uses common refinements, the partition of unity A;u; arising
from different partitions of unity A; and g, etc. to prove that these various choices are immaterial.
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4.2. Sobolev spaces on a compact manifold. In this section M is assumed to be compact throughout

Definition 4.2.1. Let M be a compact manifold, and E a smooth rank k complex vector bundle on M. Again
find a finite open covering {U;} N, satisfying:

(i): U; is diffeomorphic to R™ for each i via a smooth diffeo 9;, and U; is compact in M.

(ii): E)y, is a trivial bundle for each 1.

and let \; be a partition of unity subordinate to this open covering. Via (i) and (ii) above, identify U; with
R"™, Ejy, with U; x C*, and using pushforward and pullback under these identifications, identify the Sobolev
space Hy(U;, E) as [Hs(R™)]* := @F_; Hy(R"). There is a natural Sobolev (direct sum) inner product on this
last space, and the resulting Sobolev inner product on H(U;, E) is denoted (—, —);.s.

)

We now define:
H (M,E):={f €& (M,E)=D'(M,E): \;f € Hy(U;, E) for each i =1,2,..,N}
In fact, we can define the Sobolev inner product on Hy(M, E) by the formula:

(f,9)s = Z(Aiﬁ Xi9)is

K3

Equip M with a Riemannian metric g, which will be fixed once and for all. By the orientability of M there
results the global non-vanishing smooth section in A" (M, C) called the Riemannian volume form, defined in a

local coordinate system by:
dV(z) == y/det g;j(z)dx1 Adxa A ... Ndzyp,

where g;; := g(0;,0;) is the Gramm matrix of the metric. It is readily checked that the expression above for
dV is independent of the coordinate chart.

Similarly, one may equip the complex vector bundle E with a Hermitian bundle metric denoted (—, —). If
f, g are sections in C*°(M, E), the function (f(z), g(x)) is a smooth C valued function of x € M, and we may
define the global inner product:

(r9):= [ G@.g@)ava

which is finite since M is compact. This makes C*°(M,C) a complex inner-product space, and we denote its
completion by Lo(M, E), the space of all measurable square integrable sections of E.

We can apply the results of the previous subsection and easily deduce the following;:

Proposition 4.2.2 (Facts on Sobolev spaces on manifolds).
(i): Ho(M,E) = Ly(M, E) as Hilbert spaces.
(ii): C°(M,E) is dense in H (M, E) for each s € R.
(iii): The sesquilinear pairing:
C*(M,E)xC*(M,E) — C
fo = (19 = [ (@hg@)dv )
M

extends to a sesquilinear pairing Hs(M, E) x H_4(M, E) — C and identifies H_4(M, F) as the Hilbert
space dual [Hs(M, E)]*.

(iv): (Sobolev Embedding Theorem) There is a continuous inclusion H, < C*(M, C) for s > k+n/2. This
implies that Hoo (M, E) := NserHs(M, E) C C*°(M, E). Since C*(M,E) C Hs(M, E) for all s, we have
the equality Hoo (M, E) = C*(M, E).

(v): H_oo(M, E) := UyepH,(M, E) = D'(M, E)
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(vi): (Rellich’s Lemma) For s > ¢, the inclusion:
Hs(MvE) - Ht(Ma E)

is a compact operator, viz. every bounded sequence in H has a convergent subsequence in H;.

Proof: Let {Ui}ZN:1 and \; be as in the beginning of this subsection. Since K; := supp \; are compact subsets
of U;, the measure dV (z) and the Lebesgue measure on U; ~ R™ are equivalent on K;. Similarly, the Hermitian
bundle metric || || on E and the Euclidean metric on C* are equivalent on K;. Hence, for a smooth section
f € C™®(M,FE), we see that the Lo-norm squared fM (Nif, Aif)dV () is equivalent to the Euclidean Lo-norm

squared of \; f regarded as an element of £¥. Since i = 1,.., N, the first statement follows.

For (v),let T =3, \;T € D'(M, E), and apply (iv) of Remark 3.1.2 to the compactly supported distributions
MNT, for ¢ = 1,..,N. The remaining statements are direct consequences of corresponding statements of the
Propositions 3.1.4, 3.2.1 and 3.3.2 of the last subsection, combined with the remarks of the last paragraph. We
leave them as an exercise. 0.

5. PSEUDODIFFERENTIAL OPERATORS ON R"

5.1. Motivation. When one wants to solve a differential equation on a manifold, one basically wants to
“invert” a differential operator. This “inverse” is usually not a differential operator. For example, if one wants
to solve the equation df = g on the plane, for say g € S, one found in the Propositions 2.2.2 and 2.2.3 that
the solution was g * (2/z), which is given by the integral:

/R g(w) AV (w)

2 W— 2

which is an integral operator acting on g. Thus, one needs to enlarge the class of differential operators to
include more general operators. The key to this generalisation is the observation that if P = Zlal <q0a(x)DY
is a differential operator of degree d, a,, smooth functions, then for f € S say, we have:

Pi()= Y aa(@)Dgf = Y aa(@)(Ds))(@) = Y aa(@)(€f)(2) = / €' p(a, ) F(€)d
| <d o <d | <d Rn
where p(z, &) = >, 1<q @a(2)§* is called the symbol of the differential operator P. If the function f was vector

valued, taking values in R¥, and Pf is R™-valued, then the a,(z) would be m x k matrices, and the symbol
p(x, &) would be m x k matrix-valued.

5.2. Pseudodifferential operators.
Definition 5.2.1 (Pseudodifferential operators). Let d € Z. A matrix valued function:
p:R" xR" — home(Ck,C™)
(@,8) = px,8)

is called a symbol of order d if:

(i): pis a smooth map.

(ii): For each pair of multi-indices «, 3, there exists a constant Cypg > 0 such that:

DYD{p(3,€)| < Cap(l+ | £V for all o, £ € R™

(Note the norm on the left hand side of the inequality in (ii) is the Hilbert- Schmidt norm on homge(CF,C™),
defined by | A |>=tr AA* = tr A*A.)

It is easily checked that the space of symbols of order d form a C- vector space, which is denoted S?. Clearly
54 c S¢if d < e, and we denote S® = UgezS? and S~ = NgezS?.

For a symbol p(z,£) of order d, we define the corresponding pseudodifferential operator of order d, or ¥ DO
for short, by the formula:
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Pf= /M e Ep(x, €) f(€)de

which makes sense at least for f € D* of compact support. The space of ¥/ DO’s of order d is denoted W9, If
P is a pseudodifferential operator of order d, we denote its symbol p(z, &) of order d by o(P).

Example 5.2.2 (Linear Differential Operators). Clearly a linear differential operator P =}, < aa(2)Dg of
order d is a WDO of order d.

Example 5.2.3 (Convolutions). Let g € S. Then by Proposition 1.4.15, its Fourier transform g(¢) is also in
S. We also have D?g(ﬁ) € S for each 3, and by the rapid decay condition:

I D2g@)| _ = cotiv 1€

for each d > 0 and some C3 > 0. Also DgD?@ =0 for all | & |[> 0, so that g(£) is a symbol of every order
d, and hence belongs to S™°°.

The corresponding ¥ DO is defined by:

~ VvV

pf= [e=GF i = (3F) =gxf for fep

which is just convolution by ¢. It is a DO in ¥~°°. Thus, in particular, convolution by a smooth compactly
supported function is a pseudodifferential operator of infinite order. Convolution is not a differential operator.
Hence ¥ DO’s are general enough to include both differential operators and integral operators like convolution.

Remark 5.2.4.

(i): The foregoing example showed how the integral operator of convolution by a rapidly decreasing function
defined a pseudodifferential operator. There is a converse to this, namely if P is a ¥ DO in ¥~ with
symbol o(P) = p(z,£) € S™°, (that is, the symbol is rapidly decreasing in the £ direction), then the
DO P is an integral operator with smooth kernel. For, let f € D, then,

pf = [epw R = [ plo.0) [ e e
-/ ( / ei“—y)p(m)dg) fw)dy = [ Kw) i@y

where the compact y-support of f and the rapid decay of p(x,&) in £ allows the interchange of the
integrals, and where

K(z,y) = / SOV p(z, €)de = pV(z,2 — y)

pY(x, —) being the partial inverse Fourier transform of p in the £ variable. p is rapidly decreasing in £, and
smooth in z, so that pV is smooth in both variables, and K (z,y) is smooth. Thus P is an integral operator
with smooth kernel K. Loosely speaking, a general vy DO is an integral operator with “distributional”
kernel K (z,y) = p¥(x,x — y), since p" is in general a distribution.

(ii): Not every integral operator f — [ K(z,y)f(y)dy with K(z,y) smooth leads to a smoothing operator.
For example, taking the smooth kernel K (¢,y) = e~ leads to the integral operator f f, and say the
C™ function f(z) = (1+22)~! € £(R) has Fourier transform f = e~12|, which is not even C'. However,
the next proposition will show that pseudodifferential operators of order d “reduce smoothness” by at
most d, like constant coefficient differential operators of order d (see (iii) of Proposition 3.1.4).

The way the definition of ¢»DO’s is set up, i.e. using the Fourier transform, it behaves well with respect to
Schwartz spaces and tempered distributions. More precisely:
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Proposition 5.2.5. For P € ¥ a DO of order d, we have that P is a continuous linear operator of S* to
8™, and hence defines a continuous map of tempered k-vector valued distributions S 'k to §'™. If the z-support
of p is compact, (i.e. there exists a K C R™ such that p(x,—) =0 for all ¢ K), then P is a bounded operator
from H,,4(R",C*) to H,(R",CF).

Proof: For simplicity, we will take k = m = 1, since it is the same argument, with moduli replaced by Hilbert
Schmidt norms etc. Let Ag = —>°. 02 denote the Laplacian in the &-variable, whose symbol is p(§, z) =| z |2

Then, for f € S, we have that fis also in S, and so by the definition of a symbol of order d, p(x, §)f(§) is in
S in the £ variable, by using Leibnitz formula. Thus the integral defining P f(x) is finite for each z, and also
we have the inequality:

A [p@,0)f©)| < Covi+ 1€ )

for any r > 0. Hence:

| *VPf(z)|

] / (¢ e”f>p<x,s>f<£>df\ = ] / < AY (p(a, ©)F(€)) df]
< Gy /(1+ | €1%)7mde

~

where we have used integration by parts for the last equality of the first line, since p(x,&)f(€) is rapidly
decreasing (Schwartz class) in £&. Choosing r > n/2 shows that | = [*¥ Pf is bounded for all n. For the
higher derivatives D¢ with respect to x, we differentiate under the integral sign with respect to x and note
that D2(e™$p(z,€)) is a sum of terms of the kind &Y D2~ Vp(x,&). But if p(x, &) is a symbol of order d, so is

~ ~

D¢ 7p(x,€) by definition, and if f(§) € S, sois | £ |7 f(£), so the same argument as above applies to each
term in this sum, and we have Pf € S.

To prove the second statement, let K denote the z-support of p(z, ). For f € S, we have:

(PHNn) = / e Ep e €) F(¢)ded = / a(n — €. F(E)de

~

where the compact z-support and rapid decay in £ of p(xz,&)f(€) (since f € S implies J?E S as well) justifies
the change of integrals above. Here

40, €) = / ey (z, €)da

is the partial Fourier transform of p in the z-direction, which is a Schwartz class function in 7 since p has
compact z-support. In the £ variable, g(n,£) has the same growth properties as p(z,&). Putting these two
facts together, we have:

| a(n,€) 1< Cu(1+ | € P)V2(14 | [2)7F/2
which implies that:
la(n = &€) |< Cr(1+ | € )21+ [ n—€ )2 (8)

where we will conveniently choose k to be large enough later on.

Now, let ¢ € S. Then by the Plancherel theorem (iv) of Proposition 1.2.5 and the Cauchy-Schwartz
inequality, we have:

|[(Pf.9)o| = |(Pf,9)l|=

[an-e9 A(é“)?(n)didn’

IN

/ | K (n,€) [V2] (1| € )2 F(€) || K (n.€) V2 (1+ |0 [*) T G(n) | dédn
1/2

( [ 1KG.e 1ana+ €17 1 T 1 ds)m ( [ KG9 g+ [Py 150 P dn) 9)

IN

where
s—d
2

K(n,€) = q(n =&+ [ €)1+ [ n [*)
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Because of the inequality (8) above, and Peetre’s inequality, we have:

| K6 | = |l — &)1+ |€ )20+ [ n]})F
< G+ €D T+ )T (1 [ - )2
S Ck(1+‘7]—§|2>w

This shows that by choosing k so that | d — s | =k < —n, or k >| d — s | +n, the integrals:

[IK@e an<a [IK.e a<a
where A < oo is independent of £, 7, so that from the inequality (9) above, we have for f,g € S:

| (Pf,9)0 |< ACK I fIl, 19l 4,

By the density of S in Hs and Hy_,, we have the same inequality for all f € H; and all ¢ € Hy_s. Then, by
(iv) of Proposition 3.1.4, we have for f € S that:

| (Pfag)o |
I1Pflle—a= sup ———— < C|fll,
g€EH _s; 9g#0 ||g||d—s

which proves that P : H; — H,_4 is bounded, and the proposition follows. O

Remark 5.2.6. Like the spaces Ly, ;o., one can define the localised Sobolev spaces:
Hs10c(R") = {f €8 :¢f € H(R™) for all ¢ € C°(R™)}

Then if one drops the compact z-support condition on o(P) = p(x, ), one observes that the pseudodifferential
operator ¢ P defined by (¢ P)f(x) := ¢(x)Pf(x) will have the symbol o(¢)P) = ¥ (z)p(x,&), which will have
compact z- support, so that the previous proposition applied to 1P will yield the fact that ||(¢¥P)f|,_, < oo
for f € Hs(R™). That is, Pf € Hs_q,10c for f € Hs. In fact, if one defines a topology on Hs_g10c by fn — 0
iff ¥f, — 0 for each ¢ € C°(R™), then the argument above shows that for a general » DO P we have
P:Hy; — Hs_ g0 a continuous linear map.

Exercise 5.2.7.

(i): Show that the obvious containment Hy, C Hy ;o is strict for each s. In fact, find a function which is in
H, 1o for every s, but not in H, for any s.

(ii): Show that the localised analogue of the Sobolev lemma holds. That is, if a tempered distribution f € &’
is in Heo 1oc := NserH 1oc then f € C°°. One can no longer conclude, of course, that f or its derivatives
vanish at oo, i.e. in general f won’t be in C§°.

Corollary 5.2.8 (Infinitely smoothing operators). If P is in U= = Ny¥9, then P(H,) C C* for every s. In
particular, P(H_,,) C C°°. (Such operators are called infinitely smoothing. Thus convolutions with g € S are
infinitely smoothing, by Example 5.2.3.)

Proof: Apply the Remark 5.2.6 and (ii) of the Exercise 5.2.7 above. ad
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5.3. Some Technical Lemmas on ¢D0O’s. We will need a few lemmas to perform operations with ¢»DO’s.
We make a a couple of definitions first.

Definition 5.3.1. Let p(z,&) € S? be a symbol of order d with compact x-support K. For an open subset
U C R", we will say that p € SY(U) if K c U. Clearly S4(U) c S4V) for U C V.

Definition 5.3.2. Let p,q € SYU). We will say p ~ ¢ if p—q € S™®(U) := NgerS4U). If dy > dy > ... >
d; <. is a sequence of real numbers with d; — —oo, and p; € S% (U) for j = 1,2, ..,, we will say p ~ Zj pj if

p— 27 L pj € 8% (U) for all k.

Lemma 5.3.3. Let U be a relatively compact open set in R", and let dy > dy > ... > d; > ... be a sequence
of real numbers with d; — —oco. Let p; € S% (U) for j = 1,2,...,. Then for any V containing U, there is a
symbol p € S4 (V) and such that p ~ >_;pj in S (V).

Proof: By definition, there are constants C(i 3 satisfying:
j dj—
D2 Dp;(,€)| < €3 501+ | € 1

for all a, 3, j.
Let ¢ > 0 be a smooth function in C2°(R™) with ¢)(z) = 0 for | £ [< 1 and ¢p = 1 for | £ |[> 2. Let
1 <r; <re... <7j < ... be a sequence of positive real numbers with lim;_,. r; = co. We define the symbol:

Z@ZJ Tk kaf)

For a fixed &, | T ¢ |< 1 for j large enough, so 1/1( 1¢) = 0 for j large enough, and the sum on the right is
finite, and makes sense. Also, since the x-support of each pj is contained in U, the z-support of p is contained
in U, which is compact. Thus the x-support of p is contained in every open set V O U.

To make p a symbol in S% (V), we need to make a careful choice of r;. For each multi-index v, let A, >0
be a constant so that:
| DIU(E) |< A, forall ¢

Then, since r; > 1 for all j, it follows that:
| Dgz/)(rj_lf) |< Avrj_hl for each multi-index v and all |£|<2r;; =0 for |y |>0, | €[> 2r;
Thus, for any choice of 1 <7 <7y < ... <7r; <..., we have:

> B DI(r; ) DEDE p(a, €)

| DD (W(r; ) pi(z.8) | <

| — )
Z (B~
Zﬁ'A c? s (14| € )% |5H’\'Y|r < Z@A 1o s, (14 € )4 =181(1 +2rj)‘7‘r;|7|
<P v<B
< M+ &t (10)
where:
Mg =p1> 3MACopy
V<8
is a positive constant independent of any choice of the sequence 1 < 7 < ra.. < r; < .... This shows that

7,/1(rj-_1§)pj(x,§) is also a symbol of order d;, and lies in S% (U) C §% (V).

For each k € Z,, define:
My =sup{M}5:| a|< k, |5 |< K}
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Now choose a sequence of numbers r; > 0 such that rp — oo and:

(1 + ry)de—1—dx =C<o0 (11)

k=2

We need to check that p is a symbol of order dy. In fact, we make the more general:

Claim:

= (ry ) prl, €)

k>j
is a symbol of order d;.

Let «, 8 be multi-indices with | « |,| 8 |< m. It is clearly enough to check the decay condition for D;J?Dé3 ¢; on
the set | € |> 7,,. Also, since ¥(r; *€)p;(x,&) is in S%(U), the finite sum:
() pi(@,8) + o + P (r 1 €) P (2, €)
is clearly a symbol of order max{d;,d;j1,..,dm—1} = d;. Thus we just need to verify that:
| DED(gm) |< (const)(1+ | € P& forall | & |> 7,
We have from (10) that:
\ DaDﬁ (gm) |< Z ‘DaDﬂ W(r m+85)pm+s(x7g)]‘ < Z Mgfgs(pr | £ ])dme+=18] (12)
5>0 SEF(&)

where:
F()={s:s>0 and rm,4s <| €|}
since (r,,} &) =0 for ), | €< 1, Le. for all s such that rp,, s >| €.

Since | a |, | B |< m < m + s, we have Mm“ < Mp4s for all s > 0. Also, for an s € F(£), because
dimts — dm <0, and | € |> 74,45, we have the mequahty

(14 & [)fmre 0T = (14 [ € e tm (14 | € P10 < (14 )t (14 | € )1
Plugging these two facts into the inequality (12), and noting that d,,, — dpmys > dmats—1 — dmas for s > 1, we
have:

T A

| DeDEam) | < | D] | g il
[sEF(6) (L4 7ms) +
i A

SEF(),s>1 (1 Ty domto—1—dmis

(1 + 7y, )de—1—dr dim—|8]
< My, +Z —‘y—?“kdkl dn (1+|£|)
: (Mm+0)(1+|5 |)di—16]

by the equation (11) and the fact that d,, < d;. This proves the Claim that ¢; € S%(V), and in particular
p=q € SH(V).
Also note that for each j, p;(z,&) — Y(rte)p ;(x, &) has compact support in both  and &, so is a symbol

in S™>°(U) C S~>°(V). Hence p;(z,§) ~ 1/}27} L) pi(w,€) in §% (V), so that:

k—1 k—

> pi(,&) ~p(x,€) - Z &) pj(,€) = g4;(,€)
Jj=1 Jj=1

and since ¢; € S%(V), it follows that p ~ ijl pj in S% (V) and the proposition follows. ]
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The other technical lemma one needs stems from the following observation. Let P be a ¥ DO given by the
symbol p(z,&). Suppose f € D, and we write the formula for Pf, viz.,

Py = / e €p(x, €)F(€)de
- / ¢ Ep(r, ) / e~ f(y)dyde

which can be viewed (by interchanging the orders of integration) as a special case of:

Kf = / VLo (2, y €) f(y)dedy (13)

where a(z,y,&) = a(x,z,£) = p(x, ) for all y. The natural question is: do we enlarge the class of ¥ DO’s by
using the formula (13) instead of the formula for Pf in terms of p(z, &) in the first line above ?

This is answered by the following definition and lemma.

Definition 5.3.4. A bi-symbol a(x,vy,¢) of order d is a smooth function on R” x R x R" — hom¢(CF,C™)
which satisfies:

(i): The x-support of a is compact.

(i)): |DyDEDIa(x,y,€)| < Capr(14 | € )11, where | | on the left hand side denotes Hilbert-Schmids
norm, as usual.
By this definition, a symbol p(x, &) € S? with compact z-support is a bi-symbol of order d, with a(z,y,¢) :=
a(z,x, &) = p(x, &) for all y.

Now we have the answer to our earlier question, in the following:

Lemma 5.3.5. Let a(z,y,£) be a bi-symbol of order d, and define the operator K by:
Kf(@) = [ %a(e.y.0) )yde for €D

Then K is a ¥ DO of order d whose symbol k has the asymptotic expansion (i.e. upto a symbol in S™°°) given
by:

k(z,6) ~ > d¢ Dya(z,y, €)=z .

al
«

Note that in the special case when a(z,y,&) = a(z,z,§) = p(x, &) for all y, i.e. the bi-symbol is actually a
symbol in disguise, we have Dy = 0 for all | @ |> 0, and the expansion above reduces to just its first & = 0
term, viz. a(z,x,£), and this is as it should be.

Proof: We will as usual simplify by assuming that £ = m = 1, because the proof is the same. Since the formula
for K f in the statement of this lemma is being defined on f € D = C°(R"), we can write f = ¢(y)f(y) where
¢ =1 on supp f, so that in the formula above, a(z,y, §) is replaced by a(x,y, &)Y (y), and we lose no generality
in assuming that the y-support of a(z,y,£) is also compact.

Define the function:
q(x, p,m) r=/€_”’"’ a(z,y,n)dy (15)

which is the Fourier transform of a(z,y,n) in the y-direction. From this, it follows that:

Dga(x, y,n)jy—s = /eiy"’p“q(w,p, n)dpy—s = /e”'”q(x,p, n)dp (16)
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Now we do some formal manipulations to express K f in the form of a pseudodifferential operator with some
symbol, and then check that the alleged symbol is actually a symbol. First note that by the Fourier inversion
formula:

[etawuonta = [eSawe [y

= / (/ e~ W (&) a(sc,y,f)dy> f(n)dn = /Q(ﬂ%f —n,S)A(n)dn

where the interchange of integrals is allowed since a(z,y, ) has compact y-support, and f € D implies ]?(17)

has rapid decay in . We also need a precise estimate on the decay of ¢(x,& — n,f)f(n). Since ¢(z,n,£) has
rapid decay in 71 as stated above, and the same decay as a(z,y, ) in &, we have, for each k > 0

| a(z,m,€) |< Cr(1+ [ €A+ [ n )7 (17)

Since j?(n) is rapidly decreasing, we also have, for the same k:

| Fm) < Gt [ )"
where C}, above (and below) is a generic constant depending on k. Hence:
la@,=n.Ofm) | < Ce+ €N+ E=n D Fa+ [0
< G+ [N+ €D = (i € )"

by using the Peetre inequality (see the proof of Proposition 3.3.2) for k/2 > 0 and the fact that the ratio of
(14 72)*/2 and (1 4 7)* is bounded above and below by strictly positive constants independent of r > 0. By
choosing k large enough, we see that | q(z,& —n,&)f ( ) | is integrable over R™ in &, as well as n (since it is
rapidly decreasing in the middle variable).

Now,

em:.f

=

fa) = / @), y, ) f(y)dyde =

f(/ (2,6 n&ﬂn)dn)df -

(/ e_iyf“(xvy,é)f(y)dy)) de
girn ( / ¢ € (2, € — n,@ds) f(m)dn

e Mp(z,m) f(n)dn

—— —

where the interchange of ¢ and 7 variables is allowed because of the last paragraph, and where we have
introduced the function:

p(m)zz/ g (2,6, €)de

Now we check the decay of the derivatives of p(x,n) in both variables. This is easily done by changing
variables p := & — 1, so that:

plz,n) = /e“”"’q(%pm + p)dp

Applying the estimate (17) above for ¢, we have:

| p(z,7) |

IA

Co [+ 1o DA+ o) Hap < Co [+ 10 D+ [0 )0 )~

IN

Cu(1+ | )" [/(H P |>“dp} < (14 | )

where we have used Peetre’s inequality in the first line above, and chosen k >| d | +n. Similarly, by writing
down the corresponding estimates for Dg‘D? q(x,n, &) analogous to (17), one can deduce the estimates for
D;‘D;?p(x, 7)) using exactly the same arguments.



ELLIPTIC COMPLEXES AND INDEX THEORY 37

To get the asymptotic formula for p(z,n), first expand the function ¢(z, p,n+ ) by Taylor’s theorem in the
third variable, to obtain:

dyalz, p,n)
a(w,pn+p) = D i g .5 ) (18)
o <k '
where g (x, p,n; i) is a constant times integral of the derivative ds“q(m, p,m +tu) over 0 < ¢ < 1. Analogous

to the inequality (17), since a(z,y,n) is compactly supported (hence rapidly decreasing) in the middle variable,
that, for all p > 0:

| qu(z,pmip) | < Cr sup | ditlq(m, pon+tp) |[< Gk sup (L4 [+t ) * 11+ [ p )77
0<t<1 0<t<1

< sup Cy(L+ [t P40+ [ )R+ [ p )77
0<t<1
< G | p )4 [ DR A p )P

by Peetre’s inequality, for if k >> 0, we have |d —k —1|=k+ 1 —d > 0. Hence:

L, p; p) |[< Cr(14 | p )FFI797P (14 | )01
Thus, by choosing p > k + 1 — d + n, we see that:

[putes) =1 [ € 2au(ap.mp)dp 1< Culi [0 )4 (19)
and is a symbol in S9~*~1. Hence, putting together the equations (16) and (18) we have:
pla,n) = /ei’”"’q(w,p,n+p)dp

: dpq(z, p,n)

_ 1T.p n «

= /6 > P de k()
|a <k

Z dy Dya(z,y,m)y=

xr
ol + pr(w,n)

lo| <k

which proves the proposition, in view of the fact that p(z,7) € S*=1 for all k. |

Corollary 5.3.6. Let a and K be as in the previous Proposition 5.3.5. If a(x, y, ) vanishes in a neighbourhood
of the diagonal A := {(z,, )}, then the ¥ DO is infinitely smoothing.

Proof: By hypothesis, D;‘a(az, Y,§)ja=y = 0, and the asymptotic series of the previous proposition implies the
symbol o(K) = k(x,£) is equivalent to 0, i.e. is a symbol in S~°. m]

The next corollary is the key to many patching arguments for ¥ DO’s that are going to be used on compact
manifolds.

Corollary 5.3.7. Let ¢ := (11,12) € C(R™) x C2°(R™) be a pair of compactly supported smooth functions,
and let P € ¥? be a pseudodifferential operator of order d. Then the operator defined by:

(PYf)(@) =1 (2)P(spof) for feS
is also a DO in W9,

Proof: By definition, for f € S, we have:

(PYf) (@) =11 () / e Ep(z, ) (2 f) N (E)dE = / eI Sy (@)p(e, €)va(y) f (y) dydé
which, by Proposition 5.3.5, implies that it is a 1y DO of order d, because the bisymbol
a(a;, Y, E) = ’(/Jl (m)p(a:, 5)’(/}2 (y>

is a bi-symbol of order d, with compact x and y support. a
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IfL = Z‘a‘ <q@a(2)Dg is a linear differential operator, then we have the obvious fact that Lf vanishes
identically on any neighbourhood on which f vanishes identically. i.e.

supp (Lf) C supp f

for f € C*°. This property is expressed by saying that linear differential operators are local, they read only
the local behaviour of f. This is clearly false for pseudodifferential operators, because for example we can take

f € C2°, which is everywhere > 0, and convolve it with an everywhere > 0 Schwartz class function like e~lal?

(which is an infinitely smoothing ¥ DO by the example 5.2.3, and note that g * f will be strictly positive at all
points. However, ¥ DO’s have the property that they diminish singular support, i.e.

Proposition 5.3.8 (¥ DO’s are pseudolocal). If f € H, for some s € R, and if fjy is a smooth function on
some open set U C R™, then for every P € U we have Pf is smooth on U.

Proof: Let € U, and let ¢; € C°(U) with ¢; =1 on a neighbourhood V C U of z. Let ¢5 € C°(U) with
Y2 = 1 on a neighbourhood W C W C U of the support of 9. Clearly, 1o f € C2°(U), and hence ¢of € S.
By the Proposition 5.2.5, we have Py f € S.

On the other hand, since 11 P(1 — 1)3) is defined by the bi- symbol:

a(x,y,€) = 1 ()p(z, &) (1 = 1ha(y))

where p = o(P), it is easily checked to be of the same order as p. Also since (1—12(y)) vanishes identically for y
contained in the neighbourhood W of supp, it follows that a(z,y, ) vanishes identically on a neighbourhood
of the diagonal. Thus the pseudodifferential operator 11 P(1 — t2) is infinitely smoothing, by the Corollary
5.3.6 above. Hence, in the neighbourhood V of x, since 1y = 1, we have

Pf=1y1Pf =11 Pof + 11 P(1 =) f

and both the terms on the right are smooth on V. Hence the proposition. ]

5.4. The algebra of ¥ DO’s. When H is a separable Hilbert space, there is the (non- commutative) algebra
L(H) of bounded linear operators on H, with multiplication given by composition, and a star operarion given
by adjoints. Inside L(H), there is the closed two-sided ideal of compact operators, denoted K (#). Finally, we
pass to the quotient, and obtain the Calkin algebra C(H) := L(H)/K(H). The so-called Fredholm operators
are defined to be the invertible elements in CH), i.e. they are invertible modulo compact operators. (These
matters will be delved in a future section).

We would like to mimic all this for pseudodifferential operators, with the role of compact operators being
played by infinitely smoothing operators. The first task is to define composition and adjoints of 1 DO’s.

Definition 5.4.1 (Adjoints). Let P be a ¢ DO. For f € S, define the adjoint P* of P by the formula:

(P*f,g) = / (P* f(x), g(x)) dz = (f, Pg) = / (f(x), Pg(x))dz for all g S

This certainly defines P* f as a tempered distribution, for each f € S. We will eventually check that P* is also
a ¥ DO of the same order as P.

For P,Q, two 9 DO’s, one defines the composite PQ by (PQ)f = P(Qf) for all f € S, which makes sense
since Pf € S for f € § by the Proposition 5.2.5.

Definition 5.4.2 (Support of a ¥»DO). We will say that a »DO P is supported in a compact set K if:
(i): supp Pf C K for all f € C°(R™).

(ii): Pf=0if f € C(R™) and supp fNK = ¢
In this event we will say supp P = K.
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Exercise 5.4.3. If P € U? and supp P C K, then the z-support of p(z,£) = o(P) is contained in K. The
converse is false in general, but clearly true for differential operators.

Now we can state the main proposition.

Proposition 5.4.4. Let P € U? with symbol ¢(P) = p and Q € V¢ with symbol ¢(Q) = ¢ be two ¥ DO’s,
with supp P, supp @ in some compact set K C R™. Then:

(i): P* is a ¥ DO of order d, supported in K, and its symbol is given by the asymptotic formula:
Z ng?p* (z,€)

o(P7)~ al

«

where p*(z, &) = p'(z, £), the matrix adjoint of p.

(ii): The composite PQ is a DO of order d + e, supported in K, and its symbol is given by the asymptotic

expansion:
de¢p D3q

al

a(PQ) ~ )

[0

Proof: We have to just write down a suitable bi-symbol for P* and P(@, and appeal to the Proposition 5.3.5.
First, for the adjoint we have for, f,g € S and (—, —) denoting the Hermitian inner product on C™, that:

(f,Pg) = /(f(y),Pg(y»dy:/e‘i&'y (f(),p(y,©)7(&)) dédy

[ @ 01030 dedy = [ [ 0 1 (0,.€)£(0), g(a) dday
= (P'f.9)

where all changes of integrals are allowed by the rapid decay of f and g and compact z-support and rapid
&-decay of p(x,&)g(&):

P = [ e sy
which is the ¢ DO corresponding to the bisymbol:

a(z,y,§) = p"(y,¢)
It is easy to check from the definition (P*f, g) = (f, Pg) that the support supp P* C K if supp P C K. Also
the y-support of a(x,y,£) is contained in K, by the previous Exercise 5.4.3, and the ¢-decay is the same as
that of p*, which is the same as that of p. So, by the Proposition 5.3.5, we have that P* is a ¥ DO of order d,
and its symbol has the asymptotic expansion:
Z nggp*(Ia §)

al

o(P*) ~

which proves (i) of our proposition.

To see (ii), let us first note that if 7(y, &) := o(Q™*), the symbol of Q*, then by definition we have for f € S
that:

Q" gly) = / eV (y, €)3(6) (y)dy

Now, for f € S, we have:

@Qf.9)

(@Qf.9) = (/.Q"g) = / (), (Q°9)(w)) dy
- / (F (), 6 (y, €)3(€)) dedy

-/ < / ewfr*<y,s>f<y>dy7a<s>> ¢
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which implies that:

37(€) = / I (1, €)F (y)dy (20)

Now, letting p(z,£) = o(P), we have by definition, and substitution from (20) above:

PQf(z) = / e p(a, )(QF)(€)dE = / e p(a, y)r* (y. ) (y)dydé
which is in the form required by the Lemma 5.3.5, with the bi-symbol:
a(z,y,§) = p(@,r*(y,£)

which, by the self-same lemma shows that P(Q is a pseudodifferential operator whose symbol has the asympttotic
expansion:

o(PQ) ~ 3 dg Dy (p(x, )1 (4, ) jy=o _ 5 d¢ ™ p(x, §)dI DG (4, €)jy—a

- al po ¥ o —)!
S dep(x, )AL DS T (y, ) jy—a 5 dp(x, )DL (Z ngzr*<x7g>>
- 151 - | |

Y plé! > p! 5 0!

Now, since Q = (Q*)*, and the symbol of Q* is r(z, &), we have by the part (i) above:

dS DO r* x,
(@) = gl &) ~ 30 )

4
which on substitution into the last equation above yields:
dgp(z, §)Dhqg(,€)
§ 9 xT 9
o(PQ)~ ) )
P

and proves (ii) of our proposition. The statements about the supports are readily verified, and left as an
exercise. O

Corollary 5.4.5. Denote by % the space of ¥y DO’s with support in K, and let U > = Na¥%, and U2 :=
Ua¥%. Then, by the previous proposition, U$ is a (non-commutative) algebra with adjoints.

5.5. Ellipticity.

Notation : 5.5.1. From this point onwards, the letter “P” will always denote a linear differential operator or
order d, so that its symbol p(z, ) will always be a polynomial in &, with coefficients as smooth matrix-valued
functions in . In this situation, supp P is contained in K iff the z-support of p(z,§) is contained in K.

Definition 5.5.2. A differential operator P is said to be elliptic over an open set U C R™ if:

(i): There exists a constant C' > 0 such that for some V O U, p(x,€) is an invertible linear transformation
for all z € V and all | £ |> C, and furthermore,

(ii): The Hilbert-Schmidt norm of the matrix p(x, &)~ for | £ |> C satisfies:
| p(z, &) [S A+ [ €)™ for zeV, [€]>C
In this event, we say that p(x, &) is an elliptic symbol of order d over U.
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Example 5.5.3. It is trivial to check that for any positive integer d, the symbol:

p(,€) = (1+ | £ 1)°
is an elliptic symbol of order 2d. If we take a(z) € C¢° with support a compact set K, then the symbol:

p(@,€) = a(a)(1+] € [*)?
will be elliptic over any open set U whose closure is contained in K. Thus elliptic symbols of all even orders
exist.

Definition 5.5.4 (Leading symbol). For a differential operator P =3, , 4 aa(z)Dg of order d, we define its
leading symbol as:

op(P) = an(z)&"

|| =d

Here is a simple criterion for checking ellipticity of a linear differential operator.

Lemma 5.5.5. P is elliptic over U iff o, (P) is elliptic over U.

Proof: Let P be elliptic over U, of order d, with symbol p(z, ). By definition, for | £ |> C, p(z,§) is invertible
forx € VO U. Let q(z,€) := (p(x,£))"! for z € V, and | £ |> C. For t > 1, we have by (ii) of the Definition
5.5.2 that for x € V and | £ |> C.

Id = p(x, t€)q(z, t€) = t~p(x, t€) t"q(x, t€)
On taking limits, we find that lim; o, t~%p(z,t¢) = o (P)(x, &), for all x,¢. This implies that

Jim t%q(x, t€)
exists and is finite for x € V and | £ |> C. Call this limit r(x,&). It follows that r(x,&) is the inverse of
or(P)(x,§).
Since
| a(x,t6) [S AQ+¢ | €))7 for z €V, |€]>C
we clearly have:
[ 7(z,6) |[< B+ €)™ for z €V, [€]>C

Thus it follows that 7(x,&) = (o(P)(z,£))~! for € V and | £ |> C, and that o (P) fulfils both (i) and (ii)
of 5.5.2, and hence is an elliptic symbol.

To check the converse, one merely writes:

p($,§) = UL(P)($,§)(I - k(l‘,f))

where | k(z,&) |< 1 for | £ | large enough. Then one uses the geometric series expansion to get
p(a, &) = (o0 (P)(w,&) " (I + k(z,8) + k(2,€) + ... + )

for | ¢ | large enough. We leave the estimate for | p(x,£)~! | as an exercise, it follows from the corresponding
estimate for o7, (P)~ 1. 0

Example 5.5.6. If M is a Riemannian manifold, then in a local coordinate chart U, we can write the Laplacian
of M as: -
A=— Zg” 0;0; + (lower order terms)
i,J
so that on the coordinate chart U, its leading symbol is — ), j g% (x)&:&;, which is certainly elliptic of order 2
all over U, since [¢¥ ()] is a positive definite quadratic form for each z.

Definition 5.5.7. Let P € U¢. We say that the DO Q is a parametriz for P if Q € ¥~¢ and PQ — I and
QP — I are infinitely smoothing operators (i.e. are elements of ¥~°°).



42 VISHWAMBHAR PATI

Remark 5.5.8. Note that if P is elliptic of order d over U, o(P) = p(w, &)~ exists for all z € V and | £ |[> C.
It follows that p(z, ) is everywhere non-vanishing for x € V O U and | £ |> 2C. Thus, if the support of p is a
compact set K (< supp P = K, since P is a differential operator) we must have K D V.

Definition 5.5.9. Let us say a symbol s(z,€) is infinitely smoothing over V if ¥(x)s(z,£) € S~4(V) for all
¢ € CX(V), and all d. (See the Definition 5.3.1). A ¢DO P is said to be infinitely smoothing over V if its
symbol p(z, &) is infinitely smoothing over V.

Clearly, since C*(U) € C*(V) for U C V, we have s is infinitely smoothing over U if it is infinitely
smoothing over V D U.

Lemma 5.5.10. Let p(x, &) be an elliptic symbol over U, of order d, and let V', C be as in the Definition 5.5.2,
with U C V. Then there exists a symbol ¢y € S~% such that:

(i): pgo—1I and gop—I are infinitely smoothing over V;, where V; is any open set satisfying U C Vi C V; C V.

(ii): If p has compact z-support, with supp, p = K, then the z-support of gy satisfies:
supp, qo(z,§) CVCcV CK

Proof: By hypothesis,
| p(2, )7 S AQ+ [ )7 for z €V, €2 C
Let ¢(t) € C°(R) such that ¢ =0 for t < C and ¢ =1 for ¢t > 2C. Define:

q0(z,&) = ¢(| € p(2,6)™" for €V

Multiplying ¢o above with a function ¢ € C2°(V) which is = 1 on the subset V4 C V, we can assume that
qo(x, &) is defined for all 2 € R™, and the above equation defining ¢o holds good for all x € V;.

Thus pgo — I and gop — I are equal to (¢(| £ |) — 1)1 for all x € V; and all . Since ¢(| £ |) — 1) = 0 for
| £ |> 2C, the operator (¢(] £ |) — 1)I is infinitely smoothing over V;. The proof that gy obeys the decay
conditions for a 9 DO of order (—d) follows from the decay condition for | p(z,£)~! | in (ii) of the Definition
5.5.2, and formulas like:

— 1 —1 —1 - 1
Dy, (p7") = —p ' (Da,p)p™", De,(p™") = —p (D¢, p)p

combined with Leibnitz’s rule. This proves (i).

~ For the statement about z-supports, note that if z-support of p is K, then by the Remark 5.5.8, we have
V C K, the z-support of p. Since we have multiplied by the compactly supported function ¢ € C2°(V) right
after the definition of gg, we have that the support of ¢g is a compact subset of V', and (ii) follows. O

Proposition 5.5.11 (Parametrices for elliptic operatois). Let P be an elliptic differential operator of order
d, elliptic over U. Assume that supp P C K. Let V D U as in the Definition 5.5.2. Then, there exists a DO
Q@ of order —d such that for any open set V satisfying:

UcVvicV,cV

PQ — I and QP — I are infinitely smoothing over V7.

Proof: Note that by the Remark 5.5.8 above, we must have K DV D U.

Define ¢y € S~¢ by Lemma 5.5.10 above, so that pgy — I and gop — I are infinitely smoothing over V;. For
k > 0, we would like to satisfy the formula o(PQ —I) ~ 0 and o(QP — I) ~ 0, and we would like ¢ = ¢(Q) to
be a sum:

q~q +q+..q; + ..
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with ¢; € S~9=7 in accordance with the Lemma 5.3.3. From (ii) of the Proposition 5.4.4, we see that
o(PQ — I) ~ 0 results in the requirements:

Z dg¢p D3 ar—|a|

~0 for k>0
!

pgo — I ~0; and
0<al<k
where the sum on the right is the homogeneous component of o(PQ — I) which lies in S=% for k > 0 (Note

that Dgp € Sa=lel and DEagr—ja) € S—d=k+lal) The first is already satisfied by the definition of gy and the
Lemma 5.5.10, and the second may be rewritten as:

dep® D3 Gr— |
par = Y e for k>0
0<|a|<k
where the right hand side involves only qq, ..., gx—1. Since gop ~ I, we might as well multiply both sides on the
left by qg, and define g, by the inductive formula:

dop D%q

_ £p Dol

Gw=—d0 Y o for k>0
0<|a| <k

Indeed, from this inductive definition, it inductively follows that ¢, € S~ for all k.

If supp,p = K, then by (ii) of the Lemma 5.5.10 above, we have supp,qo C V C V C K, and by the
definition of g, we also have supp,qx C V C V C K for all k. Then, if one defines ¢ ~ > ;4 by the Lemma
5.3.3, ¢ will be supported in a subset of V. At any rate, since the inductive definition forces PQ — I ~ 0 on
V1, we have that PQ — I is infinitely smoothing on V3.

By a similar procedure, one may define Q' € S~ such that Q' P — I is infinitely smoothing on V;. But then
since pre or post-composing an infinitely smoothing operator with any ) DO leads to an infinitely smoothing
operator (by (ii) of Proposition 5.4.4), we have:

Q~QI~QPQ~1Q~Q

on V. The proposition follows. O

6. ¥»DO’s AND ELLIPTIC OPERATORS ON COMPACT MANIFOLDS

We revert to the setup of §4. Let E, F' be smooth complex vector bundles on a compact manifold M, and
let {U;}, be an open covering of M such that U; is diffeomorphic to R™ for each i, and the restricted bundles
E|y, and F|y, are both trivial (of ranks k& and m respectively). {);} is a smooth partition of unity subordinate
to {Uz}

6.1. Basic definitions and lemmas.

Definition 6.1.1. Let P : C®°(M,E) — C*(M, F) be a C-linear operator. We say P is a ¥ DO or pseudo-
differential operator on M of order d if for all 4,5 € 1,2,...,N, and all ¢ € C°(U;) and ¢ € C>(U;), the
“localised operators”

VP C=(Us, Eyy,) — C=(U;, Fiy,)
are 9 DO's of order d, where (the domain and target are identified with £¥ and €™ respectively). That this
definition makes sense follows from the Corollary 5.3.7. The C-vector space of these ¥ DO’s of order d is
denoted We(M), where we have suppressed E, F from the notation for brevity.

Furthermore, we will call P as above a linear differential operator of order d if all the localisations above

are differential operators of order d. We will call it an elliptic differential operator if each of these localisations
1 P¢ are elliptic over each open set U satisfying U C {z : ¢(x)y(z) # 0} C U; N U;.

We now have an analogue of the Proposition 5.2.5.
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Proposition 6.1.2. Let P : C*°(M,E) — C*(M, F) be a DO of order d. Then P extends to a continuous
(=bounded) linear operator of Hilbert Spaces:

P:H,,q(M,E) = Hy(M,F)

where the Sobolev spaces Hqyq(M, E) and Hs(M, F) are as defined in Definition 4.2.1.

Proof: Let {\;} be the partition of unity as described above at the beginning of this section (i.e. as in §4.2),
subordinate to the open covering {U;} ;. By the foregoing definition, we have AP a DO, with symbol of

compact support. Now, for f € C*°(M, E), we compute, using f = Z;\;l Ajfiu,, that:

2

N N 9
ZP)‘jf\Uj SCZ||P)‘jf\Usz
j=1

Jj=1

Vil

S

N N
CY NPx |l <0 Yy Hf|UjHj+d

i,j=1 1,5=1

ClIfI31a

IN

where we have used the Definition 4.2.1, Proposition 5.2.5 applied to A; PA; and Hf|Uj Hi+d < Hf||§+d to arrive
at the last line. The proposition follows. O

Similarly, one can deduce the pseudolocal property of 1»DO’s on M by appealing to the Proposition 5.3.8,
whose statement and proof we leave as an exercise.

Proposition 6.1.3. Let P : C°(M,E) — C*°(M,F) be a ¥ DO of order d. Using Hermitian metrics on
E and F, gives global Ly-inner products on C*(M, E) and C*°(M, F) (which we called (—,—) in (iii) of
Proposition 4.2.2), call them (—, —)g and (—, —)F respectively. Define the Ly-adjoint of P by the formula:

(P*fag)E: (fapg)F for fGCOO(M7F)7 gGOOO(M7E)

Then P* is a ¥ DO of order d.
If P:C®°(M,E) — C>®(M,F)is atDO of order d, and @ : C°(M, F) — C*(M,G) is a DO of order e,
the composite QP : C*° (M, E) — C*(M,G) is a DO of order d + e.

Proof: Let ¢, be as in Definition 6.1.1. Then, by the definition of P*, we have:

6PV f.9)p = (P*Vf,¢9)e = (Vf, Pég)r = (f,Pdg)r
which implies that ¢P*1) = (¥ P$)*. Because the right hand expression is a 1) DO of order d by definition 6.1.1
and (i) of Proposition 5.4.4, it follows that P* is a DO of order d.

For the composite, note that if P and @ are ¥ DO’s of orders d and e, and ¢ and 1 are as in the last
paragraph, we may write:

N
SPQY = pPTNQY
i=1
where 7; € C°(U;) is a function which is = 1 on the support of \;, and therefore satisfies 7;A; = A; for all i.

Now we can appeal to (ii) of the Proposition 5.4.4 to conclude that each term (¢P7;)(A\;@Q) on the right is a
1 DO of order d + e, and hence so is their sum. O
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6.2. Elliptic operators on manifolds and parametrices. Now we come to the most crucial proposition
about elliptic differential operators on compact manifolds.

Proposition 6.2.1 (Parametrices for elliptic operators on manifolds). Let P : C>°(M,E) — C*(M,F) be
an elliptic differential operator on the compact manifold M. Then there exists a ¥ DO Q : C°(M,F) —
C>®(M, E) of order —d such that PQ — I and QP — I are infinitely smoothing operators.

Proof: It is enough to construct the “left” parametrix satisfying QP —1 € U~>°(M), for by the same argument
as the last paragraph of Proposition 5.5.11, it serves as the “right” parametrix too.

So let A;, U; be as at the outset of this section. Let us denote:
By the choices and definitions made in the past, the closure W; is a compact subset of U; for all ¢ = 1,2.,, N.

Let ¢; € C°(U;) with ¢; =1 on W,. Let p; € C°(U;) with p; = 1 on the support supp ¥, for i = 1,2,.., N.

Consider the localisation v, Pp;. It is easy to check that W; = {z : \;(z) # 0} is an open subset of

{0+ i(@) £ 0} N {z s pi(a) # 0}
and indeed W; is contained in the intersection above. Thus, by the Definition 6.1.1, ¥; Pp; is elliptic over W;.

Since P is a differential operator, and p; = 1 on supp;, we have ¢; Pp; = ;P for all i = 1,2,.., N. Thus
1; P is elliptic over W;. Also v; P has support contained in the compact set K; = supp ;.

Thus, by the Proposition 5.5.11, there exists an open set V; D W; and a parametrix @; which is a ¥ DO of
order —d such that @Q;(¢;P) — I is infinitely smoothing over V;. That is, \(Q;(1; P — I) is infinitely smoothing
on M for all A € C2°(V;). In particular, since supp \; = W; is a compact subset of V;, we have \;(Q;(; P) —1I)
is in ¥~°°(M). Hence so is the sum:

ZM(Qi(%P) 1) =) (MNQu)P—T

7

since ), A; = 1. But this means that Q := >, \;Q1; is the desired left parametrix. It is of order —d because
each term in this sum is of order —d. O

One of the deepest consequences of the existence of a parametrix for an elliptic differential operator is the
following proposition.

Proposition 6.2.2 (Garding-Friedrichs Inequality). Let P : C*®(M,E) — C*®(M, F) be an elliptic differ-
ential operator of order d. Then there exists a constant C' > 0 (depending only on P, M, E and F) such
that:

[flls4a < CUPF+ NS, forall fe Hopa(M, E)

Proof: Let @ be the parametrix for P from the previous Proposition 6.2.1. Then, by definition:
[=QPf+5f
where S : C*°(M, E) — C*(M, E) is infinitely smoothing. Thus
[ lsra S NQPfllgq + 115l s1q
Since S is in $=°(M), it is in W=¢(M), so by the Proposition 6.1.2, we have:
1Sfllsra < C A,
By the same proposition, since Q € ¥~4(M), we have:

1QPflly4a < CIPLIl,
Thus the desired inequality follows. O
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Corollary 6.2.3 (An equivalent Sobolev norm). Let P : C*°(M,E) — C*(M, E) be an elliptic differential
operator of order d. Let (—, —) denote the global Ly inner product on C*°(M, E) as before. Then the norm
associated to the inner product:

(f,9) = (f,9)+(Pf,Pg) f.ge€CT(M,E)
is equivalent to the Sobolev norm | ||; on C*°(M, E) defined in the Definition 4.2.1. Hence completing
C°(M, E) with respect to the norm defined by (—, —) gives exactly the Sobolev space Hy(M, E).

Proof: Let us denote:

1
£ = (f, f)?

for f € C°°(M, E). Then, noting that (—,—) = (—, —)o, the Sobolev 0-norm, we have
IAI? = 11PAIIG + 17113

IN

2 2 2
Clrllg+171g < Clifllg
where we have used the Proposition 6.1.2, and the fact that || f||, < || f||, for d > 0 in the last line above.

On the other hand, by the Garding-Friedrichs inequality of 6.2.2, we have:

1flla < CIPfllo+11£1lo)
< CULI+ 11 =201

Thus our proposition follows. Since Hq(M, E) is the completion of C*°(M, E) with respect to || ||;, and the
last norm is equivalent to || ||, the second statement of the proposition follows. m|

Proposition 6.2.4 (Elliptic Regularity Theorem). Let P = ) aq(2)Dg : C*(M,E) — C>*(M, E) be an

elliptic differential operator of degree d > 1, so that P : D'(M, E) — D'(M, E) gets defined on distributional
sections (see the Definition 4.1.4) by the formula:

Pﬂ@f(E]UMD%d@@> for feD'(M,E), geC*(M,E)=D(M,E)

[0

Let f € D'(M, E) be a distributional solution to:
Pf=g
where g € Hs(M, E). Then f € Hyqy4(M, E). In particular, if g is smooth, then f is also smooth.

Proof: Since M is compact, we have from (v) of Proposition 4.2.2 that D'(M,E) = UyHg(M,E). Thus
f € Hi(M,E) for some k. Let Q € U~%(M) be a parametrix for P, by the Proposition 6.2.1. Then, by
definition, the operator S := QP — I € ¥~°°(M) is infinitely smoothing, and we have:

f=QPf+S5f=Qg+S5f
But since g € Hy(M,E) and Q € ¥~4(M), we have Qg € Hy,q(M, E), by Proposition 6.1.2. Also f €

Hy(M,E) and S € ¥~°°(M) implies S € W*=9=5(M, E), so that again by 6.1.2, we have Sf € Hyy (M, E).
Thus f € Hyys(M, E).

If g € C°(M, E), we have g € H,(M, E) for all s by the Sobolev Embedding Theorem (iv) of Proposition
4.2.2. The last paragraph implies that f € Hgyq(M, E) for all s,i.e. f € Hyo(M,E) = C*(M,E) by the same
proposition. O
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7. ELLIPTIC OPERATORS ON R"

7.1. Parametrices on R". It is quite natural to ask what the analogues of the results obtained in the last
section are in the setting of R™.

Definition 7.1.1. Let P =) _ aq(z)D$ be a linear differential operator of order d. Then say that P is elliptic
if it is elliptic over a neighbourhood U of each point 2 € R™ (in the sense of Definition 5.5.2. (Note that this
is weaker than saying that it is elliptic over R”, because we are not demanding one single constant C' for all
x € R™)

Proposition 7.1.2 (Existence of parametrices). Let P be an elliptic linear differential operator on R™ of order
d. Then there exists a g(z, ) of such that:

(i): p(x)q(z,€) € S for all p € C°(R™).

(ii): For a relatively compact subset W C R", let p € C°(R™) with p(x) = 1 for all € W. Then for the
DO @ corresponding to p(x)q(x, &), the Yy DO’s PQ — I and QP — I are infinitely smoothing over W.

Proof: By definition, we have P elliptic over U,, for {U,} an open covering of R"™. By appealing to paracom-
pactness and second countability of R™, we have a countable locally finite open covering {U;}2, of R™ such
that P is elliptic over U;. Let {)\;} be a partition of unity subordinate to {U;}.

By the Proposition 5.5.11 , there are 1) DO’s Q; which satisfy PQ; — I is infinitely smoothing over V; ; where
Vi; D U;. That is, p;(PQ; —I) = S;, where S; € U= for all p; € C>(V; ;). If we take p; = 1 on U;, we have:
PQz—I:Su QzP—I:Tz on U,L'
where S;,T; are the restrictions to U; of some infinitely smoothing operators in ¥~°°. Since we can replace P

above by p; P on U;, we can also assume by the last para of the proof of Proposition 5.5.11 that the x-supports
of ¢; are compact sets for all 4, as are the a-supports of t; = o(T;) and s; = o(S;).

The trouble is that @; and (); won’t generally agree on the overlaps U; N U;. However, we do know that for
x € U; N Uj,we have:

6(2,8) = 0(Qi) =0(Qid) =0 (Qi(PQj = 5;)) = 0 (QiPQ; — QiS;) = 0 (Q; + TiQ; — Q;5;)
= ¢(@,§) +rij(2,6)
where 7;; = 0(R;;) := o(T;Q; — Q;S;). By the formula in (ii) of 5.4.4, the symbols ¢(T;Q;) and o(Q;S;) are

also compactly supported, and we may as well assume that the support supp,r;;(x,&) is compact for all ¢, j.

Finally, by 5.5.11, each R;; is the restriction of an infinitely smoothing operator (the pre and post composition
of an infinitely smoothing operator with any ¥ DO is infinitely smoothing), call it R;; again, to U; N U;. Thus
Ti; € S,

Also note that for z € U; N U; we have r;;(z,&) = —rj;(z, ), and on the triple intersection U; N U; N Uy we
have the cocycle condition on the r;;’s:
rij (2, &) + k(&) + ri(2,€) = (60 — ¢5) + (g5 —ax) + (@ — @) =0 for z € U;NU; N Uy

Now we borrow a trick from sheaf theory and define:
ki(z,&) =Y Ara(x,€)
!

since A; are a partition of unity , the sum on the right makes sense. Unfortunately, k; are no longer compactly
supported, and hence the decay conditions on 7;;(z,§) will no longer translate into global decay conditions for
k;. However, for any relatively compact subset W C R™, W will meet only finitely many of the locally finite
collection Uj;, say for ¢ € F'. Then, since we have conditions:

| DY DErij(x,€) |< CLp(14 [ €)% forall 4,4, a, B, k, «
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we will get a corresponding condition:
| DY DL ki(2,€) |[< C*(W)ap(1+ [ €)7F forall i,j, a, B, k, €W

by majorising all the derivatives of {\;};cr upto order a and the C’ij 5 over W. This implies that that k; is
infinitely smoothing over every W which is relatively compact.

Also we have:

ki(z, &) — kj(x,€) = Z(Alm —Nrj) = Z N(=ry —rj) = Z Airij = 1i5(x,§) for z € U;NU;
1 1

l

This implies:
Q1(x7£) - q](xaf) = k1($,§) - kj($,€) for x € U1 N Uj
which implies that ¢;(z,&) — ki(z, &) = ¢;(x,&) — k;(z, ) for € U; NU;. Let us define a global function:

q(z,8) = qi(x,&) — ki(z,§) for z € U;

Then g makes sense all over R™. It may not be a symbol for the simple reason that k; are no longer globally
defined symbols. However, from the decay properties above for k; on a relatively compact open set W C R™,
it is trivial to check that pQ € S~¢ for all p € C°(R"™). It is also readily verified that if W is a relatively
compact subset of R™ with p =1 on W, and Q is the ¥ DO corresponding to p(z)q(z,§), we have o(PQ — I)
is infinitely smoothing over W. Likewise for QP — I. This proves the proposition. O

Definition 7.1.3. Let W be a relatively compact (=bounded) open subset of R™. Define the Sobolev space
HY(W) to be the closure of C2°(W) with respect to the Sobolev s-norm || ||,. Note that it is a closed subspace
of Hs(R™) by definition.

Proposition 7.1.4. Let W C R” be a relatively compact open set, and let P € ¥? be a ¢ DO or order d with
symbol p(z,¢) € S%. Assume that the support supp,p(z, £) is a compact. Then
P H? (W) — Hy(R")

is a bounded operator. If further the compact subset K = supp,p(z,£) is contained in W, then P is a bounded
operator from H?, (W) — H)(W)

Proof: The first statement is clear from the Proposition 5.2.5, because with the compact z-support hypothesis
imposed on p, we have P : Hgy4(R™) — H4(R™) is a bounded operator, and Hg+d(W) is a closed subspace of
Hg 4(R™), so the restriction to this subspace is also bounded.

For the second statement, let f € H?, (W), and let f, € C°(W) be a sequence of smooth functions with
| fn = flly4q — 0. Since p is compactly supported, and f, are clearly Schwartz class, the Proposition 5.2.5
implies that P f, are smooth Schwartz class functions on R™. Also, the formula:

Pfo(x) = / ¢S, €) F (€)de

shows that supp, Pf, C supp,p(z,§) = K C W. Thus Pf, € C*(W). Also, since the z-support of p is
compact, we have by 5.2.5 that:

”an - me”s < Can - mes+d

Thus {Pf,} is a Cauchy sequence in H?(W), and since it converges to Pf € H,(R"), and the subspace H?(R")
is a closed subspace of H,(R"), it follows that Pf € H?(W). By the first part, the restricted operator:

P Hy,o(W) = H(W)

is also a bounded operator. The proposition follows. |
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Proposition 7.1.5 (Garding-Friedrichs Inequality II). Let W be a relatively compact open subset of R™, and
let P be a linear differential operator elliptic over W. Then there exists a constant depending only on W and
P such that:

1fllsra < CUPLI+NS,)  for fe HE (W)

Proof: By hypothesis, there is a open set V' O W and a constant C' such that that p(z,€) is invertible for
x €V and | £ |> C, and the following estimate holds:

| p(@, &) ISC+ ) for zeV, [€2C

Let p € Cg° be a smooth function which is identically 1 on V, and hence identically 1 on W. Then since
P is a differential operator, we have p Pf = Pf for all f € C°(W). Also p P is clearly elliptic over W by the
above criterion, so without loss of generality, we may assume that p(z,£) := o(P) has compact x-support.

By the Proposition 5.5.11, there exists a 1»DO @ which is of order (—d), also having compact z-support for

its symbol, and satisfying
QP-I=S
where S is infinitely smoothing over V4 D V. This means 75 is in ¥~ for every 7 € C2°(V7). Let us choose
a 7 which is identically 1 on W. Then we have:
f=rf=0Df=7QPf—71Sf for feCXW)
Thus
[ llsra S NTQPfllorq + [1(7S) fllyq for fe (W)

Since P is a differential operator, Pf € C°(W) as well, and since 7Q) is a compactly supported DO of
order —d, we have by the first part of the last Proposition 7.1.4 that:

ITQPfllgya < CIIPSI
Because 75 is also a compactly supported DO in ¥~ C ¥~¢ and f € C>(W), we have similarly:

TS Fllsra < C IS
by the same Proposition 7.1.4. Thus we have the desired inequality for all f € C>*(W).

Now let f € H?_,(W). Choose a sequence f, € C°(W) with f, — f in H_, ;(W). Since P has compact
x-support, it follows by the first part of 7.1.4 that Pf, — Pf in Hs(R™). Since the inclusion Hg+d(W) —
Hg g(R") = Hy(R™) is continuous, we also have f,, — f in Hy(R™). Thus the norms |Pf,|, — || Pf]|, and

Il fnlls = |1 fls- Thus we have:
s = 0 nlloea < € lim (IPFL + 1) = CAPSIL + 1£1,)

which proves the proposition. O
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8. OPERATORS ON HILBERT SPACES AND FREDHOLM THEORY

‘H will always denote a separable complex Hilbert space, with inner product denoted (—,—), which is C-
linear in the first argument and C-antilinear in the second. B(H) will denote the algebra of bounded operators
on H. For T € B(H), its adjoint is the operator T* € B(#), and is the operator defined by (Tz,y) = (x, T*y).
This defines an involution on B(#) and makes it C*-algebra. More generally, for T' € B(#H1, Hz2) (=the space of
bounded operators from H; to Hs), the adjoint T* € B(H2, H1) is defined by the formula (T'z, y), = (z,T*y),,
where (—, —), are the inner products in the Hilbert spaces H;.

8.1. Compact Operators.

Definition 8.1.1 (Compact operator). Let H1, Ho be Hilbert spaces. Then T' € B(Hi,Hz2) is said to be a
compact operator if for every bounded sequence z,, in Hj, the sequence Tz, in Hs contains a convergent
subsequence. Because our Hilbert spaces are always assumed separable, this condition is equivalent to saying
that the image T'(B) of each bounded set B C H; has compact closure in Hy. The subset of compact operators
in B(H) is denoted KC(H).

Example 8.1.2. Clearly, the identity operator I € B(H) is a compact operator if and only if H is finite
dimensional.

Example 8.1.3 (Linear maps of finite rank). If T': H — H is a bounded linear map such that dim ImT" < oo,
then T is a compact operator. For compactness, note that the Heine-Borel theorem for V' = C™ implies that
every bounded subset of V' has compact closure. Thus if T has finite dimensional image, the image T'(B) of
every bounded subset B C H would be a bounded subset of the finite dimensional space V =ImT C H, and
hence have compact closure.

Next, if T € B(H) is such that ker T has finite codimension, ie. dim (ker T)" < oo, then again T is
compact. For then, T" would induce a linear embedding;:

T:(ker T): - H

whose image is the same as ImT'. But since ImT is finite dimensional, we have dim Im 7T < co as well, so T is
a bounded operator of finite rank, and a compact operator by the above discussion. Finally, if H is itself finite
dimensional, then Endc(H) = B(H) = K(H).

Example 8.1.4 (Diagonal operators). Let T' € B(H), and {e,} be an orthonormal basis of H such that
Te, = Ane, for every n, where X, € C. Then (exercise) T is compact iff lim, o0 A, — 0.

Example 8.1.5 (The Green Operator on S'). The Hilbert space H := L2(S') has an orthonormal basis
{en = €™}, cz where 0 < t < 27 is the angle parameter on S'. The Green operator on S! is the opera-
tor defined by:

G:H — H
e, e—gfor n#0
n
— 0 for n=0

In view of the previous example 8.1.4, this operator G is compact. It has the following significance. For the
Laplace operator A : C*°(S1) — C>°(S!) on S, defined by A = ;Td; on the circle, we have an extension to
the domain of A, call it D := dom A C H. We note that e,, satisfy Ae,, = n2e, for n € Z. Thus D consists of
all f=5" f(n)en € H such that the series Y onez n*|f(n)|? is convergent. That is, the sequence {an(n)}nez

should be in I3(Z). Note that D is a proper Lo-dense linear subspace of H (it contains each e,!).
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In fact, we see that D is set-theoretically the Sobolev space Hz(S, E) for the trivial bundle E = S x C.
This is because A is clearly an elliptic operator (its leading symbol is = —1 in any chart with coordinate t),

and for f € C°(S'), we have Af is given by convergent Fourier series > omez an(n)en, so that the Ly(S!)
norm (= Sobolev 0-norm || [|,) of Af is given by:

IAfI7 =Y ot | F(n)
neZ
By the Garding-Friedrichs inequality and its Corollary 6.2.3, we have:

1115 = 1LF1* + A f)?
and this is finite iff f € H and Af € H, i.e. iff f €D.

Note that since we are putting the Lo-norm (and not the Sobolev 2- norm) on D, the operator

A : D — H is an unbounded operator. Indeed, |le,|| = 1 but ||Ae,|| = n?. However, we claim that A has
closed range in H, and Im A = (Ceg)*, the closed subspace of all functions in H which are orthogonal to e,
ie.

2m
ImAz{fE’H: f(t)dtz()}
0
This is seen as follows. Note that the Green operator G defined above satisfies the identity:
Iy = m + AG

where 7 is orthogonal projection onto the space Ceg = ker A, and defined by o f = (f,e0) = 5= Ozﬂ f(t)dte.
The above identity makes sense since G(H) C D. It is true on all of H because it is trivially checked to be true
for all e,,, n € Z. It follows that the image Im A is nothing but Im (Id — my) = Im 7; where 71 : H — (Ceg)* is
the complementary orthogonal projection to 7. Thus Im A is (Ceg)*, which is closed. Thus G is an ‘inverse’ to
A on Im A, and gives a Hilbert space isomorphism between (Ceg)* and Im A. Note that ker G = ker A = Ce.

Similarly, we have the other identity:

7T1|D = ID - 7T0|D = GA
which holds on D.

Example 8.1.6. Let M be a compact Riemannian manifold. Then, by Rellich’s Lemma in (vi) of the Propo-
sition 4.2.2, the inclusion:
i:Hy(M,E)— H/(M,FE)

is a compact operator.

Example 8.1.7. If we take a non-compact manifold, say M = R. Then as pointed out in the Exercise 3.3.3,
take a fixed function ¢ € Hy(R) of [|¢, = 1, with compact support in say (—%, 1), and consider its translates
¢n = ¢(x 4+ n). Clearly, by (ii) of the Proposition 3.1.4,

énll® = 6]l + | Datpnll? = ||¢]|> for all n

so that {¢,} is a bounded sequence in H;(R). But {¢,} can have no convergent subsequence in Hy(R).
Indeed, since ¢,, and ¢,, have disjoint supports for n # m, we have (¢, ¢,,) = 0 for n # m, which implies
|pn — dmllg = V28], for all n # m. Hence {¢,} cannot have a Cauchy subsequence in Ho(R). Thus the
inclusion H;(R) < Hy(R) is not compact.

Example 8.1.8. Let M be a compact Riemannian manifold, and let:
P:H;(M,E)— Hsq(M,E)
be any pseudo-differential operator of order —d < 0 (See the Proposition 6.1.2). Then, the composite:
H(M,E) 5 Hy\o(M,E) — H (M, E)
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is a compact operator. This is because P is a bounded operator Hy(M, E) — Hsyq(M, E),and i : Hgyq(M, E) —
H (M, E) is a compact operator by 8.1.6 above, and it is easy to check that pre or post composing a bounded
operator with a compact operator results in a compact operator (See Proposition 8.2.1 below).

In particular, if @ is a parametrix for an elliptic differential operator P on M of order d > 0, then the
composite
H (M, E) % Hypo(M,E) < Hy(M, E)

is a compact operator for each s, since ) is of order —d.

The Green Operator cited in the Example 8.1.5 above is a particular case for M = S' and E = M x C,
the trivial bundle. For A is clearly an elliptic operator of order 2 on S', and by the Proposition 6.2.1, has
a parametrix ), which is precisely the operator GG, because as we remarked above I — AG and I — GA give
projection to ey, which is the constant function 1 on S', and hence infinitely smoothing. Since G is an operator
of order —2, if we view G as the composite operator:

H = Ly(S') = Hy(S') — Ho(S*) — La(SY) =H
then by the last paragraph, G is a compact operator.

Finally, if S is an infinitely smoothing operator, then for any s,t € R, we choose d so that d > t — s, and
since S € W? for each d, we see that the composite:

Hy (M,E) > H,\qy — H,(M,E)

is compact for all s, t.

Example 8.1.9. It is natural to wonder what happens for the Laplacian A = — Z;L:l 8‘9—; on R”, which is
an elliptic differential operator of order 2 on R™. To simplify things, let us take the case of n = 1, because
the sharp contrast with the compact manifold S' considered above are already visible for n = 1. Indeed, we
saw in the Example 8.1.7 above how the inclusion H,(R) < H;(R) fails to be compact for s > ¢t. This affects

everything, as we shall soon see.

The first thing to note is that if f € H_, is a tempered distribution, then A f = 0 implies that f is smooth.
(This is a version of elliptic regularity for R™, which can be deduced from the existence of local parametrices
from 5.5.11 applied to A and noting that f is smooth over U iff pf is smooth for all p € C*(U)).

Thus, for every s, the space of harmonic distributions inside the Sobolev space Hj is given by:
{ax+b: a,b € C} N Hy(R)
from which it follows that (ker A) NH = {0}, where we define H := Ly(R) = Hp(R).
The natural domain D C H for the operator A can also be described. Let D C R = {f € H : Af € H},
which makes sense because for f € H = Hy(R), Af is a tempered distribution in H_5(R). We use Plancherel’s

Theorem (iv) of the Proposition 1.2.5 on Ly(R) and the fact (ii) of the same proposition that (Af)" = ¢2f(¢)
to get the commutative diagram:

D A H
1 -~
Di E—> H

where D; := D", and the lower horizontal arrow is multiplication by £2. Note that since f — fis an isometry,
and ker A NH = {0} as noted above, both horizontal maps are injective linear isomorphisms, though not
bounded operators.

Since g € H iff g € H, it follows from the diagram above Dy = {g € H : £2g € H}, and hence:
Dl = LQ (R, d,u)
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where the measure du = (14 | £ |?)2d¢. Hence also the space D is given by:
D:=domA={feH: 2f(&) e H}

D is again an Lo-dense linear subspace of #H, for it contains all Schwartz class (rapidly decreasing) functions.
This is similar with with the case of S! discussed in 8.1.5 above, where the condition for f € D was that
{n2f(n)} should be a square-summable sequence, which again included all f € C*°(S'), a dense subspace. In
fact, exactly as in the S'-case, one immediately checks by using (ii) of the Proposition 3.1.4 that the conditions

feH and nge H imply that D is set-theoretically the Sobolev space H(3)(R) C H = L2(R).

But here the analogy ends. It is clear that for a Fourier series ) ., f(n)en on S!, the finiteness of
> onez In2f(n)|? implies the finiteness of Y onez |f(n)|2. On the other hand we have:

Claim 1: ¢2D; # H, or equivalently, A(D) # H.

Take any g € C°(R) such that g(0) # 0, then we claim that the function:

p(&) = £7%g(§) for £#0
= 0 for £€=0

is not in H. For, since g(0) # 0, we have | g(¢) |>> C > 0 for £ € (0,a) and some a > 0 so that
lol* > [ ce g =oc
0

so that p € H, so p & Dy, but £2p(¢) = g(&) is in H. Thus the image of D; under £2 is not all of H and
excludes, for example, all compactly supported g € C>°(R) with g(0) # 0. Hence, for any such g, g¥ € A(D),
and so A(D) is a proper subspace of H by the commutative diagram above. a

However, we have:

Claim 2: £2D; is dense in H, or equivalently, A(D) is dense in H. (Contrast with S!, where A(D) was of
codimension 1 in H)

Let g € C°(R) be a compactly supported function, then the function:

gul6) = g(e) for [€]> T
= 0 for |ar;|§l
n

is in ‘H for each n. Again, one computes:

l/n 2
lgn — gl? = / L Ns@F de < il

so that g, — ¢g in H. Now g, = £2(¢72g,) and £~2g,, € D; since it is bounded and compactly supported, so
gn € €2(D1). Thus £2D; is dense in C2°(R), and since C2°(R) is dense in H, we have £2D; is dense in H. The
commutative diagram above implies A(D) is dense in H. O

Claim 3: ¢2D; is not closed in H, or equivalently A(D) is not closed in H.

For, if £2D; were closed in H, then Claim 2 above would imply £2D; = H, which would contradict Claim 1.
The commutative diagram implies that A(D) # H. O

An immediate consequence of Claims 2 and 3 above is that the cokernel Coker A in H is infinite dimensional.
Contrast with S, where the cokernel was the 1-dimensional space Ceg.

Also, in sharp contrast to the case of the circle in 8.1.5, if one formally defines the Green operator on the
subspace A(D) to be A~ it would fail to be a compact operator. In fact,

Claim 4: £72: ¢2D; — Dy is an unbounded operator, or equivalently, G = A~! : A(D) — D is an unbounded
operator.
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For, let g € C°(R) with g(0) # 0, as in the proof of Claim 1 above. Define p(£) = £~2g(¢) and p,, (€) = £ 2gp,
where g, are as in the proof of Claim 2 above. We saw that g, — ¢ in H, so that we have:

ngan = ||gnH — ”g”

and hence Hfzan is a bounded sequence. However, letting n > 1/a, a as in the proof of Claim 1 above, we

have
a

o= [ o@Pac= [ 1o Fde= [ g Pazo [ ¢tagzan

1/n 1/n 1/n 1/n
for some A > 0, which means ||p,|| is an unbounded sequence. Since p,, = £~ 2g,, € D; from the proof of Claim
2, it follows that the operator ¢=2 : ¢2(D;) — D; cannot be a bounded operator. From the commutative

diagram above, G := A~ : A(D) — D is also not bounded.

Later, we will see how discreteness of the spectrum of A has to do with the compactness of the Green
operator, which in turn has to do with the compactness of M. Meanwhile, we state a proposition which is the
key to many of the results on spectra of the Laplacian, and more generally any self-adjoint elliptic differential
operator.

Proposition 8.1.10 (Spectra of self-adjoint compact operators). Let H be a separable Hilbert space, and let
G € B(H) be a compact self-adjoint operator. Then there is an orthonormal basis {e, }52; of H consisting of
eigenvectors of G, viz.

Ge, = pune, for n=1,2 ...
with p, € R. Indeed {u,}52; is a bounded sequence, and satisfies lim,, oo ptn, = 0.

Proof: That there is an orthonormal basis {e,}22 of eigenvectors for G is a consequence of the well-known
spectral theorem for a bounded self-adjoint operator. That the set of eigenvalues {u,,}52 ; is a bounded subset
of R follows from the boundedness and self-adjointness of G.

If u # 0 is a cluster point of {u,}52,, then we can find a subsequence pu,, satisfying |u,, | > |u]/2, say.
Then, if B is the unit ball in the infinite dimensional subspace W C A spanned by {e,, }32,, the image G(B)
will contain the ball ‘—’QL‘B , which is non-compact. Thus G(B) cannot have compact closure, contradicting that
G is a compact operator. Thus p = 0, and lim, oo pt, = 0. O

8.2. The Calkin Algebra. Let H be a complex Hilbert space as above, with inner product (—, —). Let B(H)
denote the C*-algebra of bounded linear operators on H, and let K(H) denote the complex linear subspace of
compact operators (verify that it is a complex subspace). We have the following easy lemma:

Proposition 8.2.1. IC(H) is a two-sided *-ideal in B(#). Finally C(H) is closed with respect to the operator
norm topology on B(H).

Proof: Let {z,} be a bounded sequence in H, T € IC(H), and S € B(H). Then, since there is a convergent
subsequence {7z, }, and since S is bounded and hence continuous, the sequence {STz,, } is also convergent,
so ST is a compact operator.

Similarly, since S is bounded, {Sx,,} is also a bounded sequence in H. By the compactness of T, there exists
a convergent subsequence {T'Sx,,} of {T'Sz,}. Thus T'S is also a compact operator.

To show K(H) is a star ideal, we need to show that 7™ is compact if T is compact. Let {z,} be a bounded
sequence in H, with ||z,|| < A for all n. Since T* is a bounded operator, we have from the fact that C(H)
is a right ideal that TT™ is a compact operator, if T' is a compact operator. Thus there exists a subsequence
{TT*x,,} which converges. That is, for each ¢ > 0, there exists a N(e) such that

| TT*zp, —TT xy, || < e forall k1> N(e)
This implies, since ||z, — 2y, || < 24 for all k,1, and Cauchy-Schwartz, that
| T* 20, — T* o, |I° = (@0, — 2y, TT* @, — TT*xy,) < 24¢ for all k,1> N(e)
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which shows that the subsequence {T*x,, } is a Cauchy sequence, hence convergent. Thus T™* is compact, and
K(H) is a *-ideal.

To see that KC(H) is a closed ideal, let T,, € K(H) be a sequence of compact operators, with 7, — T, and
T € B(H). We need to show that T is a compact operator. Let {z,} be a bounded sequence in H, with
|zn|l < A for all n. Let € > 0 be given.

Because of the compactness of all T},’s, we can first find a subsequence {z} } of z;,, such that {T1z}} converges,
and then a subsequence {72} of {zl} such that {Tbx2} converges. Clearly then, both {Tyz2} and {Txz2}
converge. Proceeding inductively, for each 7 > 1 we have the following:

(i): {2} is a subsequence of {zJ~1}.
(ii): {Tma?} is a convergent sequence for all m < j.

Now consider the diagonal subsequence {z!'} by taking the n-th element of the n-th subsequence among the
{z,}. By (i) above, {z'} is a subsequence of each of the subsequences {z7,}, so it is a subsequence of {z,}.

Claim: The sequence {Tz"} is convergent.

For, let € > 0. Since {z"} is a subsequence of each {z7 }, it follows by (ii) above that {727} is a convergent
sequence for each j. Let its limit be y;.
Since T,, — T, there exists an N > 0 such that
IT; —T| < e forall jk>N
where the norm is operator norm. This implies that for j,k > N, ||T; — Tk|| < 2¢, and hence:
Ty, — Tray|| < 2e||lan|| < 2Ae forall j,k> N andeach n
Taking the limit lim,,_,~, of these inequalities, we obtain:
lus — el < 24e for j.k> N

which shows that {y;} is a Cauchy sequence, and hence converges to y € H.

Thus there is an N1 > N > 0 such that |ly; — y|| < e for j > N;. Also there is an No > 0 such that
TN,z —yn, || <€ for n> Na
Then for n > Ny, we have:
[Ty =yl < Ty = Trvyenll + 1 Tv, e — yn I+ llys, = vl
< T =T [[Hlznll + e+ e
< (A4 2)

which proves that {T2"} converges to y, and hence the claim.

Hence T is compact, and IC(H) is a closed ideal. O

Definition 8.2.2. The quotient algebra B(#H)/K(#) is called the Calkin Algebra of H, and denoted C(H). By
the lemma 8.2.1 above, this algebra is a Banach -algebra. The star operation in C(#) is the one induced from
B(H), viz. [T]* := [T*]. The norm of an element [T'] € C(H) is defined as:

T = mf{|T + K| : K € K(H)}

which is a bonafide norm because IC(H) is closed. From the fact that B(#) is a C*-algebra, and the lemma
above, it follows (not entirely trivially) that C(H) is also a C*-algebra with this norm.
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8.3. Fredholm Operators.

Definition 8.3.1. We say that T' € B(H) is a Fredholm operator if its image [T'] € C(H) is an invertible element
of C(H). Since KC(H) is a two-sided ideal, T is Fredholm if and only if there exist operators S,S; € B(H) such
that ST — I3, € K(H) and T'S; — Iy € K(H). (Since inverses are unique in C(H), we see that [S] = [S1] = [T]7 1,
ie., S—51 € K(H))

Remark 8.3.2. Note that T Fredholm implies that 7™ is also Fredholm, because ST — Iy (resp. T'S1 — Ix)
compact implies T*S* — Iy; (resp. STT* — Iy) are compact, because K(H) is a *-ideal by lemma 8.2.1.

The definition above is often not very practical, since we have to be lucky enough to hit upon the operators
S and S7, given the operator T. Fortunately, there is a criterion for T to be Fredholm which can be stated
entirely in terms of T. More precisely:

Proposition 8.3.3 (Fredholm Theorem). Let T' € B(H). Then T is Fredholm if and only if all the following
three criteria are satisfied:

(i): The image Im T of T'is a closed subspace of H.

(ii): The kernel ker T is a finite dimensional subspace of H.

(iii): The cokernel Coker T := (Im 7)™ is finite dimensional.

Proof: First let us prove the sufficiency (i.e. the if) part. Let us denote N :=ker T, R := Im T, both closed
subspaces of H by hypothesis. Let V := N+, and W := R*. By hypothesis dim N < oo and dim W < oc.
Let iy, iy, iw, ig denote the inclusions of N, V, W, R into H, and similarly let wy, 7y, mw, 7r denote the
orthogonal projections onto these closed subspaces.

By definition (and the Open Mapping Theorem), there is an induced map:
T,:V=N+—>R

(viz. the restriction of T to V = N1) which is an isomorphism. Note that Ty = 7rT and Tiy = igT.

Let Q@ : R — V be the inverse of T;. Then QT = Iy, and T1Q = Ir. We need to construct maps
5,81 € B(H) with ST — I; and T'S; — I3 compact.

Set § = 851 := iyQnr. Then ST = ivQnrrT = ivQTimy = iyvlynmy = iyny = Iy —iywny. But
inTn € B(H) has finite dimensional range, viz. N, so it is compact by the example 8.1.3. Hence ST — I3 is
compact. Similarly, one checks that T'S, = igwr = Iy — iwnmw, so that T'S; — I3 is the compact operator
’iwﬁw.

To see the necessity part, assume 7' is Fredholm. To show that R := Im7T is closed, let y,, = Tz, be a
sequence in R, with lim, , y, =y € H. We need to show that y € R. Without loss of generality, one can
assume that x,, L N(T) for all n. We first claim that {z,} must then be bounded. For if not, assume there is
a subsequence {z,, } such that ||z, || > k. Then set z; = ||z, | #n,. Then

lim Tz, = lim ||xnk||_1TJCm =0
k—oco k— oo

since Tx,, — y. Thus Tz; — 0. By the equation ST — I = K a compact operator, it follows that some
subsequence of Kzj converges (since ||zx]| = 1) and thus z; contains a convergent subsequence. Let the limit
of that subsequence be z. Then Tz = 0 by the above. Thus z € N(T). On the other hand ||zx|| = 1, and
2, € (N(T))* implies ||z|| = 1 and z € N(T)+. This is a contradiction, and proves the claim.

Since z,, is a bounded sequence, Kz, contains a convergent subsequence x,,, . Also STz, converges to Sy.
Thus z,, = STz,, — Kx,, is a convergent sequence, converging to x say. Then clearly Tx = y.
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To show that V = ker T is finite dimensional, let x € N be any vector. Then STz =0 = Iyz+ Kz = 2+ Kx.
Thus x = —Kz for all x € N. That is, Iy = —wnyKiy, so that Iy is a compact operator. From Example
8.1.2, this implies that N is finite dimensional.

By remark 8.3.2, T* is also Fredholm, it follows that dim N(T™*) < oo as well, by replacing T' with T* in
the last paragraph. But by the fact that R is closed, it is easy to check that Coker T = R+ = N(T*) = ker T*.
Thus Coker T is finite dimensional, and the proposition is proved. O

8.4. Two Hilbert Spaces for the price of one. All of the above discussion can be generalised to B(H1, Hs).
where H; and Hs are two different separable Hilbert spaces. This is scarcely surprising, since all infinite
dimensional separable Hilbert spaces are (non-canonically) isomorphic to one another, but sometimes it helps
to see them as distinct objects. For finite dimensional H; and Ho, H; may not be isomorphic to Hso, but in
that case everything is a tautology from elementary linear algebra.

Note that B(#H;,H2) is no longer an algebra, but just a Banach space. (If both H; and Hs are infinite
dimensional separable Hilbert spaces, we can fix an isomorphism ¥ : Hy — H;y, then the map T — Vo T
will be an isomorphism of the Banach space B(Hi,H2) with the Banach space B(H1), and we can use this
isomorphism of Banach spaces to define an algebra structure on the former. But, of course, this algebra
structure will be non-canonical, and depend on ¥.)

We have already seen in definition 8.1.1 what a compact operator K : Hy — Ho is. The subset of compact
operators in B(#Hi,Hz2) is denoted IC(H1, Hz). It is easily seen to be a closed Banach subspace of B(H1, Ha).

The adjoint defines a C-antilinear isomorphism

x: B(Hi, Ha) — B(Ha, Hi)
T — T

We also have the following proposition, whose proof is a trivial generalisation of the proofs of the corre-
sponding propositions for H; = Hs = H enunciated in the last two subsections.

Proposition 8.4.1. Let H1, Ho, B(H1,H2), K(H1,Hs2) etc. be as above. Then:

(i): For T € K(H1,Hz2), and Sy € B(Hs, H1), Sa € B(Ha,Hs), Hz any separable Hilbert space, T o S7 and
So o T are compact operators.

(ii): K(H1, H2) is a closed subspace of B(H1, Ha).
(iii): Under the isomorphism * defined above, K(H1, H2) maps isomorphically onto K(Ha, H1).

(iv): An operator T' € B(H1,H2) is said to be Fredholm if there exist operators S, Sy € B(Ha, H1) such that
ST — Iy, € K(H1) and T'Sy — Iy, € K(Hz). T is Fredholm iff ker T is finite dimensional, Im T is closed
and CokerT is also finite dimensional. The adjoint T™* is also a Fredholm operator if T is a Fredholm
operator.

(v): ¥ T € B(H1,H2) and S € B(Hz,Hs) are Fredholm, then so is ST € B(H1, Hs).

We now run through some examples of Fredholm operators.

Example 8.4.2. If T € B(H1,H>) is invertible, then clearly T is Fredholm. The composite of two Fredholm
operators is also clearly Fredholm.

Example 8.4.3. Obviously, any linear map between two finite dimensional Hilbert spaces Hi, Hso is always
Fredholm.
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Example 8.4.4 (Unilateral shifts). Let {e,}32; be an orthonormal basis for a separable Hilbert space H.
Then define the unilateral right 1-shift operator:
T -H — H
€ = €41 for all ¢ > 1
This is clearly a Fredholm operator by the proposition 8.3.3, for ker T'= {0}, and the range ImT = ((Cel)l is
closed, and the cokernel Coker T" = Ce;. The adjoint of this operator is easily checked to be:
T -H — H
e; — ej_1 forall i>2
er = 0
As remarked before, T* is also Fredholm, and is called the wunilateral (-1)-shift operator. Now ker T* = Ce;,
and Coker T = {0}. By (v) of the proposition 8.4.1 above, the unilateral k-shift T* and the unilateral (—k)-shift

(T*)k are also Fredholm, and their kernels (resp. cokernels) are {0} and ®%_,Ce; (resp. @®F_,Ce; and {0})
respectively.

Example 8.4.5 (Parametrices). Let M be a compact Riemannian manifold, £ and F' two complex vector
bundles on M, and let:

P:C®(M,E)— C®(M,F)
be an elliptic differential operator of order d > 1 (See Definition 6.1.1). Then P : Hyq(M,E) — Hs(M, F) is
a Fredholm operator.

For, by the Proposition 6.2.1, we have a parametrix
Q:H;(M,F)— Hsg(M,E)

such that S := PQ — I is an infinitely smoothing operator on Hs(M,F) and T := QP — I is an infinitely
smoothing operator on Hy(M, E). By the Example 8.1.8, it follows that both S and T are compact opera-
tors. Thus, by definition, both P and @ are Fredholm operators. Hence, by the Fredholm Theorem 8.3.3,
P(Hqq(M, E)) is closed in Hy(M, F'), and ker P and Coker P are finite dimensional.

As a particular case, let us look at the Laplacian on S' again.

Example 8.4.6 (Green operator on S*). We recall the example 8.1.5. Let H = Lo(S*) as before, and recall
D=domA = {f € Ly(S"): Z n*|f(n)? < oo}
n=—o00
me)

We also recall that Ae,, = n2e,, (where e, = ¢ so that A became an unbounded linear operator from

D — H. Then consider the space:

Hoi=Hy(SY)={feH: DY (1+n")|f(n)?*< oo}

Clearly, H2 = D as a vector space. However, on Hs we have the Sobolev inner product (—, —),, which by the
Corollary 6.2.3, can also be defined as:
(£.9)2 = (£.9)0 + (AL Agly = D (1+n")f(n)3n)

which explains the notation H(S!) for the space above, and by earlier considerations makes it into a Hilbert
Space. It is clear that e, = €™ continue to be orthogonal, but not orthonormal with respect to (= =)o

Indeed, [le, ||, = (14 n*)=.
Clearly, by definition, we have:

[ee}

AP = > wdlF ) < |I£1I5

n—=—oo
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which makes A : Hy — H a bounded operator, an element of B(Hz, H) (a fact we already know from Proposition
6.1.2) an element of B(Ha, H).

Similarly, for the Green operator GG introduced in 8.1.5,

oo

2 (1+n?) ~ 2
loiz= S S <20
n=-—00,n#0
so G is also a bounded operator,and lies in B(H, Hz). The relations Iy, — 19 = GA and Iy; — 19 = AG found
in 8.1.5 show that both A : Ho — H and G : H — H, are Fredholm operators. Note that ker A = Ceg, and

ker G = Ceg as well.

Exercise 8.4.7. The Green operator can be written explicitly as a convolution with an L function on S*.
Define the function g € La(S') = H by the formula:

where e, (e') = e for z = e’ € St. Verify that:

(G)(z) :/ gzw ™) f(w)dw for z € S*

Sl
where w = €%, and dw := ds. Calculate the distribution A g.
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We might as well record a direct consequence of the last few sections in the following:

Proposition 8.4.8 (Green Operator for a Self-adjoint Elliptic Differential Operator). Let M be a compact Rie-
mannian manifold, with a smooth complex vector bundle E on it. Let dV (z) be the Riemannian volume form
on M and let (—,—) be a Hermitian inner product on E. Let P : C°(M,E) — C*(M,E) be an elliptic
differential operator of order d > 0. Assume that P is formally self-adjoint, viz.

(Pr9)= [ (PF@).o(@),dV () = (f.Pg) forall [ g€ C™(M.E)
Consider the bounded operator:
P:Hy(M,E)— Hy(M,E) = Lo(M, E)

Then, for this last operator, we have:

(i): dim ker P < oo, and this kernel is contained in C*°(M, E), and in particular Hs(M, E) for all s € R.
(ii): Im P C Ly(M, E) is closed, and Coker P := (Im P)* = ker P.

(iii): There exists a bounded self-adjoint operator called the Green Operator
G:Ly(M,E) — La(M, E)
for P which satisfies:

(a): G=0onker P C Ly(M,E), and G = P~! on ker P+ = Coker PX = Im P C Ly(M,E). G is a
compact operator.

(b): G(C>®(M,E)) c C*(M,E), and GP = PG on C*(M, E).
(¢): G : Ly(M,E) — Lo(M,E) is a compact self adjoint operator. There is an orthonormal basis
{ei}$2, of La(M, E) of eigensections of G, which satisfy
Ge; = pie; for all i
where p; € R for all i. 0 is the only cluster point of the set {u;}52,, and lim; o p; = 0.

(d): The eigensections {e;} of (c¢) above are all smooth, and are also eigensections for P, satisfying:
Pe; = \;e; for all i

where A; € R is a discrete subset of R, and lim;_, | A; |= 00

Proof: The operator:

P Hy(M,E) — Ly(M, E) = Hy(M, E)
is bounded by the Proposition 6.1.2. Its kernel ker P is finite dimensional by the Example 8.4.5 above, where P
was found to be Fredholm, and (ii) of the Fredholm Theorem 8.3.3. That ker P C C*°(M, E) is a consequence
of the elliptic regularity theorem Proposition 6.2.4. Since C*°(M,E) C Hy (M, E) for all s, it follows that
ker P C Hs(M, E) for all s. This proves (i).

That Im P is closed in Ly(M, E) follows from (i) of the Fredholm Theorem 8.3.3, and Example 8.4.5. Since
P : Hy — Hy is bounded, P(C*(M,E)) is dense in Im P. Hence f € Ly(M, E) is orthogonal to Im P iff
(f,Pg) =0 for all g € Hy(M, E). By the formal self-adjointness of P, and the natural duality of Hy and H_,4
in (iii) of 4.2.2, (f,Pg) = (Pf,g) for f € Hy and g € Hy. Thus we have (Pf,g) = 0 for all g € Hy(M, E).
This is equivalent to Pf = 0. Thus Coker P = (Im P)1 = ker P, and (ii) follows.

By (ii), we have an Ls-orthogonal decomposition:
Ly(M,E) =Im P @ Coker P = Im P @ ker P
We now define G by setting G = 0 on ker P, and G to be equal 6 which is the composite:

m P 5 (ker ) <5 Hy(M, E) < Ho(M, E) = Lo(M, E)
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By the Open Mapping Theorem, P~! : Im P — ker P+ is a bounded operator, as is the inclusion (ker P)* —
Hy(M, E). The last inclusion Hy(M, E) — Lo(M, E) is a compact operator by Rellich’s Lemma 4.2.2. Thus
by the Proposition 8.2.1, the map 6 is a compact operator. Since G = §om, where 7w : Ly — Im P is orthogonal
projection onto the closed subspace Im P, G is also a compact operator by 8.2.1. This proves (a) of (iii).

Since P is a differential operator, P(C*>(M, E)) C C*>®(M, E), and if g € C°(M,E) C Ly(M, E), then its
projection to the closed subspace Im P = (ker P)* is given by:
k
w(g) =9 (9.f)fi

i=1
where {fi}¥ , is an Lg-orthonormal basis for ker P. By (i) above, all the f; are smooth, thus the scalar
combination ) ,(g, f;) fi is smooth, and hence 7(g) above is smooth. On the other hand, for a smooth g = P f
in Im P, it follows by elliptic regularity of Proposition 6.2.4 that f is also smooth. Thus the map 6 above
also maps smooth sections in Im P into smooth sections. Since G = 6 o 7, it maps smooth sections to smooth
sections. The fact that GP = PG on smooth sections follows immediately from the definitions. This proves

(b).

That G is a compact operator was seen in (a). That it is self-adjoint follows from the definition G = 6 o m,
and 6 is the inverse of the formally self-adjoint P, and C*°(M, E) is dense in Lo(M, E). The statement about
its eigenvalues and the orthonormal decomposition of Lo(M, E) into eigenspaces of G is the content of the
Proposition 8.1.10. The eigenvalues are real since G is self-adjoint. This proves (c).

To see (d), note that Ge; = u,e;, and p; # 0 implies that e; are orthogonal to ker P, and hence so are Ge;,
so that:
piPe; = PGe; = Pfe; = PP le; = ¢;

so that Pe; = u, Le; for all p; # 0, and e; become eigensections of P, corresponding to the real non-zero

eigenvalues \; = ,ui_l. Since (P — A\;)e; = 0, and P — )\; is also elliptic of order d (it has the same leading

symbol as P), it follows that e; € C*°(M, E) for all i such that pu; # 0. For those #’s which have u; = 0, we
have e; € ker P, and we already know those are smooth by (b). Hence e; are all smooth, and the rest of (d)
follows from (c) above. O

Actually, we can refine (iii) (d) of the previous proposition. To be precise, we have the following proposition.

Proposition 8.4.9. Let M, F and P be as above in Proposition 8.4.8. Then let us arrange the absolute values
of the eigenvalues A; of P as in (iii) (d) of the previous proposition in non-decreasing order as:

[ A< Ag ] oo < A S
Then there exists constants C, 6 > 0 and N € N such that | A, |> Cn? for all n > N.

Proof: First we note that the eigenvalues of P* will be A\¥, and obtaining the assertion for ¥ is sufficient to
imply the same assertion for A, (with ¢ replaced by §/k). So we may assume without loss of generality that P
is of degree d > n/2 where n = dim M.

Since we are assuming d > n/2, by (iv) of the Proposition 4.2.2 (viz. the Sobolev embedding theorem), we
have for f € C*°(M, E) the inequality:

1flloe = sup | f@) | Clflly forall feC™(M,E)

and combining this with the Garding-Friedrichs inequality Proposition 6.2.2 we have:

[flle < CUPSllo+[fllg) forall feC=(M,E) (21)

We note that by elliptic regularity, all the eigensections ¢ of P are smooth sections. We assume they are
orthonormal with respect to La-norm || ||,. Define:

F(a) :=spang{¢r : Por, = M\, and | g |< a}

Let m = dim F(a). This dimension is finite by the fact that A, ' have no cluster point except 0 from (iii) (c)
of 8.4.8. We will make an estimate for m in terms of a, which will imply our assertion.
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Note that for f =3""", a;¢; € F(a), we have Pf = > 7| a;A;¢;, which shows that
I1Pfllo < allflly forall fe Fa)

Plugging this into the inequality (21) above, we have for all choices of complex constants «;, the inequality:

daiei| <Cl+a)|d ae; (22)
Jj=1 oo j=1 0

In a local frame {e;(x)}%_, orthonormal frame of E over U C M, where k = rkc E, write:

k
2) = 3 di(@)ea)

So that for any choice of constants a;, we have for x € U that

3 ayee) = 3 D ests(@) | e

=1

so that for any choice of constants a; € C, the inequality (22) implies:

m
Zajqb;(a:) < Zaj¢j <C(l+a) Z | aj|? for each i =1,2,..k
J =1

o0

For z € U, choose o = @; (z). Then the last inequality reads:

N[

Z|¢ ) P<C(1+a) Zlczb

that is:

=

Z | gi(x) | <C(l+a)

Squaring both sides and summing over i = 1, .., k, we have:

le@ Z(sz‘-(m) |2>=Z Do165@) [P | <kC?(1+a)* = G314+ a)?

where C' is a generic constant independent of a. This inequality is true for each = € M, so we may integrate
both sides over all of M to obtain

m= [ 3 (I6,@)IE) Vi) < 2 +ar

which shows that mé —1<a. Since | A\; [<a for j =1,2,..,m, we can take a = maxjL; | A; [=| A |, s0
that we have:
1
| A |[> Cm2 for m > N

and the proposition follows. O
8.5. The Fredholm Index.

Definition 8.5.1 (Fredholm Index). Let 7' : H — H be a Fredholm operator. The Fredholm index of T is
defined by:
indT = dim ker 7" — dim Coker T’

It makes sense, and is an integer, because of proposition 8.3.3. Similarly for T € B(H1,Hz2), one again defines
the index ind T' by the same formula.
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Example 8.5.2 (Index of examples above). We can easily compute the indices of the various examples of
Fredholm operators listed above. For an invertible operator T : H; — Hs, the index is clearly 0. For a
linear map T : V' — W of finite dimensional vector spaces, the index is easily seen to be dim V — dim W by
elementary linear algebra. (Thus in the finite dimensional situation, the index depends only on the domain
V and range W, and is not a very interesting invariant of T'). For the unilateral right (resp. left) k-shift, the
index is (—k) (resp. k).

For an elliptic self-adjoint differential operator P : C*°(M,E) — C*(M,E) of order d, M a compact
Riemannian manifold, we have that P : Hy(M,E) — Ly(M, E) is Fredholm, by 8.4.5. Also by (ii) of 8.4.8,
ker P = Coker P, and hence ind P = 0.

Proposition 8.5.3. Let T € B(H1,H2) and S € B(Ha,Hs) be Fredholm operators. Then T'S € B(H1,H3) is
Fredholm, and

indST =ind S +indT

In particular, if Hy1 = Ho = H, the index is a group homomorphism from the group of units (=set of invertible
elements) in the Calkin algebra C(H) to Z.

Proof: In the sequel, we will denote the kernel of a linear operator T' by N(T). The fact that ST is Fredholm
follows from the fact that post and precomposing compact operators with bounded operators again yields
compact operators (see example 8.4.2).) Note that for any linear operator T, we have the following identity
for a closed subspace W:

T W) = (17 (W) (23)

where the left side is the inverse image of W+. From this (by taking W+ = {0}), one sees that Coker T* =
ImT*+ = N(T), and CokerT = (ImT)*+ = N(T*). Now one may do orthogonal decompositions of H1, Hs
and Hs as follows:

" = NIT)@&F

Ho = NT*)@Gi1=N(5) @G,

Hs = N(S")eH

where T': F — G and S : Go — H are isomorphisms.

The kernel of ST is given by (using the identity (23), and noting that Tjp : F' — ImT is an isomorphism)
above):
N(ST) T71S710) = T H(N(9))
= NT)+T (N(S)NImT)

T T‘_l
N(T) + T (N(S) & (N(S) N N(T™))

so that
dim N(ST) = dim N(T) + dim N(S) — dim (N(S) N N(T™))
Similarly,
dim N((ST)*) = dim N(T7*S*)=dim N(S*) + dim N(T”) — dim (N(T™) N N(5*))
= dim N(S*) +dim N(T7) — dim (N(T*) N N(95))
Combining the two identities above, we get:
ind ST = dim N(ST) — dim N((ST)*) = dim N(T) + dim N(S) — dim N(S*) — dim N(T*) =indT 4 ind S

proving the proposition. O
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8.6. Path components and Fredholm index. We have the following crucial fact about Fredholm operators.

Proposition 8.6.1 (Invariance of index). Let ¢t — T} be a continuous map of an interval I to B(H), with T}
a Fredholm operator for each ¢t € I. Then:

indT; =indTs forall t,sel

Thus the index remains a constant integer on each path component of the set of units (=invertible elements)
in the Calkin Algebra.

Proof: We will show that the index is locally constant on I, and that will make ¢ — ind T} a continuous,
and hence constant map. For a point ¢ € I, denote the kernel of T; by K;. Since T; is Fredholm for each ¢,
K, is finite dimensional for all t. Let V; := KtJ-, and W; := ImT;. By Fredholmness of T3, WtJ- is also finite
dimensional for each t.

Fix any a € I. We claim that for a small enough ¢ > 0, and for |t — a| < ¢, the index indT; = indTy,.
For simplicity of notation, denote K, by K, V, by V and W, by W. Let 7 : H — W denote the orthogonal
projection, and i : V. — H denote the inclusion. Then 7w 7,7 : V — W is an isomorphism, by definition.
Since isomorphisms from V to W form an open set in B(V, W), it follows that there is an € > 0 such that
wTyi:V — W is an isomorphism for all ¢ such that [t — a| < e.

Thus, for |t — a| < €, the index
ind (7 T} 4) = 0
By the proposition 8.5.3, and the facts that ker 7 = W+ = Coker T, Coker 7 = 0, ker i = 0, Cokeri = V+ =
ker T,, it follows that
ind (7 T} i) = ind 7 + ind T, + ind i = dim W+ +ind T, + (- dim V) = ind T} — ind T,
Thus ind T; = ind T, for |t — a|] < €, and the proposition is proved. 0.

9. ELLipTIC COMPLEXES ON COMPACT RIEMANNIAN MANIFOLDS

9.1. The de Rham complex. Let M be a smooth connected oriented (i.e.the Jacobian of each coordinate
change in the atlas being used has positive determinant) Riemannian manifold of dimension n, with Riemannian
metric g. We recall that the volume n-form dV associated to this Riemannian metric, is given in a local
coordinate system (¢, U) of an oriented atlas by:

dVy(z) = y/det g;j(x) dzy Adxg A .. A dzy

with coordinate functions z; being the components of ¢ on the open set U. The expression above is independent
of the coordinate system chosen, by the tranformation properties of the coordinate changes on the overlaps
U; NUj, and the orientability of the atlas {(¢;,U;)}. We will usually write dV instead of dV,.

One also has the complex vector space of smooth complex-valued differential p-forms on M, which is denoted
by AP(M). Let w be a differential p-form is given in a coordinate chart (¢, U) by the local expression:

w = Z Wiy <in<...<ip ATiy N dTiy.. Ndi, = Zwldzz
11 <i2<...<ip I
where I = (i1 <ig2 < ..<1p), 1<i; <n denotes a multi-index of length p, and w; are all smooth functions on

the open set U. Note that /\O(M ) is just the vector space of smooth functions on M, and when M is oreinted,
there is an isomorphism f +— fdV; of A’ (M) with A" (M) upon choosing a Riemannian volume element.

Then one can define the exterior derivative operator
p+1

d: \(M) — N\ (M)

by dw := ), dws A dx, where dw; = Zj %dxj is a 1-form. One easily checks that this definition of d is

global, and does not depend on the choice of local coordinate charts. (In the case of M = R?, the exterior



ELLIPTIC COMPLEXES AND INDEX THEORY 65

derivatives on A’(R3), A'(R3) and A*(R3) lead to the familiar grad, curl and divergence operators.) It is well
known that d o d = 0, and so we have a cochain complex of complex vector spaces:

0 1 P pt1 n
A S A S A\NGD SN (). S A1)
which is called the de Rham complex of M. We also have the skew-derivation formula for the exterior derivative:
dwAT)=dw AT+ (—1)Pw Adr
where w € A*(M), 7 € AY(M).
The de Rham complex contains much of the algebraic topology of M, even though its definition is purely
analytical. For example, we can define the i-th de Rham cohomology of M as the quotient:
kerd: N'(M) — AT
CImd: \THM) = N'(M)

It turns out by de Rham’s theorem (to be stated below) that the dimension dim H*(M,C) is the i-th Betti
number of M, and the alternating sum

H'(M,C)

> (~1)"dim H'(M,C)
i=0
is the topological Euler characteristic x(M) of M.

Now one brings in the Riemannian metric to introduce pointwise and global hermitian inner products on
differential forms. The Riemannian metric g defines inner products for all real tangent vectors, and gives an
identification of the real cotangent space with the tangent space by the identification X +— X* where X* is
defined by the formula X*(Y) = g(X,Y) for all tangent vectors Y to M at z. Declaring the vector space
isomorphism above to be an isometry puts a real positive definite inner product (—,—) on real cotangent
vectors. More explicitly, in a coordinate chart (¢, U) with coordinates x; we have:

(dw;, dz;) = g"
where g% is the inverse of the n x m positive definite matrix [gkl =g (%, 8%1)]' Each of these g;;’s is a
smooth function of x € U. Now we get inner products on all real p-covectors by the formula:

(dxiy, Ndxg,... Ndz;,, dxj, Adxj,... ANdxj)) = det[gim]

Thus we can talk of (w(x),7(x)) for two real p-forms w,7 € A”(M,R). We do the canonical Hermitian
extension of this real inner product on A” (M, R) to a Hermitian inner product on its complexification A\ (M) =
AP (M, R)®@C. We continue to denote it by (—, —). By definition, for w, 7 € AP(M), the pointwise inner product
(w(z), 7(x)) is a smooth function of z € M. We can then define the global inner product:

)= [ {ole). (@) aVia)
of the smooth p-forms w, 7 € A’(M), and if M is compact, (w, ) will be finite for all w, 7 € A" (M).

The Hodge star operator is an operator:
p n—p
w: \(M) = N\ (M)
which is the unique operator obeying the identity:
wA (*7) = (w, 7)dV =T A *w

for w, 7 € AP(M). That is, (—,—) being a non-degenerate pairing gives an identification of A"(M) with
its dual vector space A"*(M), and A being a non-degenerate pairing of A”(M) with A" "?(M) provides an
identification of A" P (M) with A”*(M), so the Hodge x-operator is the resulting identification of A”(M) with
A" "P(M). Using the fact that w A 7 = (—1)P*~P)(x7) A w and that (w,7)dV = (1,w)dV, it easily follows
from the definition of * above that

xox = (=1)P"=P) on /\(M)
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As expected, * : A°(M) — A™(M) is the isomorphism f s fdV discussed ecarlier.

Using the Hodge *-operator, one can define the differential operator:
P p—1
5: \NM) =  N\®)

w = (=) d(xw)

From this definition it follows that *dw = (—=1)"+" "L s xd ¥ w = (—1)P T 1H0=P+DE-D gy o = (—1)Pd(+w).

We note that if w is a p-form and 7 a (p + 1)-form, then:
dw A *7) =dw A *7 + (—1)Pw Ad(*7) = dw A *T — w A (%IT)

Now d(wA*7) is an n-form on M, and if M is compact, or if one of 7,w are of compact support, then by Stokes
theorem we have (since IM = ¢) that:

(dw,7) = dw/\*T:/w/\*(ST—l-/ d(w/\*r)z/w/\*éT—F/ (w A *7)
M M M M oM
= (w,67)+0=(w,d7) (24)

That is, the operators d and § are formal adjoints to each other on the spaces of smooth compactly supported
forms, with respect to the global inner product (, ) defined above.

9.2. The Laplacian on differential forms.

Definition 9.2.1. The Laplace-Beltrami operator, or Laplacian on \*(M) is defined as:
P P
AN = A1)
w = (dd+dd)w

Since d and § are both first-order differential operators, A is a second order differential operator.

One can also write down expressions for A in local coordinates, which are messy. For A : A®(M) — A\’ (M),
the expression is:

0
Y 0i(v9970;f)  for fe \(M)
where /g := \/m and 0; := %.

Remark 9.2.2 (Formal self-adjointness and positivity of A). By (24) above, we also have for M compact, or
one of w,7 € A\P(M) of compact support that:

(Aw,7) = ((dd + dd)w, T) = (0w, 67) + (dw,dT) = (w, AT)
that is, A is formally self-adjoint with respect to the global inner product (—,—) on A”(M).

Further, by the above, if w is of compact support, or M is compact,
(Aw,w) = (dw, dw) + (dw, dw)

Hence for M compact, (Aw,w) > 0 for all w € A*(M), and Aw = 0 for w € A*(M) if and only if dw and
dw = 0.

Instead of proving ellipticity of the Laplace operator separately, we will set up the general notion of an
elliptic complex, and the Laplacian above will follow as a special case.
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9.3. Elliptic operators on compact manifolds. In the sequel, TM will always denote the complezified
tangent bundle Te(M) := Tr(M) ®r C. Likewise, for the cotangent bundle T*M := T¢ M = hom(Tr M, C).

Definition 9.3.1 (Algebra of differential operators on M). Define the space D°(M) of linear differential op-
erators of order 0 to be C*>°(M).

Let x(M) denote the space of vector fields on M. That is, x(M) is the space C*°(M,TM) of smooth
sections of TM on M. Note that x(M) has a natural left-module structure over the ring C*°(M).
Define the space D*(M) of linear differential operators of order 1 by
DY(M) == C*(M) & x(M)

This C-vector space inherits the left C*°-module structure from both its summands. In addtion, it also the
structure of a right C°°(M) module, defined by:

(Pg) = gP + [P.g] = gP + [aX,g] = gP+aX(g) for P=B+aX, X € x(M), a,3 € C*(M)

This formula arises from the fact that the vector field X is a derivation on C'*° (M), or more simply because
Pg is naturally defined by the formula:

Py(f) = Plgf) forall feC=(M)

Note that the commutators satisfy:
(i): [DY (M), DY (M)] c DY(M).
(i): [D°(M), DY (M)] = [D*(M), D*(M)] C D°(M)

The k — th tensor power of DY(M) is defined as
T .= D' (M) ®coe(ary D (M) @ ... ®coo(ary D' (M) (k times)
uses the right C>° (M )-module structure of the i-th factor and the left C°° (M )-module structure of the (i+1)-th
factor. Thus it has a natural left and right C°°(M)-module structure. Note that
TF = @"D' (M) = (D' (M)) ® C*°(M) C (&FD*(M)) @ D' (M) = TF!
so that we can define:
T = Ui T" = U2 (@D (M)
as an associative, non-commutative C> (M) algebra, fitered by 7%. Let Z be the left-ideal in 7 generated by
all elements of the form
PL@P,—P,®P, — [P,P]®1, P, P,cDY(M)
A simple calculation shows that for g € C*(M), Py, P, € D!, we have:
(PP, —Po®P —[P,P]®1)g = gPL@P,— PP, —[P,R]®1)
+ ([Pr,g]®@ P — P ®[Pr,g] — [P, 9], 2] ® 1)
+ (PL® [P g] = [P gl @ Py — [Py, [P, 9]l @ 1)
(where one uses the Jacobi identity ([[Pr, P2], g] + [P, 9], PA] + [[g, P1], P2] = 0). Thus the left C°°(M)-ideal

generated by the elements Py ® Py — Py ® Py — [Py, Po] ® 1 automatically becomes a right C*° (M )-ideal as well.
Now we can go modulo this ideal Z.

Hence we define the algebra of differential operators on M to be the associative algebra:
D*(M)=T/T

The image of D(M) of T% is the left C°°(M)-module of linear differential operators of order d. Since T C
T4 we have DY(M) C DHY(M) for all d, and D°(M) = C(M). D> is a non-commutative, associative
algebra over C*>° (M), filtered by D?(M). From the corresponding property of 7%’s, it follows that:

DY(M). D (M) C D (M)
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Finally, if £ and F' are two smooth complex vector bundles over M, the space of smooth sections of the
bundle hom(E, F'), namely C*°(M,hom(E, F)), is a right (=same as left) C°°(M)-module in a natural way.
Hence we may define the C'°° (M )-modules:

DYM; E, F) := C®(M,hom(E, F)) ®ceay D' (M), D*(M;E,F) :=C*(M,hom(E, F)) ®ce(ar) D> (M)
Note that these left C°°(M)-modules are algebras if E = F.

Exercise 9.3.2. Verify (by using local coordinates) that P : C*®°(M,E) — C*°(M, F) is a linear differential
operator of order d in the sense of 6.1.1 iff it is an element of D¥(M; E, F).

We will denote D4(M; E, F) simply as D4(E, F), and sometimes even D¢ when no confusion is likely, for
notational convenience.

Lemma 9.3.3 (Leading symbols again). Let « : (T*M) — M denote the natural projection, where T*M is
the real cotangent bundle of M. Note that there is the scaling map T*M — T*M given by £ — t£, which
preserves each fibre 17X M. Define the space of symbols of order d by:

Sym?(E,F) := {0 € C®(T*M, 7" hom(E, F)) : o(t§) = t'o(¢), &€ T*(M)}
(In other words, those smooth sections o which are homogenous polynomials of degree d in the fibre variables).

When E = F = M x C the trivial line bundle, we denote Sym?(E, F) simply by Sym?(M). We have the
following facts:

(i): The associated graded module to the filtered C*°(M)-module D*°(E, F') is the algebra Sym™ (E, F) :=
®5 ,Sym?(E, F). The natural quotient map of C'°°(M)-modules:

DYE,F) — Sym“(E,F)
P O‘L(P)

is called the leading symbol map. When E = F, Sym™ (FE, E) is a commutative algebra, and the map o,
is an algebra homomorphism D*°(E, E) — Sym™(E, E). In a local coordinate system, o, (P) as defined
above coincides with the leading symbol defined earlier in Definition 5.5.4.

(ii): If £ € TX(M) is any cotangent vector, and f is any smooth function satisfying df(x) = &, then the
leading symbol can be computed from the formula:

o1 (P)(€) = Jlim +~4(e ™ Pei*T) ()

(iii): P is elliptic iff o7 (P)(w) is a bundle isomorphism at all points of T*M \ 057, where 0p; denotes the
zero section of T M.

Proof: First we note that
DY(E, F) = C*(M; hom(E, F)) @aw (a1 DY(M)

and similarly
Sym®(E, F) = C*(M;hom(E, F)) ®ce(a) Sym® (M)
hence we need prove all the assertions for the case of E = F = M x C, the trivial bundle, and then left-tensor
everything with C°°(M,hom(E, F)) to get it for general E and F. The second simplification one can make
is to reduce it to M = R™. This is done by first covering M with charts U; with each U; diffeomorphic to
R". In fact, for any U C M open, we can define the left and right C°°(U) module D%(U) by the definition
above (applied to M = U). Indeed, for V' O U any two open subsets, there are the natural restriction maps
x(V) = x(U) which preserves commutators of vector fields, and also the restriction map C*(V) — C>(U).
Thus we have a natural restriction map D*(V) — DY(U) of first order differential operators. Thus restriction
maps result:
T(V) = &(@" D' (V)) = T(U)

which are algebra homomorphisms. Clearly the ideal Zy, generated by Py @ Po — P, ® P, — [P, P;] ® 1 in
T (V) maps to the corresponding ideal Iy C T(U), one has a natural restriction algebra homomorphism
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D>(V) — D>(U) which maps D¥(V) to D4(U). The fact that D is a sheaf of left and right modules over
the sheaf C* follows from the facts that (i) D! is a sheaf, which implies that 7 is a sheaf, and (ii) Z is also a
sheaf of ideals inside T (verify!). Similarly, one forms the symbol sheaf Sym?, whose sections over U C M are
precisely the sections o in C°(T*(U), 7*C) satisfying o(t£) = t?o(£). The symbol map also becomes a sheaf
map with all of these definitions.

Because of the sheaf theoretic machinery above, all the assertions of the lemma need to be verified only
locally, i.e. on M = R™. In this setting, D* is the C*°(R") module of all operators of the kind ", a;(z)9; +b(z)
where a;,b € C*. Then clearly D! /D is the space x of smooth vector fields on R™. It is trivial to check that
for any smooth vector field X (x) = Y7, a;(2)D; 5, (where D; = \/%7182»), the smooth function o on T (R™)
defined by:

0(&) = V-1[&(X(2))] for & € T;(R")
satisfies o (t§) = to(§) by the linearity of the cotangent vector &,. Since o(dx; ;) = a;(x) by this definition, it

is natural to write
o) =0 (Z & dﬂ?i,z> = ai(@)&
i=1 i

which gives precisely the leading symbol of P = )", a;(x)D; 5. Conversely, given a o € C(T*(R"™)) satisfying
o(t€) = to(€), it follows that o is a linear functional on 77} (R™), and one gets a C* vector field in y by setting

n

X(z) = Z o (dw; ) Di o

i=1
It is checked immediately that these maps are inverses of each other. More generally, if P = ZI al<d ao DS is
a differential operator in D%, then o (P) is ZI al=d ao&”, which being a homogeneous polynomial of degree d,

satisfies o7, (P)(t) = t?or(P). The space of smooth functions on 7*(M) and obeying this scaling property
are precisely those functions which are homogeneous polynomials of degree d in the variables &1, ..,&,, and so
Sym? is exactly o, (D%). Indeed, this definition of o, agrees with the earlier one in Definition 5.5.4. Now it is
trivially checked that or(PQ) = o (P)or(Q). Thus (i) is proved.

To see (ii), note that if df (z) = &, then 0, , f = ¢;, and hence for a C*° function g, we have:
Dju(e g)(x) =t 9, f(2)g(w) + " Djug(a) = te¢;g(x) + ™ (Dj09)(2)
More generally, using Leibnitz formula for differentiating a product:
Df‘;...Dg’g(e”fg)(x) = tlaleitfff‘l LE8mg(x)
+ (terms involving strictly lower powers of t)
from which it follows that

lim t~%4(e~ Pet)(z) = oL (P)

t—o0
and (ii) is proved.

(iii) is clear because saying that o (P)(£) # 0 for all | £ | large enough is equivalent to saying that it is
non-zero for all £ # 0, by homogeneity of o7, (P). The lemma follows. |

For f a smooth function on M, and P € D%(M,E) a differential operator, we denote by (ad f)P the
differential operator fP — Pf. Using the fact that [D°,D!] C DY and induction, it is easy to see that
(ad f)P € D¥=Y(M, E), so that (ad f)?P is a zero-th order operator.

Corollary 9.3.4. Let P and f as in (iii) of the Lemma 9.3.3 above. Then

(i):

IR P
or(P) d! (ad f)*P

(ii): Let P* be the adjoint of P, defined with respect to some Hermitian inner products on E, F'. Then

oL (P*)(€) = (o1(P))"(§)
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Proof: Note that

& (=t Pet) = (~i)e™"[(ad )P)e™S

so that we inductively have:

d\?% , . ,
() (7 Peth) = (iytel(aa ) PIe = (~i)¥(ad )P

since (ad f)?P is in D°, and commutes with e®/. Applying L'Hospital’s rule to the formula in (iii) of 9.3.3, we
have (i)
To see (ii), if df (z) = &, we have by (iii) of 9.3.3 above that:

o1 (P7)(€) = lim 14 (e~ Preth) = Jim =4 (7T PetT) " = (01(P))" (€)

The corollary follows.

9.4. Elliptic Complexes.

Definition 9.4.1. Let {E‘}™, be complex vector bundles with Hermitian metrics. Say that a sequence of
differential operators:

o C(M, EY) 25 0 (M, E™Y) — ...

is an elliptic complex if:
(i): Piy10P; =0 for all 4.

(ii): The associated symbol sequence

B g
is exact for all £ #0 (le. all { € T*M \ M).

(iii): The order of each P; is d > 0. (For most elliptic complexes of concern to us, d = 1).

Clearly, if we only have a two term sequence C*°(M, EY) i C> (M, E'), then this two term complex is
elliptic iff P is an elliptic operator of order d > 0.

Before looking at some examples of elliptic complexes, let us note the following:

Lemma 9.4.2. Let {C*>(M, E*), P,} be a complex of differential operators (i.e. P;y10P; =0 for all ). Define
the Laplacian of this complex by:
AL = PP+ P, P, : C°(M,E") — C>®(M, E")

Then the complex above is elliptic iff A% is an elliptic operator for each i.

Proof: Let us denote o, (P;) = p;. Let us assume that the complex is elliptic. Then, from (ii) of the Corollary
9.3.4, and (i) of 9.3.3 that o, is an algebra homomorphism, it follows that:

or(Ap)(&) = p; ()pi(§) + pi—1(E)pi_1(€)
If for some e € m*E?, o,(A%)(£)e = 0, and £ # 0, it follows that with respect to the Hermitian inner product
(—,—) on ™" E", we have:

(pi(€)e, pi(&)e) + (pi_1(&)epi_1(E)e) =0
which implies that p;(§)e = 0 and pf_;(£)e = 0. Since the complex is elliptic, and & # 0, it follows that e
pi—i(&)v for v € m*(E1). Since p;_;(£)e = 0, it follows that p;_; (£)p;—1(&)v = 0. Thus <v,pf_1(§)pi,1(f)v>
0, which implies that p;_1(§)v = e = 0. Thus o(A%)(€) : 7*E* — 7*E® is a monomorphism, and hence an
isomorphism. That is A} is elliptic.

The converse is similar, and left as an exercise. |
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Remark 9.4.3. Note that if P is an elliptic complex, and of finite length (i.e E* = 0 for i >> 0), and
dim M > 0, then we have

o0 o0
Z rank E?* = Z rank F2it1
i=0 i=0

This is because we can choose a & # 0 in Ty M, and the fact that the symbol complex:

.. = E L) Bl

is exact means that the alternating sum:

oo o

> (~1)'dim E, = (~1)'rank E' =0
i=0 i=0
which implies our assertion.

Example 9.4.4 (The de-Rham Complex). Set E* = A*(T:M), the i-th exterior power of the (complexified)
cotangent bundle of M. Then consider the de-Rham complex:

e = C°(M, E*) =: AY(M,C) -2 A™H(M,C) — ...

If ¢, =), &dx; 5 is areal cotangent vector, in some local coordinate system, then since for w = Zm:i wrdxy €
Ai(M,C) we have the representation of dw in local coordinates:

dw = dej(“)j ANw=+v-—1 deijj Aw
J J

it follows that o (d)(§) = V-1 (EJ dxjfj) A (=) = i€ A (—). One already knows that this is a complex of

differential operators, i.e. d;y1 od; = 0, so to show that the complex is elliptic, it is enough to show that

the operator e(§) := £ A (—) is exact for £ # 0. Since £ # 0, we may complete it to a basis {e;}!_; of
T (T"M))e = T; (M) with e, = {. Then, each a € AP(T¢ ,(M)) may be uniquely written as:

a=oa1+&Na
where a1, g do not involve § = e,. If { Aa =0, it follows that £ A @y = 0, but since o; does not involve &,

this implies a3 = 0. Thus a@ = £ A as. This proves that the de-Rham complex is elliptic.

From the lemma 9.4.2 above, it follows that all the Laplacians A’ = dd* + d*d of the de-Rham complex are
elliptic operators.

Example 9.4.5 (Twisted Dolbeault Complex). Let M be a compact complez manifold of dim¢ M = n. Let
E be a holomorphic vector bundle on M of tk¢ E = k. We have the following well known decomposition (as
complex vector bundles) for the complexification of the real tangent bundle Tr M:

TeM = TeM @r C =T M @ 7'M

where TV M is the holomorphic tangent bundle of M, and T%! M is its complex conjugate bundle, and called
the anti-holomorphic tangent bundle of M. In a local holomorphic coordinate chart U C M, we may write
v e T1’0M|U as:

and correspondingly w € TOJM‘U as:
- 0
w = Z 53‘ aT
.7 Zj
Jj=1
The decomposition of TeM leads to a corresponding decomposition of T M = homgr(TrM,C) as:
TeM = (THOM)* @ (T M)*
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Thus
N (TEM) = @y qms (AP(THOMY* @ ATV M) = By g API(TEM)
Again, in a local holomorphic chart over U, and element w € AP4(T* M),y has the representation:

w = E arydzr Ndzy
[Il=p, |J]=q

where we use the notation:

dzr :=dz;, Ndziy A ... A dZip, dzj = d?jl A dEjQ VARTAN dqu

We can tensor all this with the bundle F, and thus we have:
A(T*M) ®c E = @piqui\PU(TEM) @c E
Thus, for smooth sections of the above bundle, we have:
A(M,E) == C™®(M,\(T*M) ®c¢ E) = ®ptq=iA" (M, E)
where AP9(M, E) := C°(M,A?9(T¢M) ®c E). Again, for U a coordinate chart, a section w € AP¢(U, E) has
the representation:
w = Z aryjdzr NdzZy

[ I|=p, |J]=q

where ar; € C°°(U, E) are smooth sections of Ej.

Now we can define the Dolbeault operator
3" . AP9(M, E) — APTH(M, E)
by defining it on local representations as follows. On a coordinate chart U, write:
W‘U: Z (Jé]JdZ]/\dzJ
lI=p, |7|=q
with ay; € C°(U, E) = A%°(U, E), and set
EEW‘U: Z gEa]J/\dZ]/\dEJ
[I|=p, |J]|=q
where

n
E Oary .

5 arjg = —=dz
- 653» J
J=1

The thing to verify is that all this is globally defined, and the reason it is globally defined is that 3 ais globally
defined as an element of A (U, E) for a € C*°(U, E) = A*%(U, E), and U C M any open set. For, over a W

satisfying F|y is holomorphically trivial, we can write o as a = Zle a;e; where a; are smooth functions on
W, and {e;}¥_, is a holomorphic frame for E)w. Then we set:

. k
0 a= E 8&1‘ €;
i=1

where, on a coordinate chart with coordinates z1, .., z,,, we have

n 8@
da = ——dz;
3 ' azj 7
Jj=1
the usual 0 operator on smooth complex valued functions. That this -operator on smooth functions is well-
defined follows from the fact that coordinate changes on M are holomorphic.

If we change to another holomorphic frame {f; }5?:1 for By, where V' C M is another open set, we have the
transition relation e; = Zj g5i fj, where g;; are holomorphic functions on V N W, and thus

0= Tae=¥ (z gjiai> 5

J
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and since g;; are holomorphic, we have 5(gﬁai) = gjﬁai, so that

J
which shows that our definition of 5Eoz makes global sense, independent of local holomorphic frames.

It is now easy to check, using local coordinates, that 9od = 0, so that we have the twisted Dolbeault Complex

=E
. = API(M,E) = C® (M, APITE(M) ®@¢ E) 2 APTY(M E) — ...

of differential operators. That is, we are taking the complex vector bundle E? := AP9TiM ® E, with a fixed
p. We can easily equip these smooth complex vector bundles with some Hermitian metrics, arising from a
Hermitian metric on the bundles T-M and E.

=E
To check that this is an elliptic complex, one needs to calculate the symbol of 3. We note that the the
complex vector bundle (T%'M)* can be identified with the real cotangent bundle T*M, by forgetting its
complex structure, and with this notation 9 = iy dfj% A (=), so that its symbol is given by:
J

o1@)€) = yor | S dzi(Ds, +iD,) A=) | = 5 3 dzi(€ +i€) = Jen ()

where £ = 37 &dz; = 30 (€f +1i€3)dz; € TO'(M)*. The reason that or,(0)(€) is exact for £ # 0 is the same
as that for the de Rham complex above, so we omit the argument.

9.5. The Hodge Theorem for Elliptic Complexes.

Definition 9.5.1. Let P denote an elliptic complex:
..... — C*(M, E) L5 0°(M, B — ...

on a compact Riemannian manifold M. We define the i-th cohomology of this complex to be the C-vextor
space:

ker P;

Im Pi—l

For example, in the case of the de-Rham complex of Example 9.4.4 above, this gives the de Rham cohomology
of M (with complex coefficients). In the case of the twisted Dolbeault complex of Example 9.4.5 above, it
gives the (p, q)-Dolbeault cohomology with coefficients in E, and is denoted by HP*4(M, E), which algebraic
geometers write as H(M,QP(E)) for reasons we needn’t explore here.

H'(M,P):=

Theorem 9.5.2 (Hodge Theorem for Elliptic Complexes). Let P be an elliptic complex on a compact Rie-
mannian manifold M. Let AL : C°(M, E*) — C*(M, E?) be the Laplacian introduced in the Lemma 9.4.2.
Then:

(i): HY(M,P) ~ ker A%, and this cohomology is a finite dimensional space.

(ii): (Kodaira-Hodge decomposition) The Lo-space of sections Lo(M,E') = Hy(M, E?) admits the Lo-
orthogonal direct sum decomposition:

Ly(M, EY) = ker AL, @ P} (Hy(M, E™Y)) @ Py (Hy(M, E*1))

where each space on the right is a closed Hilbert subspace.
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Proof: Let us first prove (ii), and then (i) will follow as a consequence. Since P is an elliptic complex, by the
Lemma 9.4.2, the operators

AL C°(M,EY) — C*(M, E")
are elliptic operators of the same order 2d > 2, where d = ord P; > 1. Also by its definition, it is self-adjoint.
By (i) of Proposition 8.4.8, the kernel

¢ = ker Al

is a finite dimensional subspace inside C°°(M, E%), and therefore a finite-dimensional closed subspace of
Hy(M,E?) for all d. Let m : Ly(M,E?) = Ho(M,E") — H% be the La-orthogonal projection. Then for
all f € Ly(M, E?), we have f — n(f) € H5". Then let

G : Ly(M,E") — Ly(M, EY)

denote the Green operator from Proposition 8.4.8. By (a) of (iii) in that proposition, we have:
pGp(f —7(f) = f—n(f)
Again, by (a) of (iii) of the Proposition 8.4.8, we have G%(m(f)) = 0, since 7(f) € ker A%,. Thus we have:
f=m(f) + ApGp(f) = 7(f) + P/ (BGpf) + Py (P, Gpf) forall fe Ly(M,E)
By the construction of the Green operator in 8.4.8, G% f € Haq(M, E'), which implies that P;G% f € Hq(M, E*T1).
Similarly, P} ;G%f € Hq(M, E*=1). The computation above therefore shows that:
Lo(M,E") = Hb + Py (Hy(M, E7=Y) + P (Hg(M, E')

We denote the last two spaces above by Im P;_; and Im P;* respectively.

To check that the decomposition is orthogonal, we easily check that H% = ker P;Nker P} ; from the definition
of A%, Hence for a € H’, we have:
(o, B B) = (Picv, B) = 0
for all 8 € Hy(M, E*t!). Hence H% is orthogonal to Im P;. Similarly, it is orthogonal to Im P;_;. Finally, if
we have a = P;,_1 3 and v = P4, then:

(Oéaf}/) = (Pl—lﬁvpz*(;) = (PiPi—lﬁa 6) =0
since P;P;_1 = 0. This shows that Im P* and Im P;_; are also mutually orthogonal. We need to check that

(2

both these images are closed. Note that if @ € Ly(M, E?) and o € H' + Pi_1(Hg(M, E*71)), then P,a = 0.
Conversely, if P; : Ly(M, E*) — H_4(M, E'T1) annihilates a, we write:
a=a1+ P10+ Py

by the decomposition above, where v € Hy(M,E*"!). Now note that P,a = 0 implies that the element
P,Pry € H_4(M,E"") is zero. This implies that under the natural pairing (—, —) of Hy(M, E**t!) and
H_4(M, E**1) (see (iii) of Proposition 4.2.2), we have:

(v, PiPly) = (P, Pivy)o =0
which implies that Py =0, and o € H% +Im P;_;. Thus Im P} is precisely the orthogonal complement of the

subspace ker P; in Ly(M, E*), and since the orthogonal complement of any subspace is closed, we have Im P} is
closed. Similarly, Im P;_; is the orthogonal complement of ker P;* | in Lo(M, E?) and also closed. This proves

(ii).

In fact, since both G% and A% map smooth forms to smooth forms, as do P,y and P}, and H% C
C>(M, E"), we can restrict the decomposition above to obtain:

C=(M, E') = Hip & Py (C (M, E'Y) @ Py (C™ (M, E'*1))
which is Ls-orthogonal, but of course left hand space and the two right hand spaces are no longer closed in
Lo(M, E?). Again it is readily checked that
ker {P; : C*®°(M,E") — C®(M,E")} = Hp © P,_1(C>®(M,E"™"))
which implies that
ker {P; : C*°(M, E*) — C>=(M, E")}

H'(M,P) = P2 (C= (M, B-T)

=H5
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and, indeed the natural composite map:
Hy — ker {P; : C°(M,E") — C=(M,E")} — H'(M,P)

is the required isomorphism. This proves (i), and the theorem follows. O

Corollary 9.5.3 (Hodge-deRham Theorem). By the Theorem 9.5.2 above applied to the elliptic de Rham
complex of Example 9.4.4 above, we have that the ¢-th de Rham cohomology of a compact manifold M
satisfies:
Hip(M,C) ~ H?

where H' = ker {A?: AY(M,C) — A"} (M, C)} is the space of harmonic i-forms on M. In particular, by the
above theorem, this cohomology is finite dimensional. This is, incidentally, provable by using the de Rham
theorem which is highly non-trivial, and the fact that a compact smooth manifold is a finite CW-complex,
which again uses non-trivial Morse Theory. That is, the finite dimensionality of the de Rham cohomology of
a compact smooth manifold, whichever way one chooses to prove it, is a very deep result.

Corollary 9.5.4 (Hodge-Dolbeault Theorem). By the Theorem 9.5.2 applied to the twisted Dolbeault com-
plex of Example 9.4.5, it follows that the twisted Dolbeault cohomology HP:¢(M, E) of a compact complex
manifold M and holomorphic coefficient bundle F satisfies:

HP(M, E) ~ HP(M, E)

where the space on the right is the kernel of the Hodge-Dolbeault Laplacian O := 5E5E* + EE*EE inside
AP9(M,E). Again the theorem implies that this Dolbeault cohomology is finite dimensional. In the case
when E is the trivial line bundle M x C, and p = 0, the Dolbeault cohomology H??(M, F) is simply denoted
Hg’q (M) or simply H%4(M). Then, by the above, the alternating sum:

> (~1)%dim H*(M)

q=0
is finite. Again, that this is finite for the situation above has to be proved as above, and is a very deep fact.

9.6. Index of an elliptic complex. We observed in (a) of (iii) in Proposition 8.4.8 that for a formally
self-adjoint elliptic differential operator P : C*°(M, E) — C*(M, E) of order d > 0, the (finite dimensional)
cokernel Coker P = (Im P)* = ker P, so that the index of the Fredholm operator P : Hy(M, E) — Ho(M, E)
is ind P = dimker P — dim Coker P = 0. Thus we won’t get any interesting index by considering the indices
of the elliptic (of order 2d) Laplacians A% of an elliptic complex P. On the other hand, a profound idea due
to Dirac (who introduced it to explain electron spin) suggests that we find a “square root” of the Laplacian to
get an interesting index.

What one does instead is construct an operator of order d as follows.

Definition 9.6.1 (The Dirac operator of an elliptic complex). Let M be a compact oreinted Riemannian man-
ifold, and let P be the elliptic complex:

o O (M, EYY 2 ¢ (M, BT &

where P; is a differential operator of order d > 0 for each i. Let us assume that this complex is of finite length,
i.e. B =0 for i large enough. Define BT = &% E? and E~ = @°,E*T!. Note that by the Remark 9.4.3,
the smooth complex vector bundles Et* and E~ have the same rank. Then we define the following operators
of order d:

Dt = P +P*:C®(M,E") = C®(M,E")
D~ = P_+P;:C®(ME")—C®M,E")

where P := @; Py;, P = ®; Ps;11. These operators are called the Dirac operators of the elliptic complex P.
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Proposition 9.6.2. In the setting of the Definition 9.6.1 above, we have:

(i): DT and D~ are formal adjoints of each other, and are differential operators of order d.

ii): The composite D™Dt = @;>9A% and similarly the composite DY D~ = @;50A%". Thus the two
>02p >0 p
term complex:
DT :C®(M,E") = C>®(M,E")
is an elliptic complex, with associated Laplacian being

AL =D DV = @50AF : C®°(M,E") — C®(M,E")

This Laplacian A}, is elliptic and (formally) self-adjoint. Similarly one can construct the other elliptic
formally self-adjoint Laplacian Ap := Dt : D™ acting on C*°(M, E™).

(iii): The operators
D* : Hy(M,E*) — Ly(M,ET)

are elliptic, and hence Fredholm. Their Fredholm index is given by:

ind D" = Z(—l)i(dimker AL) = Z(—l)idim H'(M,P) = —ind D~
i=0 =0

Proof: The assertion (i) is clear from the definitions.

(ii) is also clear from the definitions. The assertion that this two term complex is elliptic follows from the
fact that the associated Laplacian is precisely AJIS = @;>0A%, which is elliptic, and formally self adjoint, by
the Lemma 9.4.2.

We have seen that a two term complex is elliptic iff the operator in this complex is elliptic, so DT (and
hence its formal adjoint D~) is an elliptic operator. One easily checks that D¥ f = 0 iff AL f = DDt f =0
for f € Hq(M, E™), by using the fact that

(DY f.g) = (f,D"g), forall fe Hy(M,ET), g€ Ly(M,E™)

which follows from the duality of Hy(M, E™) and H_4(M, E™) of (iii) in Proposition 4.2.2 and that the above
formula holds for f,g smooth (i.e. DT and D~ are formal adjoints of each other). Likewise for the adjoint
D™, we have f € ker D™ iff f € ker A. Hence the index of Dt and D~ satisfy:

ind D = dim ker D" — dim ker D™ = Z(dim ker A% — dim ker A% ') = Z(fl)i dim ker A% = —ind D~

i>0 i>0

The fact that dim ker A% = dim H(M,P) follows from (i) of the Hodge Theorem 9.5.2. The proposition
follows. O

Note that for the De Rham complex of Example 9.4.4, the Dirac operator is d + d* = d + §, and its index
is the Euler characteristic of M. For the twisted Dolbeault complex of Example 9.4.5, the associated Dirac

operator is a° + EE*, and its index is the quantity Zq(—l)qu’q (M, E).

Remark 9.6.3. Aside from the fact that the Dirac operator construction leads to an interesting index, it
also shows that no generality is lost by considering two-term elliptic complexes instead of a general elliptic
complex of finite length. We will henceforth restrict ourselves to this setting for analytical considerations,
though finite length elliptic complexes will always be in the background because they arise from natural
geometric considerations, e.g. the de Rham complex, the twisted Dolbeault complex, and the signature and
spin complexes that will arise later.
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10. HEAT KERNELS

10.1. Heat Operators on Compact Manifolds. We now confine ourselves to the setting of the Proposition
9.6.2. That is, we have two Hermitian smooth vector bundles E¥ on M, and elliptic operators of order d > 0
D% and D~ fulfilling all the conclusions of 9.6.2. In particular, by the Propositions 8.4.8 and 8.4.9, we know
that the spectra of A}t, and A, are discrete, with absolute values of eigenvalues | A, |> Cn?® for some § > 0.
Actually, one can say more:

Proposition 10.1.1. In the setting of Proposition 9.6.2, the spectrum of A; and Ap satisfies A, > 0. Thus
if we arrange the eigenvalues of A}, in non-decreasing order:

A<M < <A <

we have constants C,d > 0 so that A\, > Cn® for all n. Likewise for Ap.

Proof: Let e, be a basis of Ly-orthonormal smooth eigensections in Lg(M, ET), for the elliptic self-adjoint
operator A%, via (d) of the Proposition 8.4.8. Then

Ay = (AJISen,en) = (D" D%ep,e,) = (D%e,,DTe,) >0

where the right equality follows from the fact that DT e, is also smooth, and DT and D~ are formal adjoints
of each other by (i) of 9.6.2. The last assertion follows from the Proposition 8.4.9. d.

Proposition 10.1.2. Let t € (0,00). Define the operator e~tAR by defining its action on the eigensections e,,

eft)\

of the last proposition by e~tAF en = ne, (l.e. by “functional calculus”). Then this extends to a bounded

self-adjoint operator:
e~ Ap : Ly(M, EY) — Ly(M, E™)

called the heat operator of A}. For all t € (0,00), this operator is infinitely smoothing, gets defined on
Hy(M, ET) for all d, and when viewed as an operator Hy — Lo, is compact, for all d. The analogous statement

holds for e *2F.

Proof: Write an element f € Ly(M, E™) as:

S
f= Z Ap€n
n=0

where Y | a,, |*= [£]I”> < co. Since we have A, > Cn® by the last Proposition 10.1.1, we have e~ < e~ton’
for all n. Since ¢ > 0, it follows that there is a constant A(t) such that e=**» < A(t) for all n. Thus:

Yole™a P<AD?Y ] an
n n

and the heat operator e~tAF is a bounded operator on Lo(M, E1), with operator norm < A(t). It is self-adjoint
since A} is formally self adjoint, and smooth functions are dense in Lo(M, E7T).

To see that it is infinitely smoothing, note that by the Corollary 6.2.3 (Garding inequality) applied to the
elliptic operator @ := (A5)* (which is of order 2kd), we have that the Sobolev 2kd-norm is given by:

2 2 2
lenllzka = 1Qenll + llenlly = (A +1)

Again, since t > 0 and )\, > Cn?®, it easily follows that

D e (AL 4 1) < B(t) < o0

n=0
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tA

Thus, for the partial sum gy := Zﬁ;o e "raye,, we will have

N N
lonllore < D e [an | llenllopg = D e Af + 1) | an |
n=0 n=0

N 1/2 N 1/2
< (Ze—mn(xﬁ + 1)) (Z | an |2> < Bi(t)'? | £l
n=0 n=0

From which it follows that e~ tAF f € Hapg(M, ET) for all k, which implies that it is smooth by the Sobolev
Lemma (iv) of Proposition 4.2.2.

Since e~tAF is infinitely smoothing, it is in W4~1(M) for all d, and a bounded operator Hy(M, Et) into
H, (M, E") for all d. By Rellich’s Lemma (vi) of 4.2.2, since the inclusion Hy C Hy = Lo(M, E*) is compact,

e "2 Hy(M,E") — Ly(M, E')

is a compact operator for all d. O
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Proposition 10.1.3 (Some facts about the Heat Operator). In the setting of the previous proposition, we
have the following;:

(i): The for f € Lo(M,E™), we let fy+ denote the orthogonal projection 7(f) to the finite dimensional
A*-harmonic space ker AT = @, ker A% by the Kodaira-Hodge decomposition of (ii) in 9.5.2. Then

lime ™" f = f; lim e F = fur forall fe Ly(M,EY)

t—0

where the convergence, of course, is in the Ls-norm.

(ii): If f € C°(M,E™), then e~tA" f converges to fy+ as t — 0o and to f as t — 0 in the norm =150
for all k.
(iii): For t > 0, there is a smooth integral kernel:
kf € C°(M x M,home(msEY,7f E™))

(where 71, mo are the first and second projections of M x M to M) satisfying:

(e f)(@) :/ ke (2,9)f(y)dV(y) forall f e C™(M, EY)
M

iv): For t € (0,00), the sum ) .~ e "  calle e trace of the heat operator for obvious reasons, an
iv): For t € (0 th o€ ™, called the ¢ the heat tor for obvi d
denoted by tr T given by the integral:

tre A" = /M trk; (@, 2)dV (z)

Analogous facts obtain for e 4" .

Proof: Let e, be Ls-orthogonal eigensections for AT corresponding to the eigenvalues \,. Assume that
in our non-decreasing arrangement of eigenvalues A\; = Ao = ...\, = 0, so that {e,}!_, is an orthonormal

basis for HT. Also A,y1 > 0. Now expand f € Lo(M,E") as f = fy+ + > n>pi1@nen. Then etAT f =
s+ + 2 05pm1 e~ Prage,, and:

—tAT
|le=27F = four

2
_ Z e~ 2tAn |an |2§ e 2tAp41 z |an |2§ e~ o1 ||fH2

n>p+1 nzp+1

which clearly shows, since A1 > 0, that lim;_, e_tA+f = fu+ and the second assertion of (i) follows.

For the first assertion, note that:
2
He—m+f B fH _ Z (e —1)2 | ap |?
n>p+1

Now, given any € > 0, choose an N > p + 1 such that > - ., | an [*< €. Also since A\, > Apq1 > 0 for

n > p+ 1 by the Proposition 10.1.1, we can choose 7 > 0 so that (e~**» — 1)2 < e for ¢t € (0,7) and all the
finitely many n satisfying p +1 < n < N. Then we estimate:

Z (e_t)‘” _ 1)2 | a, |2 < Z (e—tkn _ 1)2 | an |2 +C Z | an, |2
n>p+1 p+1<n<N n>N+1

elfII>+Ce for 0<t<n

IN

which proves that lim;_.q e—tat f = fin Lo and the first assertion of (i) follows.

Now we prove (ii). In view the Sobolev Embedding Theorem (iv) of Proposition 4.2.2, and the Corollary
6.2.3 (Garding-Friedrichs inequality applied to the elliptic operator A™* of order 2kd), it is enough to show
that that for f € C>°(M,E™) (contained in Hogq(M, E™) for all k£ > 1):

(a): (AT)ke AT f converges to (AT)Ef in Ly(M,E*) as t — 0 (resp. converges to (AT)F f,, 1, which
incidentally is zero for k > 1, as t — 00) and,
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(b): e~ *AT f converges to f in Ly(M,E") as t — 0 (resp. converges to fy+ in Lo(M,E™1) as t — 00).

The statement (b) follows from (i) above. For the statement (a), note that (AT)ke=tAT f = ¢=tAT (A+)k f,
and AT*(fy+) = (AT*f)y+, and thus (a) follows by applying (i) to the section A**f € Ly(M, E*). This
proves (ii).

Now we give the construction for k;”. For the smooth eigensection e,, of E* corresponding to the eigenvalue
An, denote by eZ the section of ET* = hom(E™,C) defined by €} (z)(w) = (w, e, (z)), for w € E} (remember
Hermitian metrics are linear in the first slot, and conjugate linear in the second!). Then e (y) ® e, (z) becomes
a smooth section of hom(rs E+, nf E*), its value at a an element v € Ef = (n3E")(, ) being the element

en (W) ()en(x) = (v, en(y)) en(@) € Ef = (TTEY) ().

Define the formal sum:

kil y) = 3 e (el (y) @ enla))

i=0
Note that Lo(M x M,hom(n; E™, 77 E™)) has a canonical Ly-inner product arising out of the natural tensor
product Hermitian metric on the bundle hom(n3ET, 77 ET). The corresponding global inner product on
M x M (with respect to the volume element of the product Riemannian metric) has the orthonormal basis
{ef,(y) ®en(z)}. So the series above certainly converges in Ly-norm, by the estimate \,, > Cn? of Proposition
10.1.1. To show that this kernel is a smooth section on M x M, we apply the elliptic operators A;k x A7
for arbitrary j and k, and note that the differentiated series will have coefficients Af+7e~* = to which again
An > Cn? may be applied, to show that this differentiated series is again Lo over M x M. Now appeal to the
Sobolev Lemma and Garding-Friedrichs as always.

To see it is the required kernel, we compute its effect on each e,,:

T, Y)em = 3 e~ thn e’ en(z)(em
/yeMm VeV ) = 3 / (1) ® en (&) em (1))dV ()

eM
oo
= Z e_t’\“'en(x)/
n=0 Y

since (en, €m) = Opm by Lo-orthornormality of e,,’s. This shows that the integral operator defined by k; has the
*tA"’

(en(), (em()) AV (y) = Y _ e Pen(@)(en, em) = e P en ()
n=0

eM

same effect on each e,, as the heat operator e , and the two operators are therefore the same on Ly (M, ET).

This proves (iii).

To see (iv), we first define what we mean by trk;" (z,z). k; is a smooth section of the bundle
homc (73 ET, 7f ET). The maps w1 and 7 agree on the diagonal, and indeed if one identifies the diagonal A s
inside M x M with M via the map (z,z) — =z, the bundles 73 E™ and 77 ET both get identified with the bundle
E7. Thus restricting the smooth section k" to the diagonal gives the smooth section, denoted by k;" (z,z), of
the bundle homc(ET, ET). On this bundle there is the natural trace map:

tr: home(ET,ET) — C
T, — Z (Tu(fi), fi)s
where f; is any (—, —)_ orthonormal basis of Ef, (viz. it is the invariant trace of T : Ef — E).

Now we simply calculate, for € M, and f; some (—, —)_-orthonormal basis of E:

)

SN e ((eh (2) @ en@)(fi), fi),

i n=0

= Zeit)\nz«f%en(x» En(ﬂf),fi>m
n=0 %

= DN en(@), i), P= D e len(@)|l
n=0 i n=0

trk; (z, z)
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which implies that:

/ trk; (z, )dV (z Ze‘t’\ / llen(z V(ac) = Z e~ (e, en) = Z e n
n=0 n=0

since e,’s form an orthonormal basis with respect to the global inner product (—,—). This proves (iv), and
the proposition follows. O

Remark 10.1.4. The proof of assertion (ii) of the foregoing proposition reflects a classical fact about the heat
operator e~*A" | which is that it starts with an arbitrarily irregular f (a distribution, i.c. in some H,(M, E'))
at ¢ = 0, and makes it smooth at any positive time ¢ > 0. Indeed as t — oo, it converts the irregular f into
its smooth harmonic part fs;+. Thus it time-evolves the irregular initial data f into a smooth section for any

t > 0, and into its smooth harmonic part as ¢t — oo.

Remark 10.1.5. We explicitly constructed the kernel for the heat operator e—tAT However, it is a fact

that an operator (defined on distributional sections D’(M, E)) on a compact Riemannian manifold is infinitely
smoothing iff it is given by an integral operator with a smooth integral kernel. For convenience’s sake, let us
consider an operator K which maps Hs(M,C) — Lo(M, C) as a bounded operator, for all s, and whose image is
contained in C*° (M, C). We know that on R™, the Dirac distribution ¢, is a compactly supported distribution
lying in H_;(R™) for all & > n/2 (see the Corollary 3.2.2). If M is of dimension n, since the support of d, is
x, it becomes an element of H_j (M) for all n > k/2 (by using a partition of unity definition of Hs(M)). Thus
K (6,) is a smooth function. Define:

k(yv l‘) = K((Sw)(y)

One now has to verify that this is the required integral kernel. For the converse, one has to verify that integral
operators with smooth integral kernels on a compact manifold are infinitely smoothing, by differentiating under
the integral sign using compactness of M, or using the Sobolev Embedding Theorem coupled with clever uses
of integral inequalities.

As we have remarked earlier, integral operators with smooth integral kernels do not give rise to infinitely
smoothing operators on non-compact manifolds. For example, the Fourier transform on R is an integral
operator with smooth kernel e~¢-*  but converts a smooth function like (1+22)~! into a non-smooth function.

Proposition 10.1.6 (Facts about the heat kernel).
(i): The section k;" (z,y) defined in (iii) of the Proposition 10.1.3 satisfies the pointwise adjointness formula:

<kt+(x,y)v,w>x = <U7kz_(yax)w>y for v e (7T§E+)( y) — E+a w e ( TE+)((E,’U) = E;r

(ii): k" (x,y) satisfies the heat equations

<8 +A+> ki (z,y) =0= (6 +(A+)Z> ki (z,y) for t € (0,00), (v,y) € M x M

ot ot
where
(AT . C®°(M,E™) — C®(M,E™™)
is the pointwise dual of A* with respect to the Hermitian metric (—, —) on E™.

(iii): If f € Ly(M, E') is a square integrable section, we have seen in the Proposition 10.1.2 that e~*A" f
is smooth in . It is also smooth in ¢ for ¢ € (0, 00), and if we define F(z,t) := e*A" f, the F satisfies:
0
<8t +A+> F(z,t) = 0 for t€(0,00), z€M
F(z,0) := limF(z,t)=f
t—0

There are completely analogous statements for k; and A™.
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Proof: To see (i), we note that for v € Ef, w € E:

(€2 ) @ en(@) (), w), = (V. ea)), enle).w) = (v,en(y)), (enle),w),
and interchanging the roles of z and y, v and w, we have:
((en(z) @ en(y)(w), U>y = (w, en(x»x (en(y), U>y
Since the right hand sides of the two equations above are complex, conjugates of each other, we have:

((en(y) @ en(2))(v), w), = (v, €, (x) @ en(y)(w)),

tA

from which (i) follows by multiplying by e~**» and summing over n.

To see (ii), note that since the series for k:(z,y) is absolutely and uniformly convergent in both variables, as
are the differentiated series with respect to 0; = % and Af and AJ (from the eigenvalue estimate A, > Cn?),
we can apply these operators term by term. Hence:

HY e ey @en(e) = S (<AeMe(y) @ enle)

n

=Y ey oale(s) = —A7(k(x,y)

Also, from the equation Afe,(y) = Anen(y), one finds that for the pointwise adjoint operator A" defined by
the adjoint formula:

(AT, [y ={(,ATf), feC®(M,ET), v € C®(M,E)

one easily finds that (A™)Vel = A\, e, and the second formula of (ii) follows as well.

To see (iii) note that if f € Lo(M, ET), we may write f = 3 anen, with 3, | an *= [|f|]® < oo.
Furthermore, F(z,t) =Y, e " a,e, is a series which lies in Hy(M, ET) for all s, and converges in ||—||, for
each s (meaning the Sobolev s-norm of the tails ) - 5 e~ raye, converges to 0 for all s, by the facts that
An > Cn?, and Hen||gkd = A\F 4+ 1). Hence the series on the right converges in | =l o1, for all &, by the Sobolev
Embedding Theorem (iv) of 4.2.2. Hence if one applies 9y, or AT term-by-term to this series, the resulting
series converge to 9y (F(z,t)) and AT F(x,t) respectively. However, upon term by term differentiation we have:

0™ F) = = e Manen = =3 e Pa,Ate, = At(e AT )
since AT and e A" commute. This proves that 9,F(z,t) + At F(x,t) = 0. The fact that limy_,o F(z,t) = f
follows from (i) of Proposition 10.1.3. The proposition follows.

An analogue of (iii) can be proved for f € H,(M,E™) and any s, (i.e. for all distributional sections
f € H o(M,E") = D'(M,E"), but we omit the proof. It is completely analogous, because f can still be

expanded in a Fourier series ) ane,. One needs to note that e, need no longer be orthonormal in ||—||,.,,
but we still have (e, €m)ard = (AE + 1), for all k # 0 (by proving the analogue of Corollary 6.2.3 for k < 0,
which in turn stems from the duality of Hagg and H_spq from (iii) of Proposition 4.2.2). a

10.2. An integral formula for the index of D". The following proposition is the key to the entire heat-
equation approach for the index theorem.

Theorem 10.2.1 (McKean-Singer). Let M be a compact Riemannian manifold, and P an elliptic complex
on M. Let:

D* . C>*(M,E*) = C>~(M,ET)
be the corresponding Dirac operators, as in Definition 9.6.1, and let

ki (2,y) € C(M x M, home(r B, w1 E5)

—tA+

denote the heat kernels of the heat evolution operators e respectively, as in (iii) of the Proposition 10.1.3.

Then:
ind DT = / (trk; (z,2) —trk; (z,2))dV (z) = —ind D~
M
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In particular, the quantity on the right is an integer independent of ¢.

Proof: Let A\, > 0 and p,, > 0 be the eigenvalues of the two Laplacians AT = D™D% and A~ = D™D~
respectively. Let the eigensections of AT be denoted e, which are orthonormal in Ly(M, ET) with respect to
its Lo- inner product, which we denote by (—, —) (with (—, —)_ denoting the Lo-inner product on Ly(M, E7)).

We now note that if e, is an eigensection of AT with eigenvalue \,, we have:
A~D%te, = (D*D")D%e, = D" (D" D%)e,, = D" (A%te,) = A\,D7e,

so that Dte,, if non-zero, is an eigensection of A~ corresponding to the same eigenvalue \,,.

Furthermore, for all n, m, by the fact that A\, and \,, are both real, and the adjointness of DT and D~ we
have:

An(ensem)s = (D" DVep,en)y = (D en, D en) = (en, D" DV en) s = Anl(en, em)s

which implies in view of the foregoing that:

(i): If A\, # 0 (i.e. A\, > 0), the section Dt e, is a non-zero eigensection of A~ corresponding to the same
eigenvalue A, as e,.

(ii): For n # m we have D% e,, orthogonal to Dt e,,.

Similar facts obtain for the eigensections f,, € C°°(M, E~) of the other Laplacian A~. From this it follows
that for A\, # 0 and p,, # 0, DT maps the finite-dimensional \,-eigenspace of A" isomorphically into a
subspace of the \,-eigenspace of A™, and D~ similarly maps the finite-dimensional pu,,-eigenspace of A~
isomorphically into a subspace of the y,,-eigenspace of A™. It follows that the non-zero eigenvalues \,, > 0 of
AT are in bijective correspondence with the non-zero eigenvalues p,, > 0 of A~, and also occur with exactly
the same multiplicity. Thus:

tre tAT tremtAT = Ze‘t’\" — Z e thm = Z 1- Z 1 = dim ker AT — dim ker A~

An=0 Hm=0

But the left hand side of this equation is precisely:
/ (trk (z, ) — trk; (x,2))dV (z)
M

by (iv) of Proposition 10.1.3, and the right hand side of the equation is ind DT = —ind D~ by the proof of (iii)
in Proposition 9.6.2.

The last assertion is clear in view of the fact that ind DT is independent of t. The theorem follows. a.

Now, in the sequel, the main aim is to identify the integrand
strky(z,x) == trk; (z,2) — trk; (2, )

called the supertrace of the heat evolution operator. This is impossible in full generality. However, one can do
what is called an asymptotic expansion in powers of /¢ (where d is the order of the differential operator DT)
for small times ¢, and using the fact that the left hand side is independent of ¢, compute just the coefficient of t°
(the constant term) in this symptotic expansion. That such an asymptotic expansion exists in general is proved
in Gilkey. However, since we shall be interested only in four specific elliptic complexes (the de-Rham, Twisted-
Dolbeault, Signature and Spin complexes), for each of which the corresponding Laplacian AT = D™D is a
generalised Laplacian, i.e. a second order operator whose leading symbol is the same as that of the classical
Laplace-Beltrami operator, we will concentrate only on such elliptic complexes.

11. FUNDAMENTAL SOLUTIONS

To motivate whatever follows, we need to construct the heat kernel for the Laplacian A = —3°, 97 on
R™. Our assertion of the existence of a heat kernel in Proposition 10.1.3 doesn’t quite apply, since R™ is
non-compact, and does not have a discrete spectrum. But fortunately, one can explicitly write down the heat
kernel (or Gauss kernel as it is sometimes known) in the case of R™.
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11.1. The Euclidean heat kernel.
Proposition 11.1.1 (Euclidean heat kernel). For z,y € R™, define the function:
ki, y) = (dmt) /eIl

(1): ki(x,y) is symmetric in z and y, and is a fundamental solution to the heat equation, viz.,
(0 + Ag)ke(z,y) = 0= (0 + Ay)ke(z, )

(ii): For f € Ly(R™) the function:

Fla,t) = e ] = / (e, ) f(4)dy

n

is a smooth function of both ¢ and x, and satisfies:
(O + A)F(x,t) =0

(iii): Let y € R™, and let 0,, denote the Dirac distribution at y. Then there is a smooth function w(—,t) €
S(R™) such that:

(@) (Or+ A)w(z,t)=0 forall zeR", t>0
and

(b) lim(f,w(—1) = f(y) forall feSE)
This w(—,t) is called a fundamental solution of the heat equation on R™ with pole at y, and is uniquely
determined by the conditions (a) and (b).

(Caution: in this proposition, dy denotes Euclidean volume element dy = dy;...dy,, and is related to the
earlier volume element dV (y) of §1 by dV (y) = (27)~"/?dy.)

Proof: Direct differentiation yields that:

2

8t(t—n/26—|z—y|2/4t) — (t—n/2| x4_t2y ‘ + (—n/Z)t_"/2_1> e—|x—y|2/4t

(‘n |z —y |2) —n/2—1_—|z—y|?/4t

= =+ —FT]t e Y
2 4t
A”(tfn/2ef|mfy|2/4t) —  _4n/2 Za‘ | _ (i — yi)ef\zfy|2/4t — /2 Z 1 (zi — yi)? e~ lz—yl?/4t

T - zt 2%t - 2t 4t2

4n/2-1 <” _ f”—3/|2> o—lo—yl?/at

2 4t

from which the statement (i) follows. For the second, note that if we denote the function:
prla) = (26) "2 (eI

then F'(x,t) = p; * f, where the convolution is the same as the one introduced in §1 (i.e. in the space variables,
with respect to the volume dV (y) = (2r)~"/2dy;...dy,). Since p; is in the Schwartz class (since t > 0), and
f € La(R™) = Hop(R™) implies f is a tempered distribution, it follows that the convolution F(x,t) is smooth
in the space variable z by the Lemma 1.4.7. and also that A, F(z,t) = (Ap:) * f.

In the time variable, one uses that d;ps(x) = (—n/2+ | 2 |* /4t)t~1pi(x) and the Dominated convergence
theorem to take 0; under the integral sign and get

O (F(z,1)) = (Oepe) = f
Hence we have:
O+ AP ) = 0+ D))+ £ = [ (@1 8yl ) )y = 0
by applying (i). This proves (ii).
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To see (iii), note that the Dirac distribution d, is a tempered distribution (as we remarked in Example 1.3.5,
it is a compactly supported distribution), and so taking the convolution with the Schwartz class function p;
fort >0

w(x,t) := pg * dy
gives a smooth function (see Proposition 1.4.7). To see that it is in the Schwartz class, note that its Fourier
transform is p;(£)e %Y, which is in S(R") since p; is in S(R™). If one writes down the formula for the
convolution of distributions, we find:
w(e,t) = by(0F) = piy) = (20) 727V = (2m)" 2k ()

which is clearly a smooth function of x € R™ for ¢ > 0. That it satisfies the heat equation is an immediate
consequence of (i) that (0 + Ay)ki(z,y) = 0 for ¢t > 0. This shows (a) of (iii).

To see (b), note that for f € S(R™), we have

(Fo=0) = [ fau@nav@ = [ ple=nf@av) = [ ply=o)f@aVa) = oo i)

and the proposition follows by noting that for ¢(z) = py (z):

$(@)dV (z) = / Py (2)dV (z) = / P24y (2) = 1
and that by setting €2 = 2¢, we have
delw) = € "plrfe) = (2) 2y (e/fe) = (20) 2T = (20) 72T = py(a)

But by the Lemma 1.2.3, we have ¢. are approximate identities, and ¢, * f = p; * f — f uniformly on R",
for all f € S(R™). Thus (f,w(—,t)) = (p¢ * f)(y) has limit f(y) as ¢ — 0. This proves (b). To see that
(a) and (b) uniquely determine w(—,t), let us assume u(—,t) € S(R™) also satisfies (a) and (b). Denoting
wy = w(—,t), us := u(—,t) for notational convenience, note that the time derivative of the Lo-norm of w; — u;
is given by (because both w; and u; are rapidly decreasing, Stokes Formula is applicable):

8t(wt — U, Wt — ut) = —2(A(’th — ut),wt — ut) = —2(d(wt — Ut), d(wt — U,t)) S O

n

R

and so ||wy — ug]|? is a non-increasing function of t. Also, by (b), for every f we have:
Pm(fth —u) = f(y) — fly) =0
—0

which means lim;_,¢ [Jws — u|| — 0, and by the fact that ||w; — || is non-increasing in ¢, it follows that w; = u,
for all ¢ > 0. This proves the proposition.
O

11.2. Fundamental solutions of the Heat equation for the Dirac Laplacians. Now let M be a compact
Riemannian manifold, and let D* be the Dirac operators introduced in Definition 9.6.1.

Definition 11.2.1 (Fundamental solutions). Let 2 € M and let v € E;. We say that a smooth section
w(—,t) € C®(M, E") is a fundamental solution with pole (x,v) if:

(i): The section w(—,t) satisfies the heat equation for AT, viz.

(0 + AN w(x,t) =0 forall x € M, t>0

(il): limy_yo(s,w(—,1t)) = (s(x),v), for all s € C>*°(M, E™T)

The second condition means that w; approaches the “Dirac distributional-section” (at the point x) which is
given by d,v as t — 0.

One can obviously make a similar definition for £~ and A~.

Proposition 11.2.2 (Existence and uniqueness of fundamental solutions). Let M, E* be as above. Then
given v € E, there exists a fundamental solution with pole (z,v) to the heat equation for AT, and this
solution is unique. Likewise for E~ and A~.
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Proof: We merely apply (iii) of the Proposition 10.1.3 to f = J,v, this “Dirac distributional section” d,v. We
also note that this f € H_,(M, E™) for all k> n/2, and by the Remark 10.1.5, we will have that

wlz,t) = /M K (2 0)b,(0)0dV () = K7 (2, 2)0

is a smooth section of E* for ¢ > 0. Indeed, the right hand side is clearly smooth in z since k; is smooth in z
(z is held fixed here) for ¢ > 0. Furthermore, for ¢t > 0, we have

(00 + %) (w(z,1)) = (9 + AF)(kf (2,2)0) = 0
by using (ii) of Proposition 10.1.6.

For the convergence as t — 0, we have:

) = [ G0, ave) = [ (6 G, )

M

/M <k2'(x,z)s(z),v>$ dV(z) = </M k;’(x,z)s(z)dV(z),v>
= (" 9)@),v)

where we have used the adjointness-symmetry property (i) of Proposition 10.1.6 to arrive at the second line.
—tAT

x

Now, by (ii) of Proposition 10.1.3, we have by the smoothness of s that lim;_, . e
the convergence is uniform over M), which means that the limit at = satisfies:

lim(e™""5)(x) = s(x)

s — sinthe |[—|, (i.e

and hence lim;_o(s, w(—,t)) = (s(z),v),, and our assertion follows. Likewise for £~ and A~.

To see uniqueness, just verbatim repeat the argument for uniqueness given in (iii) of the Proposition 11.1.1,
only noting that for w; — us, we have:

*(A+(U}t — ut),wt — Ut) = *(D+(’U}t - Ut),D+(’th - ’LLt)) S 0
by the formal-adjointness of DT and D~ proved in (i) of Proposition 9.6.2. O

Exercise 11.2.3. For M = S!, and E* = A’T*(M), E- = A'T*(M), D* = d, D~ = § (i.e. the two
term deRham elliptic complex for S, whose associated Dirac complex is itself), explicitly write down the heat
kernels k;” and k; and carry out the verifications of all the preceding propositions in this subsection and the
previous one by hand.

12. ASYMPTOTIC EXPANSIONS OF THE HEAT KERNEL

This approach is due to Minakshisundaram and Pleijel. First, assuming that one has an asymptotic ex-
pansion, one computes the coefficients in this expansion by substituting in the heat equation and equating
coefficients term-by-term. Then one appeals to elliptic estimates to prove that the formal procedure above
makes sense.

12.1. Asymptotic expansions.

Definition 12.1.1. Let f be any function on (0,00). A formal series Y p- , ayt™ (where ny € Z) is said to be
an asymptotic expansion for f near 0 if:

(i): ng < mg4q for all k& (so that ny — oo as k — o0), and,

(ii): For each ! > 0, there exists a C; > 0 such that
!

F) =) axt™

k=0

< e

This will be denoted by f(t) ~ Y=, axt™ (Compare with asymptotic expansions of symbols introduced in
Definition 5.3.2).
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For example, for the function k;(x,y) = (47rt)_”/26_|w_y‘2/4t introduced above, regarded as a function of ¢,

we would have that:
—n/2 x—y | —n/2—k
(4m) g < Tl t

is an asymptotic expansion near 0. Note that the expansion starts with ¢="/2.

For a motivation, knowing the heat kernel on R for the Laplacian A = —92, let us try to find an asymptotic
expansion for the heat kernel of the operator L = A + b(z)0; + ¢(z) where b and ¢ are smooth functions. It is
in fact enough to find the fundamental solution: w(z,t) satisfying (9; + L)u(x,t) = 0, and limy_,q u(z,t) = 0.
Then one gets the heat kernel by k;(x,y) = u(x — y,t) (verify!). To this end we have:

Proposition 12.1.2. Let L = A 4 b(z)0, + ¢(x) as above, where b and ¢ are smooth functions on R. Then
there is an asymptotic fundamental solution to the corresponding heat equation (9; + L)u(z,t) = 0. That is,
there is a formal series:

(drt) Y277 4 (o (2) + tu (@) + .. + Fug(2) + ...)

where u;(z) are smooth functions of z, with ug(0) = 1, such that for the partial sum

k
Si(x,t) = (dmt) V2= 1 | 3"ty ()

Jj=0

we have:
(0 + L)Sk(z,t) = (dmt) 126~ 4thp ()

where 7 (z) is a smooth function of x. Furthermore, u;(0) are algebraic expressions (i.e. polynomials) in the
jets (derivatives of all orders) of b and ¢ at 0.

Proof: The idea is to determine the u;(x) by a recursive formula. So in the PDE (0; + L)u(x,t) = 0, let us
substitute the series

(471’15)71/2671’2/415 [uo(z) + tur (z) + tPua(z) + ...
for u(x,t). The coefficient of t* in the expression within square-brackets is uy.
Note that the formal series on differentiating with respect to x is

Bpu(w, t) = (dmt) =1/ 2e=" /4t [—%(uo Ftug + )+ (u) + tul + )]

where u} denotes d,u;. Note that the coeflicient of t* in the expression within square-brackets is:
x

/
uk 2’U;k+1
Differentiating again with respect to x, we have:
2 _ —1/2 —x?/4t ﬁ _ l X ’ " "
Aiu(z,t) = (4mt)~ e R (uo + tug + ...) ; (ug + tuy +...) + (ug +tuy +...)

The coefficient of t* in the expression within square-brackets is:
x—2u - 1u —zuh q +ul
g Wht2 T 5 Uk k+1 k
Taking the t-derivative, we have:

x? 1

Oyu(m, t) = (dmt)~1/2e=o" /4t [(ul + 2tug + 3t2uz +...) + (4t2 - 2t> (uo + tuy + )}

The coefficient of t* in the expression within square brackets is:
2 2
x

x 1 1
(k+ Duggr + W2 T QU1 = (k+ i)uk+1 + o Uk
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Now substitute this into the heat equation for L to get:

(0 + L)u(x,t) = (0 — 02 + b(2)0, + c(x))u(x,t) = (47rt)71/267:’32/4t [ i ozktk‘|

k=—2
where:
1 x? z? 1 , 1 , T
ar = (k+ §)Uk+1 + o Ukz = Uk + QUk+1 +auy o — up + b(z)uy, — b(x)guk_H + c(x)ug
xb(z
= Tup, + <k+1— ( ))uk+1+Luk

Setting oy = 0 gives a recursive differential equation for ugy1 in terms of ug. That is, the equation:

xb(x
muﬁcﬂ—l—(k—kl— é)>uk+1+Luk:O (25)
Since u_; = 0 by definition, we have on substituting k¥ = —1 in the equation (25) above the following
differential equation for wug:
b(z)
/
— A =0
UO 2 UO
which implies that ug = Ae_% f o YW fo1 some constant A, and setting the requirement that uo(0) = 1 implies
that )
-3 J, by)dy

uyg =e 2Jo

More generally, consider the integrating factor:
Ry(w) = at+ie™# Jo by

we get log Ry,(z) = (k + 1)logz — & [7 b(y)dy so that:

1 d
R(@) %(Rk(x)uwrl) = (
by (25), so that

E+1 b(x) 1 xb(x)
- —2) Uk+1 +U;€+1 = ; |:((k—|—1)— B Uk+1 +xu;€+1 :—;Luk

e (#) = s </ oy L“"“’””)

gives the explicit recursive formula for ugi1 in terms of uy.

Now if we take the partial sum:
Sp(a) = (4mt)"2e™ /4 (ug + tuy + ug + ... + tFuy)
with u defined as above, then write:
(8t + L)Sk = (47‘('15)7%671’2/“ [ﬂ_gtiz + 6ktk]

since av; contains no contribution from the term #/+2u; 5, we have that the coefficient 8; = a; for all j < k—1.
Also Br = Luy, since the rest of the expression for ay involves ugy1.

So we finally have:

2
(8 + L)S), = (4mt) ™V 2tk e /4 (Luy,)

which implies the differential equation asserted for Sj.

We need to show that the uj’s defined above are smooth. We do this by induction. The function ug =
exp(f% J b(y)dy) is clearly smooth by definition. Also the integrating factor Ry, is given by:

Ry (z) = 2 ug(z)

from the above proof. Hence if we inductively assume that wuy is smooth, we will have:

~ Ry(y)

) Lug(y) = v" v (y)
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where v (y) = —uo(y) Lug(y) is smooth in y. Hence the integral:

- /or Rky(y)L“k(y)dy = /0m Ve (y)dy = & py ()

where pi(z) is a smooth function in 2 (using integration by parts, for example). Thus the formula for w41 (z)

in the proof above reads
Rk ) 1 k41 Pr ()
dy 2" pp(x)) =
m W)= R ) T @)
which is clearly smooth in z since ug is a nowhere vanishing smooth function. Note that adding a constant of
integration to the indefinite integral foz RkTmLuk(y)dy will destroy this property, because we need this integral

upt1(x) =

to yield the factor z*t1. Hence, by induction, all the u; are smooth.

The final assertion is that u(0) are polynomial expressions in the various jets (higher derivatives) of b and
c at zero. Indeed, we claim that u(r)( 0) are all polynomials in the various jets of b and ¢ at 0. We do this by
double induction on k and r. For k = 0, by definition u¢(0) = 1, and uj(z) = b(z—z)uo(x) implies by Leibnitz
rule that: ) |

WO =3 Y oot 0w o)
0<j<r

so that induction on r shows that our claim is true for £ = 0. Assume inductively that it is true for uy, i.e.
ug)(O) is a polynomial in the various jets of b and ¢ at 0 for all 7. Since L = —82 + b(x)d, + c(z), it follows
by the induction hypothesis that (Lug)((0) is also a polynomial in the various jets of b and ¢ at 0 for all 7.
From the equation (25) it follows that:

1
e 1(Lulc)( )

so that the claim is true for uy11(0). Differentiating the equation (25) (r 4+ 1) times with respect to z yields:

ug+1(0) =

r4+2 r+1 .’I?b( T+1 r
xu;+1>+(r+1)u§+1)+<k+1— . > ut D+ 3T Aj@pud)) + (Lug) Y =0
0<5<r

where A;(z) is a polynomial in z, b(z), ..., bU)(z). Setting = 0 in this equation shows that:
(r+k+ 2050 (0) = = 37 4;0)ufy (0) = (L) ()
0<j<r
Since A;(0) is a polynomial in the various jets of b at 0, and by the last para (Luy,)"*1(0) is a polynomial in

the jets of b and ¢ at 0, the last equation above implies by induction on r that u](:jll) is a polynomial in the

jets of b and ¢ at 0. The proposition follows. O

Let us prove another technical lemma which will be used later on.

Lemma 12.1.3. Let g = Z” gijdr; ® dr; be a Riemannian metric on a suitably small ball U around the
origin in R", and let g be the corresponding metric on 1- forms, i.e. g%/ = gi_j1 is the matrix inverse of g. This
metric defines a Riemannian distance on this ball, which we denote by §. Define a smooth function on U:

Fa,t) = (4rt) /% exp (_5(2;)2)
Then
of = Y0700, = (jan+ar) 1
i,

where 9; = and ay, az are smooth functions of z, with a1 (0) = 0.

0
8:1/’7; ?

Proof: Let us denote the scalar Laplacian (on functions) on U by A. We claim that
A= —Zgijaiaj + L

i,J
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where L is a 1st-order operator. This is because we saw in the Example 9.4.4 that o (d) = i£ A(—), and also by
(ii) of the Corollary 9.3.4 that o7 (d*) = (—i&)Z(—), the adjoint of or,(d). Thus oz (d*d) =| £ |*= Do gligiel.
Thus

A= Zgiij,ti,j +L=- Zgijaiaj +L
i,j ij
where L =, a;(x)0; + B(x) is a first-order operator.
Now note that for the first-order operator L =Y. o;(2)0; + (x) as above, we have
—6(0,2)? 1
Lf = (4mt)~"/? Zaz [ 0:(6(0,2)?) exp <(4t)>} +B(x)f = <tcl(x) + CQ(SC)) f
where ¢; are smooth, and also

-7 3 ai0)2:(6(0.2))(0) = = 3 (0)(3 i) (0) =

since

5(0,2) = |zl + o(llz|*) = (3 g1 (0)aiz;)"/* + o|||*)
i,

where ||z| denotes the norm of z in the tangent space Tp(R™) with respect to g;;(0).

Thus it is enough to prove that:
1
3tf + Af = <ta1 + a2> f

where a; are smooth, and a1(0) = 0. Now it is convenient to use geodesic polar coordinates on U, i.e. polar
coordinates on Tp(R™) = R™ transferred to U by the exponential map. We may shrink U to guarantee that
the exponential map is a diffeomorphism of a neighbourhood of 0 in 75 (R™) onto U. In these polar coordinates
0(0,2) =, and

Fot) = ) e ()

which is a radial function. It is also known that if 2 = expy(z1,..,2,) is a vector in To(R™), then r? =
5(0,2)2 = ||lz||* = >_i; 9ij(0)x;z;. Thus for the function f(r,t¢), which does not depend on any of the other
polar coordinates vs, .., v, on the unit sphere, we have:

or 1
O f = 5rf% = Zgik(o)xkarf
v k

Differentiating again, multiplying with —¢* and summing over i, j yields:

ar=-azr- "oy

Now:
—r
Orf = —
f o7 f
and so
r2
2 _
BRf= i+ o f
Thus
r2
f 7f 4t2
Finally,
r2
atf = _7f+ 4t2

Hence 0;f + Af = 0, which is of the required form. O
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12.2. Generalised Laplacians. We will now look at elliptic operators of a special kind, because these will
be of primary interest in whatever follows.

In this section, E is to be thought of as either ET or £, the complex Hermitian vector bundles arising in
the Dirac complex. Also, the operator A¥ which will be cropping up in this section will be the operators A+
or A~ in our future considerations.

Definition 12.2.1. Let E be a complex vector bundle on a compact Riemannian manifold M, with Hermitian
metric (—, —). Let P : C®°(M,E) — C*(M, E) be a differential operator of order 2. We say that P is a
generalised Laplacian if:

(i): P is a formally self-adjoint, viz., (Pf,g) = (f, Pg) for all f,g € C>(M, E), where (f1, f2) is the usual
global Hermitian inner product on C*° (M, E) defined by:

(1. f2) = /M (@), fola), dV(x)  f; € C®(M, E)

(ii): The leading symbol of P satisfies:
oL(P)(€) = € * Ip., €€ T M,

In future we will suppress Iz, from the notation, with the understanding that the scalar | ¢ |*> means
that scalar times the identity endomorphism of (7*E)¢ = E,.

Remark 12.2.2. Using (i) of the Corollary 9.3.4, we have for a second operator that:

-1 -1
oL(P)(€) = - (ad f)*P = —[f,[f, Pl]
for f such that df (z) = . Thus P is a generalised Laplacian iff P is formally self-adjoint of order 2 and:

[f,[f, Pl =-2|€1?=~2|df
for each f € C*°(M).

One can easily construct a generalised Laplacian P as above by using a connection V¥ on the bundle E
and the Levi-Civita connection V on the Riemannian manifold M, as we see below.

First we recall that there is a trace map defined by:

tr: C®(M, T*M @ T*M) — C>(M)
f = flg)

where g € C°(M,TM ® TM) is the Riemannian metric (on the cotangent bundle) given by g = Z” §90; ®0;
in local coordinates. By tensoring with Ir, we get a map as below, which we also denote by tr,

tr: C°(M, T*"M QT*M @ E) — C*(M, E)
If s€ C®(M, T*M @ T*M ® E), then in a local coordinate system xz; at a point, we may write
s = Zs((“)i, 0;)dx; ® dx;
0,J

where 5(0;,0;) is a local smooth section of E. Then
trs = _ 5(0;,0;)dws @ dj | D g™ @ 0| =D 5(8:,0;)9” (26)
ij k,l i.J

Now let
VE.C®(M,E) — C*(M,T*M ® E)
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be a connection on E. By taking the natural “tensor product connection” Ir«y ® VF + V ® I (where V is
the Levi-Civita connection on T*M, we also get a connection:

VITMOE . ¢ (M, T*M @ E) — C*(M, T*M @ T*M ® E)

Definition 12.2.3 (The operator A¥). Define the second order differential operator:
AP = —tr(VI™MBE o gEY . 0 (M, E) - C>°(M, E)

Lemma 12.2.4. The operator AF defined above is a generalised Laplacian.

Proof: First, if s € C°°(M, E), we have, in local coordinates z; at a point:

Vs = dei ®Vf5
i
where we set VEs := Vgis to simplify notation.

Then we compute VI M@E of hoth sides:

VITMEEGEs = N VT MO (dy; @ VEs) = > V(dz) @ VEs+ Y da; @ VIVEs

7

> (dz; @ V(dei) @ Vs + du; @ da; @ VIV s)
.3
where V denotes the Levi-Civita connection. Now note that for a tangent vector Y:

Vj(dl‘l)(Y) = @(dmz(Y)) - dl‘z(VJY) = an; - dxz(VJY)

Thus, for tangent vectors X =3, X;0; and Y =, Y;0;, we have:
(VIMEEGES)(X,Y) =Y X;(0;Y; — dzi(V;Y))VEs + Y X, V;VEVEs (27)
1] 4,3
Now again note that the second term of the equation (27) above is:
=3 Xdwi(V;Y)VEs ==Y XD (ViY)iVEs == X,V ys=-VE, ys
i,J J i J
Also:
VEVEs =3 X, VED T VivEs) =Y X ViVEVEs + X,(9;Y:)VE s
J i J

which are precisely the first and third terms of (27). In conclusion:

(VITMBEGES)(X,Y) = VEVEs - VE s
Thus, by applying the equation (26) above, we find that:

APs=—%"g" <vaf - Zr;ﬁjvf) s
i, k
where the Christoffel symbols Ffj are defined by
Vid; = Tt
k
Since the leading symbols of V; is just d;, it follows that A” has the same leading symbol as the operator

given in local coordinates by:
S 00, = 3 4 DaiDa,
j i,J
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But his leading symbol precisely Z” gi¢iel =| £ |?, the symbol of the Laplacian. So AF is a generalised
Laplacian. We remark here that the leading symbol depends only on the Riemannian metric g on M, and does
not depend on the connection V¥ on E. O

Remark 12.2.5. We have already remarked in the proof of the Lemma 12.1.3 that for the usual Laplace-
Beltrami operator on functions, (i.e. the Laplacian on C*°(M) of the deRham complex) that or(A) =
— Z” ¢"(2)0;0;. Thus, from the above proposition it follows that no matter what connection one puts on E,
we have:

AP =A+L
where L is a first order differential operator. L, of course, will depend on F. We will study it in greater detail
later, and see the connection with the Bochner and Weitzenbock formulas.

12.3. Fundamental solutions of the Heat Equation for generalised Laplacians. By the Proposition
11.2.2, we have the existence and uniqueness of a fundamental solution w(z,t) to the Dirac Laplacians A¥.
For the elliptic complexes we consider in the sequel, all of these Dirac Laplacians AT will be generalised
Laplacians. (Indeed, they will all arise as A® as in Definition 12.2.3, and Lemma 12.2.4 will imply that they
are generalised Laplacians). The proof of the existence and uniqueness of the fundamental solution w(z,t) used
the eigensections and eigenvalues of A*, which gives little information about the behaviour of the fundamental
solution, because one cannot explicitly compute these eigenvalues and eigensections.

The objective of this section is to gain more information by actual construction of the fundamental solution
of Proposition 11.2.2, by starting out with a Gaussian type fundamental solution as in R™, and applying an
iterated approximation process using asymptotic solutions for generalised Laplacians. Because this iterative
procedure is explicit, it will in theory “solve” the problem of computing the fundamental solution.

Since by definition a generalised Laplacian A has the same leading symbol as the Laplace-Beltrami operator
A, it follows that
P=A+1L

where
L=> bi(x)d; + c(x)
=1

is a first order operator. We have a handle on the fundamental solution for A by Lemma 12.1.3, we can try to
mimic the argument of Proposition 12.1.2 to obtain a fundamental solution for the heat equation:

(Gt + P)U =0
by asymptotic methods.

Proposition 12.3.1. Let P : C*>°(M, E) — C*°(M, E) be a generalised Laplacian on the compact Riemannian
manifold M. Let 0 be some preassigned point on M. Then, on a suitably small neighbourhood U of 0, there
is an asymptotic solution:

5(0,)2

t) ~ (4t)~"/? —
)~ a2 exp (20

) (uo(z) + tur () + ..t"Pup(z) + ..)

where §(0, z) is the Riemannian distance between 0 and z in the metric g, and ux(x) are smooth sections of E

on U. That is to say,

5(0,z)?
4t

(8, + P)Sk(z,t) = (47t) /2 exp < > thry(x) for z €U, te (0,00)

where Si(x,t) is the partial sum Z?:o tiu;(z), and ry(z) is a smooth function on U. uo(0) can be given any
preassigned non-zero (vector) value v € Ey, and for all k, each component of u(0) is a polynomial in the
v;(0) and the various jets of g*, b; and ¢ at 0 (b;(x) and c(z) being the coefficients occurring in the first order
operator L := P — A as in the last paragraph).
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Proof: First of all note that we may use a coordinate chart U around 0 on which F is trivial, and which is
diffeomorphic to R™. So, we take M = R™, and F the trivial bundle. By coordinatewise application, we can
also assume that E is the trivial line bundle. Since P is a generalised Laplacian, we can take:

P=A+L=- Zg” )0;0; + L, where L= Zb )0; + c(x)

4,

and b;(z) and ¢(z) are smooth. 0 is the origin in R™. We will use the geodesic normal coordinates (z1, .., z,)
introduced in the proof of Lemma 12.1.3.

Now if f,v € C*®(U) are two smooth functions, we have by Leibnitz’s formula:

P(fv) = —Zg” )9;0;(fv) +Zb Bi(fv) + e(@)(fo)
= - Zg” ) (000, f + 2(00)(8; f) + fB:0;0) + Zbi@)( fO0 +vdi f) + e(x) fo

= va—ng” 0:0;f =23 g7 (@)(00)(01) + v D _bi2)0if (28)

4,

Thus we have,

(3:(fv) + P(fv)) = (9w + Pov) + 8tf Zg” 88f—fZg” (9i0)(95f) + be 2)0;f  (29)

~ =

Now set f = f(z,t) = (4mt)~"/? exp(#) in the above formula. By the Lemma 12.1.3, we have (upon
shrinking U if necessary) that:

O f — Zg”aaf <a1+a2>f

where a; are smooth, and a;(0) = 0. AlbO, since we are using geodesic normal coordinates, we have r? =

2] = >0 90 (0)xiz; = ;27. Now f being a radial function (i.e. only a function of r), we have:
1 1 2r x; T
—0;f = =0.f0; D=
7O = FOnf O == 2
Substituting these two facts into the equation (29), we have:
1 1 iy — )
7 (Oc(fv) + P(fv)) = (Gpv + Pv) +v (tal + a2> — 29" 0 (;t]) + v Xj:bj(a:) (—%)

which implies that:

(O:(fv)+ P(fv))=f |Ow+ Pv)+u (1(11 + ag) + Z %ﬂ <Z g9 00 — ;vbj) (30)

Since we are using geodesic normal coordinates, the radial vector field 0, has length one, and is in the same
direction as z = 3, zje;, where e;(z) = >_ g/ (2)0; is an orthonormal frame at « € U. Thus

1 1 .
0 = [ 2o = 7 2" @
J 4,J

Substituting this into the equation (30) above, we get:

@0+ PUo) = 1 |@+ o)+ u () - 3 by 4 oy (31)
Now let v = 332 tFug (), so that
—n/2 _6(0"77)2 k
) = Fo = (amt) /2 exp( O (5 phu o)

k
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Since we want to satisfy (9; + P)u = (0;(fv)+ P(fv)) = 0, we compute the coefficient of t* in the box-brackets
on the right hand side of equation (31) and set it equal to zero. The coefficient of t* on the right hand side of
equation (31) is

1
(k4 Dugr1 + Pup + ajugsr + agug — 3 Z bjzjuky1 + rortp41
J

1
= roup+1+ | k+1+a1 — 3 Zscjbj Up+1 + asuy, + Puy
J
which leads to the recursive differential equation:
1
rOvupi + |k + 14 a1 — 5Zanjbj U1+ (P + ag)ug =0 (32)
J

From the Lemma 12.1.3, we have a1(0) = 0, so we may write a1(x) = >, z;4;(z) for some smooth functions
Aj; by the first order Taylor expansion. We write z = ry where |ly|| = 1, i.e. y is on the unit sphere S"~!.
Then let B(r,y) := =23, (y;4;(r,y) + y;b;(r,y)). If we also write A := P + as, our equation above becomes:

1
rOpUpy1 + (k +1-— 57“3(7", y)) Ups1 +Aup =0

This equation is an ODE in the variable 7, with y € S"~! being treated as a smooth parameter, and identical
to the earlier single-variable equation (25), with r playing the role of x, B(r,y) playing the role of the earlier
b(z), and A playing the role of the earlier L. Thus it is solved along any ray y = yo € S™~! by exactly the same
procedure as in the Proposition 12.1.2. The resulting u; are smooth in x, because of the inductive formula

wen ) = s [P aays muto) = ol e (- [ Bojaa))

using the same argument as in Proposition 12.1.2; after noting the fact that B and the coefficients of the
differential operator A are smooth in z (since b;(x), ¢(x), ai(x), az(z) are all smooth in x).

To see the last assertion about u(0), we have as before that ug(0) will be algebraic in the various jets of B
and the coefficients of A at 0. That is, they will be algebraic in the jets of g, b;, ¢, a; and as at 0. We just
need to show that the jets of a; and ay at 0 are algebraic in the jets of g/ at 0. If we go back to the proof of
Lemma 12.1.3, we find that a; and ay defined there are precisely ¢; and co, where ¢; and ¢y are defined by:

x) = —i Zai(m)am"Q = *% Zl’iai(z)v ca(x) = B(x)

where

ngaa +Zal )9 + B(x)

Now from the calculation of the Laplacian for the metric g = g,;, one knows that a;(x) is an algebraic expression
in the first derivatives of g, and B(x) is an algebraic expression in the second derivatives of g. Hence the jets
of ¢; and ¢ at 0 are algebraic expressions in the jets of g at 0, from the equations for ¢; and c¢o above. The
proposition follows. O

Proposition 12.3.2 (Duhamel’s Principle). Let M be a compact Riemannian manifold, and let
AT C®(M,ET) — C®(M,E™)

be the Dirac Laplacian corresponding to an elliptic complex on M. Let us assume that At is of order 2. Let o;
be a smoothly varying section in C>°(M, E™), (i.e. o) € C*°((0,00) x M,p*E™) where p : (0,00) x M — M
is the second projection). Then there exists a unique smooth solution p; which is also smooth in ¢, satisfying:

(i): po =0, and
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(ii): p; satisfies the inhomogenous time-dependent heat equation:
(at + A+)pt = O0¢
for all ¢t € (0,00).
Likewise for £~ and A~.

Proof: If 0; = o were independent of ¢, our p; would be e~t2 5. In general, we add up the contributions

e~ (=A% 5 That is, define:
t
Py = / e_(t_S)A+asds
0

Note that the integral makes sense, since the integrand is smooth in s, and on differentiating both sides with
respect to ¢ (and using the dominated convergence theorem), we have:

atpt — —(t—t)AT oy +/ at —(t—s)AT )dS

= g¢ — /A+ 7(t s )d
A+pt

The uniqueness follows from the fact that for another solution wu; satisfying both (i) and (ii), we have:

Or(pr — ut) = —A+(Pt — u)
so that
B (pr — ug, pr — up) = —2(AT (py —wp), pr — we) = =2(DT (pr — ug), DF (pr — ur)) <0
which shows that the Ly-norm ||p; — ]| is a non-increasing function of ¢. But since it is zero at ¢ = 0 by (i),
it follows that it is identically zero. O.

Corollary 12.3.3. For the p; found above, we have the Sobolev norm estimates:

||Pt||2k <1 sup Hgsnzk
0<s<t

for all k =0,1,2...,.

Proof: We first note that for any f € C°°(M, E*) and for all ;1 > 0 we have e"#* < 1 for all the eigenvalues
Xi > 0 of AT, and consequently the inequality of Ls-norms:

le 2 7| <11 foran p=0

Now, by the Corollary 6.2.3 (Garding’s Inequality) it follows that:

2 2 2 2 2
el = fartem s oo = et + ey
2
< [JAPFFE+ A7 = 115, forall p>0
Hence . .
_(t—s)A*
ol < [ [0, ds < [ lonlds <t sup ol
0 2k 0 0<s<t

and the corollary follows. O

Now we can prove that “asymptotic fundamental solutions” converge to real fundamental solutions. More
precisely, we have:
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Proposition 12.3.4. In the setting of the previous proposition, let w; be the unique fundamental solution to
the heat equation for the Dirac operator A*, with pole at (x,v) (whose existence was proved in the Proposition
11.2.2). Let u; be a smooth section, varying smoothly in ¢ (see last proposition for definition) which satisfies:

(i): For all s € C(M, ET), we have

lim (s, u) = (s(x). v),

(That is us converges to the Dirac distributional section §,v as t — 0), and
(ii):
(8t + A+)Ut = tNrt(x)

where r; is a smooth section of ET, smoothly varying for ¢t € (0,00) and continuous in t € [0,00) and
uniformly bounded in the Sobolev 2k-norm ||—||,, for t € [0,T] and some T' > 0 and some k > 0. (This
means |||y, < C for all t € [0,T], where C is a positive constant.)

Then we have:
w — gl o, < CtVF! forall 1 <2k—n/2 and all t € (0,7]

where C; > 0 is some constant.

Proof: By the Duhamel Principle Proposition 12.3.2, there exists a smoothly varying smooth section p; of ET
satisfying:
0+ AF)pr =tV

and also satisfying pg = 0. Then the smoothly varying section w; := u; — p; satisfies:

(0 + AN Yw; = (0 + AN )uy — (3 + AN)py =tV =tV = 0
Also, for any smooth section s € C> (M, E), we have:
tim (s, wy) = lim(s,u) = (s(2).0),
since pg = 0.

Thus wy is the unique fundamental solution of the heat equation with pole at (z,v). It follows that u; = pi+w;
and by the Corollary 12.3.3

— N+

llwe — willop = [1pellgp <t sup HsNrS||2k sup ||rslly, for t e (0,T]
0<s<t 0<s<T

By the hypothesis on the Sobolev 2k-norm ||r,||,, for s € [0,T7] it follows that for ¢ € [0,7] we have:

sup ||rslly, < C for all s e [0,T]
0<s<T

Thus it follows that:
|we — g, < CNTY for all t € (0,T]

Now one uses Sobolev’s Embedding Theorem (iv) of Proposition 4.2.2 which asserts that
| lloos < Cll=llyy for all I < 2k —n/2

to get the assertion for |||, with | <2k —n/2. O
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Theorem 12.3.5 (Asymptotic fundamental solution for the heat equation of a generalised Dirac Laplacian).
Let
At =D "Dt :C>®(M,E") = C>*(M,E™)

be the Dirac Laplacian of the Dirac complex defined by an elliptic complex P on the compact Riemannian
manifold M of dimension n. Assume that AT is a generalised Laplacian in the sense of Definition 12.2.1. Let
v € E} be some vector, and let w; be the fundamental solution to the heat equation for AT with pole at (a,v),
which exists and is unique by the Proposition 11.2.2. Then there exists an asymptotic fundamental solution
u(x,t) = ug(z) with pole at (a,v) which is given by a formal series:

§(x,a)?
4t
where d(x,a) denotes the Riemannian distance between x and a, and u;(z) are smooth functions of x. The
value ug(a) = v, and in a suitable local coordinate neighbourhood of a the and local framing of E™, for every

k, each component of the vector u(a) is a polynomial in the p-jets at the point a of g/ and the coefficients
b;, ¢ occurring in the first-order operator:

AT+ 610:0; = bi(y)d + cy)
ij l

u(z,t) = (4nt) "2 exp ( ) (uo(2) + tur (z) + tPus(z) + ... + tFu(z) +...) 2 € M, te (0,00

This asymptotic solution satisfies:

(i): For each smooth section s € C>° (M, E™),

lim (s, ug) = {s(a),v),

(ii): Given any positive integer N > 0, for the partial sum

z,a)? i
Sy, 1) := (4mt) ™/ exp <5(4’t)> (Z tkuk(x)>
k=0

we have:

(0 + AT) S, (x,t) = tNrp, ¢ (2)  for all m > N +n/2
where 7y, 1(x) = (2, t) is a smoothly varying section in C°°(M, E1) and continuous for ¢t € [0, 00).
Indeed, r,,(x,0) = 0. If we fix some T > 0, then its Sobolev 2k-norm on M satisfies:

17mtlloy < Crm forall 2k <m — N —n/2 andall t € [0,T].
Finally,

(iii): For the T' > 0 in (ii) above, we have the norm estimate:
we — S (=)} oo < Cit™ !
for each 0 <1 <m— N —nand all ¢t € (0,7T].

||l,oo

Likewise for A~ and E~.

Proof: Let U be a neighbourhood of a € M such that U is diffeomorphic to a neighbourhood of 0 in
R" = T,(M) via the exponential map exp, : T,(M) — M of the Riemannian manifold M. Since AT is a
generalised Laplacian by hypothesis, we may further guarantee that U is small enough for the Proposition
12.3.1 to apply to P = A™.

By restricting to a ball around a contained in U, we may assume without loss of generality that U = B(a, 3¢).
Then, by that Proposition we have a formal series:

Uz, t) ~ (drt) "% exp (—8(a, 2)?/4t) (o + tiy + ... + ¥y, + ...)

where ;(x) are smooth functions defined on U. Furthermore, %ig(a) = v, and in a suitable framing of E+ on
U, each component of each u(a) is a polynomial in the p-jets of g%, b;, ¢ at a. Also on U we have, by the
proof of Propositions 12.1.2 and 12.3.1 that:
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(8, + A1) S, (z,t) = (4mt) ™2™ exp (=0(z, a)?/4t) Ay, (2)

where A = AT + a3 is also a generalised Laplacian defined on U. If m > N + n/2, the function

Pz, t) =t N2 exp (—6(z,a)?/4t) A, (2) (33)
is a smoothly varying section of E‘J{], continuous and uniformly bounded in the norm ||—||, of E}f, for all z € U
and all ¢ € [0,T]. That is,
sup |7 (2, )], < o0
z€eU, te[0,T]

Note that the equation (33) above implies that 7, (z,0) =0 for m > N +n/2. Since

Ou(t” exp(=d(w,0)?/4)) = (p— 5 ) " exp(—b(z, 0)*/41)

on U, we see that for m > N + n/2 + 2k, the Ly-norm:
o |2 o 2
10Tl 1 ::/ 10T (2, t)||, dV ()
zelU

will be finite and uniformly bounded for all | o |< 2k < m — N — n/2. Thus the Sobolev 2k-norm of 7, (—,t)
on U satisfies:

17 (= O)llopo < Crym forall 2k <m — N —n/2, and all t € [0,7]
Thus we have:
(8 + A1) S (x,t) = tNFp(2,t) forall z €U, and m> N +n/2 (34)
with 7, (2,t) a smoothly varying section of EIJ{] for t € (0,00), continuous in ¢ € [0, o), and uniformly bounded
in Sobolev norm |||y, ;; by a positive constant Ck,, for all ¢ € [0,00) and all 2k <m — N —n/2.

The first step is to globalise u(x,t) for all x € M. We do this via a cut-off function. Let
Y :R —[0,00)

be a smooth function such that 1(s) =1 for | s |[< e and 9(s) =0 for | s |> 2e.

To simplify notation, denote r := r(x) := d(x,a). Then define:
u(z,t) = P(r(z))u(z,t)

so that
8(x,a)?

t) ~ (dmt) "2 —
)~ ) exp (1

) (uo(a) + tur (z) + ... + Ry (z) + )

where ug(z) := ¢¥(r)ug(z). Since (r(z)) is identically 1 on B(0, €), the function ¢ (r(x)) is a smooth function
of x, and hence the uy’s defined above are smooth functions of = on all of M. Furthermore:

ug(z) = up(z) for §(z,a) <e
=0 for §(z,a) > 2€

Hence the statement about ug(a) follows from the corresponding statements about @y (a).

For notational convenience, denote:

5(x,a)2)

f(x,t) = (4mt) ™% exp ( yn
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Since 1) is supported in U, we have for a smooth section s € C> (M, E™):

lim(s,u) = lim [ (s(z), u(z,1)), dV(z) = lim | {s(z),y(r(z))ulz,?)), dV(z)
M U
= lim [ ((r(z))s(z), u(z,1)), dV (z)
U
= lm U(1#(7’(17))5(96),f(x,t)ﬂo(ﬂ:)>xdV(fv):<¢(a)5(a)’v>a

= (s(a),v),
because ¥(a) = 1 and up(a) = v by the Proposition 12.3.1, and f(z,t) is an approximate identity at = a for

compactly supported smooth sections in U, and ¥ (r(x))s(x) is a smooth section compactly supported in U.
This proves (i) of the Theorem.

Now we prove (ii). We have by definition that S, (z,t) = ¥(r(2))Sy, (z,t). Hence

01 (z,t) = Y(r)0ySy,(z,t) for all z € M (35)
where the right hand side is interpreted to be identically zero for x ¢ U (i.e. é(x,a) > 3e¢).

On the other hand,
AF(§(r)Sim(2,1) = $(r)AY S (@, ) + p(r) LS (, 1) (36)
where
p(r) = a(r)y' (r) + b(r)v" ()
and L (= >, a;(x)0; + B(x) in U, and = 0 oustside some V' O B(0,2¢)) is some first order linear differential

operator in the space variables on M. We already understand the first term, from the foregoing discussion,
and we need to estimate the second term. Since

m

Sl ) = Fla,t) 3 i ()

k=0

we compute for z € U:

LSm(z,t) =

Z ai(z)0;(z) + B(z)

£y ()
k=0

(LAY tFup(x) + £ tH(L - B2)) ()

k=0 k=0
= 1 (Ja@ ew) S F 1Yt
k=0 k=0

= t ' f(x,t)Pn(x,t) for 2 €U

where P,,(x,t) is a polynomial of degree m in ¢ whose coefficients are smooth sections of EF{] Note that we
have used the first paragraph of the Lemma 12.1.3 to substitute Lf = (%cl +co)f.

Since v’ (r) and 9" (r) identically vanish for 0 < r < e and r > 2e, it follows that u(r) =0 for 0 < r < e and
r > 2e.

Consider the section:
b (z,t) = t_N_llu(T)f(xv t) P (z, t)

Since f(z,t) < (47715)’”/26*62/4‘t for r > € and ¢t € [0,00), and p(r) vanishes identically for r < € and r > 2¢,
it follows that the section above is a smooth section of ET with compact support in the annulus € < r < 2e,
for every N > 0 and all t € [0,00). At ¢t =0, it is the identically zero function. Hence we may write:

w(P)LSp (m,8) = tN (N u(r) f (2, ) P (2, 1)) = t¥ hyn(2,t) for all 2 € M, and all m >0 (37)
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where h,,(2z,t) =t~V 1u(r)f(x,t)Py(z,t), P, being a polynomial of degree m in t whose coefficients are
smooth sections in the variable x € M, hy,(z,t) = 0 for r(z) = §(z,a) < € and r(z) > 2¢ and all ¢ € [0, c0),
with h,,(2,0) =0 on M.

To get a hold on the Sobolev 2k-norm of h,,(x,t), note that P, is a polynomial of degree m in ¢, whose
coefficients are smooth sections. Also each spatial derivative of f(z,t) will yield (t~a; +a2)f, and any spatial
derivative of p(r) will again yield a smooth function compactly supported in the annulus ¢ < r < 2e. Hence,
for the Lo-norm:

/ [0S o (,1)||2 AV (z) < Ct‘N_1‘|a|/ Fo,0)2dV (z) < CtN=1-lede=/2 for ¢ e (0,7
M e<r<2e
Thus we have:

sup |[Am(—,t)|lyp < oo forall k (38)
t€[0,T]

Now we can combine all the equations (34), (35), (36) and (37) to compute:

B + AN (@, t) = (D + AN)Y() S (2, 1) = (r) (s + AT)S (@, t) + pu(r) LS, (2, 1)
= ()t (2, 1) + N hon (2, 1)
Ny (1) (39)
for all x € M, all m > N +n/2 and all t € (0,00), and 7, (z,t) = (r)Fm(x, t) + hm(x,t). Also,

(a): From the equations (34) and (37) it follows that r,,(x,0) = ¥ (r(x))rm(z,0) + Ay (z,0) = 0.

(b): From the statement following equation (34), the fact that

[ )rm (= Ollor, < ClITm (= llox v
and from the inequality (38), it follows that:
sup ||7m(—t)||op < Cp forall 2k <m— N —n/2
t€[0,T]

This establishes (ii) of the Theorem. The final assertion (iii) now follows from the Corollary 12.3.3. O

Example 12.3.6 (The Circle). For the circle, one can explicitly write down the heat kernel, and the funda-
mental solution by tinkering with the fundamental solution for R.

Let S1(R) denote the circle of radius R around the origin in R?, and let § € (—7,7) denote the usual angle
coordinate in the open set S1(R)\ {—R}. The Riemannian metric is R?d#?, and the corresponding Riemannian
volume of S'(R) is 2rR. We consider the Dirac complex of the de-Rham complex of the circle, viz. with
ET = AYTzSY(R)), E- = AYT¢SY(R)) and DT =d, D~ =6, and AT = §d = —R™203 the scalar Laplacian
on functions. Since g%/ = g'! = R™2, the scalar Laplacian on functions is At = — Zij g90;0; = fﬁag.

Denote
£(0,t) := (4mt)~'/2 exp(—R%0? /4t)
For x € SY(R) and t > 0, define:
u(x,t) = Z f(0+2nm,t)
nez

where 2 = Re?™?. Note that by definition above, which “logarithm” of z we take is immaterial for the definition
of u. We first need to check that the series above converges for each = € S(R), and each ¢ > 0. But this is
clear, since for ¢ > 0, the factor of exp(—n?R?*n?/t) will occur in the n-th term, and the series will converge
very rapidly and indeed uniformly and absolutely. Likewise with the t-derivative and all f-derivatives of the
series. So it is permissible to differentiate term-by-term and integrate term by term etc.

Since (8; — R7203)f(0,t) = 0, it follows that u(z,t) satisfies the heat equation. Note that
tlirr(l) t3 exp(—R*n*7?/t) =0 forall n#0, t>0
—
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Also, for any smooth function s € C*°(S(R)), we can lift s to a smooth function § which is compactly
supported in say U = (—27, +27), with s(Re'®) = 5(0) for 6§ € (—x, 7). Then it is easy to check that:

oo

im [ 5(0)£(0,4)Rd6 =0, gg%/_ﬂ 5(0)£(6, )R d6 = 0

t—0 J .o
because f(6,t) < (4rt)~ /2 exp(—R?w?/4t) < Cexp(—a/t) for § > m and § < —n, where a and C are some

positive constants.

From the two observations above, we have:

s

: T i0 ~1/2 _ P22
}gr(l)(s,ut) = }51(1) _Trs(Re )(4mt) exp(—R*6%/4t)R dO
= lim 3(0)(4mt) Y2 exp(— R0 /4t)R d
- —T
= }irr(l) 3(z/R)(4nt) "1/ 2 exp(—a? /4t)df = 5(0) = s(Re™)
—VJ

Hence, by the uniqueness statement of the Proposition 11.2.2, applied to that w(z,t) is the fundamental
solution to the heat equation with pole at (Re?,1). By suitably translating the space variable of u(x,t), one
can write down the fundamental solution with pole at any other point (z,1).

Now we can determine all the coefficients u;(a) in the asymptotic expansion of the fundamental solution,
where a = Re®® = R € S'(R). Since
t)=>_ f(0+2nm,t)
neL

and for n # 0, the term f(0+2nn,t) contains the factor (4mt)~1/? exp(—R?n?/4t) < Ce=*/* for some C,a > 0,
we find that:
}%t_kf(9+2nw7t) =0 forall k>0 and n#0
In other words,
w(x,t) ~ (4rt) /2 exp(—R262/4t) as t — 0
Now RO = 4(a,r), the Riemannian distance between a = Re® and x = Re' in S'(R). So we find, on

comparing the expression for u(z,t) in the Proposition 12.3.5 that

ug(a) =1, u;(a)=0 forall i>1

This fact has a lot of interesting consequences. Note that the eigenvalues of AT are precisely \,, = n?/R?,
and the corresponding (normalised) eigenfunctions are e, () = (2rR)~'/2¢'™, where n € Z. From the the
construction of the fundamental solution of AT (from the heat kernel in (iii) of Proposition 10.1.3 and the
fundamental solution in Proposition 11.2.1, we have:

u(z,t) = kf (z,a) Ze Arer(a) ® en(z) = (2TR)™ Ze‘t”2/R2 'm0 \where x = Re", a = Re®
neZ nez

Since our asymptotic expansion for u(x,t) just consists of the first term and no others, it follows that the
partial sum:

Sz, t) = (4mt) "2 exp(—R?*0%/4t) for all m >0
Then (iii) of the Theorem 12.3.5 (for [ = 0, say) now tells us that

(2rR)™* Z et/ R gind _ (4mt)~Y/2 exp(—R?6% /4t)
neL

<CtNtt for t€(0,T] m> N +1

0,00
which implies that

(2rR)~! Z et/ R ginf (4mt)~1/2 exp(—R%*6%/4t) as t — 0 for each 6 € (—m, )
nez
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Setting # = 0 in the above formula, one obtains Jacobi’s asymptotic formula
et IR (2rR)(Amt) V2 = R/t as t— 0 (40)
nez

So here is a beautiful college-level mathematical formula that uses the asymptotic expansion of the heat kernel
on a compact Riemannian manifold for its proof!

tAt

Also note that the left hand side of (40) is precisely the trace of the heat operator e *2 | so the Jacobi

formula above says that:
lim (47rt)"/2 (tr e—m*) — 27R = Vol (SY(R))
—

Thus the t — 0 asymptotics of the trace of the heat operator encodes the Riemannian volume of S'(R). Indeed,
this is a general fact, as we see below.

Proposition 12.3.7 (You can hear the volume of a manifold). For the scalar Laplacian A : C*°(M,C) —
C>°(M,C), we have:

lim (47¢)"/2 (tre"2) = Vol(M)

t—0

Proof: We first remark that for the scalar Laplacian A on any compact Riemannian manifold, the eigenvalues
An > 0, because

An = (Aep, e,) = (ddey, e,) = (dey, dey,)

where {e,,} is an orthonormal basis of smooth eigenfunctions, with e,, belonging to the eigenvalue \,,. Because
the operator A is elliptic and formally self-adjoint, the Proposition 8.4.9 shows that \, > Cn’, and the
existence of the heat kernel:

ki(z,y) € C*(M x M,C)

defined by ki(z,y) = Y., e e’ (y)en(z) goes through exactly as in (iii) of Proposition 10.1.3. The funda-
mental solution w(z,t) of the heat equation with the pole (a,1), with a € M is as before given by

w(x,t) = ki(z,a)

Then, since the asymptotic expansion and Duhamel Principle carry over to generalised Laplacians on any
bundle F (in this case the trivial bundle M x C), we have the conclusions of Theorem 12.3.5 in this setting as
well, though it was stated for Dirac Laplacians.

tr(e8) = zn:e*”‘" = /M e tn /M er(a)ey(a)dV(a) = /M ki(a,a)dV (a)

On the other hand, we have by (iii) of Theorem 12.3.5 that:
lke(= @) = S5.(= B)llg,00 = llwf (2) = Sp (@ )lg 00 < OtV for m > N +n, te€(0,7]

We also have:

where S% (z,t) is the partial sum of the asymptotic solution u®(x,t) with pole (a,1). On setting z = a, this
implies that:

ki(a,a) — (4mt) "/QZuk )t < OtV forall m> N +4n, te(0,T) (41)

Note that s(a) = lim; (s, u?(—,t)) for all s € C*(M). Letting f*(x,t) = (4nt)~™/2 exp(—d(x,a)?/4t) we
also have s(a) = lim;_,q(s, f*(—, )) for all s € C°°(M). Since u®(x,t) = f*(x,t)(uo(x) + O(t)), we have
) )

s(a) = lim (s, u (2, 1)) = limn (s, /(= )uo(~)) = lim @os, (1)) = wo(a)s(a)
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which implies that ug(a) = 1. (In fact, we remarked in the proof of Theorem 12.3.5 that up(a) = Up(a) = v

from the Proposition 12.3.1, if u® is the asymptotic fundamental solution with pole (a,v)). Thus, from the
equation (41) above, it follows that:

(47t)" %k, (a, ) Z

which implies that

< CtNHIHZ forall m> N +n, te (0,T]

: n/2 tA n/2 . _
7}1%11(1)(47725) tre” hII(l (4rt) / ki(a,a)dV (a) = }% Muo(a)dV(a) = Vol(M)

and the proposition follows. O
13. CLIFFORD ALGEBRAS AND SPIN STRUCTURES
13.1. Clifford Algebras.

Definition 13.1.1. Let V be an inner product space, with a symmetric bilinear form (—,—). The Clifford
algebra on V', denoted CI(V') is an associative unital R-algebra together with an R-linear map:

@V = ClUV)
satisfying:
(i): ¢(v)? = —(v,v) .1 for allv € V.
(ii): If ¢ : V — A is any R-linear map into an associative unital algebra A satisfying P()? = —(v,v) 14
for all v € V, then there exists a unique R-algebra homomorphism v which makes the diagram:
v 5 v
voN LY
A

commute.

By the usual abstract nonsense, this universal property makes it unique upto R-algebra isomorphism. To
construct it, let 7 (V) := &2,(®'V) be the full real tensor algebra on V. Let 1 € ®°V = R be its identity
element. Let Z be the two-sided ideal generated by the set

S={vev+{(v,v)l:veV =V cT(V)}
Define CI(V)) = T(V)/Z, and let the map ¢ be the composite:
V=0VoTV)=>TV)/I

Clearly, by definition, ¢(v)? = (v ® v)( mod Z) = — (v,v) 1, where 1 € R is the image of 1 € T(V). It is
trivially checked that the universal property of the definition above holds for ¢ : V- — CI(V'). We will denote
the product of a,b € CI(V') as a.b or even ab if no confusion is likely.

Proposition 13.1.2. We have the following facts about the Clifford algebra:

(i): The map ¢ : V — CI(V) is injective. Hence we may regard V as a subspace of CI(V).

(ii): With the identification of (i) above,
vaw +w.o = -2, w)l forall v,weV C CIl(V)

(iii): If {e;}? is any R-basis of V, then the products
€] = €4,.€jy....64,

where I = (i1 < 12 < .. < i) is a multiindex with 0 < k < n (and e; := 1 for the empty multiindex I
with k = 0), constitute an R-basis for CI(V'). In particular, dim CI(V) = 2™.
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(iv): There is a natural Zs-grading on CI(V) defined by setting CI°(V) to be the image of the subspace
@2 (@2 (V) € T(V) and CI1(V) to be the image of &2 ((®2**1(V)) C T(V). With this grading
CIl(V) is a so-called superalgebra, i.e. satisfies:

CIN(V).C1(V) c CI¥(V) where k =i+ j( mod 2)

(v): There is a canonical vector space isomorphism (not an algebra homomorphism):
Cl(V) = AV
which takes v.w to v A w for all v,w € V.

(vi): For the identically zero inner product (—, —) = 0, the Clifford algebra CI(V) is the exterior algebra
AV

Proof: To see (i), define the degree deg x of an element © € T (V') by expanding into homogeneous components
xr = D;x;, x; € ®iV

to be the largest ¢ such that x; # 0. Clearly, deg(z ® y) = deg x + degy, and hence the degree of every element
in the ideal Z is at least 2. Thus VNZ = {0} in 7(V), and the map ¢ : V' — CI(V) is injective. This proves
(i). We may therefore write v instead of ¢(v) for v € V.

To see (ii), note that for v,w € V C CI(V), we have by the definition of Ci(V):
—((v,v) + (w,w) + 2 (v, W)l = —(v+w,v+wl=(v+w)?=vv+ww+vw+wy

from which it follows that v.w + w.v = =2 (v, w) 1.

To see (iii), we use (ii) to see that e; of the form stated are a spanning set for CI(V'), since any word
€j, -€j,.....¢5, of any length may be reduced, by using the commutation relations:
€i-€j + €j.€; = -2 <6i, 6j> 1

to a word of length at most n. Their linear independence is left as an exercise. (iv), (v) and (vi) are also
straightforward, and their proof is omitted. a

Notation: From now on, when we write CI(V), it will be understood that V' is an inner product space with
a positive definite inner product (—, —). Hence, we may always choose an orthonormal basis {e;}_; of V, and
the commutation relations for the basis elements will read:

e;.e; +ej.e; = _26ij 1<4,5<n

Example 13.1.3. If we take V = R, with its usual euclidean inner product (x,y) = zy, then CI(R) = C, for
it is generated as an R-algebra by e; satisfying e = —1.

If we take V = R? with its usual euclidean inner product, then CI(V) is generated as an R-algebra by
{e1, €2}, satisfying:
e% = e% =—1, ejes = —eze;
Setting e; = i,e5 = j,e1es = k, we find that
Cl(V)=R1doRidoRjORE
subject to the relations i2 = j2 = k*> = —1, and ij = k, jk = i, ki = j. Thus CI(R?) = H, the (non-
commutative) algebra of quaternions.

Exercise 13.1.4 (Some Clifford Algebras).

(i): Show that for V = R3, with its usual euclidean inner product, we have CI(V) ~ H @ Hrn where
7 := ejegesz. The first summand H is the span of 1, ¢ := ejes, j := eses, k := ezep, and the second
summand is the span of 7, in, jn, kn. Multiplication is given by:

(a +bn)(c+dn) = (ac+ bd) + (ad + be)n a,b,c,d € H
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(ii): Prove that CI(R?) ®g C = H ®g C = C(2), the algebra of 2 x 2 complex matrices. Explicitly, the
isomorphism is given by:

e (N1 )raste (0T )renn (1)

where the matrices on the right are the Pauli spin matrices.

Remark 13.1.5. It is possible to write down a complete list of all the real Clifford algebras CI(R™), because
of the remarkable periodicity theorem which states that:

CI(R™®) = CI(R™) @ R(16)

where R(n) denotes the matrix algebra of n X n real matrices. This reduces us to finding out CI(R™) for
n =1,..,8, whose list is as below:

n: 1 2 3 4 5 6 7 8
Cl(R"): C H HeHnp H(2) CH) R(@B) RB)@R(8) R(16)

For a proof of this fact, see the paper ”Clifford Modules” by Atiyah- Bott-Shapiro.

We need a little more machinery associated with a Clifford algebra. The first is the involution * defined as
follows:

Definition 13.1.6 (The involution *). Let V' be a real positive definite inner product space, and CI(V) its
Clifford algebra. There is an involution * on the full tensor algebra 7 (V') whose effect on decomposable tensors
is:

(a1 ®a® ... Qag) = ar ®ak—1 ® .... as ® ay
This involution clearly preserves the set S = {v @ v+ (v,v)1: v € V} defined in the beginning of this section,
and since (o ® 8)* = f* ® a*, we see that * preserves the two-sided ideal Z generated by S. Hence it descends
to an involution of CI(V) = T(V)/Z. If we let {e;}_; be an orthonormal basis for V' with respect to (—, —),
then for the basis of CI(V') introduced in (iii) of Proposition 13.1.2, we have:
(€i1.€i2 ..... eik)* = €y Cip s €i5-€4y
Clearly, * is the unique involution of CI(V') satisfying:
v*=v for veVCCl(V) and (a.b)* =b".a* forall a,be Cl(V)

As an exercise, the reader may explicitly compute the involution * on the Clifford algebras C1(R), C1(R?) and
CI(R?) that were determined above.

Definition 13.1.7 (Supercommutators). For a superalgebra A = A°@® A (such as the Clifford algebra), define
the supercommutator of two homogeneous elements x,y € A by:

[2,y]s := zy — (—1)(deg 2)(deg v)y,p

Extend to arbitrary elements of A by linearity in each slot. For example, if A = A*V = A @ A°% then the
supercommutator of any two elements is 0.
For a superalgebra A as above, define the supercentre of A by:

Zs(A) :={x: [x,y]s =0 for all y € A}

Lemma 13.1.8. Let V be a positive definite inner product space. Then the supercentre of the Clifford algebra
CI(V) consists of the scalars R.1.
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Proof: It is clear that R.1 C Z,(CI(V)), since the supercommutator of any scalar with any element is just
the usual commutator, and the scalars commute with everything in CI(V). On the other hand, we claim that
if [x,v]s = 0 for all v € V, then z is a scalar. For, write z = zg + x1, with x; € CI!(V) in terms of its
homogeneous components. Then [z,v]s = [zo,v]s + [%1,v]s, and since v has homogeneous degree 1, we have
[0, v]s is homogeneous of degree 1, and [z1,v]s is homogeneous of degree 0. Thus both [zg, v]s and [z1,v] are
individually 0, for all v € V. So it is enough to prove that if z € Z,(Cl(V)) is homogeneous and [z,v]s = 0 for
allv € V, then z = A\.1.

Let {e;} be an orthonormal basis of V. Write the homogeneous element z as © = a + e1.b, where a and b are
independent of e; (by using the basis ey of C1(V) constructed in (iii) of 13.1.2). Then deg a = deg = = deg b+1.
Hence

[z.e1]s = [a,e1]s + [e1d,e1]s = aer — (—1)9%8 %eja + e bey — (—1)98 2he?
aey + (71)deg a(il)deg aae1 + (71)deg bbe% + (71)dega+1b6%
= (—1)%8b2pe? = (—1)%8 22p
So that [z, e1]s = 0 implies that b = 0. Thus = a + e1b = a is independent of e;. By the same reasoning, it
is independent of e; for all 7, and hence a scalar. This proves the lemma. O

Remark 13.1.9. Note that the usual centre of CI(V') is usually much larger than the scalars. For example,
in CI(R) = C, the centre is all of CI(R).

13.2. The Groups Pin and Spin. Let V = R” with its usual positive definite euclidean inner product.
Recall the involution * introduced in Definition 13.1.6.

Definition 13.2.1 ( Pin(n) and Spin(n) ). Define the group
Pin(n) := {z € CI(V) : = is homogeneous, zz* = z*z = (—1)4€% zVa* C V}

Further define
Spin(n) = Pin(n) N CI1°(V)

Note that by definition, 2* = x~! for all € Spin(n). Also, since the group C1* (V) of invertible elements in
CI(V) is an open subset of the euclidean space CI(V'), and the operation of Clifford multiplication is algebraic
(by using a basis) and hence smooth, it follows that the closed conditions defining Pin(n) and Spin(n) make
them closed subgroups of C1* (V). Hence both are Lie groups by Cartan’s theorem.

Note that by definition, there is an action of Pin(n) on V = R™ given by:
p: Pin(n) - GL(n,R)

where p(z)v = zvz*. We have the following proposition.

Proposition 13.2.2 (Basic facts on Pin(n), Spin(n) and p).
(i): p(Pin(n)) C O(n,R). The sequence:

1 — Zy — Pin(n) 5 O(n,R) — 1
is exact. (Here Zy = {+1,—1} C Spin(n) C Pin(n))
(ii): Any element x € Pin(n) may be expressed as a Clifford product:
T = V1V3...V

where v; are some unit vectors in V.
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(iii): p(Spin(n)) C SO(n) and the sequence
1 — Zy — Spin(n) % SO(n) — 1
is exact. An element x € Spin(n) iff it is a Clifford product = v;...vx with v; unit vectors in V', and k
is even.

(iv): Spin(n) is connected.

(v): The Lie algebra map p maps the element izi# a;jeie; € CU(V) to skew-symmetric matrix [a;;] in
the lie algebra Lie(Spin(n)) = so(n) thus identifying the above Lie algebra with a subspace of CI(V).

Proof: Note that for v € V C CI(V), we have ||[v]|*.1 = —v2. Further, for z € Pin(n), we have p(z)v € V as
well, so that

Ip@)ol? 1 = —(p(@)v)? = —(zva*zvs*) = —(~1)4% 702"
= (=) e |fol|* e = (=1)79 7 Jlo* .1 = [lo]|* .1
which proves the first assertion of (i).
If p(z) = Idy for x € Pin(n), then xvx* = v for all v € V. That is, v = (—1)48 “yz. That is, the

supercommutator [x,v]s = 0 for all v € V. In the proof of Lemma 13.1.8, we remarked that this forces x = A1
and deg z = 0. Thus z* = .1, and z2* = (—1)9°8 *.1 = 1 implies that A> =1, or A = £1. So ker p = Z,.

If we let {e;}I~; be an orthonormal basis for V' = R", we note that ef = e;, and hence ¢;ef = —1 =
(—1)dee 1 1. Clearly p(e;)e; = e;eie; = —e; Also we have:
plei)e; = eieje; = —ete; =e; for j#i

Thus e;Vef C V, and e; € Pin(n) for all i. The above calculation shows that p(e;) is orthogonal reflection
about the hyperplane (Re;)* in V. Since each unit vector v € V' can be completed to an orthonormal basis,
it follows that every unit vector v € V C CI(V) is in Pin(n), and p(v) is just the reflection about the
hyperplane (Rv)+ C V. Since the group O(n, R) is generated by relections about hyperplanes, it follows that
p : Pin(n) — O(n,R) is surjective. This proves the exact sequence of (i), and (i) follows.

For any = € Pin(n), we have p(z) € O(n,R), and indeed we saw in the last paragraph that p(x) = p(vy...vp)
for some unit vectors v;. This means that x = fv;...v5 = (£v1)..v5, and (ii) follows.

Since deg (vq...vx) = k mod 2, from (ii) it follows that an element x € Pin(n) lies in CI°(V) iff z can
be expressed as a Clifford product of an even number of unit vectors. Since the set of elements in O(n,R)
expressible as products of an even number of reflections is precisely SO(n), all the assertions of (iii) follow
trivially from (i) and (ii).

Since an element x € Spin(n) is expressible as a Clifford product
T = V1....02m

where v; € V are unit vectors, to connect & by a path in Spin(n) to the identity element 1, it is enough to
connect the pairwise doublet elements vo;_1v2; to 1 by a path y;(¢) in Spin(n) (so that [, v;(¢) will be
required path connecting  to 1). So let v, w be unit vectors in V', and let us find a path in Spin(n) connecting
v.aw to 1. If w is linearly dependent on v, then v.w = #£1, and it is trivial to connect it to 1. So assume w and v
are linearly indpendent. Let e be a unit vector in the span Rv + Rw which is perpendicular to v. Then letting
e(t) be a path of unit vectors in V joining w to e, we see that v.w can be joined to v.e by the path v.e(t) in

Spin(n).

Hence, we may assume without loss of generality that the unit vectors v and w are orthogonal, and exhibit
a path joining v.w to 1 in Spin(n). Consider the path:

z(t) = (cost)l + (sint)v.w
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we clearly have z*(¢) = (cost)1 + (sin¢)w.v and
z(t)z*(t) = [(cost)l + (sint)v.w][(cost)]l + (sint)w.v]
= (cos®t +sin® tv.w.w.v)1 4 sint cos t(v.w + w.v) = (cos®t + (—=1)?sin? t)1 + cos t sin t(2 (v, w))
= (cos?t+sin®t)1 + costsint(0) = 1
It is also easy to check that x(¢)Va(¢)* C V, (In fact p(v.w) is some planar rotation, and p(z(t)) joins that

planar rotation to the identity element of SO(n)). Thus z(t) is the required path joining v.w to 1, and (iv)
follows.

To see (v), let {e;}; be an orthonormal basis for V= R"™. For i # j, note that
(eiej)® = —eieieje; = —(=1)(=1) = —1
so that (e;e;)*™ = (—1)™ and (e;e;)?™ ! = (—1)™e;e;. Hence if we take the exponential:
t2

exp(tee;) = 1+tee; + g(ei@jf T+

2 ¢t 35

= (cost)l + (sint)e;e;

We have seen above that this is precisely the path joining 1 to e;e; in Spin(n). We can compute its derivative
att =0 as

d(exp(teie;)
dt [t=0
which shows that all these elements e;e; for ¢ # j lie in the Lie algebra of Spin(n). Since the span of {e;e; }ic;

= (—sint.1 + (cost)eie;)|i—o = €i€;

is of dimension "(n;l% which is precisely the dimension of so(n) = Lie(Spin(n)), it follows that this last Lie
algebra is the linear span of {e;e;}i<;. To get the isomorphism even more explicitly, note that
plexp(teie;))e; = (cost +sinte;e;)ei(cost +sinteje;) = (cos? t)e; + (sin® t)(e;ejeieje;) + 2sint cost(eeje;)

= (cos®t —sin’t)e; + (2sintcost)e; = (cos2t)e; + (sin2t)e;
Similarly, one verifies that

plexp(te;e;))e; = (—sin2t)e; + (cos2t)e;
and also that since e;e; commutes with ey, for all k # 4,k # j, we have p(exp(te;e;))er = ey, for all k # i, k # j.
As a consequence,
cos2t —sin2¢
plexp(teie;)) = < sin2t  cos2t >

where the matrix on the right is a rotation in the e;, e; plane of V. Thus
d(p(exp(teie;)) _o ( 0 -1 )
o dt o 0

0

p(eiej) = dt |t: 1

So that p (E i< aijeie]) = 2[a;;] and thus
1
AW > ageie; | = [ay)

i

for a skew-symmetric real matrix [a;;]. This proves (v), and the proposition follows. m|
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Example 13.2.3. It is easy to check that Pin(1) = Zs, and Spin(1) = {1}. Note that CI(R?) = H, and the
operation * on CI(R?) is the map defined by i* = e} = e; = i, j* = e} = ea = j and k* = (e1e2)* = ege; =
—ejeg = —k. Also CI°(R?) = R1+ Rk, and CI*(R?) = Ri+Rj. If 2 = al +bk € CI° (resp. x = ai+bj € ClY),
then zx* = a? + b2 (resp. —a? —b?), and also x(ae; + fez)z* € V in both cases. Hence Pin(2) = S* x Z, and
Spin(2) = St = {al + bk : a®> + b*> = 1}. It is also verified easily that for z = (cost)1 + (sint)k € Spin(2):

) cos2t sin2t
p((cost)l + (sint)k) = ( —sin2t cos2t )

so that the map p : Spin(2) = S* — SO(2) = S is just the squaring map.

Finally, since CI°(R?) = H = R1 + Ri + Rj + Rk where i = ejes, j = eses and k = ese; (see Exercise
13.1.4), we have 1* = 1, i* = —i, j* = —j and k* = —k. Thus, for a quaternion x = al + bi + cj + dk € CI°,
z* = al — bi — ¢j — dk, the conjugate quaternion, and zz* = 1 implies a® +b?> + 2 +d? = 1, viz.,, z is a
unit length quaternion. It is again clear that xVz* C V, so that Spin(3) is the group of unit quaternions,

homeomorphic to S3. Further, one easily computes that the homomorphism p : Spin(3) — SO(3) is given by:

(a® + %) — (b* + d?) 2(ed — ab) 2(bc + ad)
pla+bi+cj+dk) = 2(ab + cd) (a® 4+ d?) — (b? + ) 2(bd — ac)
2(bc — ad) 2(bd — ac) (a® +b?) — (2 + d?)

Note that p(—z) and p(x) are the same, as they should be. Also, recalling the central element n = ejezes €
CI'(R3) we see that n* = ezese; = —1, so that p(n)e; = —ne;n = —nne; = —e;. Thus p(n) = —1I € O(3,R),
and also Pin(3) = Spin(3) [ [ Spin(3)n = Spin(3) x Z,, since 7 is central.

13.3. Spin structures on manifolds. Let M be a connected oriented Riemannian manifold of dimension n.
There is the orthonormal oriented frame bundle:

SO(n) —-P—>M

whose fibre is
P, = {oriented orthonormal frames in T, M'} ~ SO(n)

Definition 13.3.1. We say that M has a spin structure if there exists a principal Spin(n) bundle P — M and
a double-covering map p : P — P so that the following diagram commutes:

Spin(n) — P — M

Pz tp 1d|
SO(n) — P —=M

There is a handy criterion for the existence of a spin structure on M, as also a way of parametrising all
possible spin structures on M. Namely,

Proposition 13.3.2. The oriented Riemannian manifold M as above has a spin structure iff the second
Stiefel-Whitney class ws(M) = 0. Furthermore, if there does exist a spin structure on M, then the set of all
spin-structures on M is in bijective correspondence with H*(M,Z,).

Proof: Let SO(n) % P — M be the principal SO(n) bundle as above, and consider the Serre spectral sequence
of this fibration with Zs coefficients. Then:

EY? = HP(M,HY(SO(n),Zs)) = HPTI(P, Zs)
Note that we have the exact sequence:
0— ES' - ES' B E20 5 E20 50

since dy : B, 22 Eg 1 and ds ES’O — E§’71 are zero maps, the spectral sequence being first quadrant. For
the same reason, d, : Eg’l — EI’Q*T and d, : ETQ’0 — Ey421_, are zero maps for » > 3, and so Eg’l = Eg(;l
and Eg,o = E20. Since

B = FO(HY(P, L))/ F' (H' (P, L))
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and FO(H'(E,Zy)) = H'(E,Zs), we have a natural quotient map H'(E,Z;) — E%' = Ey'. Noting that
EYY = HO(M,H' (SO(n),Zy)) = H'(SO(n),Zsy) and E;° = H2(M, H*(SO(n),Z3)) = H?(M,Zs), we have
the exact sequence:

HY(P,Zs) 5 HY(SO(n), Zo) > HA(M, Zy) (42)

The first map is * by applying the functoriality of the Serre spectral sequence to the inclusion of a point into
M, and called an “edge homomorphism”. The image (1) of the generator 1 € H'(SO(n),Zs) = Zs is the
Stiefel-Whitney class wa(M). Also, ker d = Im i* by exactness of (42).

M has a spin structure iff there is a double cover P % P which makes the diagram of Definition 13.3.1
commute.

Double covers of P are in 1-1 correspondence with index 2 subgroups of 71 (P), which is in bijective correspon-
dence with homgz (7 (P), Zs). But this last group is precisely H'(P,Zs). Hence p is an element of H'(P,Zy).
Since the diagram of Definition 13.3.1 commutes, the restriction of the double cover p : P — M to a point
x € M must correspond to the nontrivial double-cover p, : Spin(n) — SO(n). Now the double cover p,; is rep-
resented by the unique generating element 1 € homg(71(SO(n)), Zs) = HY(SO(n), Zs) = Z. By functoriality,
it follows that i*(p) = 1. Now, there exists such a p € H'(P,Zs) satisfying i*(p) = 1 iff §(1) = we(M) = 0, by
the exactness of the sequence (42). This proves that M has a spin structure iff wy(M) = 0, and the first part
of the proposition follows.

From the previous para, it also follows that spin structures on M are in 1-1 correspondence with the inverse
image (i*)"1(1) € HY(P,Z2), where 1 € H}(SO(n), Z2) = Zs is the generator. But (i*)~*(1) is the set-theoretic
complement of (i*)~1(0) = ker i* in H' (P, Z,), and has the same cardinality as keri*. We claim that this kernel
is isomorphic to H'(M, Zs).

Consider the tail-end of the homotopy exact sequence of the fibration SO(n) — P — M, we have:
™ (SO(n)) 2 m (P) 5 m (M) — 1

so that taking homz(—,Zs) of this sequence, and noting homgz(m (X),Zs) = H'(X,Zs) by Hurewicz and
Universal Coefficient Theorems, we have the exact sequence:

0 — HY(M,Zs) — HY(P,Zy) 5 H'(SO(n), Zs)

This shows that keri* ~ H'(M, Zs), and the proposition is proved. O

Corollary 13.3.3. Every 2-connected Riemannian manifold is an orientable spin manifold.

Example 13.3.4 (Real projective spaces). The real projective space RP(n) is spin iff n =3 mod 4. It is well
known that T(RP(n)) @ €' ~ (y1*)"*!, where «! is the tautological line bundle on RP(n), and €' the trivial
line bundle. Thus the total Steifel-Whitney class of RP(n) is given by

w(RE(n)) = (1 + o)
where x € HY(RP(n), Z,) is the generator, and the first Stiefel-Whitney class of y1*. So

1
(”‘; )nxQ

Now RP(n) is orientable iff n = 2k + 1, and in this event wo(RP(n)) = (k + 1)(2k + 1)x2. This is zero iff k is
odd, ie. iff n =22m+1)+1=4m + 3.

wa(RP(n)) =
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Example 13.3.5 (Complex projective spaces). The complex projective space CP(n) is spin iff n is odd. For,
there is again the equivalence of complex vector bundles:
T(CP(n)) @ e¢ =~ (v' )"+

where ! is the complex tautological line bundle on CP(n). Thus the total Chern class of CP(n) is given by

e(CB(n)) = (1 + )™
where © € H?(CP(n),Z) is the generator, and the first Chern class of v *. This shows that the first Chern
class

c1(CP(n)) = (n+ 1)z
It is a fact that wy of a complex vector bundle considered as a real bundle is the mod 2 reduction of its first
Chern class. Hence wo(CP(n)) = 0 iff (n 4 1) is even, i.e. iff n is odd.

Exercise 13.3.6. Using the identity 7(G(R™)) ~ hom(+*,+*), and arguments similar to the ones above,
investigate which real grassmannians are spin. Likewise for complex grassmannians.

14. REPRESENTATIONS

14.1. Clifford Modules. Let V be a real inner product space with positive definite inner product (—,—).
Let CI(V') be the corresponding Clifford algebra.

Definition 14.1.1. Let F = R or C. We say that an F-vector space S is an F-Clifford module if there is a
unital R- algebra homomorphism:
p: Cl(V) — homg(S,.S)

Example 14.1.2. Letting S = CI(V), and letting p(z)y = x.y (left Clifford multiplication by z) or p(z)y =
y.x* (right Clifford multiplication by «*) turns CL(V) into an R- Clifford module. These are called the left
(resp. right) regular representations.

A very important R-Clifford module over C1(V) is the exterior algebra A*V. To describe it, we let {e;}?;

be an orthonormal basis of V' with respect to (—, —). We also have the R-linear Hodge-star operator
w0 AF(V) — AR (V)
which is defined on the basis elements of A¥(V) by:
k(e Neiy Ao Ney ) =(—1)%;, Nejyo. Nej,
where {i1,...,9, j1, -, Jn—k} = {1,2,..,n}, and (—1)7 is the sign of the permutation o = (i1 42 ..., j1, -+, Jn—k)-
We note that with this definition,
a8 = {a,)wy

where w,, = e; A..Ae, € A"(V) is the oriented volume element of V', and («, §) is the canonical inner product
on A*(V) induced by (—, —) on V (it is the inner product which makes {e;, Ae,.... Ae;, } an orthonormal basis
for A¥(V)). Tt is readily checked that this inner product on A*(V) and the oriented volume element wy do not

depend on the choice of orthonormal basis, and hence the x-operator is invariantly defined. It is easily checked
that the square * o * is scalar multiplication by (—1)*("=%) on AF(V).

Definition 14.1.3 (Interior multiplication). For v € V., and a € A*(V'), define the element:
voa= (=1)" " (x(v A xa)) € AFTHV)
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Lemma 14.1.4. Interior multiplication above satisfies the following;:
(i): (vAa,B) = (a,vaf) for a € A¥(V), g€ AFL(V), and v € V.
(ii): The composite:

AR(V) B AR (V) B AR2(V)
is zero.
(iii): For a vector v € V, and a € AF(V), we have:
vA(vaa)+va(vAa)=(v,v)a

Proof: By the discussion on the x-operator, we have
WAha,Bwy = (WAa)Ax8= (=D arvAxp
= (“D)F(D) PR A (x) (0 A B) = (=1)a A x[x(v A %6)]
= (SR A k(0 8) = a0 B) wr
which proves (i). Thus interior multiplication v (=) is the adjoint to v A (=) with respect to (—, —) on A*(V).

Since v A (v A @) = 0, the adjoint formula (i) implies (ii).

We note that for the basis vector ey, and an element § € A* such that 8 does not involve e; anywhere,
e1a [ is orthogonal to all 4 not involving e, since {e113,7) = (B,e1 Ay) = 0. Further (e;18,e1 Avy) =
(B,e1 Nep Avy) = 0. Tt follows that e; 18 = 0, if 8 does not involve e;. On the other hand ey i(e; Ay) = v
for all v not involving e;, as is easily checked again by taking inner products of both sides with various 7,
and using (i). Now, for a general a € A¥(V), write & = v + e; A 8, where 3 and v do not involve e;. Then
et Na=-e; Av. Also ejaa = (3. Hence

er1a(er Aa)+eAleraa)=eja(er Ay)+erAB=v+er A =a
Since any unit vector v can be completed to an orthonormal basis, the above formula is true for all unit vectors
v € V. For a general v, apply this formula to ﬁ, and (iii) follows. |

Proposition 14.1.5. The exterior algebra A*(V') is an R-Clifford module over CI(V'). The action is uniquely
determined by the action of v € V' C Cl(V), and that in turn is given by:

vaa=vAa—via for ae A" (V)

Finally, the action of v € V above is skew-symmetric with respect to the natural inner-product (—,—) on

A*(V).

Proof: We define the action:
v.a:=vANa—vix

To extend this action to all of CI(V'), by the universal property of Clifford algebras, we need to check that

via =vw.a = —(v,v)a for all @ € A*(V). However:

vva = vAwAa—via)—vi(vAa—via)
= —vA(vua)—vi(vAa)=—{(v,v)a
by using (ii) and (iii) of the previous Lemma 14.1.4.
Finally, by using (i) of the previous Lemma 14.1.4, we have
(v, By = (vAa,fB) — (vaa, B) = (a,va ) — (a,v A B) = — (a, v.0)

which shows that the action of v € V' is skew symmetric with respect to (—, —). Hence the proposition. O
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Exercise 14.1.6. Show that:
k

va(wy Awg A ... Awyg) = Z(fl)i (v, wi) wy Aws A .. W;... A wg,
i=1

where the hat denotes omission. (Simplest to just use a basis, or the adjointness formula (v A a, 8) = {a, v20)
in (i) of 14.1.4.)

Lemma 14.1.7. The representation of CI(V) on A*(V) above has the following further properties:

(i): The map
c:Cl(V) —= A" (V)
z — xl
is an R-vector space isomorphism, called the symbol map. For a multiindex I = (i1 < ig < ... < ig), we

have o (e, €i,..€5,) = €y A€y Ao N, .

(ii): The inverse of o is the R-linear map ¢ : A*(V) — CI(V) called the quantisation map. It obeys
C(Gil A Ciqy A A eik) =ey.

(iii): The representation above complexifies to a representation:
Cl(V):=Cl(V)@r C—= AL (V) = A" (V) @r C = A" (V)
and the symbol and quantisation maps extend to the complexifications.

(iv): [Action of the volume element] Give R™ its usual euclidean inner product and denote the corresponding
Clifford algebra CI(R™) as Cl,,. Let w,, = e;...e,, be the volume element of Cl,,. Then:

(a): wpv + vw, = 0 for n even and w,v = wvw, for n odd and all v € R™. Hence, for n odd, w,
commutes with everything and is a central element in Cl,,. For n even, w, commutes with CI% and
anticommutes with CI}.

(b): w2 = (—1)? where p = [2EL], the integral part of 2F1. Hence w? = —1 for n = 1,2 mod 4 and
w?2=1forn=0,3 mod 4.

(c): The action of w, on A*(V) is related to the Hodge-star operator by:

k(k—1)

w.p=(=1)""T"2 xp for ¢ e AF(V)

(v): [Chirality element] In the complexification Cl,, = CL,, ®g C, define the complex volume element or
chirality element:

1
T i= (V=1)Pw, where p= {n;— }

the box brackets denoting the greatest integer part. By (b) of (iv) above
72 =1 for all n

Since w,, is central for all n =1 mod 2, we have 7, is central for all n =1 mod 2. 7, is related to the
Hodge-star operator by:
Tp.§ = PREnth—1) ¢ for ¢ € Aé(R")

In particular, if n = 4m and k = 2m, we have 7,¢ = *¢. (Chirality coincides with Hodge-star on middle
dimension for n = 4m).
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Proof: Note that, denoting the CI(V') action with a dot, we have:
ei.l=e; N1 —e;ul=¢; for 1€ AO(V)
and so for I = (i1 < iz < ... < iy), it follows that:
erl = e€,..ei.1 = (€€, )i, = (€i,€in--Cir_y)-(€ip_y N i, — €ip_,JEi,)
= (€4,€ip--€ip_y)(€ip_y N€i) = e =€y Neiy Ao Ny,
because e;1(e;, Aej, A..ej, ) =0if I # j; for all 4. This proves (i).

(ii) follows immediately from (i), since ¢ = o~!. ¢ is called the quantisation map because all supercom-

mutators are 0 in A*(V'), but not in Cl(V'), and ¢ puts a “non- supercommuting” algebra structure on the
supercommutative algebra A* (V).

(iii) is obvious from definitions.

For (iv), note that for any n, e;e; + e;e; = 24;; implies that

eiWwn = (71)"*1wnei

so we have (a) of (iv). We also have:

wi = Wy_1EnWn_16n = (—1)”_1w721716i = (—1)”(0,2171

2 _ 2 92 2 2 _ 2 _
So that Wi 4 = Wi 3 = Wi = ~Wip 1 = Wi, = ---wy = 1, and (b) follows.

To see (c) of (iv), note that if e; = e;,..¢;, € Cl,, and J is any multi-index with J = {1,2,..,n} \ I, then
erey = (—1)°w, where o is the permutation

g = (i17 Z.27 "'7j17 "ajn—k)
k(k+1)

Also note that efe;f = (—1)~ 2z . Now by (a)
wper = (—1)k("_1)el.wn = (—1)k("_1)+‘7616161

=~ (C1)e ] = (<)

[(=1)7e,]
Now apply both sides to 1 € A° to get (c).

(v) follows immediately from the definition of 7,, and (iv). When n = 4m, p = [21] = 2m, and for k = 2m
the exponent
p+k(2n+k—1)=2m+2m(m+2m—1) =16m?* +4m =0 mod 4

so that PR +E=1) = 1 and 74,,¢ = x¢ for ¢ € AZ™(R™). This proves the lemma. a

Corollary 14.1.8. If W is a R-Clifford module over Cl,, and n = 0,3 mod 4, then W = W+ ® W™~ as an
R-vector space, where W+ = (1 + w,,)W is the (41)-eigenspace of the volume element action w,.( ). If n = 3
mod 4, the centrality of w,, ensures that W= are both R-Clifford submodules of W. If n =0 mod 4, then W=+
are R-modules over C19.

Analogously, since 72 = 1, every C-Clifford module W over Cl,, splits into (+1)-eigenspaces W= of the
chirality element 7, for all n, both being C-subspaces. Again, if n = 3 mod 4, 7, is central, and W¥ are
C-Clifford submodules. If n =0 mod 4, the subspaces W+ are modules over Ccio.

Proof: Obvious from (b) of (iv) and (v) of the Lemma 14.1.7 above. When n = 0 mod 4, we note that wy,
(resp. T,) anticommutes with all v € V, and hence commutes with C1°. Thus W¥ is a R (resp. C) module
over C19. a

Definition 14.1.9. Let F = R or C. We will say that an F-Clifford module over CI(V) is irreducible if the
only F- Clifford submodules of S are S and {0}.
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Remark 14.1.10. If n = 3 mod 4, then for an irreducible R (resp. C)-Clifford module W over Cl,, the
volume element w,, (resp. chirality 7,,) either acts as +1 (viz. W = W) or as —1 (viz. W =W ™), and W
and W~ (if both exist) are distinct irreducible modules. This is obvious because of the Corollary 14.1.8 which
asserts that W+ are F-Clifford submodules of W when n = 3 mod 4, by the centrality of w,, (resp. 7,). Also,
since Cl,, module equivalence will preserve the sign of wy,.( ) (resp. 7,.( )), it follows that modules on which
these operators act as +1 are not isomorphic to those on which they act by —1.

Lemma 14.1.11 (Complete reducibility of Clifford modules). Every F-Clifford module is a direct sum of ir-
reducible F-Clifford submodules.

Proof: We define the Clifford group in CI(V) to be the group:
Fn::{iejﬁ I=(i1<i2<...<ik);0§k§n}

which is of order 21, For example, I'y is the Hamilton group {+1, +i, 47, +k}. Denote the element —1 € T,
by v. If we let R[T,,] denote the real group algebra over I',,, we have a surjective R- algebra homomorphism:

p: R[] — CI(V)
er +— er
v — -1

Thus there is a 1-1 correspondence between F-modules over C1(V) and F-modules over R[I',,] on which the
element v acts as —1. So let S be a F-module over CI(V). Then, via p, S is a F-module over the algebra
R[T,], i.e. a F-module over the Clifford group T',,. By averaging over the finite group T',, there alway exists
a I'j-invariant positive definite real (if F = R), resp. complex sesquilinear (if F = C) inner product (—, —).
on the F-module S. Thus every I';, F-submodule will have a I',,-invariant orthogonal complement with respect
to (—,—). It follows that S decomposes into the orthogonal direct sum of finitely many irreducible I',, F-
submodules S;. Thus S; are irreducible R[T',,] F-submodules. Since v is acting as —1 on S, it is acting as —1
on each S;, so each S; is a Cl(V) F-submodule. Tt is clearly irreducible over CI(V') since it is irreducible over
R[[,,]. The lemma follows. ]

So it remains to identify what the irreducible C1(V') F- modules are. This will be addressed in the following
proposition.

Proposition 14.1.12. For n =0,1,2 mod 4, there is exactly one irreducible R-module over Cl,. For n = 3
mod 4, there are two distinct irreducible R-modules over Cl,. They are distinguished by the fact that on one
the volume element w,, acts as (+1), and on the other as (—1). The dimensions of these modules are readable
from the following list:

n: 8k+1 8k+2 8k+3 8k+4 8k+5 8k+6 8k+7 8k+8

dn . 24k+1 24k+2 24k+2 24k+3 24k+3 24k+3 24k+3 24k+4

For n = 0 mod 2, there is exactly one irreducible C-module over Cl,,, of C-dimension 2"/2. For n =
mod 2, there are exactly two irreducible C-modules over C1,,, each of C-dimension 2"7. They are distinguished
by the fact that on one the chirality element 7,, acts as (+1) and on the other as (—1).

Proof: We recall the list:
n: 1 2 3 4 5 6 7 8
Cl,: C H HoH H(2) CH4) R(@B) R(B)®R(8) R(16)

and the fact that Cl,45 ~ Cl,, ®g R(16) from the Remark 13.1.5. Also note that by (i) of Exercise 13.1.4,
we have Cl3 = H ® wH, with w? = (e1e2e3)? = 1 and w a central element. This algebra may be rewritten as
(I1+wH® (1 —w)H, where (1 +w)(1 —w) =0, so that Cl3 = H @ H. Note that w(1l £w) = (1 £ w), so that
the two summands in Cl3 are distinguished by the sign of the action of w.
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The corresponding fact is also true of Cl7, though we haven’t computed it thus far. However, assuming
that Clg = R(8), it is easy to check that C19 ~ Clg, by taking ere; — +e; and ey +— ey for all subsets
I,J C {1,2,..,6}. Now it is easy to check that Ci} = wC19, and Cl; = Cl9®wCI? = (1+w)R(8) B (1—w)R(8) ~
R(8) ® R(8). So again, the two summands of Cl; are distinguished by the sign of Clifford multiplicaton by w.

From this list it follows that C1,, is a matrix algebra K(k) over K=R or C or H for n = 1,2,4,5,6,8 and a
sum of two copies of the same matrix algebra K(k) for n = 3,7. Also, since K(k) ®g R(m) = K(mk), it follows
by the 8-periodicity above that Cl,, is a matrix algebra K(k) for n = 0,1,2,4,5,6 mod 8, i.e. n Z3 mod 4,
and a direct sum of two identical matrix algebras K(k) for n = 3,7 mod 8, i.e. n =3 mod 4.

It is well known that the K-matrix algebra K(k) is simple, and has ezactly one irreducible R-module over
it, namely K¥, with the obvious left action by matrix multiplication. The direct sum of two copies of K(k)
has two distinct irreducible modules over it, viz. K* with one action from the first summand, and the other
action from the second summand. Thus by the foregoing, the two irreducible modules for n = 3 mod 4 are
distinguished by the sign of the action of w,, = e;j...e,. Letting d,, denote the R-dimension of these irreducible
modules, we have the following table:

n: 1 2 3 4 5 6 7 8
d,: 2 4 4 8 8 8 8 16

It follows that Cl,4+s = Cl, ® R(16) will have exactly one irreducible R-module for n # 3 mod 4 and two
distinct ones for n = 3 mod 4. The dimensions of these modules are read off from the above table, and the
inductive formula d,, g = 16d,, arising out of periodicity.

Denote an irreducible R-Clifford module over Cl,, as W,,. Then by the remarks above and the list at the
top we have:

n 1 2 3 4 5 6 7 8
W, C H Hy H? C* R® RY§ RIS
where the subscript + on W3 and W7 signifies two distinct irreducible modules, both isomorphic as vector

spaces to the entry in that slot. This implies by the periodicity W, 18 = W,, @ R!® that we have the following
list of irreducible R-Clifford modules W,, over Cl,, whose R-dimension is d,,:

n: 8k+1 8k+2 8k+3 8k+4 8k+5 8k+6 8k+7 8k+8

. 24k’ 24k 24k 24k+1 24k+2 24k+3 24k’+3 24k+4
W,: C H HZ"  H C R RZ R

dn . 24k+1 24k+2 24k+2 24k+3 24k+3 24k+3 24k+3 24k+4

The complex modules are much simpler to describe. Noting that an R- algebra homomorphism:
p: CU(V) = home(W, W)

automatically extends to the complexification CI(V') := Cl(V) ®g C, we see that a C-Clifford module becomes
a Cl(V) module. Noting that C®r C = C @& C, and H®r C = C(2) (see (ii) of Exercise 13.1.4), we get the
following list of complex Clifford algebras from the real list above:

n: 1 2 3 4 5 6 7 8
Cl,: CaC C(2) C2)®C(2) CH4) CHa®C@H) C(@B) C@B®C(@B C(16)
which means we have:
Cl, = C@2"eC(@2*) for 1<n=2k+1<8
= C(2% for 1<n=2k<8
Note that for n = 3,7, the two summands in Cl,, are distinguished by the sign of multiplication by the central
volume element w,. Note also that the chirality elements (see definition in (v) of Lemma 14.1.7) are given by

73 = —ws and 77 = wy. Hence, for n = 3,7, the two summands in Cl,, are distinguished by the sign of the
action of multiplication by the chirality 7,,.
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Since R(16) ®r C = C(16), it follows that
Clyys = Clyys @r C=Cl, ®r R(16) ®r C = Cl,, ®r C(16) = Cl,, ®r (C ®c C(16))
(Cl, ®r C) ®c C(16) = Cl,, ®¢ C(16)

Thus there is exactly one irreducible C-Clifford module over Cl,, when n is even, and two inequivalent
irreducible C- Clifford modules over Cl,, when n is odd. Again, when n is odd, the two inequivalent modules
are distinguished by the sign of the action of the chirality 7,.

Combining the two facts above, we obtain:
Cl, = (C(2nT71) GB(C(Q%) for m=1 mod 2
= C(2%) for n=0 mod 2

Since the matrix algebra C(k) is simple, there is exactly one irreducible C-module over it, viz. C* with the
obvious action by matrix multiplication. Similarly, over the direct sum algebra C(k) & C(k), there are exactly
two irreducible ones (each isomorphic as a C-vector space to (Ck), coming from the action of the two distinct
summands. As noted above, the two summands are distinguished by the sign of the chirality oeprator 7,,. This
proves the proposition. O

Remark 14.1.13. Note that from the proposition above, since d, < 2" for all n > 3, it follows that the
R-Clifford module A*(R™) of dimension 2™ described in Proposition 14.1.5 is irreducible iff n = 1 or n = 2.
For the same reason the left and right regular representations of Cl,, on itself is irreducible iff n =1 or 2.

To further analyse the real and complex representations of Cl,,, we introduce the notion of a graded Clifford
module. That is,

Definition 14.1.14. Say that W is a Zy-graded F-Clifford module over Ci(V') (or a CI(V') F-supermodule) if
W =W%@ W', with W* as F-vector subspaces satisfying:

CIH(VYWI € W* where k=1i+j mod 2
A C-supermodule over CI(V) can be naturally regarded as a CI(V) := Cl(V) ®g C C-supermodule.

Example 14.1.15. If we regard C1(V) = CI°(V)®CI* (V) as a module over itself via left regular representation
(or right regular multiplication), it becomes a CI(V') supermodule. Analogously, the decomposition CI(V) =
ClL(V)? @ CI(V)! makes CI(V) a C-supermodule over CI(V') via left or right regular representation.

Example 14.1.16 (The exterior algebra again). We noted in Proposition 14.1.5 that the exterior algebra
A*(V) is a CI(V) module. Hence the summands A¢(V) = &7 A% (V) = CI°V.1 and A°(V) = &7 (A? (V) =
CI'(V).1 gives A*(V) the structure of a CI(V)-supermodule, by considering the foregoing example.

In entirely analogous fashion, A% (V) := A*(V) @r C becomes a CI(V') supermodule via the decomposition
AL(V) = AL (V) @ AZ(V) into even and odd degree forms.

Example 14.1.17. Let n = 0 or n = 3 mod 4. By the Corollary 14.1.8 the left R-Clifford module CIi,,
decomposes into the (+1) and (—1) eigenspaces of w,. We denote this decomposition as:
Cl, = CIt @ Cl, where CIE:=(1+w,)Cl, and n=4m,4m+3

This is a different Zo grading from the earlier C1° @ CI' grading. Indeed, for n = 4m + 3, the element
(1 4+ wyma3) is in ClF, but not in CI° or CI}, since 1 € CI° and wyy,3 € CI*. Similarly, for n = 4m, the
element (1 — wy,,) € Cl~ but not in C1*.

When n = 4m, we have e;way, = —wame; for all i, and so awsy, = —wama for all a € C1', and away, = wama
for all @ € CI°. Thus, for n = 4m, we have that Cly,, = C’li‘m@C’lZm is a Clyy, R-supermodule. (Unfortunately,
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the corresponding fact is untrue for n = 4m + 3 since wy, 3 is central, so CI' preserves both CIt and CI~
instead of interchanging them). However, the above grading on Cly,, has some bearing on CI(R*"*1)  as we
shall see soon.

Example 14.1.18 (Signature grading). Let V = R*" and consider the R-Clifford module A*(R*™) over
Clyy,. By the previous example, Cly,, = Clf, & Cl},, becomes a Cly,, supermodule via action of left Clifford
multiplication, the decomposition being determined by the sign of multiplication by wy,,. Since A*(R*™) =
Clyy, .1, it follows that:

A*(R4m) —_ A+(R4m) DA~ (R4m)
where A*(R*™) := CIE 1. This makes A*(R*™) a Cly,, supermodule, by the previous example. Similar
considerations apply to A%(R*™) which becomes a Cly,, C-supermodule via the grading:

AL(RY™) = AZ(R™) @ Az (R*™)
This last grading is called the signature grading because the Clifford action of 74, coincides with the Hodge-star
operator in the middle dimension AZ™, by the last statement in (v) of Lemma 14.1.7.

It is helpful to have an explicit model for the complex Clifford modules. This is the content of the next
proposition.

Proposition 14.1.19 (The irreducible complex Cls,,, modules). Let V = R?™ with the usual euclidean inner
product (—, —). Extend this inner product by complex linearity to (—, —) on the complexification Vo =V Qg
C = C?™ (i.e. this inner product is not positive definite on V¢, being C-linear in both variables). Let P be the
complex subspace of V¢ defined by:

P :=C —span{es;_1 —ieg; : 1 < j <m}

Then set S = A*(P), a C-vector space with dim¢ S = 2™. Then S = St @ S~ is a Cly,, C-supermodule which
is irreducible. ST are the +1-eigenspaces with respect to the (non-central) chirality element 75,,, and turn out
to be ST = AP and S~ = A°P. Finally:

Clam = Clay ®g C = home(S, S)

Proof: First note that V¢, being a complexification, comes with the natural complex conjugation v @\ — v @ X
for v € V. Also, P is a real-form of V¢, i.e.
Ve=PoP
where P denotes the complex conjugation of P inside V. Now we claim that the subspace P is isotropic, i.e.
(v,wy =0 for all v,w € P. For,
<€2j,1 — i62j762k,1 — i62k> = <€2j,1,62k,1> + i2 <62j,€2k> = 0jk — 5jk: =0 forall 1 S j S m

Now define a basis of P by:
1 . .
fi= —5(egj1 —ieg;) 1<j<m

V2

so that
(fj>fr) = %(@2]‘71,621@71) + (e2j, €21)) = %(5]‘1@ +0jk) = djk
which shows that {f;} is a basis of P which is dual to the basis {f;} of P. This identifies P with the complex
dual P*.
Define the action of P on A*P by
vogd:=vV2uA¢ for ve P, g€ AP
Note that (vo(vo¢)) =2(wAvA@)=0= (v,v)¢ for all v € P, and ¢ € A*P.

Define the action of P* on S = A*P by duality:
(o g, ) =~ (pvot) = —V2(,v AY)) = —V2 (v, )
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Hence setting vo¢ = —v/2v_¢ defines an action of P* = P on A* P, which also satisfies vo(v0¢) = 0 = — (v, 7) ¢.

Now, we need to verify the Clifford relations. We have already seen that f; o fio ¢ =0 = (f;, fi) ¢ for all 4.
Also fiofjop+ fiofiod=2(fi Nfj+ fi Nfi)Np=0=—=2(f;, f;)¢. Similar relations hold for f,’s. We
just need to check the mixed relations, viz.,

fro(fiod)+fjo(frod) = =2fu A(fja0) —2fj:(fx A o)

= —(eap—1 —ieax) A [(e2j—1 — ieg;) 9] — (e2j—1 — iea;) A [(€ar—1 — i€ar)1¢)]
= —lean—1Negj_1a+ezj1 Neap_11] ) — [ean Negja+ ez Aeapa] d
+ dilean Aegj_1a+egj1 Neapa| o +ileaj Aeap_1a+ eap_1 Aegja| @
= —(eak—1,€2j-1) ¢ — (e2j, e21) ¢ = —20050 = =2 (fi, [;) &
since the relation (iii) in Lemma 14.1.4 implies that (v A wig + w A vag) = (v, w) ¢. Similarly one checks for

kaij(é

This shows that the action “o” makes A*P a Cl(V¢) = CI(V) C-module. This module, call it S, is irreducible,
because its complex dimension is the complex dimension of A*P, i.e. 2™. In the second part of Proposition
14.1.12, we saw that the dimension of the unique Cls,, Clifford C-module is 2™. Hence this must be that
module, provided we check that the action is not trivial, and that is obvious.

We also recall that 72,, = 1, and this module A* P will split into the (+1)-eigenspaces AT P of the chirality
element To,,. Since 7o, anticommutes with all v € V¢, T2, commutes with CI3,, and anticommutes with C13,,,.
Hence CI9,, o A*P ¢ A*P and Cl},, o A*P C ATP. In other words, the grading A*P = ATP @ A~ P makes

2m 2m

A*P a C- supermodule over Cly,,. That is S = ST @ S~ with S* := A*P.

It is also useful to identify AT™P and A~ P explicitly. To compute the action of the chirality element To,,,
first note that

Fif; =27 (egj—1 —ieg;)(egj—1 +iez;) = 271 (=1 — 1 + 2ieyj_1e95) = (—1 +ieg;_1€2;)

and similarly ?jfj =—-1- 7;62.]‘_162]' it follows that Z'egj_legj = %(f]?] - ?jfj)’ so that

m

Tom = 1" (€162)(€2€3).C2m—1€2p = 27" H (fj?j - 7jfj)
j=1
Write a k-form ¢ € AFP as
p=ar+ NG

where a; and 3; are independent of fi. Then f; 0 ¢ = v2fi Aay, and f; 0 = —v2f13(f1 A1) = —V251.
Thus:

fio(fiog)=—2fis(fi Nar) = =2
and
fio(fio¢)=—=2fiAB
Thus
(fif1 = Fifi)(an + fi A Br) = 2(ar = f1 A Br)

Identical formulae hold for f; and ?j, so that we have the following consequence for a decomposable form

¢: f[ = fi1 /\fi2 /\"'/\fik:

(fj?j—fjfj)fl = —2f; whenever j €1
(fif; =T 2fr whenever j &I

It follows that 7o,, o fi = 27™.2™(=1)*(+1)™ " f; = (=1)¥f;. Hence 7o, acts as (—1)* on A*P. Thus
ST =ATP=APand S~ =A"P=A°P.
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Finally, consider the map:
p:Cla,, — home(S,5)
x = xzo()
Note that:
home(S,S5) = (A*P)"@A*P=A"P*QA*P
AMP@ANP=A(P@P)=A(V)

Both sides have complex dimension 22", and it is easy to check that p has no kernel (exercise!). This proves
that p is an isomorphism and the proposition follows. a

By a magical occurrence, the graded pieces of the unique irreducible Cls,, supermodule S above are the two
distinct irreducible modules over Cly,,,_1. More precisely:

Corollary 14.1.20 (Irreducible C-modules over Cla,,—1). There is an isomorphism C19 ; ~ Cl,, of R-algebras
which complexifies to an isomorphism CI9 41 = Cl,,. If we consider the graded pieces S* of the irreducible
Cly,, C-supermodule S of the previous Proposition 14.1.19, we have that ST are both C-modules over CI3, .
Under the isomorphism above, they are C-modules over Cly,,_;. Their complex dimensions are 2!, and
they are precisely the two distinct irreducible C-modules over Cla,, 1.

Proof: The map f : R" — CI9_; is defined by ¢; — ejenqq for i =1,2,..,n. Now f(e;)? = (ejent1)? = —1,
and for i # j

f(ei)f(ej) + f(ej)f(ez) = €;€n1+1€j€n41 + €j€nt1€i€nt1 = €,€5 + €€, = 0
So by the universal property of Clifford algebras, it extends to a R- algebra homomorphism CI,, — C1° T
It is an isomorphism because it is clearly injective and both sides have the same dimension. Likewise for the
complexifications.

Note that under the isomorphism f : Clg,,_1 — CI3,,, we have for the chirality element:

f(Tmel) = imf(eLnemel) = im(€162m)(€2€2m)~~(€2m7262m)(€2m7162m)
= (=)™ Yimerea(eam)?esea(eam)? .., €2m—3€2m—2(€2m)? (€2m—1€2m)
(=)™ H(=1)"" ey ey = i e1€9...Com = Tom

Hence the module S+ over CI3,, becomes a module over Cly,, _; via the isomorphism f, and since f(72,,_1) =
Tom, it follows that 7o,,,—1 acts as +1 on ST. Similarly, 79,1 acts as (—1) on S™. Since dim¢ S = 2™, and
dime S* = %dimc S = 2m=1 it follows that ST are the two inequivalent Cls,,_1 irreducible C-modules. The
corollary follows. m]

Notation: Let us denote the two distinct irreducible Cla,,—; C-modules by Si. _; and S, _;, both of complex
dimension 2™~1. Let us denote the unique irreducible Cls,,, C-module (which is a supermodule) by Sa,,, of
complex dimension 2™. We note by the Corollary 14.1.20 that the graded pieces Szim (both of complex
dimension 2™~1) are precisely S2im71 as C-vector spaces, and their module structure over CI3,, is precisely
their module structure over Cls,,_1 under the identification Cly,,_1 ~ (Clgm.

14.2. Complex spin representations. We first note that since Spin(n) C Cl,, C Cl,, any Cl,, C-module
will give a C-module over Spin(n) by restricting the action, because the group mutiplication on Spin(n) is the
Clifford multiplication in Cl,,. A similar remark applies to Pin(n), but they are of less concern to us here.

Proposition 14.2.1. On the spinor group Spin(2m), there are two inequivalent irreducible C-modules (=com-
plex representations). They are denoted by AQim, and are distinguished by the sign of the chirality element
i™way, (Where wa, resides in Spin(2m)). Both are of complex dimension 27!, and are called the half-spin
representations. They do not descend to SO(2m).

On the spinor group Spin(2m — 1), there is exactly one irreducible C-module, of dimension 2™~ and is
denoted Agy,—1. It does not descend to SO(2m — 1).
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Proof: First note that wa,, € CI3,,, and since it is a product of unit vectors e;, lies in Pin(2m). Thus
wam € Spin(2m), and for a C-module over Spin(2m), the action of i ws,,, makes sense. Now, by the Proposition
14.1.19, there is the unique C-supermodule Ss,, over Cls,,, with graded pieces Szim. Both of these graded
pieces are C-modules over CI9,,. Hence both are modules over Spin(2m) C Ci3,,. Call them AY . They
are distinguished by the sign of the chirality action i™wa,, (or i™p(wam,) to be more precise, where p is the
representation on Sa,, ).

It is clear that CI3,, is generated as an algebra by elements of Spin(2m) (indeed all elements e; with | I |
even are in Spin(2m)), it follows that if these modules AL ~are reducible as Spin(2m) modules, they will be
reducible as Cl9,, modules. That is SQim will be reducible as Cls,,—1 modules. But we have seen in Corollary
14.1.20 that they are precisely the two irreducible Cly,,—; modules. Thus AQim are both irreducible C-modules
over Spin(2m). Their dimensions are given by:

dime Af, = dime S5, = 2™~}
It is also clear from the construction of the C-supermodule S = A*P over Cls,, in Proposition 14.1.19 that

—1 € Cly,, acts as (—Idg) on S, and hence (—1) € Spin(2m) acts as —Id on both S5, , so neither representation
AF descends to SO(2m).

2m

For the odd spin representations, we start out with the two distinct irreducible C-modules Si, ; over
Cl3y,—1. This time around, the volume element ws,, 1 is of odd parity, and lives in Cl%m_l. Hence wa,,—1 does
not live in Spin(2m — 1). Hence the action of Spin(2m — 1) is completely determined by the action of C13,,

+
on S5, .

We claim that the action of CI3,, , is identical on both the irreducibles Sy, . Indeed if we let o, : Cl,, —
Cl,, be the involution defined by extending the map v — (—v) of V = R™ to Cl,,, we have CI9 (resp. Cl,, is the
(+1) (resp. (—1))-eigenspace of a,. Since way,_1 € Cl3, ., it follows that ag.;,_1(wom_1) = —wam_1. Hence
Qom—1 interchanges the +1 and —1 eigenspaces of 79,1 on Cly,,_1, and so interchanges (ClQim_l, the two
summands of Cla,,—1. Thus CI3,,_; is the diagonal subalgebra in the direct sum Cly,,—1 = Cl3,,_, ®Cly,, ; =
C(2m~1) @ C(2m1). Hence the two distinct irreducible modules C2" ', coming from the action of each matrix
algebra summand, will receive the same action from the diagonal CI3,, ;. Hence the claim.

So we may define Ag,,,_1 to be either S, | or Sy, | (it doesn’t matter which) with Spin(2m — 1) action
being the restriction of the Cly,,,_1 action. The proofs of the other statements are similar to the even case
above. O

14.3. Inner products, orthogonality and unitarity.

Definition 14.3.1. Let W be an R-module (resp. C-module) over CI(V'), and let (—, —) be a positive definite
inner product (resp. positive definite hermitian inner product) on W. (We are using a different symbol to
distinguish it from the euclidean inner product {(—,—) on V with respect to which the Clifford algebra CI(V)
is defined.) We say that W is a self-adjoint module over CI(V) if

(z.v,w) = (—1)4 (v, 2*w) for all v,w € W, 2 homogeneous € CI(V)
where * is the anti-isomorphism defined in Definition 13.1.6. This is clearly equivalent to
(ev,w) = —(v,ew) forall eeV, v,weW.

i.e. the Clifford action of vectors should be skew-adjoint with respect to (—, —).

Example 14.3.2. By the last remark above, the second part of Proposition 14.1.5 implies that the action of
Cl(V) on A*(V) is self-adjoint, with the inner product (—, —) on A*(V) being the natural inner product (—, —),
induced by the one on V.
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Example 14.3.3. We recall the construction of the unique irreducible C-supermodule Ss,,, over Cla,, (equiv-
alently Cls,,) in Proposition 14.1.19. Recall that Vo = P @ P, where V = R?>™. We already have the
complexification (—,—) on A*(V¢) of the real inner product (—,—) on A*(V) (alluded to in the foregoing
example). This is an inner product on A*(Vg) = A*(V) ® C which is complex linear in both slots. This
inner-product satisfies:

(@MY@ u)=(p@N\YRMI) = ($, ) A\ = (p, V) Mp = (¢ @ X\, ¥ @ p) for all ¢,9p € A*(V)
that is,

(p, ) = <$, E> for all ¢,9 € A*(Vg) =A"(V)®C (43)

We have the complex conjugation P — P, which maps A*P — A* P inside A*(V¢). So define a hermitian inner
product on Sa,,, = A*P by:

(¢,9) = (¢,9) for ¢, € A*P
For e € V C Vi, we have e = €. Let ¢ = wy A wa... ANwg, € A*P, with w; € P. Then, by Exercise 14.1.6:

e = (W AT AW) = Y (—1) (e, W;) (W1 AW ATy A .. AT
= Z(_l)l<évwz> (wl /\w2~~/\ﬂ)\i/\.../\wk) :@

%

using e = € and the equation (43) above. Now, using the definition of the Clifford action in Proposition 14.1.19
and (i) of Lemma 14.1.4, we compute:

(eah,d) = V2(e N, d) = V2 (1h,e20) = V2 (1h,e10) = —(1, e.0)

which shows that Clifford multiplication by elements of V' is skew- adjoint with respect to this hermitian inner
product (—, —), and hence the module Ss,, is self-adjoint over Cla,.

Exercise 14.3.4. Are the irreducible modules SQim_1 self- adjoint as Clifford modules over Clo,, 1 7
Here is an important property of self-adjoint Clifford modules.

Proposition 14.3.5. Let W be a self-adjoint R-module (resp. C- module) over Cl, with respect to the
positive definite real (resp. positive definite hermitian) inner product. Then if we consider W as a module over
Spin(n) C Cl,, the resulting representation

p : Spin(n) — GL(W)

is orthogonal (resp. unitary).

Proof: From (iii) of the Proposition 13.2.2, we have g € Spin(n) implies deg g = 0 and g*g = 1, so that by
self adjointness of W,

(9w, gws) = (w1, g"gws) = (w1, ws) for g € Spin(n), w; € W

which proves the proposition. O

Corollary 14.3.6. The representation of Spin(n) on A*(R™) is a (special) orthogonal representation. The two

complex half-spin representations AL of Spin(2m) are unitary representations.
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14.4. Decomposition formulae for Spin(2m) representations. We would now like to relate the left
Spin(2n) module Cls,,, the left Spin(2m) module A% (R*™), as well as the lifted representations of SO(2m)
modules A% (R?™) and its SO(2m)-submodules A&, A2, A(:CIE etc., with the irreducible half-spin representations
AL constructed in the Proposition 14.2.1.

2m

Proposition 14.4.1.

(i): Cousider Cly,, as a left module over itself, by left multiplication. Then Cls,, decomposes into 2™
irreducible Clg,,-modules V, where ¢ = (€1, €a, .., €,,) with each ¢, = £1. Each V. is isomorphic to the
unique irreducible supermodule Ss,, as a Clg,,-module. V. further decomposes into the two complex
subspaces V.* via the chirality left action of 7o,,, so that V* ~ S5 .

(ii): Consider Cly,, as a Spin(2m) complex module by the restricted left Clifford multiplication action from
Clam. Then as a Spin(2m) module we have Cly,, = 2mA} @ 2" A7, where AT are isomorphic to the

€

distinct irreducible half-spin representations AQim respectively, as Spin(2m) modules.

(iii): The complex exterior algebra A%(R*™) considered as a Cly,, module as in Proposition 14.1.5 has a
decomposition into irreducibles analogous to (i) over Cls,,, and a decomposition analogous to (ii) above,
as a Spin(2m) module.

Proof: Consider the elements of Cls,, defined by:

Qj = 1€25-1€25 ] = 1,2,...,m

Then it easily follows that:
(a) ajo = ooy forall 1<k j<m
(b) af=1 forall 1<j<m

Now consider the right-multiplication action of a;; on Cla,,. By (a) and (b) above, Cl,, breaks up into
simultaneous eigenspaces V., where a;; acts by €; on V, and €; = +1 or —1. Since right and left multiplication
commute, each V, is a left Cly,,-submodule of Cls,, under left action. Noting that

€2j_10j = i€gj_1€25 1€ = —i€g; 1€2;€2j 1 = —Q2;€2;j_1

it follows that right multiplication by ez;_; will map V. isomorphically to Vs as a Cla,,-module where 6; =€
for k # j and eg = —¢;. Thus all the V¢ are isomorphic to V(11 11, 4+1) as Clay,-modules. Thus dime Ve =
2%” dim¢ Cls,,, = 2™. It follows for reasons of dimension that each V. is irreducible and V. ~ Sy, as a left

Cls,,-module.

Thus V. = V. @ V", where V.* are the (41)-eigenspaces of left multiplication by chirality 7s,,. Clearly
VE o~ Sgim as Cl9,,- modules.

Now (ii) is clear by setting AX = V* with Spin(2m) action being restriction of CI3,, action and the
Proposition 14.2.1.

(iii) follows by noting that A%(R?*™) = Clay,.1 where 1 € A2(R*™). The proposition follows. ]

Definition 14.4.2 (Some Cls,,-bimodules). We note that Cls,, has both a left Clg,,-module structure by
left multiplication, and a right Cls,,,-module structure by right multiplication, which can be thought of as
a left module structure by z.z := zz*. Hence Cly,, may be thought of as a Cls,, ® Cls,, left-module, viz.
(x ®y)oz:=2x.2.y*. Such a thing is called a Cla,,-bimodule.

Now we recall the algebra isomorphism:

Cl2m — hom(C(SQm7 SQm)

from Proposition 14.1.19. On the right side, we can again produce two Cls,,-module structures. Namely
(z.T)(w) := 2T (w) for x € Cly,, and w € Sa,y,, and also (zoT)(w) = T(z*w) for x € Cly, and w € Soy,,. This
is again a Cly,, bimodule structure, or left Cla,,, ® Cly,,-module structure given by (z @ y) o T = «T'(y*—).
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We now have the following proposition:

Proposition 14.4.3. The isomorphism Cly,, ~ homc(S2,, Som) is an isomorphism of Cly,, ® Cls,, modules
(i.e. Clg,,-bimodules). In particular, by restricting to the diagonal subalgebra Cly,, C Cla,, ® Cla,,, we have
that the adjoint action of Cla,, on itself is the same as the adjoint action of Cla,, on home(Sa,;, ® Sa,,) by
T :=aT.(z*-).

Proof: We note that Cly,, = C(2™) as an algebra, and so Cla,, ® Cly,, = C(2™) @ C(2™) = C(2?™). But
C(22™) is precisely Cly,,. Thus a Cla,, ® Cla, left-module structure (or Cla,,-bimodule structure) is precisely
a left Cly,,-module structure. Since dim¢ Cly,, = 22™ = dime(S2m, Som), and both of these Cly,, modules
are non-trivial, it follows that both modules are isomorphic as Cls,,-modules to the unique irreducible Cly,,-
module Sy,,,. That is, they are isomorphic as Cls,, ® Cls,,-modules, proving the first assertion. The second
assertion clearly follows from the first. O

Now we can consider the lifted modules from SO(2m). That is, let
p : Spin(2m) — SO(2m)
be the 2-covering defined in the Proposition 13.2.2. Then the modules A% (R?™) is a natural SO(2m) module
by the action which is defined on decomposables in A* by :
g-(v1 Avg Ao Avg) = (gur A gua... A gug)

Clearly this action preserves AZ” and AZ. Also it is easily checked that this action preserves the volume element
e1 Aeg A ... A ey, as well as the positive definite inner product (—, —) on AL(R?™), so it commutes with the
Hodge-star operator . Hence A% are also SO(2m) submodules of A%(R*™). Thus for W being any of these
SO(2m)-modules, the composite map:

Spin(2m) % SO(2m) — home (W, W)
makes W into a “lifted” Spin(2m)-module.

Proposition 14.4.4 (Decomposition of lifted Spin(2m)-modules). We have the following identities:

(i): The lifted Spin(2m) module AL(R?™) is isomorphic to Cls,, (with adjoint action of Spin(2m)) as
a Spin(2m)-module. It is isomorphic to Ag,, ® Agy,, (where Spin(2m) acts by tensor product action
(z.(v®w)) = 2v ® zw). That is, the lifted module A%(R?*™) has a “square root” Agy,.

(ii): The isomorphism in (i) above maps the Spin(2m)-submodule Al (resp. Ag) of the lifted module
A% (R?*™) isomorphically to the Spin(2m)-submodule A3, ® Aoy, (resp. A, @ A) of Aoy @ Agyy,.

(iii): The isomorphism of (i) above maps the lifted Spin(2m)-submodule A& of A%(R?™) isomorphically to
the submodule ((—1)™ A3, @A )& ((—1)™A;,, @A) of Agy ®Agyy,. Similarly, it maps the submodule
A isomorphically to ((—1)™A3, ® A5, ) & ((—1)™AS,, ® AS,,) of Agp @ A,

Proof: We note that for the C-basis element e;, A €;,... A €;, of AL(R*™), the lifted action of z € Spin(2m) is
given by:

x.(e5y A eiye Ny ) i= pl)e, Ap(x)e, Ao Ap(x)e;, = xe;,x™ Azej,x”... AN xe;, x*
Now, under the C-vector space isomorphism of “quantisation” (see (ii) of Proposition 14.1.7) identifying
AL(R?*™) with Clayy, the element on the right goes to

xej, r¥xe, v xe;, " = x(e; €4y, )T
which is precisely the adjoint action of Cla,, on itself. Hence the lifted Spin(2m) module A%(R?*™) is isomorphic
to Clay, with adjoint Spin(2m) action.

We have seen in the second assertion of the Proposition 14.4.3 above that the Cls,,-module Cls,, with adjoint
action is isomorphic to the Clg,,-module home (Sa,, S2m) (also with adjoint action of Cly,,.) Restricting both
modules to Spin(2m) shows that Cls,, with adjoint action is isomorphic to homg(Agy,, Agy) = Agy, @ AL
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as a Spin(2m) module. We can identify the contragredient module A} with the right action by z* (= z~1)
with the left-module Ay, with left action by . This proves (i).

We know that the chirality element 7o, commutes with all elements in CI9,,, and hence 7o, (zyz*) =
z(remy)x* for z € ClY,,, and in particular x € Spin(2m). Also 73, = 1 implies that the splitting of Cla,, as
a lifted Spin(2m) module into (+1)-eigenspaces ClE, makes ClE, into Spin(2m)-submodules. So we need to
know the (41)-eigenspaces of Ag,,, ® As,, under left multiplication by 7o,,. By the Proposition 14.4.3, this is
just the action 7o, (2 ® ¥) = Tomx ® y. Thus the splitting is AQim ® Agp. So (CZQim = AQim ® Agy,. Using the

isomorphism of A%(R?™) with Cla,,, we get (ii).

For (iii), note that the conjugation action of ws,, satisfies

* * 2m _
Wom €iWs,, = —€iWamWws, = —(—1)""e; = —e;

which shows that p(wam,) acts as +1 on ey with I of even cardinality and (—1) on I of odd cardinality. Under
the identification of A%(R?™) with Cla,y, by (i), we find that AZ is the submodule corresponding to (+1)-
eigenspace of p(way,), and A2 the (—1)- eigenspace of p(way,). So it remains to identify, in view of (i), the
+1-eigenspaces of the operator wa,, ® woy, on Ag, ® As,. Note that since ws,, commutes with (Clgm, it
commutes with all of Spin(2m), and so these +1-eigenspaces are Spin(2m)- submodules of A% (R*™).

Since imway, = Tom, we have way, Q@ way = (—1)" 7oy @ Topm,. Using the notation (fl)mA;'m = A;‘m for
m even, and A, for m odd, (and a similar notation for (—1)™A,, ) we find that the +1-eigenspace (resp.
(-1)-eigenspace) of wa,, @way, is clearly ((—1)™AS @ AS Y& ((—1)"AL, ®A;,,) (tesp. ((—1)™AS, @A) ®

m

((=1)™A3,, ® AF ). This proves (iii) and the proposition follows. ]

m

There is a fact about the “derived” adjoint action we shall need later on:

Proposition 14.4.5. The vector subspace spanned by {e;e; : ¢ < j} inside the real Clifford algebra CL(V) is
denoted by C%(V) (Recalling the quantisation map c of (ii) in Proposition 14.1.7, C*(V) = ¢(A%(V)). Then

(i): C?(V) is a Lie algebra under the commutator [z,y] = zy — yx in CI(V).
(ii): The map 7 : C%(V) — s0(V) defined by 7(a)v = [a, v] is an isomorphism of Lie algebras.

(iii): Define the exponential map of C(V) by:

expo: C(V) — C(V)

x? zF
T 1+$+a+...+m+...
Then exp(C?(V)) = Spin(V).
Proof: By directly using e? = —1 and e;e; = —eje; we compute:
leiej ener] = 0 if i<y, k<, {i,j}n{k, 1} =¢ or (i,7) = (k1)

= 2ee ifi<j=k<lI
= 2e¢ ifi=k, j#£I

which shows that C?(V) is a Lie algebra and (i) follows.

Note also that
leiej, ex] = —2e for i<j=k
= 2 for k=i<j
= 0 for k#£i, k#j

This clearly shows that 7(e;e;) for ¢ < j preserves V' = spang{e;}, and hence maps to gl(V'). Since 7(e;e;) =
2(Ej; — Eij), (E;j being the matrix with 1 in the (ij)- spot and zeros elsewhere), and since the combinations
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the set {(Ej; — E;;) : i < j} constitutes a basis of so(V), it follows that 7 is a vector space isomorphism. That
it is a Lie algebra isomorphism follows easily from the fact that

[7(2), 7(W)]v = 7(2)([y, v]) — 7(W) ([, v]) = [, [y, v]] = [y, [z, v]] == =[v, [2,y]] = 7([z, y])v

by the Jacobi identity. This proves (ii).

In the course of proving (v) of Proposition 13.2.2, we found that exps(te;e;) = cos t.1+sin t(e;e;) for ¢ # j,
and consequently Lie(Spin(V')) was precisely C?(V). Now the exponential of C?(V) is going to be a connected
Lie- subgroup G C C1*, and of dimension @ Also its Lie algebra is C?(V). Since a connected compact

Lie group is precisely the exponential of its Lie algebra, it follows that G = exp~ V = Spin(V), and (iii) follows.

There is another crucial proposition which allows us to recover any Cls,,-supermodule as a tensor product
with the irreducible Cls,, supermodule So,.

Proposition 14.4.6. Let W be any Cly,,-module with chirality grading W=*. Then there exists a C-vector
space V such that W ~ S5, ®c V as a Cly,,-supermodule. This V' is uniquely determined by W, and is called
the twisting space for the supermodule W.

Proof: In the statement, we are treating V as an ungraded C-vector space, and equipping Sa,,, @c V' with the
obvious left Cla,,-module structure defined by. z.(s ® v) = xs ® v. The supermodule structure on Sy, @c V
is defined by (Sam ®c V)? := S5, @ V and (Sa;, @c V) := S5, @ V (chirality grading). That this is a left
Clay,-supermodule structure on Sy, @c V follows from the corresponding fact about So,,.

Consider the functor F from the category C of finite dimensional Cls,,-supermodules to itself, defined by
W +— Sapm ®c homgy,,, (Sam, W). Here homgy,,, (Sam, W) is the ungraded C-vector space of Cly,,-module
morphisms of Sy, — W, and the tensor product Sa,, ®c homgy,,, (S2m, W) is made into a Cla,,-supermodule
as in the last paragraph. There is the natural transformation of functors ¢ : F — Id¢ defined by

Gw : F(W) = Sam @c hom(Som, W) — W
s@T w T(s)

Note that both functors F and Idc are additive with respect to direct sums in C. Also, on an irreducible Cla,,-
supermodule W, we have homgy,, (Som, W) ~ Cow, where ¢w : Sa,, — W is the unique Cla,,-supermodule
isomorphism between Ss,, — W, since Cls,, has a unique irreducible module Ss,,, and the only Cls,,-module
maps between these finite dimensional irreducibles are {Aw }rec (these statements follow from the Schur
lemma). Thus the natural transformation of functors F — Idc is a natural equivalence on the full subcategory
of irreducibles.

By Lemma 14.1.11 asserting complete reducibility of all Cls,,,-modules, and the additivity of both functors
F and Idg, it follows that ¢y is a natural equivalence of functors on all of C. Also, the isomorphism ¢y :
F(W) — W is explicitly given by s @ T'— T'(w), by the definition of ¢y . |

Example 14.4.7. For instance, we saw in Proposition 14.4.3 that as a left Cla,,-module, Cla,,, ~ homc (S2m, Som)-
This last module may be rewritten as Sa,, ®cS5,,, so that the twisting space in this case is S5,,. By the Proposi-
tion 14.4.6 above, there follows the curious fact that homgy,,, (S2m, Clay,) ~ S5, = home (Sam, C) as a C-vector
space.
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14.5. Supertraces. A useful book-keeping device, which walks the bridge between an index and a trace, is
the supertrace.

Definition 14.5.1. Let W be a Cls,,,-module. Recall the chirality element 7o, € Cls,, defined by i"wa,,.

Give W the Zy-grading W+ = (+£1)- eigenspace of To,,, which is the same grading as in its supermodule
structure over Cla,,,. We have seen that CIS, W+ C W* since mo,,(av) = ato,,(v) for all v € W,a € CI3,,.
Similarly, Cl3, W* C WT, since mo,(av) = —ato,v for all v € W,a € Cl3,,. For a € Cly,, consider the
endomorphism a.(—) of W, and define the supertrace

stry (a) = try (roma) = trypra —try-a if a € CI1Y,,
= 0if acCl},

+
2m>»

Toma acts as (—a) : WT — W~

The formulas on the right for homogeneous elements in CI3,, or Ci3, follow from the fact that for a € CI
Toma acts as a : W — W™, and as (—a) : W~ — W~ whereas for a € CI
and a: W~ — W7, and is “off-diagonal”.

2m>
Note that for any Cls,,-module W, the supertrace stryy gives a linear functional on Cls,,.

The following lemma characterises all supertraces on Cla,,. We define T : A%(R*™) — C be the projection
into the top degree forms (as a multiple of wa,,). Also recall the symbol map o : Cla,,, — AL(R?*™)

Lemma 14.5.2. Let W be any Cls,,-module. If ¢ : Cls,, — C is any linear functional which vanishes on all
supercommutators in Cly,,, then ¢ = A(stry) for some A € C. Finally:

stry (a) = (=)™ (dime W)(T o o(a))

Proof: Recall that the grading on the module W is given by the (41)-eigenspaces of 7,,, viz. W*. Since 7o,
commutes with CI3,, and anticommutes with CI3,,, it follows that this grading makes W a supermodule. The
supercommutator of a,b € Cly,, was defined in Definition 13.1.7. Since stryy is linear, it suffices to show that
stry vanishes on supercommutators of homogeneous elements. If a € CI9,, (resp. b € Cl3, ), we can write it
as a block-matrix in the W+ @ W~ decomposition as:

a= at 0 res b= 0 o
Lo a P P= et o
Now if a € Cl9,, and b € Cl3,,, then the supercommutator [a,b]s € Cl3,,, and will have supertrace 0, by the

definitions above. Similarly for a € Cli,, and b € CI3,,. So assume both a,b € CI3,,, or both a,b € Cl3,,.
Then, in the first case, [a,b]s = ab — ba, which has the block matrix expression:

ot = (77 i)

which implies stryy[a,b]s = tryy+([at,bT]) — tryy- (Ja=,07]) = 0. In the second case, when both a,b € Cl3,,,
then [a, b]s = ab + ba, which has the matrix expression:

(0,5, = a"bt +b at 0
@0l = 0 ath™ +bTa”
so that:

strwla,bls = tryp+(a b +b7at) —try-(aThT +bTa7)

= trys(a b)) —tryp—(bTa”) +trype (b7 at) —tryy-(aTh7) =0
noting that both W* and W~ are isomorphic as C-vector spaces. (Left action by any e; interchanges W+ and
W=

Thus
stry[a,bls =0 for all a,b € Clyy,
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Define Cj, := Zf:o c(AE(R?™)). That is, Cy is the subspace of Cly,, spanned by all basis elements e; with
|[I| < k. We now claim that Csp,—1 C [Clay, Clay]s. For if eg is any basis element with |I| < 2m — 1, then
there exists a j such that j ¢ I. Letting |I| = k, we compute:

lej.ejer]s = eler — (~1)tHVeiere; = —ep — (—1)2k+1€]€§ = —2e;

which shows that every ey with |I| < 2m—1 is a supercommutator, and the claim follows. Hence the supertrace
satisfies str (Copm—1) = 0. Since the quotient Clay, /Cap—1 ~ C is one dimensional, it follows that stry descends
to this 1-dimensional quotient.

Since stryy o, = tr(13,) = dim W # 0, it follows that the supertrace stry gives an isomorphism of
Clam /Com—1 — C. Tt also follows, since stry is not the zero map, that the dimension of Cla,,/[Clay,, Clay,]s
cannot be zero, and since it is < dimg¢ Cla;, /Com—1 = 1, must be 1. Thus [Clay,, Clay] = Com—1-

The second assertion of the statement is now clear, since any linear functional annihilating all supercommu-
tators descends to the 1-dimensional space Cla,, /[Clay,, Clap]s-

Now note that T'o o : Cly,, — C is a linear functional on Cls,,, and annihilates Cs,,_1, since ker T' =
Zi§2m71 A? = 0(Cyy,—1). Hence it annihilates [Cla,,, Cla,,]s, and by the last para T o o and stry are scalar
multiples of each other on Cls,,. Indeed, by evaluating both on 79,,, we saw that

st (Tam ) = trw (74,) = dim W

whereas T o 0(T2y,) = i™. This implies that stryy = (dim W)(—4i)™ (T o ). The lemma follows. O

Corollary 14.5.3. The proof above showed that Ca;,—1 = [Clam, Clapm]s-

15. CLIFFORD BUNDLES AND DIRAC OPERATORS

From now on, let M be a compact oriented Riemannian manifold of dimension 2m. Pso — M will denote
its oriented orthonormal frame bundle, with structure group SO(2m).

15.1. Clifford bundles, Clifford modules and the Spinor bundle.

Definition 15.1.1. The Clifford bundle of M is the complex vector bundle 7 : CI(M) — M whose fibre at
x € M is the complex Clifford algebra CI(T; M), where T:¥(M) is given the real positive definite inner product
(—,—), from the Riemannian metric induced on the cotangent bundle. It can be viewed as the associated
vector bundle:

Pso X 50(2m) CUR®™)

where SO(2m) has the obvious action on CI(R*™*) (defined by e} +— ff := g.e} for g € SO(2m), where e} is
an orthonormal basis for R*™*).

Since the vector bundle A& (T*M) — M is the associated bundle:
Pso X so@m) A (R*™) — M
and the symbol map o and quantisation map ¢ are SO(2m)- equivariant, we get global vector bundle maps:
0:Cl(M)— AL(T*M)

called the symbol map of M, and
c: AL(T*M) — Cl(M)
called the quantisation map of M.
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Remark 15.1.2. We note that the action of SO(2n) on Clg,, is the descended action from the Spin(2m)
action on Cla,, by conjugation. Hence the fibre of CI(M) is the module Ag,, ® Ag,y,, by (i) of Proposition
14.4.4.

In the light of the Proposition 14.4.6, it is desirable to have a bundle A — M on M with the fibre As,, (or
what is the same thing, Sb,,), so that any bundle of Clifford modules on M (such as A, A%, AZ, AZ) can be
written as a tensor product A ®¢ V', where V is a twisting bundle.

Unfortunately, this cannot be done unless we assume a Spin(2m) structure on M, because the representation
Ao, of Spin(2m) (or for that matter the representation Ss,, of Cly,,) does not descend to a representation of
SO(2m). Hence there is no way to start with the principal bundle Pso and get an associated bundle with fibre
A2m or S2m.

Definition 15.1.3. Let M be a Riemannian oriented manifold of dimension 2m, and assume it has a spin
structure. Let Py, — M denote the principal Spin(2m)-bundle over M, (see Definition 13.3.1). Then consider
the associated complex vector bundle of rank 2™:

Pspin X Spin(2m) Agpm — M

where Ao, = A;rm @ A;,, is the irreducible Cla,, supermodule Sa,, with restricted action of Spin(2m), and

A%tm are the two irreducible half-spin representations (see Proposition 14.2.1). This is called the spin bundle

over M, and denoted S(M) — M. It is the direct sum of the half spin bundles ST(M) — M, which are
analogously defined as the associated rank 2™~! complex vector bundles:

+
Pspin XSpin(2m) A2m — M

respectively.

Proposition 15.1.4. We have the following facts about the spin bundles:

(i): There exists a bundle map ¢ : Ci(M) ®c S(M) — S(M) called Clifford multiplication whose restriction
to fibres is the natural map CI(T*M,) ® Som,z — Sam, defining the CI(T*M,)-module structure on
Som.z. For notational simplicity, we denote c(a,v) as a.v. Finally CI°(M).8*(M) — S*(M) and
CI*(M).S* (M) — ST(M).

(ii): The spin bundle S(M) — M is a hermitian vector bundle with a natural hermitian metric (—, —). The
direct sum decomposition S(M) = ST (M) & S~ (M) is orthogonal with respect to (—, —).

(iii): The Clifford action defined in (i) above is self-adjoint in the sense of Definition 14.3.1. In particular,
we have:
(ap.v,w) = —(v,ajw) for ay € Ty(M), viwe S(M),

Proof: First note that if we let Spin(2m) act by conjugation on Cla,, (call this representation 7), then
p(—1) = p(+1), and so T = p o p where p : Spin(2m) — SO(2m) is the double covering homomorphism, and
is the representation of SO(2m) on Clg,, described in Definition 15.1.1. Thus
Psp'in X Clgm = Lspin Xp SO(2m) XH Cl2m = PSO XN (Clgm = (CZ(M)
Now, there is the map defining Clifford module action on So,,:
(Clzm ®(C SZm - SQm

which is Spin(2m)-equivariant (since g(z ® v) = grg* ® gv — gxg*.gv = g.v). Hence there is a natural map of
vector bundles:

(Rspin X7 ClQm) ® (Pepzn XSpin(zm) SQm) - Pspin XSpin(zm) S2m
i.e. a bundle map CI(M) ® S(M) — S(M). Tt clearly restricts on fibres to what we claimed, by its definition.
Also the last statement of (i) follows since S, is a Clg,,- supermodule. This proves (i).

For (ii), construct the metric on each fibre by taking the hermitian metric (—, —) constructed on So,
in the Example 14.3.3. This makes the representation of Spin(2m) on Ss,, = Asg,, unitary, by Proposition
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14.3.5. Hence the associated bundle Psp;y, XSpin(2m) Som is a hermitian vector bundle. Also note that since
way, € Spin(2m), we have wo,v = i~ Muv = i for v € S;m, and wo,w = i Mrow = —i”™w for
w € S,,,. Thus, by the unitarity of Spin(2m) action on Ss,,, we have:

(v, W) = (Womv,wamw) = (i~ v, —i” "w) = —i” " (=) " (v,w) = —(v,w)

which implies (v,w) = 0 for v € S5, and w € S,,,. Then (ii) follows, because the representation of Spin(2m)
on Say, is unitary.

(iii) is a direct consequence of the Example 14.3.3, which showed that Sa,, is a self-adjoint Cla,, module
with respect to (—, —). O

Now we are ready to abstract all the facts proved above into a definition.

Definition 15.1.5. Let £ — M be complex vector bundle over an oriented Riemannian manifold of dimension
2m, with a hermitian metric (—, —). Say that this bundle is a Clifford module over M if:

(i): There is a (—, —)-orthogonal decomposition £ = £* & £~ into two complex sub-bundles.

(ii): There is a vector bundle Clifford multiplication or Clifford action map:
c:CM)®E— &
such that for each point , the restriction ¢, : CI(Ty M) ® €, — &, gives &, the structure of a CI(T*M)

supermodule, with graded pieces Ef. (In particular, the ranks of £ and £~ are equal, and £ is a bundle
of even rank).

(iii): The action of the Clifford algebra CI(T; M) on &, is self-adjoint with respect to the hermitian inner
product (—, —) on &,.

Example 15.1.6. Clearly, for M a spin manifold of dimension 2m, the spin bundle S(M) — M is a Clifford
module over M, by Proposition 15.1.4

Example 15.1.7. Let M be an oriented Riemannian manifold, not ncessarily spin. The complexified exterior
algebra bundle AL (T*)(M) — M is a Clifford module over M. For, we define the Clifford action fibre by fibre
as the action which extends the action:

Tr(M)QAL(T*M) — AL(T*M)
a®¢ — alAo—aip
That this extends to an action of CI(T}M) is the content of Proposition 14.1.5. One makes the natural
hermitian extension of the Riemannian inner product (—, —) on the real exterior algebra A*(T*M), setting

(¢ @ X\, @ u) = (¢,) A, and appeals to the last part of Proposition 14.1.5 to show that the Clifford action
is self-adjoint.

As expected, there are two possible gradings £* available on this bundle £ = AE(T*M). There is the global
volume element wyy € C*°(M,CI(M)), given in a coordinate chart U of = by war o = e1(z).e2(z)....eam ()
where {e;} is a local orthonormal frame for 7*M on U (this definition is independent of coordinate charts,
indeed wys corresponds to the Riemannian volume form on M under the symbol isomorphism). Similarly, there
is the global chirality element Ty := i way.

The first grading then is the even-odd grading, in which the graded pieces AZ” and A2 come from the
pointwise action of conjugation by war, € Spin(2m) C CI(M), (see the proof of (iii) in Proposition 14.4.4.
Another example comes from taking the graded pieces A(ér and A corresponding to the +1 eigenspaces of
imTRE=Dx (or pointwise left action by Tas ., if we identify Cla,, with A%).
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Example 15.1.8. The Clifford bundle of M, viz CI(M) — M is a Clifford module, with Clifford action being
left multiplication.

Note also that the Clifford bundle CI(M) has two possible Zs-gradings as a Clifford bundle (see Example
14.1.17, both of which equip the typical fibre CI(M), with the structure of a Ci(T)-supermodule. The obvious
is the chirality Zs-grading CI(M)* which corresponds under the symbol isomorphism to the decomposition
A(jct fo the exterior algebra bundle (see previous Example). This grading coincides with the chirality coming
from left multiplication by 7p;. On the other hand, there is the parity Zo-grading CI(M) = CI°(M) & CI* (M)

(corresponding to AZ” and A2 under symbol isomorphism), which comes from conjugation by way.

Here is the reason for introducing the spin bundle S(M) — M

Proposition 15.1.9. Let M be an oriented spin manifold of dimension 2m, and let S(M) — M be the spin
bundle on it. Then, for any Clifford module W — M on M, there is a hermitian complex twisting vector bundle
YV — M such that W ~ S(M) ®c V. Note that this isomorphism is an isomorphism of Clifford modules on M,
i.e. the graded structure and hermitian structure is also preserved.

Proof: Define the bundle V = homc;(ar) (S(M), W) and appeal to Proposition 14.4.6. That the Clifford action
matches follows from that proposition, because the map of vector spaces:
qu 1 Som Kc hom@lzm(SQm, W) - W
sT — T(s)

being an isomorphism of Cla,,-modules, is in particular Spin(2m) equivariant. Thus it globalises to a vector
bundle isomorphism ¢y .

Recall the hermitian metric (—, —)s on Sa,,, which was defined in Proposition 15.1.4. We just need to
put a bundle metric (—, —)y on V so that when the tensor product S(M) ®c V is equipped with the tensor
product hermitian metric (—, —)s ® (—, —)y, the Clifford module isomorphism ¢y, is an isometry with the
given hermitian metric (—, =)y on W.

We note that for a vector space V with any hermitian inner product (—,—)y on it, the tensor product
hermitian inner product on Ss,,, ® V, defined by:

(s®5,t®T)s,,.0v = (s,t)s(S,T)v

automatically obeys self-adjointness with respect to Clifford action, because the Clifford action is self-adjoint
with respect to the natural metric (—, —)gs on Ss,,, by the Example 14.3.3.

We note that if W is an irreducible Cla,,-module with a positive definite hermitian inner-product (—, —)w
with respect to which the Cls,, action is self-adjoint, then we claim that this self-adjointness property determines
(—, —)w uniquely upto a non-zero complex scalar. For if (—, —)’ is another hermitian inner-product with respect
to which the Cly,, action is self-adjoint, then we have a C-linear isomorphism A : W — W such that:

(w1, w2)" = (Awy,we)w for all wy,wy € W
Also for ¢ € Cly,,, we have
(cAwy, we)w = (—1)38 ¢(Awy, c*wy) = (—1)38 (w1, ¢*ws)' = (cwy, wy) = (Acwy), wo)w

Thus A : W — W is a map of Cla,,-modules, and by irreducibility of W, must be a scalar (Schur Lemma),
and since A is an isomorphism, the scalar must be non-zero.

If W is irreducible, and ¢w : Sz, — W is an isomorphism of Cls,,-modules, it follows that there is a scalar
aw #0
aw (w1, we)w = (qb;vl(wl),qb;vl(wg))s for all wy,wo € W
or equivalently
(s,t)s = aw(dw(s), pw(t))w for all s,t € Sop,
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Note that ay gets determined by the equation:

2’7YL 2’7YL
trgivdw = Y _(dwei, dwedw = oyt Y (i, ei)s = ayt2"
i=1 i=1
where {e;} is an orthonormal basis of S, with respect to (—, —)s.

Now let S = Apw and T = pdw € V = homgy,,, (Som, W) = Cow. Define the hermitian inner product on
V given by:

(T, S)v = ayyt N = 27 ™ tr(py dw )N = 27 "tr S*T

Then we have:

(s@8,t®T)sy0v = (5,8)s(9,T)v = aw(dw(s), dw(t))way A\i
(Apw (s), pow (t)w = (S(s), T(t))w

which shows that the isomorphism Ss,, ® V — W given by s ® S — S(s) is an isometry.

For a general W, break it into irreducibles W;, and note that V' = homcy,,, (Sam, W) = @;V;, and equip each
summand V; := homgy,, (S2m, W;) with the hermitian inner product above. To globalise to Clifford modules W
is obvious, since the inner product (7,5) = 27"tr S*T' (the normalised Hilbert-Schmidt norm) is invariantly
defined, independent of frames.

Od

Example 15.1.10. Let M be a spin manifold, with the spin bundle S(M) — M, and its half-spin sub-bundles
ST(M) — M. Then, as a direct consequence of the module identities of Proposition 14.4.4, and the fact that
the isomorphisms there are isomorphisms of Spin(2m)-modules (i.e. Spin(2m)-equivariant isomorphisms), there
are the following bundle identities of associated vector bundles, indeed, of Clifford modules:

(i): CUM) ~ AL(T*M) ~ S(M) @ S(M).
(il): AZ (M) ~ SF(M) @ S(M).

(iii): AL (M) = (—1)"S+(M) @ ST(M) @ (~1)"S~ (M) ® S~ (M) and
Ag(M) = (-1)"mSH (M) © S~ (M) & (=1)"S™ (M) ® S*(M).

Remark 15.1.11.

(i): Note that the identity (i) above says that the spin bundle S(M) is in some sense the “square-root”
bundle of the exterior algebra (or Clifford) bundle on M, if M is a spin manifold.

(ii): The chirality grading on S(M)®S(M) comes from left action of 7as on the first factor, and predictably
leads to the grading CI(M)¥ discussed in (ii) of Example 15.1.8. The other grading, which also restricts
fibrewise to a CI(T; M)-supermodule structure corresponds to the parity or CI°, CI*(M) grading (coming
from conjugation by wys, see Example 15.1.8 above), and has no simple relation to the chirality grading,
as is evidenced by the complicated formula in (iii) of Example 15.1.10 above.
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15.2. Clifford connections.

Definition 15.2.1 (Levi-Civita connection). If M is an oriented Riemannian manifold of dimension 2m, there
is an SO(2m)-connection on the principal SO(2m) bundle Pso — M. This means that:

(i): There is a s0(2m)-valued 1-form [w;;] € A'(P)®s0(2m) := C°(AY(T*P)®s0(2m)). This merely means
that [w;;] is a 2m X 2m skew-symmetric matrix of 1-forms w;; on P.

(ii): If we think of Pso has having right SO(2m)-action, then the matrix of 1-forms w := [w;;] must satisfy:

* _ -1 _
Ryw=gwg™" = (Adg)w for all g € SO(2m)

(iii): [Torsion-free condition] Let o : U — Psojy be a smooth local section of P over an open set U C M.
For x € U, o(z) is an orthonormal frame at z. So o is a local orthonormal frame field over U, and
can be regarded as a (2m)-row vector of 1-forms o = (01, ..,02y,), with 0; »(X) = X; where X; the i-th
component of X € T, M in the frame o(z). Then we require the following identity of 2-forms on U:

do; + Z(U*u)i]’) Noj = 0
J

for each smooth section o : U — Pgojy over U. This connection is called the Levi-Civita connection on
Pso.

Definition 15.2.2 (Covariant differentiation in associated bundles). Let p : SO(2m) — GL¢c(V) be a com-
plex representation of SO(2m) on a complex vector space V. Let V := P x, V be the associated complex
vector bundle. For a connection on Pso — M as above, one gets a covariant differentiation operator for every
open set U C M:

V:C®UYV) = CUTMV)
which is a C-linear map satisfying the Leibnitz Rule:
V(fs)=fVs+df®s forall feC®U), seC®)V)

To define the above covariant differentiation, it is enough to do it on trivialising neighbourhoods U C M for
Pso (and of course check that the definition is independent of trivialisations). If we fix a basis {e;} of the
vector space V', then for each smooth local section o : U — Pgo over a trivialising neighbourhood U C M for
Pso, we get a local framing €; := p(c)e; of the vector bundle V. In view of the Leibnitz Rule, it is enough
to define Ve;, and these are defined by:

Ve = Z/)(U*w)ij ® €;
which is often abbreviated to Ve; := Y w;; ® €;, where w := p(w) is a gl(V)-valued 1-form on U, called the
Cartan connection 1-form. If X € T¥(M) is a (real) tangent vector at z, and s a section of V, we can define;
Vxs:=X.Vs
In a local trivialising neighbourhood we have: Vxe; = >, w;;j(X)e;. We can also define Vx for X a real

tangent vector field on M.

We finally note that if e, — gog(x)e, is a coordinate change on U, NUg for the principal bundle Pso, where
Jop : UaNUg — SO(2m), then if w® and w? are the matrix-valued Cartan 1- forms on U, and Ug respectively,
then there is the transformation formula:

W = Ad(gap)w” + dgaﬁ.g;ﬁl

where the product in the second term on the right is a matrix product.
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Lemma 15.2.3. If the representation p : SO(2m) — V is unitary with respect to a hermitian inner product
(=, —)v on V, the associated bundle V := Pso x, V is a hermitian vector bundle, with hermitian inner product
denoted (—,—). The covariant derivative on V associated to the Levi-Civita connection on Pso is a unitary
connection. It satisfies:

X(s,t) = (Vxs,t)+ (s,Vxt) for s,t € C°(M,V), X e C®(M,TM)

Proof: As noted in Example 15.1.7 above, the hermitian inner product (—, —) on V is defined as follows. Let
[e, ], [/, w] € V,, with e = ¢’g and g € SO(2m). Then define:

([e’v]a [6/, w]) = ([ea U]v [e,p(g)w]) = (Ua p(g)w)y

To check this is well-defined, we choose a different representative [eh =1, p(h)v] for [e,v], with h € SO(2m),
then ¢/ = (eh™1).(hg), and so

(leh™", p(h)ol, ¢/, w]) = (p(R)v, plhg)w)y = (p(h)v, p(R)p(g)w)y = (v, plg)w)y = ([e.v], ¢/, w])

since p(h) is a unitary automorphism of V. This shows the definition of (—, —) is independent or representatives
in the first slot. Similarly for the second slot.

To check the second fact, note that if we start with the (—, —)y-orthonormal frame {e;} for V, and s — o(z).1
a local section on on some trivialising neighbourhood U for Pgo, then the frame {€; .} = {[1, p(o(z))e;]} is
orthonormal in V,, for all x € U (since o(z) € SO(2m) and hence p(o(x)) € U(V)). Hence, for a smooth vector
field X € C>(U), we have:

(Vxein &) + (€, Vxe) = D (pw(X))ick, ) + (@, plw(X))xser))
k

>~ (A0 + (X))
k
= Pw(X))ji + pw(X))ij = 0= X(0i5) = X(€i,€))
since p(w(X));; is skew-hermitian (p : so(2m) — w(V)). Now write a section s € C*(U,V) as s = ), 5;€;
and t € C*(U,V) as t = ), t;¢; for smooth functions s;,t; € C°°(U) and use Leibnitz’s Rule to conclude the
result on U C M, and hence globally. O

Corollary 15.2.4. Let M be a compact oriented Riemannian manifold of dimension 2m. Then all of the
complex vector bundles associated to the principal bundle Pso, namely AL(T*M), CI(M), AL, A2, A(:CIE carry
a natural associated connection or covariant derivative, called the Levi-Civita connection. This Levi-Civita
connection is a unitary connection with respect to the hermitian inner product (—, —) introduced on them as
above (see Example 15.1.7), by the foregoing Lemma 15.2.3.

In the sequel, when we write V or Vx for any of these bundles without any further decorations, it is
understood to mean covariant derivative with respect to the Levi-Civita connection on them.

Remark 15.2.5. There are the following immediate observations:

(i): The volume form w := dV € AZ(M) is covariantly constant, where w = e; Aea A ... Ae, in a local
orthonormal frame {e;} . This is because the Levi-Civita connection is compatible with the extended
hermitian metric on AZT*(M). Indeed, by definition of (—, —) on AL(TF M), we have (w(z),w(x)); =1
for all z € M, and also w = w, since it is a real differential form. So, for any real tangent vector
field X € C*(M,TM), Vxw is also a real differential n-form (i.e. equal to its conjugate). Hence
Vxw = f(z)w for some smooth real valued function f on M. Unitarity of the Levi-Civita connection
gives:

0= X(w(r),w(®)s = (Vxw(x),w(@))e + (w(z), Vxw(r))s = 2f(2)

which implies V xw = 0.
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(ii): We have noted following the Definition 15.1.1 the vector bundle isomorphisms given by the symbol and
quantisation maps between CI(M) and AL(T*M), which arise out of the SO(2m)- equivariant symbol
and quantisation maps of Cla,, and A%(R*™). Since this last map is an isometry between the hermitian
inner products (—, —), on both sides, it follows that the quantisation and symbol maps of bundles are

)

bundle isometries with respect to (—,—). The proof of (i) above can then be repeated verbatim for
Ci(M), to show that Vx(was) =0 and Vx(7ar) = 0, where wyy is the global volume element in CI(M)
and 7); the global chirality element as defined in Example 15.1.7.

(iii): From the fact that the derived representation
p:50(2m) — Ende(AE(R™)
is a derivation, and satisfies:
X)) vy Avg Ao Avg) = Z(U“““ A p(X)vi A .. A o)
one immediately obtains that for X € T,(M):
Vx(wi A e Awg) = Z(wl Ao AV xwi)e. Awy)
i

Analogously, for the Clifford bundle CI(M), we have the derivation formula:
Vx(wl...wk) = Zwl...(vxwi)...wk)

Definition 15.2.6 (Clifford connections). Let £ — M be a Clifford module over M, in the sense of Definition
15.1.5. We say that a connection (i.e. covariant differentiation) V& on & is a Clifford connection if:

(i): (Metric compatibility) It is a unitary connection with respect to the given hermitian inner product
(—,—) on &, and

(ii): (Clifford compatibility) For all smooth sections ¢ of CI(M) and s of £, we have:
V&(e.s) = (Vxe).s +e.Vs

and another way of saying it is that the commutator of the covariant derivative and Clifford multiplication
operators:
£
[V, e. (=) = (Vxe).(-)
where the right hand side denotes Clifford action by the (Levi-Civita) covariant derivative Vxc.

Remark 15.2.7. Note that a Clifford connection as above on £ will preserve £%, if £F are the (£1)-eigenspaces
from left action by the global chirality 7ay € C°°(M,CI(M)). For if s € £ is a smooth section, then by (ii) in
the above definition:

V& (tar.8) = (Vx7ar.s) + s (VE)s = 7ar.(VE s)
since Vx7r = 0 by (ii) of Remark 15.2.5 above. Thus covariant differentiation V4§ commutes with left Clifford
action by 77, and thus maps the (+1)-eigenspaces E* of 1. In particular, it restricts to connections on EF,
and these connections are also Clifford compatible.

Example 15.2.8. Regarding the bundle Ci(M) — M as a Clifford module via left multiplication (with either
the chirality grading CI*, or the parity grading CI°,Ci'), the Levi-Civita connection defined in Corollary
15.2.3 above is a Clifford connection. The property (i) is metric compatible, as remarked there. The Clifford
compatibility comes from the last statement in (iii) of Remark 15.2.5 above. Similarly, the Levi-Civita conection
on all of the other Clifford modules discussed in Corollary 15.2.3 is a Clifford connection.
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Example 15.2.9 (The Spin-connection on S(M)). We recall the spin bundle S(M), and the half-spin bundles
S*, which were introduced in Definition 15.1.3. These are not bundles associated to the principal bundle Pgo,
as we noted earlier. To put a connection on them, we need a connection on the principal Spin(2m)-bundle
Pspin. So assume in this example that M is a compact Riemannian manifold of dimension 2m with a spin
structure, and let Psy;, — M be its principal spin bundle.

In (ii) and (iii) of Proposition 14.4.5, we noted that Lie(Spin(2m)) = C?(V) = spang{e;e; : i < j}. Also we
saw that the map 7 : C%(V) — s0(2m) satisfies:
T(eiej) = 2(E]1 — Ez )
Indeed, this 7 is precisely the derivative p of the map p : Spin(2m) — SO(2m), because

. d d .
pleie;) %n:o(p(eXPC(teiej)) = %‘tzo(p(cos t.1+ sin te;e;))
d i
= Y WNE. —F.-
dtt:OR2t ( JT ’L)

where Réj is the counter-clockwise rotation by 6 in the 2-plane Re; ® Re;, by using the last paragraph in the
proof of (iv) Proposition 13.2.2.

Since po Ry = R y© p i Pspin — Pso, we have:

P« © Rg* = Rp(g)* O Py - T]Dspin — TPSO (44)

p(g

Denote the map z — gzg~! on a Lie group G as Ad%g, and its derivative at 1 € G simply as Adg: g — g

where g := Lie(G) = T1(G). Now, recalling the homomorphism p : Spin(2m) — SO(2m) (also denoted by the
same symbol p, in keeping with the definition of a spin structure), we see that the homomorphism:

po AdSpin(zm)g : Spin(2m) — SO(2m)
is the same as the homomorphism:
Ad®®p(g) o p : Spin(2m) — SO(2m)

for all g € Spin(2m). By equating the derivative at the identity 1 € Spin(2m) of both these maps and noting
that p = Dp(1) = 7, we have:

ToAdg=Ad(p(g))oT (45)

Now define a C?(V)-valued 1-form on Py by:
=71 (p'w)

where w € A'(P,s0(2m)) is the Levi-Civita connection 1-form on Pso, and p : Psin — Pso is the double
covering map. We need to check & satisfies the correct translation property. Using equations (44) and (45),
we have:

Ri5() = B(Rev) = 71 [(70)(Ryev)] = 7 0(paRyev)]
= T w(Ryepe0)] = 7 [ (Rp(py @) (p0)]

= ' Adp(g)[w(p-v)] = Ad(g)T [w(p.v)]
= Ad(9)[(r o) (v)] = Ad()E(v)

This connection form on Pk, is called the spin connection.

If 0 : U = Pypinu is a local section of Py, on a coordinate chart U C M, then o := poo : U — Psojr
will be a local section for Pso. Then

To=115"p'w=1"to"w
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Let o*w be given by the Cartan connection matrix of 1-forms (see Definition 15.2.2) [w;;] on U, so we can

write oc*w = ZK]. wi; By, where w;; are 1-forms on U. Since T*I(Eij) = %eiej, it follows that the Cartan
connection 1-form on U for the spin connection w is given on U by:
e 1
WP =c*w = 3 Zwijeiej (46)
i<j

as an element of C°°(U, C%(V')) where we are making the identification C*(V') = Lie(Spin(2m)).

Now that we have a Spin(2m)-connection on Ps,;,, all associated vector bundles get a connection by the
same procedure as before. That is, if u : Spin(2m) — GL(V) is any representation, and V = Psp,, X, V is
the associated bundle, then giving the Cartan 1-forms on a trivialising coordinate neighbourhood U C M for
Pspin by

wiy = )i
will define covariant differentiation VY on V. Again if the representation is unitary, the bundle will be hermitian,

and 1 : C2(V) — u(n) implies that the connection VY will be compatible with this hermitian metric, i.e. will
be a unitary connection.

Letting V' := Ag,, = Sa,, the complex spin-representation defined in Proposition 14.2.1, we have the
spin-bundle S(M) defined in Definition 15.1.3 as the associated bundle P X, As,,. Here we are denoting this
representation by u, and since we saw in (ii) and (iii) of Proposition 15.1.4 that the representation of Cla,y,
was self-adjoint with respect to the hermitian inner-product of Ay,,, and that this representation is unitary,
viz. p: Spin(2m) — U(Azy,). Since the connection form (W) takes values in u(Agy, ), the spin connection on
S(M) is a unitary connection, and metric compatibility follows by definition.

To check Clifford compatibility, we need compute the commutator of the Cartan coefficients on an open
set U, i.e. the skew-hermitian matrix [wS] = [(w*P);;] and Clifford multiplication by ¢ € CI(M)y. Note
that u : Spin(2m) — U(Ag,,) is the restriction of the Clifford action u : Clays — Ende(Asgy,). Also with the
identification of Lie(Spin(2m)) = C%(V), it follows that:

d(p(expc tz) _d
dt |t:0"u(c) ~ dtj=0

= u([z,c]) for € C*(V),c € Cly,

dexpg tx
—  ,c
[t=0

(ulexpe b, ) = [ D

(), p(c)] =

Now, for a section s € S(M)|y, ¢ a smooth section for CI(M);; and X a smooth real vector-field on U,
where U is a trivialising neighbourhood for Py, we have :
[VX.ds = Vi(cs) —cVis=wS(X)(cs) — cw®(X)s
= wwP(X))u(e)s — ple)(a(w™ (X))s = ([w* (X), u(c)]) s
(4™ (X), cl)s = p(r(@™(X))e)s (b (i) of 14.4.5)
= u ([wSO(X)]c) s=(Vxc).s

which shows Clifford compatibility of the spin connection V.

Thus the spin connection on S(M) is a Clifford connection.

Proposition 15.2.10. Let M be a spin manifold of dimension 2m, and Let ¥V — M be any hermitian complex
vector bundle with the inner-product (—, —)y, and a unitary connection VY on it. Then the tensor product
bundle:

E=8SM)®cV
equipped with the natural Clifford action, and the natural hermitian inner product (—, —)g 1= (=, =)s®(—, — )y
is a Clifford module on M. The tensor product connection V¢ of the spin connection VS and VY is a Clifford
connection on this bundle.
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Proof: The Clifford action is given by:
c(s@v)=cs®uv for ce Ci(M),se S(M),veV

Clearly the supermodule structure is £+ = S*(M) ®¢ V. The tensor product hermitian inner product is given
on decomposable elements by:

(s®v,t@w)g := (s,t)s(v,w)y
Since ST(M) and S~ (M) are orthogonal under (—, —)s, it easily follows that £ and £~ are orthogonal under

(_a _)5~

To check self-adjointness of Clifford action, it is enough to do it on decomposable elements, and for that we
have:

(c.(sQv),t@w)e = (c.sQv,t@w)e = (c.5,t)s(v,w)y = (—1)9%8 (s, c.t)s(v, W)y = (—1)%8 (s @, c.(t@w))e
by the self-adjointness of the Clifford module S(M).

The tensor product connection V¢ is unitary because we again check on decomposable sections that:
(V&(@v),tow)e + (500, VE(t@w))e=(Vis@u+s@ VY, t@w)e+ (s@v,Vit@w+t® VVw)e
= [(V&s.D)s+ (s, VXt)s] (v,w)y + (5,8)s [(VXv, w)y + (v, Viw)y]
(X (s,1)s] (v, w)y + (s, t)s [X (v, w)w] = X((s @ v, T @ w)e)

To check Clifford compatibility, again:
Vile(s @) = Vi(cs®v) = V(cs)@v+es®@ VY= (Vxes+eVis)@v+cs@ Vo
= (Vxes®@v) +c.(Vis®@v + s0VY0) = (Vxe).(s®v) +c.V5(s ®0)
using the Clifford compatibility of VS proved in Example 15.2.9 above. This proves the proposition. |
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Corollary 15.2.11. Let M be a spin manifold of dimension 2m, and let £ — M be a Clifford module (over the
Clifford bundle Ci(M) — M). Then there exists a hermitian complex vector bundle V — M with a compatible
unitary connection VY such that the bundle £ ~ S ® V as Clifford modules over M, and £ becomes a Clifford
module with a Clifford connection given by the tensor-product connection of the spin connection V¢ and VY.
Indeed, every Clifford connection on £ is obtained in this way.

Proof: By the Proposition 15.1.9, we have a complex hermitian vector bundle V — M such that £ ~ S(M)®V
as Clifford modules. Since V has a hermitian metric, it has a compatible unitary connection VY (by using
partitions of unity, for example).

Define the connection V¢ as the tensor-product connection of spin-connection V¢ and VY. Then we are
done by the Proposition 15.2.10 above.

To see the last assertion, note that for any finite dimensional module E over Cls,,, we have an isomorphism
of Cly,-modules by Proposition 14.4.6:

E ~ Sy, ®c V' for V :=homgy,, (Som, E)

By breaking up E into irreducibles E; ~ Sy, as before, and noting that homgy,,, (E;, E;) is one dimensional,
it is trivial to check that the natural map:

home(V, V) —  homgy,,, (E, E) = homgy,,, (Sam ®c V, Sam Qc V)
A — Ingm QA

is an isomorphism of complex vector-spaces. Since this isomorphism is canonical (basis-independent), we have
an isomorphism of complex vector bundles:

homgy,,, (€,€) =~ home(V, V)

Now if V¢ denotes the tensor product connection defined above, and V¢ is another Clifford connection, it
follows by Leibnitz’s rule that:

(vf—ﬁg) (fs):f(vg—ﬁg)s for all f € C®(M), s € C®(M,E)

which shows that (Vg — 6*7) = « for some smooth section a € C*°(T*M ® hom¢(&,E)). The Clifford com-

patibility condition shows that [a, c| = 0 for all smooth sections ¢ € C°(M,CI(M)), i.e. a € C®°(M,T*M ®
homgy,,, (€, €). By the above, this last space is isomorphic to C*° (M, T* M ® homgy,,, (V,V)), so that a = 1® 3
for some section 3 € C>°(M,T*M ® homcy,, (V,V)). This shows that V¢ is given by:

VE=Vioa=(VH®1+10VY-108=V0l1+1® (V¥ -j)

which is the tensor product connection of VS and VY := VY — 3. This proves the last assertion. O

Definition 15.2.12. We say that a Clifford module &€ — M over M is a Dirac Bundle if it has a compatible
Clifford connection.

Example 15.2.13. The bundles Ci(M) — M, AL(T*M) — M, on an oriented Riemannian manifold of
dimension 2m are all Dirac bundles, by Example 15.2.8. The spin bundle S(M) — M on a spin manifold of
dimension 2m is a Dirac bundle, by Example 15.2.9 above.

The above Corollary 15.2.11 says that to generate any Dirac bundle on a spin manifold M of dimension
2m, it is enough to start with the prototypical spinor bundle S(M) — M with its natural structure as a Dirac
bundle, and then twist it with various hermitian bundles ¥V — M (with compatible unitary connections).
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15.3. Dirac operator on a Dirac bundle.

Definition 15.3.1. Let £ — M be a Dirac bundle on M, an Riemannian manifold of dimension 2m, with
chirality grading by £*. Let CI(M) — M be the Clifford bundle of M. Denote by c the Clifford action on &:

T*(M)RESE
Let V¢ denote the Clifford connection on £. The Dirac operator on £ is the operator D defined by the
composite:
£
C®(M,E) L C°(M, T*M ® €) 5 C®(M, €)
Since ¢(T*M ® £F) C £F, and by definition the Clifford connection preserves the subbundles £%, it follows
that the Dirac operator is also Zg-graded, and D = Dt & D~, where

D* . C®(M,EF) — C>®(M,EF)

Remark 15.3.2 (Dirac operator in local coordinates). In a local coordinate chart, we may choose an or-
thonormal frame {e;}?™ of the cotangent bundle T*M. Then for a smooth section s € C*°(M, £), we have

2m
st = Zei [029] VS‘LS
i=1
so that the Dirac operator is expressed as
2m
Ds = Z ei.Vfis
1=

where the dot denotes Clifford action. Since Vfi are 1st order differential operators, it follows that D is a 1st
order ifferential operator.

Proposition 15.3.3 (Self-adjointness of the Dirac operator). Let M be a compact oriented Riemannian man-
ifold of dimension 2m, and let (—, —) denote the given hermitian inner-product on a Dirac bundle &€ — M.
Define the global L2-inner product on C*(M,€&) by (s,t)n = [,,(s(x),t(x))2dV (z). Then Dirac operator
D : C®(M,E) = C(M, &) is formally self-adjoint with respect to (—, —) . In particular Dt : C*°(M,ET) —
C>®(M,E)and D™ : C>®°(M,E™) — C(M,ET) are adjoints of each other.

Proof: Fix a point x € M, and fix a synchronous orthonormal frame in a nieghbourhood U of z, i.e. for the
Levi-Civita connection we have
() Vei(z)=0 (b) €0=0;4

)

= D1 forall :=1,..,2m

for some coordinate system (z1, ..., Zo,,) on U. By the self-adjointness of Clifford multiplication with respect to
the pointwise hermitian inner product, unitarity and Clifford compatibility of the connection, and synchronicity
of the frame {e;}, we have:
(einis, e = —(Vis,ei.t)x = —e;i(s, e;.t) + (s, V‘;(ei.t)m

= —ei(s,eit)s + (8, (Ve€)t)e + (s,ei.Vfit)w

= —81‘(8, 8i.t)x + (S, ei-vfit)m
Summing over i we find:

(Ds,t)y — (s, Dt), = —do(x)
where o is the 1-form v — (s,v.t), = > ,(s,e;.t)e; on U, and do(x) = >, 0i(s,ei.t)s = £(xd x o)(x) (i.e. the
divergence of o). Integrating over M, and noting that [, (0o)dV = [, do A (x1) == £ [,, 0 Ad(x1) = 0, we
have:
(.DS7 t)M = (8, Dt)M

and our assertion follows. The last statement is clear from the fact that the restriction of D to C°°(M, &%)
are DT respectively. O
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Corollary 15.3.4. With the hypothesis of the previous proposition, the second order differential operator:
D?:C®(M,&) = C>®(M,E)

is formally self-adjoint with respect to (—, —)s. Its restrictions, namely the composites D™D~ and D~ D™ :
+
(M, E¥) 25 0 (M, £7) 25 0 (M, %)

are self-adjoint.

15.4. Weitzenbock Formulas. We need to assert that the square of the Dirac operator on a Dirac bundle
is a generalised Laplacian. To this end, we have the following.

Definition 15.4.1. Let & — M be a Dirac bundle, and let V¢ be its Clifford connection. Then for two real
tangent vector fields X, Y € C>®(M,T,(M)), we define a 2-form Q¢ € C*°(A2T*M ® homc(&,E)) by:

Q¥ (X,Y)®s=V5V5s— V5 Vis — Vg yys
The 2-form QF is called the curvature of the Clifford connection V¢ or just the Clifford curvature of &.

That the object on the right side of the definition defines a 2-form follows by changing X to fX and Y to
gY where f and g are two smooth functions, and calculating by Leibnitz’s rule that:

[V?Xa VgY] - vffX,gY] = fg ([Via Vé} - Vf::X,Y]>

Exercise 15.4.2 (Clifford curvature in local coordinates). Let {s;} be an orthonormal frame of &£y with re-
spect to (—, —), the hermitian inner prroduct on &£, where U C M is a trivialising neighbourhood of £. Then
we may write:

rkee

VSS]' = E (.L)qjjSi
=1

where w;; is the skew-hermitian matrix of Cartan connection 1-forms on U. Apply the definitions to show that
Qf is another skew hermitian matrix of 2-forms given by:
I‘kcg
ij = dwij + Z (wil ANwpy —wi A wli)
1=1
which is often abbreviated in the notation:

0 =dw+ [w,w]

Proposition 15.4.3 (Weitzenbock for a Dirac Bundle). Let £ — M be a Dirac bundle on an oriented com-
pact Riemannian manifold of dimension 2m. Then the square of the Dirac operator is given by:

D> =V&Ve 4+ %QS

Proof: We again fix a point 2 € M and choose a synchronous frame {e;} for 7'M for some neighbourhood
U of z. Then note that we have [e;, e;]z = [0 2,0;] =0 for all 1 <i,j < 2m, and also (V,,e;)(z) = 0 for the
Levi-Civita connection on T'M. Then denoterj by Vf , and similarly for the Levi-Civita covariant derivative
Ve, by V;. We first note that:

VE:C®(M,E) —» C®(M, T*M ® £)
has a global Lo-adjoint:

VE  C®(M, T*M ® E) — C®(M, )
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which satisfies:
(VEs,w@t)ar = (5, VE (w@t))as forall we AL(M,C), s,te C®(M,E)

(Note that the hermitian inner product on T M ® £ is taken to be the tensor product hermitian inner-product
of the hermitian inner products on the two factors.) In fact, we claim that in terms of the synchronous frame
at x defined above, we have:

VE (ef @ t)(x) = —(Vit)(x) (47)
. . . g _ * g .
To verify this, we write Vs = Zj e; @ V5 s, then:
(VEs,ef @t), = Z(e; ® V?s,ef ®Rt)r = Z(ej,ei)m(V§:s,t)m
J J
= (V&s,t), =ei(s,t)s — (s, V)
= > ei(s,eja(e] @)+ (5, V" (e] @1))a
J

So(z) + (s, VE* (ef @1))a

where o is the 1-form defined by v, — (s,v1(e] ®t)),. Again, integrating over M and noting that [, , dodV =0
by Stokes Theorem, we have our assertion.

Now we compute for a section s € C*°(U, £) that:

DQS(.Z) = Z ein Z eijs = Z (esVie;) .Vf—s + Z eieijVf-s
i J i,J 0]
= ZeieijVf»s since (Vie;)(z) =0
0,J
= - Z VEVEs + Z ei.ej.(VfV]S - V?st) (by Clifford relations on e;)
i i<j
= Z Ve (ef @ Vis) + %Qgs (since [e;, e;](z) =0 and by using (47) above)

3

1
= V&Vis+ 5955

where Qfs(z) = [E” eie;.(VEVE = VEVE)s| (x) in our synchronous frame {e;} around . This proves the
assertion. O

Proposition 15.4.4 (Weitzenbock formula for the Spin Bundle). Let M be a compact spin manifold of di-
mension 2m, and let S(M) — M be the spin bundle on M with its natural structure as a Dirac bundle with
its spin connection V¢ (see Examples 15.2.9 and 15.2.13). Then for its Dirac operator D, we have:

1
2 Sxw—S
D* =V°*V +1§jk

where k is the scalar curvature function of the Riemannian metric on M.

Proof: In view of the Proposition 15.4.3 above, we need to calculate the curvature operator Q° of the spin con-
nection VS. We recall from the Example 15.2.9 that the spin connection 1-form @ € C'*° (Pspins T* Pspin® C?2(V))
is related to the connection 1-form w € C*°(Pso,T*Pso ® s0(2m)) by:

& =7 (pw)
Since pullbacks commute with exterior differentiation and wedge products, and 7 is an isomorphism of Lie
algebras, it follows that the curvature of @ is related to the curvature €2 of w by:

Q=770
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Now pulling back everything onto a trivialising neighbourhood U for P;p;,, (resp. Pso) via a section o : U —
Pypinju (resp. (poo: U — Psoju), and using that 7(eje;) = 2(Ej; — Ej;), we have:
QT = (g 0) =7 (po o))
_ _ 1

T I(Z OB, =T I(Z OBy — Eij) = 5 Z Q7Ce;e;

i, i<j i<j

1
= Z Z ijoeiej

i

where ijo is the Cartan curvature 2-form on U for Pso.

In terms of the synchronous frame {e;} of T*M around a point x one knows that the curvature form of the
Riemannian connection is related to the Riemannian curvature tensor by:

050 == Ruijerer = —Rpijerer
k£l
where we have used the Einstein repeated summation convention. (The minus sign comes from the fact that

the Riemannian connection of the principal bundle Pso of frames in the cotangent bundle 7% M is the negative
of that of the tangent bundle). It follows that:

: 1
0% = Q= — Ruijeiejener

1
= i(eiejelelij)ek since Ry;; =0 and ere; = —ejey, for k #1

If 7, j, [ are distinct indices, e;eje; = e;e;e; = ejere;, and also by the Bianchi identity, Riii; + Ryjii + Riiji = 0.
SO all such terms will drop out of the sum above. Terms with 7 = j also vanish since Ry;;; is antisymmetric
in 4, j. So the only terms remaining are those with ¢ =1 # j and i # [ = j. The sum becomes:

1 1
0° = i(elejelRlcllj + eerei Ryt )er, = i(eijllj — e;Riii)ex
1 1
= Zej(Rkllj — Ryji)er = _§(Rkljl)€jek
1 1
= —iRkjejek = —iRiief = §k (since Ricci curvature R;; is symmetric)
which proves the proposition by substituting into the Weitzenbock formula in Proposition 15.4.3. |

Corollary 15.4.5 (Bochner-Lichnerowicz). Let M be a compact spin manifold of dimension 2m, and with
everywhere strictly positive scalar curvature. Then the kernel of the Dirac operator on C*°(M,S(M)) is
trivial. (That is, M has no “harmonic spinors”).

Proof: Let s € C*°(M,S(M)), with Ds = 0. By the Weitzenbock formula of Proposition 15.4.4, we have
1
0= (Ds,Ds)y = (D%s,5) = (VS*Vs,5) + Z(ks, S)m

If s # 0, the fact that £ > 0 everwhere implies the right hand side is strictly positive, and we have a
contradiction. O
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Corollary 15.4.6 (Weitzenbock for a Dirac bundle on a spin manifold). Let M be a spin manifold of dimen-
sion 2m, and let £ — M be a Dirac bundle on M with Clifford connection V¢. By the Corollary 15.2.11, we
have that &€ = S®c¢ V, where S — M is the spin bundle on M, and V¢ is the tensor product connection of the
spin connection VS on S, and a unitary connection VY on V. Then, for the Dirac operator D we have the
Weitzenbock formula:

1
(D¥)? = V& Ve + ik +RY
where RY is the curvature operator of V defined by

RY(s®0) = Z ei.ej.s @0 (e;,e;)0 = Z clei)c(e;)R(es, e5)(s @ 0)

1<J 1<j

and k is the scalar curvature function of M.

Proof: By Proposition 15.4.3 above, we just have to compute the Clifford curvature Q¢ in terms of the
curvatures ° and QY. First note that by definition of the tensor product connection:

Vi(s®0)=VSs@o+s@Vio forall X € T,M, s € C®(M,S), o € C>°(M,V)
For real vector fields X,Y on M, the commutators
V¥ ®1,19VY]=0=[Vy ®1,1® V%]
Hence
FXY)s00) = ([V5 V5] - Vi) s20)
= ([VX, V3ls) @0 +5@ ([VX,VV]o) = Vixys @0 —s®@ Viy y0
= O9(X,Y)s®@o+s@QV(X,Y)o

Now, in a local orthonormal frame {e;}:

Qg(s®0) = Zc(ei)c(ej)ﬂg(ei,ej)(s®U)

0.
= (Z ei.eijjs) ®o+ Z €i.€;.5® ija
2] 4,J
— k QV _ k %
= 39 ® o+ QZ(ei.ej.s) ® Qj0) = §s®a+2R (s®o0)
i<j
by using the Bochner-Lichnerowicz formula for the spin bundle S deduced in Corollary 15.4.5. Our corollary
now follows from the Weitzenbock formula 15.4.3. O

Corollary 15.4.7 (Bochner’s Theorem). Let M be a compact oriented Riemannian manifold of dimension
2m. For the Dirac bundle AfM — M, the Dirac operator D is the operator d + 4, (viz. the Dirac operator of
the elliptic deRham complex). Furthermore:

(i): On 1-forms, we have the Bochner formula:
Ap = VI MygT" My L Ry for ¢ € A'(M,C)
where R is the Ricci-curvature operator of M.
(ii): If M has everwhere positive Ricci curvature (viz. R is a real positive definite symmetric matrix at each

point of M), then the first Betti number 41 (M) := dim¢ H* (M, C) vanishes (that is M has no nontrivial
harmonic 1-forms).



146 VISHWAMBHAR PATI

Proof: By definition, in a local orthonormal frame e; of 7% M, we have:
D= Z c(ei)Vi

where V,; = V,, is with respect to the Levi-Civita connection. If we further assume the frame is synchronous
at z, then V., ; = 0; . The operator c(e;) of Clifford multiplication by e; on the Clifford module AFT*M is
given by (see Example 15.1.7):

cle))a=e; Na—eaa ae AN (M,C)
So, in a synchronous frame at x, the Dirac operator reads as:

Do = Zei A O o — Zep iz = do+ da

(Note the minus sign appears because the “L2-adjoint of 9; is —9;” from integration by parts.) This proves
the first assertion.

To see the Bochner formula in (i), we appeal to the Weitzenbock formula from Proposition 15.4.3, and
apply it to the Dirac bundle € := A%(T*M). We note that by the above, D? = (d + §)? = dd + dd = A, the
Laplace-Beltrami operator. For the right side, we need to compute the Clifford curvature %QE . We continue
with the synchronous frame above, and for the sake of convenience, we denote the operator e; A (—) by ey, and
the operator ej(—) by ;. Note that:

exii(em) +iiex(em) = exdim +i1(er A em) = exim + dxiem — €x0im = dxiem

so that exi; = —ijey, for k # I. Now, the Clifford curvature operator on a 1-form ¢ = ¢rey (using the repeated
summation convention) is given by:
0% = cler)c(e)Q (e, e1)¢ = —(ex — i) (er — it) Rrirsres
= (eris +ixer) Rpirspres = (exis — irer) Riirsdres (since Riprs = —Rikrs)
= 2eriiRiirspres = 2Riirsdrerdis = 2Ry drer = 2(Rir¢dr)er = 2R
so that 10%¢ = R¢ and the Bochner formula (i) follows.

To see (ii), note that if ¢ € A1(M,C) is a harmonic form with ¢ # 0, then A¢ = 0 so that by the Bochner
formula:
0= (Ad,8) = (Vo, Vo) + (Rg,6) > 0
by the hypothesis on R, a contradiction. Now, by (i) of the Hodge Theorem,

B1(M) = dime H* (M, C) = dimc ker A

so (i) and the Corollary follow. O

Corollary 15.4.8. Let £ — M be a Dirac bundle, with associated Dirac operator D. Then the operator
(called the Dirac Laplacian of £):

D?: C®(M,&) — C>(M,E)
is a generalised laplacian in the sense of Definition 12.2.1. In particular, the operators D~ DT : C®°(M,ET) —
C>®(M,E)and DT D™ : C°(M,E~) — C*°(M,E) are both generalised laplacians. The two term complexes
D* : C®°(M,E%) — C>®(M,ET) are both elliptic 2- term complexes in the sense of Definition 9.4.1, and the
two operators DT D~ and D~ D™ are the Dirac Laplacians of this 2-term elliptic complex.

Proof: By the Weitzenbock formula Proposition 15.4.3, we have:
1
D? = V&V 4+ 0°
The last term %Qg is a zero-th order operator, locally given as % Z” eiej.ij, where each €Q; ; is a 2-form. In
the proof of Weitzenbock’s formula, we also computed the adjoint of V€ in a synchronous frame {e;}at z to
be:

V& (e; @ s)(x) = —V;s
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Consider the tensor product of the Levi-Civita connection V and V¢, and call it the connection V7~ M®€ We
claim that the composite:

yTME —tr
)

COM,T*M®E) Y = C®MTMaT Mo —¥ c~0r,e&)

is the same as

VE L O®(M, T*M ® &) — C®(M, )
(see Lemma 12.2.4). For, if we compute with the synchronous frame at x used in the proof of the Weitzenbock
formula in 15.4.3, we have:

VITMBE (ex @ s)(z) = Vel @ s+ef Vs =el @ Ze;vf.s
J
since (Ve;)(x) = 0. Thus:

—0 VT M (6 @ 5) (@) = ~tr(Y e @ €5 VEs) (@) = —(3 8, VEs)(@) = ~(VEs)(@)

We computed in the proof of Weitzenbock that:
VE (ef @ 5)(x) = —(Vis)(@)
Hence our assertion follows. Thus, in the notation of Lemma 12.2.4,
vg*vﬁ — _trvT*M®5v5 _ AE
By the Lemma 12.2.4, Af is a generalised laplacian. Hence D? = AF + %Qg is also a generalised laplacian.

Since DY D~ and D~D¥ are restrictions of D? to C*°(M,E~) and C*°(M,E") respectively, they are also
elliptic second order differential operators.

Since DT and D~ are adjoints of each other by Proposition 15.3.3, the 2-term complex is an elliptic omplex
by 9.4.2. m]

16. THE ATIYAH-SINGER INDEX THEOREM

The goal now is to write down a formula for the index of a Dirac operator on a Dirac bundle. The idea
of the proof of the index theorem is to carefully examine the coefficient of the term independent of ¢ in the
asymptotic expansion of the (super)trace of heat kernel for the Dirac laplacian, since integrating this over M
would compute the index of D, in view of Proposition 10.2.1. To handle the Dirac operator by bare hands is
quite an effort, and was carried out by Patodi, Atiyah-Bott-Patodi and Gilkey for the various classical Dirac
bundles. There is however a simple proof due to Getzler, following ideas of the physicists Alvarez-Gaume and
Witten, which replaces the Dirac laplacian by a much simpler operator by a scaling procedure.

Before we get into the proof of the index theorem, let us study this simpler operator.

16.1. The Quantum Harmonic Oscillator and Mehler’s Formula.

Definition 16.1.1. The quantum harmonic oscillator is the Schrodinger operator defined on C*°(R) by:

2

R 2

Proposition 16.1.2 (Facts about the Harmonic Oscillator). H defined above is formally self-adjoint (on com-
pactly supported functions), and has a discrete positive spectrum A, = (n + %)7 corresponding to smooth
eigenfunctions ¢,, in the Schwartz class S(R) (which are defined in terms of the Hermite functions). Finally,
¢n form an orthonormal Hilbert space basis for La(R).

Proof: The formal self-adjointness on C,(R) is clear since H = A + 22, and both operators on the right are
formally self- adjoint. Also since

(Ho,9) = (020, 0:0) + (v, x¢)

for the Lo(R) inner-product (—, —), it follows that the eigenvalues (if any) of H are non-negative.
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To get the discreteness of the spectrum, one uses the annihilation operator A = x + 0, and its adjoint, the
creation operator A* = x — 0. It is easily checked that:

AA* = H+1, AA=H 1
[A4,A4%] = -2I
[H,A] = —24, [H, A" =24"

Then one defines the ground state of the oscillator as the function ¢q satisfying Agg = 0 and ||¢g]| = 1. That
is,

(0 +x)p=0
But this is a simple ODE, and by using the integrating factor of e
have

2 . . .
#°/2and using the Lo-normalisation, we

b0 = 7r_1/4e_‘”2/2

Now all the other eigenfunctions are given inductively by applying the creation operator A* and normalising.
More precisely:

o = (2k) P A G
Note that if ¢ _1 corresponds to eigenvalue A;_1, then
Hep = (2k)VPHA Gy = (2k) 72 (A" M1 + [H, Ay 1)
= (A1 +2)o%
So it remains to compute the eigenvalue of the ground state ¢y. But
(—35 + xz)e—rﬁ/z _ 81(1‘6_'%2) _1_1,26—12/2 _ e—r2/2

So Hey = ¢o, and \g = 1. This shows that Ay = (2k-+1). Since ¢y is is the Schwartz class, so is ¢, = C(A*)*¢y.

We will skip the proof of the fact that ¢ form an orthonormal basis of Ly(R). See standard texts on
Quantum Mechanics, which prove that ¢ is a polynomial times the Hermite function Hy. O

Corollary 16.1.3. The associated heat operator (H + 9;) on R has a smooth integral kernel p;(x,y) which
satisfies:

(i): (Hy + 0p)pe(x,y) =0 for all t > 0, and z,y € R.

(ii): For all ¢ € Lo(R), and ¢ > 0 the function F(z,t) := e *# ¢ is a smooth function, given by the integral
Jr pe(z,y)p(y)dy. 1t satisfies:

tim Fa.) = Jim [ pila,n)ol)dy = o(a)

Proof: Follows by defining :
(oo}
pi(x,y) =Y e My (@) di(y)
k=0

which is a convergent series for all £ > 0 since the coefficients e ~*** die faster than all powers of ¢, and ¢;, are
in the Schwartz class. The proof of the other assertions are analogous to the case of a positive elliptic operator
on a compact manifold (see (iii) of the Proposition 10.1.3 and (iii) of Proposition 10.1.6). |

Now we can explicitly compute u(z,t) = p;(x,0). Note that by definition, this is a fundamental solution to
the heat equation, satisfying:
(H + 0 )u(z,t) =0, }in(l) u(z,t) = 0,
—

where ¢, is the Dirac distribution massed at x.
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Proposition 16.1.4 (Mehler’s Formula). The function u(z,t) defined by:

z2 coth 2t>

u(x,t) = (2rsinh 2¢) "2 exp < 5

is a fundamental solution to the heat equation (H + 0¢)u(z,t) = 0.

Proof: By taking one’s cue from the Gaussian, we try:

u(z,t) = aft) exp (_ ﬁ(2x2>

Then compute derivatives:

Ba?
—Oyu(x,t) = afzexp <—2>
22
“uwt) = apt - set)esp (-5 ) = 00— pethulat)
Hu(z,t) = (=07 +a*)u(z,t) = (B+ (1 %)z")u(z, 1)
, off (t)x2 Ba? o (t) B (t)a?
Ou(z,t) = la (t) — 21 exp (—2> = <oz(t) - > u(x,t)

So if we arrange that:
a/ ’
- TB=0 g/2=(1-p%
Then u(x,t) would be a solution to the required heat equation (H + 0;)u(z,t) = 0. The second equation leads

to: ) )
—— — —— | dB =4dt
(hi-500)
so that log (%) = 4t + C, which implies (by taking C' = 0) that
06(t) = coth 2t
The other equation now becomes:
o/ (t) + «at) coth 2t = 0
which is the same as: sinh 2ta/(t)+cosh 2ta(t) = 0, which is rewritten as 2 sinh 2ta/(t)a(t)+2 cosh 2ta?(t) = 0.
But this implies:

d

%(a(t)Q sinh 2¢) =0

Thus a(t) = C(sinh 2t)~/2, for some constant C. Now as t — 0, a(t) ~ C(2t)*/2? and S(t) ~ 1/2t, so that
w(z, t) ~ C(2t)"1/2e=7"/4 a5 ¢ — 0. We choose C = (2m)~ /2, so that u(z,t) approaches the Euclidean heat
kernel as t — 0. Hence:

2

and we certainly have (H 4 0;)u(x,t) = 0. Also, as t — 0, u(x,t) — (4mwt)~/2 exp(—x?/4t), the Euclidean
heat kernel on R, and we know by the Proposition 11.1.1 that the Euclidean heat kernel tends to §, as ¢t — 0.
(Actually, more precise estimates are needed to justify these limits in the space of tempered distributions S’ (R),
but we leave these details to the reader). The proposition follows. O

th 2t 22
u(z,t) = (2rsinh 2t)~/Z exp <_C0x>

Corollary 16.1.5 (Mehler’s Formula IT). Let us define the 2nd order differential operator on C*°(R) given

by:
a’x?
H:= -9
0y + 16
where a,b € R. Then a fundamental solution to (H + 0;)v(z,t) = 0 is given by:

+b

at/2

Sinh(at/2)> exp (—(at/2) coth (at/2)(x? /4t) — bt)

v(z, t) = (4rt)~1/? (



150 VISHWAMBHAR PATI

Proof: First we try to find a solution to (H + 9;)v(z,t) = 0 by tinkering with the fundamental solution of the
foregoing proposition. So let u(y, s) be the fundamental solution satisfying:

(=05 + 9y + ds)uly,s) =0 (48)
where u(y, s) is as in the statement of Proposition 16.1.4 above. Define:
v(z,t) = e u(N 22, M) = e Ptu(y,s) where y:= A2z, s:= Mt

Then:
o(z,t) = —be "Mu(y, s) + e " Adu(y, s)
which implies

(0 + b)o(x,t) = Ae™"Dsuly, s) (49)
Now for the space derivatives:
1
(=02 + N2H(x,t) = A (—/\(‘32 + )\a:2> v(z,t)
= =0, +y")e uly, s) = Ae ™" (=05 + P )uly, s) (50)

Adding the equations (49) and (50), we find:
(=02 + X222 + b+ 0 )v(x,t) = )\e_bt(—ag + 4% 4+ 05)u(y,s) =0

from equation (48). Thus v(z,t) is a solution to the equation in the statement by setting A = a/4. Thus by
using the explicit formula for u(y, s) derived in Proposition 16.1.4, the fundamental solution we seek is given
by:

(11/256

v(z,t) = C’e*btu(T, at/4) = Ce " (2m sinh(at/2)) /% exp [— coth(at/2)(az?/8)]
= C(4nt)~%(at/2)"/*(sinh(at/2)) "2 exp [~ (at/2) coth(at/2)(z? /4t) — bt]

Note that as lim;_,q % =1, limy_,0 bt = 0 and lim;_,q cosh(at/2) = 1, which implies that

lim,_,o(at/2) coth(at/2) = 1. Thus v(z,t) above approaches the Euclidean heat kernel (47t)~/2 exp(—x2/4t) if
we set C' = 1 (Again pointwise limits are not good enough, one needs to use Lebesgue’s dominated convergence
theorem to make these assertions in §'(R). We leave these matters to the reader.) This proves the corollary.

O

We would like to write a multivariate and matrix formulation of the above Mehler formula. First we make
a definition.

Definition 16.1.6. Denote by A the commutative algebra AgZ’ (R?™), with A being the multiplication. Note
that any word of aias...a; of length ¢ > m and with a; € @kzll\%k (i.e. no a; has a constant term) vanishes.

Let R be a skew-symmetric 2m x 2m matrix whose entries are in A%(R?™). Note that R is automatically a
nilpotent matrix, by the remark above. Hence all power series in tR for ¢ € (0,00) are actually polynomials in
t. For such an R, define the A-valued function:

eR/2 _

ﬂhadm(éf&m>:dﬁ(@£g%m)

Note that e/?/2 —e=1/2 is the series (=polynomial) (of A-valued matrices) given by 2sinh(R/2), and involving
only odd powers of R, whence 1 (e®/2 — e=%/2) = sinh(R/2) = (R/2)a(R), for another polynomial (R) with
leading coefficient 1. Then j(R) is the determinant of a(R).

Indeed, if ¢ is small enough, the series:

t2R2 t4R4
a(tR):I+2TS!+2T5!+W
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is a polynomial, and an invertible element, since every term except the first is nilpotent. Its determi-
nant j(tR) := det(a(tR)) is a unit in A, and again a polynomial in ¢. Then one can define j(tR)~'/? =
[det(a(tR))]~'/? as a formal power series

G(R) ™V =1+ itlﬁ(R)
i=1

where f; are polynomials in the entries of R. This formal power series is again a polynomial in ¢ since j(tR) — I
is a nilpotent element.

Now we consider the symmetric matriz
B(tR) := (tR/2) coth(tR/2)
Then it defines an A-valued symmetric bilinear form (or quadratic form) on R?>™ by the formula:
2m
(@|(tR/2) coth(tR/2)|y) := Y  xi(tR/2) coth(tR/2);;y;
ij=1
Again, we have a power series expansion for (tR/2) coth(tR/2) in terms of even powers of ¢, which starts with
I (since cosh(tR/2), and —Y2 — — o(tR)~! both have even power series starting with I). So the quadratic

sinh(tR/2)
form above has a power series expansion:

o0
(2|(tR/2) coth(tR/2)|a) = lal|* + Y t** ey (2| R**|z)
k=1
Since R is nilpotent, this power series is again a polynomial.

Proposition 16.1.7 (Mehler’s Formula IIT). Let R be a skew-symmetric 2m x 2m matrix, and let F be any
N x N matrix, both matrices having coefficients in AZ(R*™). Set A := A&’ (R?™). Note both matrices are
constant with respect to € R?™,

Define the generalised harmonic oscillator to be the operator defined on C*°(R?™, A ® Endc(CY)) by:

2
2m

H(feT)=- > ai+iZRijxj fleT+foFT for feC®R" A), T ¢cEndc(CV)
J

i=1
Then the associated heat operator (H + J;) has a fundamental solution p;(z, R, F') defined by:
-1
pi(x, R, F) = (4mt) "™ j(tR)~"/? exp <4t<x|(tR/2) coth(tR/Z)m}) exp(—tF)

with lim; o pi(z, R, F') = §,(1 ® Id). (Note that by the discussion in Definition 16.1.6 above, j(tR),
(x|(tR/2) coth(tR/2)|z) and exp(—tF') are all polynomials in ¢, by the nilpotency of the matrices R and F).

Proof: As remarked in the discussion following Definition 16.1.6, the power (j(tR))~'/2, (z|(tR/2) coth(tR/2)|s),
and exp(—tF) are all polynomials in t, whose coefficients are polynomials in the coefficients of R and F', be-
cause the entries of R and F' are in A%(RQm), and any word ajas..a; of length ¢ > m with a; € EBi21A%i (R?m)
vanishes. Suppose we verify the formula:

(H + 8t)pt(33,R, F) =0

for R and F' matrices with real entries. Since (H + 0;)pi(x, R, F') is an analytic function of F;; and R;;, it will
follow that the equation (H + 0;)pi(z, R, F') = 0 for all F' with complex entries F;; and all skew-symmetric
matrices R with complex entries R;;. That is, we will have an identity of power series in R;; and Fj;. Hence this
identity will hold when we substitute F' a nilpotent matrix with entries in A%(R?*™), and R an antisymmetric
matrix with entries in AZ(R?™). So we may assume without loss of generality that R is a real antisymmetric
matrix, and F is a matrix with real entries. Note that all the power series (in t) occurring above in the
expression for pi(x, R, F') converge for small values of ¢ at least.



152 VISHWAMBHAR PATI

Note that R € A%2(R?™) = s0(2m), and there is a matrix P € SO(2m) which conjugates R into the Cartan
subalagebra of s0(2m). That is, there is a change of orthonormal basis (given by P) for R?™ so that PRP! = S
is in block diagonal form, where the i-th block of S is:

i 0 —a
S'_(ai 0 >

Since j(tR) is the determinant of a(tR), we will have j(tR) = j(tS). Setting y = Pz, we find that the quadratic
form:

(x|(tR/2) coth(tR/2)|z) = ((tR/2)coth(tR/2)x,z) = (P(tR/2)coth(tR/2)x, Px)
= ((tS/2) coth(tS/2) Pz, Px) = (y|(tS/2) coth(tS/2)|y)

Finally, note that

dy;
% 421@]% Z (%j ay Rx )i = Zpﬂay] + = (PtSPx)

= [PY(8,+ ZSZJ)L‘

which implies that the “norm” of the “vector (9, + +Rx) is the same as that of (9, + 1Sy), that is:
2 2

0 1 0 1
2\ G Fa 2 | = 2| gt g S

3

Of course F' will not change, so under the change of variables = +— y = Px, the form of the operator H will
remain the same, with R replaced by S and x replaced by y. Hence proving that(H + 0;)pi(z, R, F) = 0 is
equivalent to proving that (H + 9;)p:(y, S, F'). Hence we may assume without loss of generality that R is in
block diagonal form.

But once R is in block diagonal form, we are reduced to showing the identity for m = 1. Indeed, defining
the 2 x 2 block operator:

. 1
H' = — (D1 — ai9;)” — (Bai + aixe;_1)> + —F for i=1,2,.,m
m

and denotln x' := (wg;_1,T2;), and its fundamental solution by pi(z?, S?, %F), we note that pi(x, S, F) =
[T, pi(at, St % ) obeys the equation

m m m

Hp, =Y (H'p) =Y (pp-pi-p{ VH'D, = =Y (0007 )0ip} = —Oipy

i=1 i=1 i=1
Also, as t — 0, each p* — 84, | 2s:, and so p — &, since the Dirac distribution in several variables is the
product of the Dirac distributions in each variable. Thus we need to only find the two variable solution pi.

Also note that the expression on the right, viz.
(4mt)~™5(tS) "1/ ? exp ( (x|(tS/2) coth(tS/2)|x) — tF>

is exactly the expression:
= H ( (4mt)(tS) "2 exp ( (x| (tS*/2) coth(tS*/2)|x") — tF/m))

since determinants (like j(tS)) are mulplicative with respect to direct sum of (2 x 2)-blocks, and quadratic
forms are additive.

Thus we may as well assume that we are in R2. That is, m = 1, and
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In this event:
1 1
H = —(81 - ia[ﬂg)Z — (82 + ZCL.CCl)Q + F

a

—(0? +02) + 5

ia\’ F ia\? r a
<—a%+(4> w%+2> ’ <_a§+<4> xg+2> T @20 —mdy) &)

On the other hand, by diagonalising R over C, we have:

jom = (550 - () () - (R
Similarly, the quadratic form:

(z|(tR/2) coth(tR/2)|z) = (iat/2) coth(iat/2)z] + (—iat/2) coth(—iat/2)x3 = (iat/2) coth(iat/2)(z3 + x3)

So the function:

2
a
(2201 — x102) — 6 || + F

pe(zr,22): = (4mt)"Lj(tR) 2 eXp(*4lt<x\(tR/2) coth(tR/2)|x) — tF)
2 ia 1/2 2
N j];[l [(47#)1/2 (smh(ZL?/Q)) exp <(iat/2)coth(iat/2)4; — tF/Q)

is a fundamental solution for the operator

(=0f + (ia/4)*2T + F/2) + (=03 + (ia/4)*zT + F/2)
by the Corollary 16.1.5. (We have to soup up that Corollary to include all complex a, but that is straightfor-
ward). Also, since the function p;(z1,22) is a function only of (2% +3) in the space variables, it is annihilated

by the operator (x20; — x102). Hence it is a fundamental solution of H in equation (51). This proves the
proposition. O

16.2. The Heat Kernel and Index Density.

Proposition 16.2.1. Let £ —+ M be a Dirac bundle on a compact Riemannian oriented manifold of dimension
2m. Then for the two term elliptic complex:

StrD :=ind (D1) = dimker D™ — dimker D~ = / str ki (x, x)dV (z) = —ind D™
M
where k¢(z,2) is a self-adjoint endomorphism of &, that maps EF to £F. Indeed, ki(z,y) is the integral
kernel which represents the heat-operator e *P ® for the Dirac laplacian D2. (Note that for a endomorphism

T € homc¢(&,, &), which preserves the grading, we define the supertrace as in Definition 14.5.1, i.e. strT =
tr 7T —trT7).

Proof: By the Corollary 15.4.8, the two term complex:
Dt C®(M,ET) — C®°(M,E7)
is an elliptic complex. By (iii) of the Proposition 10.1.3, the infinitely smoothing heat operators emtAT =
e~tPTDF on C>(M,E*) have integral heat kernels:
kE(z,y) € C°(M x M,home(m3EF, 71 €%))

By the McKean-Singer Theorem 10.2.1, we have:
ind(D") = / (tr(k (z,2)) — tr(ky (z,2)) dV (z)
M
+

Now note that k(z,z) : & — &, can be defined as the operator which is kf(z,z) on X, in which case, its
supertrace:

strky(z, x) = trk; (z,2) — trk; (v, )
by the definition of supertrace above. The proposition follows. a.
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Now let us consider the case of a spin-manifold M. We have:

Lemma 16.2.2. Let M be a spin manifold of dimension 2m, and £ be a Dirac bundle on it. By the Corollary
15.2.11 &€ is isomorphic as a Dirac bundle to S(M) ®c V, where S(M) — M is the spin bundle on M with
its spin connection V¥, and V is a twisting bundle with some unitary connection VY, and V¢ is the tensor
product connection of these two connections. Then:

(i): There is an isomorphism of complex vector bundles:

home(€,€) ~ ALT*M ® home(V, V)

(ii): For an endomorphism K := o ® F' € homc(&;, &) where a € ALT M and F € home(Vy, V), the
supertrace:
stre K = (—20)"T(a)try F
where T : AL(T*M) — AZ™(T*M) is the projection into the top-degree forms, introduced in Definition
14.5.1.

Proof: First note that the map:
Clay, — hOmc(ng, SQm)
c — c(-)

is an isomorphism by the last assertion in Proposition 14.1.19. Since this isomorphism is canonical, we have a
bundle isomorphism:
Cl(M) ~ hom¢(S(M),S(M))
By the symbol map CI(M) ~ A% (T*M). Finally note that:
home(£,€) =~ home(S(M) ®@c V,8(M) &c V) ~ home(S(M),S(M)) @c home(V, V)
AL(T* M) ®¢ home(V, V)

This proves (i).

To see (ii), note that we may view
K € Ci(M), ®c Endc(Vy)

as the element c¢(a) ® F', where c is the quantisation map identifying AFT; M with CI(M),, and c(a) means
the element of defined by Clifford multiplication by ¢(a) € Endc(S(M);). Then by definition:

stre K = stre(c(a) @ F) = trg(1am o (c(a@) @ F)) = trg(rame(a) @ F) = trs(rame(a)) trp F = strg e(a).tryp F
where 7o, is the chirality element in Ci(M),. Now by the Lemma 14.5.2, we have
strsc(a) = (—i)™(dime S)(T o o(c(a)) = (—2i)™ (T ()

Plugging this into the foregoing equation, we have (ii), and the lemma follows. O

Proposition 16.2.3 (The index density). Let M be a compact spin manifold of dimension 2m. Let &€ - M
be a Dirac bundle on M, and D the corresponding Dirac operator. Note that D? is a generalised Laplacian by
Corollary 15.4.8. For a € M, there is an asymptotic expansion: 12.3.5:

ki(z,a) ~ (47t) "™ exp (—6(364’:)> <Z tiki(m)>
i=0

where kq(a) = Idg. The the index of the Dirac operator is given by:
ind D = / streki(a, a)dV(a) = (47r)7m/ strekp, (a)dV (a) = / v(a,&)dV(a)
M M M

The quantity v(a, &) is called the index density of the Dirac operator of £, and is is a polynomial in the jets of
the metric and the unitary connection VY on the twisting bundle V at the point a.
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Proof: As remarked earlier, we know from (iii) of the Proposition 10.1.3, that the smooth integral kernel
k:(z,y) exists, and by the Proposition 16.2.1,

indD:/ strekyi(a, a)dV (a)
M

Choose a local framing {e;,} for £y and y € U a neighbourhood of a, and note that for a basis element

€ja € Eay tl(y) == ke(y, a)e; q is the fundamental solution of e~*2” with pole at (a, e;.4), by Proposition 11.2.2.
Thus
dim & )
ke(y.a) = ) ui(y) ® ¢,
j=1

By the Theorem 12.3.5, there is an asymptotic expansion:

i)~ (ot esp (-5 ) (Z tiuz<y>>
i=0

such that u}(a) = e; € &,, and for all i, the vector u;(a) € &, is given as a polynomial in the jets of the
coefficients of the Clifford connection A€ at a. (See the last statement of Theorem 12.3.5, and note that the
Dirac Laplacian is a generalised laplacian whose 0-th and 1st order terms involve the connection coefficients
of V&, by 15.4.8). By considering > i ul (y) ® e* ,, we have a corresponding asymptotic expansion for k¢ (y, a)

given by: .
>)<2}%w0
i=0

with ko(a) = 3, ul)(a) ® €0 =2.;€ja®€;, = Ig,, and k;(a) all depending polynomially on the jets of the
connection coefficients of V¢ at a.

7y

ki(y,a) = (4mt)" "™ exp (_ 6(y,a

By (iii) of the Theorem 12.3.5

for a sufficiently long partial sum Sj, of the asymptotic series for u{ (y), and so a corresponding statement holds
for k¢(y, a). Since d(a,a) = 0, it follows that the difference

/strgk‘t(a,a)dV( (4mt)~ Ztl/ strek;(a)
M

for t < 0 and k large enough depending on m and N. The first integral inside the modulus sign is the index of
D, and constant in ¢, so it follows that

indD = /M streki(a, a)dV(a) = (4m)™™ /M strekm, (a)dV (a)

wl(y) = Sy, <o

1,00

<OVt < ¢

where k,,(a) € Endc(&,) depends polynomially on the jets of the connection coefficients of V¢ at a.

By (i) of the previous Lemma 16.2.2, we can write the endomorphism k,,(a) € Endc(&,) as
Am) "k, Zal (a) «a; € AL(TFM), Fi(a) € Endc(V,)
and by (ii) of the same Lemma,

strek, ZT (avi(a))try Fi(a) =: v(a, &)

Since the Clifford connection V¢ is the tensor product of the spin connection on S(M), and the unitary
connection VY, the polynomial dependence of v(a, £) on the jets of the metric g on M and connection coefficients
of VY at a is clear from the corresponding fact about k,,(a) stated above. This proves the proposition. O
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16.3. Local expression for V. In the light of the Proposition 16.2.3, all we need to do now is to find out
v(a, &) where
strekm (a) = (=29)"™ (T ® tr)(km(a)) = v(a, E)dV (a)

This is a purely a point-wise problem at each a € M. So we introduce the geodesic normal coordinates on a
geodesically convex neighbourhood U of a (via the exponential map), with exp, : ToM — M a diffeomorphism
of some neighbourhood W of 0 € T,M with U, and exp,(0) = a. This will give a local formula for the Dirac
operator D€ on the neighbourhood W. If we can write the asymptotic expansion coefficient k,,(0) for the heat
kernel k; of D€ from this expression, then one can compute its supertrace.

We first need a lemma about synchronous frames (which we have been using in for 7*M in the past).

Lemma 16.3.1 (Synchronous framings). Let V' — M be a complex vector bundle with a connection V, M a
Riemannian manifold. Then for a € M, there exists a neighbourhood U of a, a trivialisation of V|i; by sections
{54}, and a coordinate system {x;} on U with a = (0, ..,0) such that:

(i): The Cartan connection coefficients of V are given on U by:
Vsq = w.54 = Zw5a55
B

where w is a 1-form with values in End¢ (V).

(ii): Denoting the curvature 2-form of V by F', and denoting the curvature coefficients by:
F = Z F”d(EZ A\ dxj
i<j

with Fj;(x) := F(9;,0;)(z) € End(V}), we have:
1
W(LI}) = —5 ZF”(O)J?]d.IZ + O(| T |2)
,J

where O(| z |?) is a 1-form with values in Endc(V,) (i.e. a section in C®°(U,A'T*M ® E)).

(iii): If V is a unitary connection with respect to a hermitian metric (—, —) on V', we can choose {s4} to
be a frame that is orthonormal at each point of U.

Proof: We define the neighbourhood U to be a geodesically convex neighbourhood of a, and the coordinate
system via the exponential map. That is (z1,..,2,) are the coordinates of x = exp,(z1, .., Z»), so a = (0, ..,0).
Choose a frame {s,(0)} of V,, and for x = exp,(z), define the framing {s,(z)} of V, by parallel transport
of s4(0) to z along the radial geodesic exp,(tx). In case the connection is unitary, choose {s4(0)} to be an
orthonormal frame of V,. In this event, since parallel transport preserves inner products, {s,(z)} will be an
orthonormal frame at x for all z € U. Hence (i) and (iii) are automatic by this definition. We need to verify

(ii)
Clearly for every v € T, (M), denoting parallel translation along exp,(tv) by P}, we have:
P 50(e5D,(t0)) — 54(0) . 5a(0)  5a(0)

(Vose)(0) = 1 : =
it follows that wg, (0) = 0 for all «, 3, that is:
w(0) =0 (52)

Define the radial vector field uw := 3, x;0;, and by 4, the operator u.(—). Since u(z) is tangent to the
radial geodesic at exp,(tx) through z, it follows by the definition of s, that V,s, = 0 on U. Thus, for each
connection coeflicient wgan, we have i,wgo = 0. That is, iy,w =0 on U. Writing w = Zl w;dz;, we have:

0=1i,w(z) = inwi(az) forall z €U
i
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Let us take the derivative of this last equation with respect to ;. Then:
Z((Sijwi(x) + z,0;wi(x)) = wj(z) + lea wi(z) =0
From which it follows by again applying 9; that:
Oiw;(x) + Ojw;(x) + Zxk&;@jwk(x) =0 forall €U
k

This shows that
diw;(0) = —0;w;(0)

That is, the matrix d;w;(0) is skew-symmetric.
Since F' = dw + w A w, and w(0) = 0, it follows that
0) = ZE](O)dIz A dZCj = Zdw(()) = Z(@iwj - 3le)(0)(dzl A dI]) = —22 (?jw,-(O)dxi A dl‘j

i<j i<j i<j i<j
That is,

Ojwi(0) = —%Fij(O)

Now we Taylor expand w about 0, noting that by (52) that w;(0) =0 for all i = 1,..,n. Hence:

Zwl Ydx; = ch]i?wz Ydz; + O(| = ) :—fZF” Yojdz; + O( z |?)

0,J

where O(| z |?) is a 1-form with values in End(V}). This proves the lemma. a

Lemma 16.3.2 (Local expression for V¢). Let M be a spin manifold of dimension 2m, and £ — M be Dirac
bundle on M, with & = S(M) ®c V, where S is the spin bundle on M, with its spin connection VS, V is the
twisting bundle with the twisting connection VY, and V¢ the tensor product connection. and let (x1, .., Z2,,)
denote the geodesic coordinate system given by exp, in a geodesically convex neighbourhood U of a = (0, .., 0).
Also, for x € U, let the bundle S be trivialised over U by parallel transport of an orthonormal frame s, of
S (with respect to V¥). Similarly, let V be trivialised over U by parallel transport of an orthonormal frame
{vg} of V, (with respect to VV). We will let {e;(z)} be local orthonormal frame for 77 M obtained by parallel
transport of a fixed orthonormal frame e;(a) = 0;, along radial geodesics, with respect to the Levi-Civita
connection on T*M. Let ¢; = e;(a).(—) be Clifford multiplication on &, by e;(a).

Then the covariant derivative V¢ is given by the formula:

Vf :Vg = 8(1 + = Z zjR;jki(0) Ckcl+2flkl Jewer + gi(x)
i A5 k<l
where:
Rijri = (R(0i,0;)ex,er) = Riemann curvature tensor of M
fi(z) € C*(U), with fi(z)=0(=z|?)
gi(z) € C=(U,Endc(V)) = C™(U, Endeyar)(€)) with g; = O(| z |)
(Here | z |*:= Z " 2 is the Euclidean norm of z.)

Proof: Using the geodesic (exponential) coordinate system above, we have a = (0, ..,0), so we will write 0 for
a.

Define orthonormal framings {s,} of S and {vz} of V on a geodesically convex neighbourhood U of a as
stated above (and in the Lemma 16.3.1). By the fact that V¢ is the tensor product connection of V¥ and V'V it
follows that the framing {s, ® vz} is a orthonormal framing of £ on U, which is parallel along radial geodesics.
Likewise, for T M, by the orthonormal frame field {e;(z)}, with the further provision that e;(0) = 9; ¢ (The
derivative of the exponential map exp, : T,M — M is the identity map, so {9;} can be taken as the image of
an orthonormal basis in T, (M)).
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We first claim that with the above trivialisations of £ and T*M on U, the operation of Clifford multiplication
cle;(x)) by e;(x) € To M on &, is the same as ¢; = ¢(e;(0)). That is, the Clifford multiplication c¢(e;(z)) is a
constant endomorphism of End(V,) ~ End(V;). This follows from the fact that V¢ is a Clifford connection,
and is seen as follows.

That is, let 9, , := exp,,(9,) denote the radial vector field on U, and e; , denote e;(exp,(rz)). Let s be a
vector in &y, and let s, := s(exp,(rx)) = P.s, where P, denotes parallel transport from 0 to exp,(rz) along
the radial ray r — rz, with respect to V€. Since V¢ is a Clifford connection, we have:

Vgr (C(ei,r)sr) = C(VBT (ei,r))sr =+ C(ei,r)Vgr (57") =0

because ¢, , is parallel along exp, (rz) with respect to the Levi-Civita connection V, and s, are parallel along
exp, (rz) with respect to the Clifford connection V¢ by definition of s,.. Now if we write:

ezrsar—ZAﬁa Sﬁr

with respect to the parallel frame {54} of Ecxp(ra), then

0=V, (cleir)Sar) = Z (0rApa(r)) sp,r

B

by Leibnitz rule, and since sg, is parallel. Hence 0,Ag o(r) = 0, and hence Agq(r) = Aga(0). Thus Clifford
multiplication ¢(e; ) is a constant operator along the geodesic rays, with the trivialisation above. Hence the
claim.

Let us denote the Cartan connection 1-form on U for V¢ by w®. Similarly denote the Cartan connection
1-form for VY as wY. By definition,

wf =W’ +wY (53)

Now, because of the trivialisations we have chosen, we may appeal to the Lemma 16.3.1, we may write:

= Z (0)z;dz; + f(z) (54)

where f(z) € C°(U,A'T*M @End(S) is O(] x |)?. We have already seen in the proof of Weitzenbock’s formula
in 15.4.3 for the spin bundle S that:

FS( ZRukl )) (6[(37))

so that:

50) = *% Z Rijri(0)eker

k<l
where R is the Riemann curvature tensor of M. Finally, since by the constancy of Clifford multiplication on
U proved above, we have
AY(U) ® End(Sp) ~ C°°(U, A'T* M ® End(S,))
via the isomorphism w(z) ® cxe; — w(z) ® c(ex(x))c(er(z)). Thus we may write
f(x) = kaz(fv)ckcz = Z firi(z)ererdr;
k<l ik<l
where fir € C*°(U) and fi; = O(] z |?). Substituting in equation (54) we find that:

wS Z Z Rijri(0)xjcre + Zflkl z)epey | dz; where fir € C(U) is O(] z |?) (55)

% g k<l k<l

Now, applying the Lemma 16.3.1 to the twisting connection VY, we again find that with the framing and
coordinate system we have used:

1
Vi — v
x) = —3 E ‘ F5(0)z dz; + h
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where h € C°°(U, A'T*M @ End(V)) is O(| = |?). Thus
wY(x) = Z gi(x)dz; (56)

where g;(z) == —3 > FY(0)zjdz; + h; € C(U,End(V)) and also g; = O(| x |).

Plugging the equations (55) and (56) into (53), we find that:

1
w® = Z 1 Z Rijra(0)zjene + Z firi(x)erer + gi(x) | da;

i Gik<l k<l

where fip(z) € C(U) is O(] x |?) and g;(x) € C=(U,End(V)) is O(| = |). Since Vs = 0;s + w®(;)s, the
lemma follows. a

16.4. u-scaling. We will let U be a neighbourhood of 0 in R?”™ which maps diffeomorphically onto a geodesi-
cally convex neighbourhood of a fixed point a € M, where M is a spin manifold of dimension 2m. This U is
to be thought of as the same U encountered in all the Lemmas of the last subsection. Then, for z € U, we will
have u!'/2z € U for all u € (0,1].

Definition 16.4.1 (The scaling operators). Let u € (0, 1]. For a smooth section
a € C°((0,00) x U, AL(R?*™) @ End(V))

where V is a fixed complex vector space, define the operator:

u(a) = w2 a(ut, u'?x)
For an operator

T : C*((0,00) x U, AL(R*™*) @ End(V)) — C*°((0,00) x U, Ax(R*™) @ End(V))

define the operator §, 7§, !, which may often be denoted as T, by

6.6, a = 6,(T(6, )

Lemma 16.4.2. We have the following identities:

Sudp(x)07t = @(ul/?z) for ¢ € C=(U)
5u8t(5;1 = u 'y,
5,0:070 = u%y,
Sue(W)0; =0, (wA (=)0 = u?e(w) for we R¥™
6ui ()0, =0y (wa (=)0t = wl/?i(w) for we R*™

Proof: If ¢(x) € C°(U) is regarded as the operator of multiplication, then for a € C°°((0, 00) x U, A*(R?*"™*) @
End(V)) we have:

Bud(@)d, (@)](tx) = bu(d(a)(u*alu™"t,u™! z)
= u_i/2¢(u1/2(m))ui/2a(uu_1t,u1/2u_1/2t)
$(u'?(w))alt, z)
which proves the first identity. The next two are similar. For the fourth one, note:
[6ue(w)d; (a)](t, 2) = 6y (w A u2a(u=t, u™20) = T AN alt,z) =u"?(e(w)a)(t, )

Similarly the last identity, since i(w) reduces degree in A*. o
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Remark 16.4.3. We have defined the scaling d,,(—)d, ! on 1-forms w on U, viewed as endomorphisms e(w) or
i(w) of AL(R*™)®V. Our aim is to deform the Dirac Laplacian over U into the generalised harmonic oscillator
by letting the scaling factor v — 0.

We note here that in the local formula for V§ derived in Lemma 16.3.2, the terms involving cg, ¢; signify
Clifford multiplication by ey, and e;, regarded as endomorphisms of S(M),. That is, as elements of CI(M), =
Endc(S(M),). Thus cie in not a nilpotent endomorphism, and the hope is that after scaling, it will become
a nilpotent endomorphism, indeed the element e; A e; in A = A(’E(T*Ma). That this is indeed the case is the
content of the next lemma.

Lemma 16.4.4 (The u-scaling on Cls,,). Note that the constant section e; on U corresponds to the endo-
morphism e;.(—) in Endc(S2m) = Clay,. If one identifies Cly,, with the full exterior algebra A% (R?*™), then e;
maps to ¢; = e(e;) —i(e;). The scaled Clifford section ¢;, by definition in Lemma 16.4.2, is:

6u(ci)ort = bule(es) —ie))d;t = u=2e(e;) — u'/?i(e;)
Now we may extend this definition all over Cly,, by setting:
5u (01.02>(5;1 = ((5u015;1)<5u025;1)

since Clifford multiplication in Cls,, corresponds to composition of maps in End¢(Sa,). Then we have:

i): If ¢ is a homogeneous element in Cls,,, that is ¢ = _, arcr, where ¢y denotes the Clifford product
|I|=k
in Clg,,, we have:

8ucd,t = u"e(o(e) + O(w)] = u™?[o(c) A (=) + O(w)]

where ¢ is the symbol map.

Ciy -Ciy.--Cqy,

(ii): For any ¢ =} 1 <), fi(z)er € CI(U), where f; € C°°(U), and with leading homogeneous term of degree
k. Then -

1
7Elinu duCo, |12|:kfl (er A (=)

Proof: We first prove (i). Let {e;} denote an orthonormal frame for 7*(R?™), and let c(z) = 2oir=k a1 (@)er
be homogeneous of degree k. Then, by definition, Then:

(Guedy V(@) = Y ar(u™Pe(e) —u'Zi(e))-(u™ Peler) — ulPi(er)) (u™ Pe(er, ) — u!Piles, )
|1|=F
= u_k/2(z are(e;, Aei, A ...e; ) + (terms with w/ with j > —k/2 +1)
1

= w2 (e(0(e)) + Ow))

Now (ii) follows immediately from (i). O

Proposition 16.4.5. Let M be a spin manifold of dimension 2m, and D : C*°(M,E) — C*>°(M,E) be the
Dirac operator on the Dirac bundle £ = S(M) ® V. For each a € M, there exists a coordinate chart U around
a, and framings of S, V and T* M such that:

(i): The rescaled covariant derivative V&:* := §,V$ 5,1 is given by:
1
Eu _ | —
Ve =12 [ g, ¢ i ZRijmj + p(u)
j

where Rij = >, _; Rijri(a)er Aey is the curvature 2-form (as an endomorphism of A% (T M)), Rijr being
the Riemann curvature tensor of M at a, and p(u) € End(V,) is O(u'/?).
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(ii): The rescaled Dirac Laplacian is given by:
2

2m 2m
1
u(D")? := u(6, D6, ) = — E 0; + i E Rijxj | +F+g(u)
i=1 j=1

where F = QY (a) is the curvature 2-form of V at a, and g(u) € End(V,) = O(u!/?).

(iii): The limit as u — 0 of u(D™)?) is given by:

2
2m 2m

1

. u\2 __ . = .

lim (D) = =3 1: %+12. iy |+ F
1= Jj=

the right hand side being exactly the generalised harmonic oscillator introduced in Proposition 16.1.7

Proof: We note that by the Lemma 16.3.2, and with the geodesically convex neighbourhood U of a and
synchronous framings of T*M and V constructed there, we have a = (0, ..,0) and:

0 1
Vi =V§, = 9 +1 Z 2 Rijri(0)erer + Zfikl(l")ckcl + gi(@)

Js k<l k<l
where:
Rijri = (R(0;,0;)ex,e;) = Riemann curvature tensor of M
firi(z) € C®(U), with fin(z)=0(z[?)

gi(z) € C*(U,Endc(V)) = C*(U,Endgyary(€)) with gi =O(|z|)

Now, by the previous Lemma 16.4.2, §,,0;0, ! = u=1/29;.

Next, since R;; := ), ; Rijri(0)crer € End(E,) = End(S2,) ® End(V,) ~ Cl(M), ® End(V,) = A*T; M) ®
End(V,), so we have
Sucrcrd, b =u"er A e + O(u))
by (i) of the Lemma 16.4.4. On the other hand §,2;0; ' = u'/?2; by the same Lemma. Thus :

0u(Y_ Rijz)o,t =0u | Y Rum(0)zjerer | 6,0 = u2(Y ] Rija; + h(w))
- :

J; k<l J
where h(u) = O(u) and R;; := ), ; Rijr(0)er Aey.
Since fipi(z) € C(U) and O(| z |?), we have 0, firi0; " = firt(u?/?x) = O(u). On the other hand we
observed above that d,(crc;)d; 1 = u™1(ex A ey + O(u)). Thus
Su firi(z)eraid, t = O(1)
Finally, since g;(x) € End(V), is O(] x |), we have:

8,9:0, " = gi(u'?z) = O(u'/?)

Thus we write

p(u) :=u'/?s, (Z fikicrer + gi> 5ot + h(u)

k<l
and by the foregoing, we have p(u) = O(u!/?), and

1
8,V = a2 | 0 1 > Rijs) + plu)
i

with p(u) = O(u'/?). This proves (i).
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To see (ii), we use the formula for the Dirac Laplacian derived in Corollary 15.4.6, viz.
1 1
D2 — VE*Vg + EQS — Vf*vg + Zk, + QV

where QY is the curvature operator of V. Also, in the proof of the Corollary 15.4.8 and Lemma 12.2.4, we have
seen that the first term is:

vg*vg _ Zg’u vag vva 8 Zgz_j vgvg Zrk Vf
1)
where I‘fj are the Christoffel symbols of the Riemannian metric on M with respect to the basis d;. Since
g7 (a) = 69, we have ¢g"(z) = 8;; + h;j(x), where h;;(z) = O(] z |).

Similarly, since V,8;(a) = Ve,e; = 0 for all 4, j, we have T'};(x) = O(] « |) by choice of synchronous framing
of T*M on U. Thus we may write:

VEVE = =Y VY 4 Zhu (z)VEVE + g, TEVE)

Thus, using (i) above, we have:
ub, (VEVES, T = =) (u!?6,V56,1)7 + Zh” V22) (w26, V56, ) (ut26, V55,1

+ ul/Qgij(ul/Qa:)Ffj(ul/Qm)(ul/QéuV}géu )
2
1
= —Z 0; + 1 ZRijxj +pi(u)
i J
1
+ Zh (u'?z (8 + 2 ZRszrpz( )) <8j+4zl:le$l+Pj(u)>

1
+  gij (ul/Qx)FZ (ul/Qx) <8k + 1 ZRkll’l + pk(u)>
l

Since p;(u) = O(u'/?), hij(u'/?z) = O(u'/?) and I‘fj = O(u'/?), we have finally:
2
1
uéu(VS*V5)6;1 = — Z 0; + Z Z Rijxj + 6(’&) (57)
i J

where §(u) = O(u'/?).

Note that
udy ko, = uk(ul/Qx) =e(u) = O(ul/z) (58)

Finally, reverting to the Corollary 15.4.6, we have that
QV(s®o)=RV(s®o0) = Z Cicjs ® Q}}ja
i<y
where Q) (z) = QV(e;,e;)(x) is the curvature endomorphism of V,. Thus again appealing to (i) of Lemma
16.4.4:

ud Vo1 = uz ducic; ulﬁv( 12y)
= u) (e Ay + Ow)(Q(0) + O(w))
= QY00 (i Aey) +(w) = F+ () (59)

i<j
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where v(u) = O(u!/?), and F = Doicy QY:(0)e; A e; is the curvature endomorphism of V at a = 0.

Adding together the equations (57), (58) and (59), we arrive at (ii), with g(u) := d(u) + €(u) + y(u) being
O(u'/?).

(iii) is immediate from (ii). The proposition follows. a

Now we need to construct the u-scaled heat kernel for the u-scaled heat operator e~**P " To this end, we
have the following:

Proposition 16.4.6. Let £ — M be a Dirac bundle on the spin manifold M of dimension 2m, and D the
associated Dirac operator. Let k(t,2) be the fundamental solution for the heat operator of the Dirac laplacian:
e~tD* L (M, E) — C°(M, €)
with pole at (a,I¢) (as discussed in Proposition 16.2.3). Note that for each ¢, k(¢,z) is a smooth section of
End(€) = AFT*M ® EndcV. For o € U, where U is the neighbourhood of a defined in Lemma 16.3.2 and its

sequel, set
r(u,t,z) = u™(0,k)(t, )
Then
(i):
(0 +u(D"))r(u,t,x) =0 for t € (0,00) €U
(ii): Denoting the identity map Id : &, — &, by I,, we have:
lm r(u, ¢, x) = d41,
t—0

That is, r(u,t,z) is the fundamental solution for the heat equation of the (scaled) elliptic operator uD“?2 on
the neighbourhood U, with pole at (a, I,,).

Proof: We first check (i). Note that by Lemma 16.4.2 and that 0;k = —D?k, we have:
Or(r(u,t,x)) = Op(u™(0uk)(t,x)) = u™ T (u""0;)duk](t, x)
u™ (0,008, 1) (8uk)] (2, 1)
" 6,0:k)(t, ) = u™ T, (—D?k)](t, x)
= (6,026, (Buk] (8, 2) = —[u(D" W)t ) = —u(D*)r(ut, 3)

This proves (i).
To see (ii), we note that by our asymptotic expansion for k(t, z), we have, denoting §(x,a) =| z |:
k(t, o) ~ (dmt) " exp(— | @ [* /4t)[ko(2) + Y _ ki(2)t]
i>1
where ko(a) = I,. Then note that:
r(ut,x) = um[0uk](t2) = u™ (drtu) " exp(— | u x| fdut)[ko(ux) + > (ut) Sk
i>1
= (4nt) ™ exp(— | x |* J4t)[ko(ut/?x) + Z(ut)iéukzi]
i>1
Now as t — 0, the euclidean heat kernel (47t)"™exp(— | = |? /4t) — J,. So the first term of the series on the
right has the limit we want, viz.
tlirr(l)(47rt)_m exp(— |z |? /4t)ko(u/?x) = dako(a) = dol,
5
The other terms of course tend to 0 because they involve strictly positive powers of ¢. This proves (ii), and the
proposition. O
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The relation of the fundamental solution r(u,t,z) to k(t,x) naturally implies a relation between their
asymptotic expansions. More precisely:

Proposition 16.4.7. Let U be a neighbourhood of a = 0 as in the last proposition. Let us denote the fibres
& =: E, Vy =:V, and the smooth function in C*((0,00) x U)

qi(x) := (4nt) "™ exp(—d(z, a)?/4t)
There exist A*(R?>™*) @ End(V)-valued polynomials 7;(¢,2) on (0,00) x U such that:

r(u,t,x) ~ q(z Z w2yt )

i=—2m
satisfying:
N
OO (r(u.t,x)— > ulPy(ta)| < CW,ja)u®
i=—2m

(o)
where ||—||, is the supremum norm on U. Furthermore, 7;(0,0) = 0 for i # 0, and 70(0,0) = Ig.

Proof: By (iii) of the Proposition 12.3.5, we have the asymptotic expansion:

)~ aqr(x Ztk

where each k;(z) € C*°(U, Endc(E) = C* (U, AL(R*™*) ® Endc(V)), and ko(0) = Iy,. The symbol “~” means
that for the partial sum of the series on the right upto i = [ we have a sup-norm estimate:
1

k(t,2) — (@) Y ki)t

=0

<CitN forall I >N +2m, te (0,7)

oo

where the sup-norm is over U.

First we want to replace the smooth k;(x) by polynomials 1;(x) with coefficients in A*(R?>™*) ® Endc(V).

Note that :
rFe /4 < CWth2 for all 1 € [0,00)
which implies that:
|| e~ IelP/4 < 0 #%/2 for all x € R2™
Thus, if we define the polynomials 9);(x) to be the Taylor polynomial of k;(z) of order 2(N + m — i), then by
Taylor’s theorem
| ki(x) — (@) |< A 2PN TP for e U

so that for some constants B; independent of z and t:
!

a(@) Y ' (ki)

=0

l
2N+2m—2i — — P — 2 2N+2m—21i
<§:m% ) [PV 22— (gm)m 3 B lel ot g PN M2 < oy
=0

Thus

<tV forall 1 >N +2m, te (0,7)

- qt Z 7511/%
and now ;(x) are polynomials in x w1th coefficients in Endc(E) = AL(R?*™*) @ Endc(V).

For an element of A%(R?™) ® Endc(V), let us denote the by ap, the component of a in the summand
AP(R?™) @ Endc (V).

Then the last sup-norm inequality above implies sup-norm inequalities for each p-component, viz.

<Ot forall I > N +2m, te€(0,T]

o0

k(t Z‘ [p] _Qt Zt % [p]
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which implies, on multiplying both sides by u” /2, and resetting = — u'/?z (which maps U to itself) and
t — ut that:
l
umu_p/Qk(ut,ul/Qx)[p] - umu_p/zq +( u'g Z ))[p]
=0

< umPRQ, (ut)N

o0

forall I > N +2m, te (0,7,
Since um™u P/ 2k(ut, u'/?z) = um,k(t, z) [y = r(u,t,2) ), and u™qu(u'/2z) = ¢ (z), the last inequality can be
rewritten as:
!

r(ust,a)p) —u P g (@) Y (ut) (i)

=0

<umTPPANCORN for all 1> N+ 2m, t € (0,T]

o0

We need to let [ — oo, and arrange the sum in the norm signs on the left hand side in powers of u. Note that
since 9); are polynomials, they will contribute non-negative powers of u'/2, so that u//? will be contributed
only by terms from ¢ =0 to i = j/2 + p/2, and j/2 will run from —p/2 onwards.

So define:
J/2+p/2

(7)) p) (2, ) == coefficient of u//? in u"P/? Z (ut) s (u 2 ) p)
i=0
and rewrite the last inequality above for the particular value [ = (j + p)/2 as:
Jj+p
r(u,t, ) — qi() Z V2t )l < um PPN CAN for all (j+p)/2> N+2m, te(0,T], ue(0,1]

i=—p o

Set i (t, z) := Zizofyi(t,x)[p], and note that p/2 < m for all p, we have (j +p)/2 > N+2m < j/2—m >
N +m—p/2 = N’ will be satisfied if we choose j > 2N’ + 2m. Replacing N' = N +m —p/2 by N, and noting
that tV is bounded on (0, 7], we then have the inequality:

2N+2m

r(u,t,z) — q(x Z u *yltx

i=—m

< Cul forall N, te (0,7] (60)

A similar argument maybe given for the derivatives 8?8,? r(u,t,x), which is omitted.
Now for the final statement about ~;(0,0). Since by definition

Z uj/z’)/j(xat) = Z Zuj/Q(’yj)[p](IJ)

j=—m j=—m p=0

2m oo

= ZZ“ P12 (t)inpy (ut 2 )

p=0 i=0

2m

- Z(5u1/1[p])(t, x) = 6, (t, )

p=0

= Z thp;(x)
i—0

where we define:

Now note that by the above definition,
(621)(0,0) = > (1.0)" 6415 (0) = 0 (0) = I
i=0
Thus

oo

> w?9;(0,0) = 6,1(0,0) = I

j=—m
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which shows that «;(0,0) = 0 for j # 0, and y(0,0) = I. This proves the proposition. a

Now we can combine the Propositions 16.1.7, 16.4.5, 16.4.6 16.4.7 to deduce the following corollary.

Corollary 16.4.8. In the u-expansion
r(u,t,z) ~ q(x) Z uj/2*yj(t,x)

deduced in the last proposition, we have «;(¢,z) = 0 for j < 0. That is, the Laurent expansion in u'/? of
r(u,t,x) about 0 has no poles. Secondly, g.(z)vo(t,z) is a formal fundamental solution to the heat equation
for the generalised harmonic oscillator H in Mehler’s formula of 16.1.7 with pole at (0, I). That is,

o) = (dmt) " (0R) 2 oxp (i aleR/2) coth(eR/2)a) ) exp( )

where R is the nilpotent matrix >, . Rije; Aej € A2(R?m*),

Proof: By the Proposition 16.4.6 we have:
(0 + u(D))r(u,t,z) =0 for t >0, x €U
Let v_4(t,z) be the first term in the series r(u,t,z) = q(x) >,

j=—m
Since all space and time derivatives of r(u,t, ) are uniformly approximated on U upto an arbitrarily large
power of u by the space and time derivatives of some partial sum of the asymptotic series above (by Proposition
16.4.7 above), and the ~;(t, z) are polynomials in ¢ and z, it follows that the asymptotic series is a formal power

series solution to the scaled heat equation (9; + u(D")?, that is:

w?/?;(t, x) which is not identically zero.

oo

(e + u(D"))(au(2) Y (W/Py(t,2)) =0

j=-—s
Denoting by H := — Ef;”l (0 +1/4%; R;jz;)? + F the generalised harmonic oscillator introduced earlier, and
noting that by (ii) of Proposition 16.4.5 we have:
uw(D")? = H + O(u!/?)

we have:
o

(0 + H + O(u!?) (@) Y (w?(t,2)) =0
j=—s
as an identity or formal power series in u. Since the lowest power of u occurring on the right is from the first
non-vanishing term of the formal series, we have
(0 + H)(u™*"qy(2)y-s(t,2)) = 0
as an identity in (¢, x). It follows that

(0 + H)(gr(2)7-s(t,2)) = 0

is a solution to the heat equation. That is, ¢;(x)y—_s(t,x) is a formal solution to the heat equation for the
generalised harmonic oscillator. From the Proposition 16.1.7, it follows that this solution is determined by its
initial value at (¢,z) = (0,0). But, from the Proposition 16.4.7, we have seen that v;(0,0) = 0 for s # 0. It
follows that y_s(¢,x) = 0 for all s > 0. The first assertion follows.

For the second assertion, the above reasoning shows that we have

(0 + H)(g:(2)70(t, 7)) = 0

with 40(0,0) = Iy by the last statement of Proposition 16.4.7. Since the fundamental solution for this harmonic
oscillator is unique, and
-1
pi(x) = (47Tt)7mj(tR)71/2 exp <4t<x|(tR/2) coth(tR/2)|x>) exp(—tF)

satisfies the same equation, with pg(0) = Iy, we have the second assertion. The proposition follows. O
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16.5. The Index Theorem.

Theorem 16.5.1 (Atiyah-Singer). Let M be a compact spin manifold of dimension 2m, and let £ = S(M)®V
be a Dirac bundle on it, where S(M) — M is the spin bundle on M, with its unitary spin connection V), V a
twisting complex vector bundle with a unitary connection VY on it, and the Clifford connection V¢ the tensor
product connection of VS and VY. Then the index of the Dirac operator DV : C®(M,E+) — C®(M,£7) is
given by the formula:

ind(D*) = /M A(M) A ch(V)

Proof: By the Proposition 16.2.3 we have:

ind D+ — /M streky(a, a)dV (a) = (A7)~ /M strehm (a)dV (a)

where we have expanded asymptotically:

o0

ki(x,a) ~ (4mt) ™" exp(8(z, a)?/4t) Y t'k;() (61)
=0

By the Proposition 16.4.7 we have a neighbourhood U of ¢ = 0 such that on U

2m 2m
r(u,t,x) = u" o, k(x,0) = u™ Z w2k (ut, ul/zx)[p] = Z u™ P 2k (ut, ul/zx)[p] (62)
p=0 p=0

Denote &, =& =FE, S, =5, and V, =V.

By the Lemma 14.5.2, 16.2.3 we have
strg(a ® F)dV(a) = (=20)"T(a)trydV (a) = (=2i)"try ((a ® F)i2m))

where (a ® F) is to be regarded as a differential form with coefficients in End(E) = A*(R?*™*) @ End(V), and
try is applied to these coefficients, and the 2m-component applies to . In particular, for any element r in
End(E) = A*(R?™*) @ End(V), we have:

strp(k) = strpkiom)
Applying this to the equation (62) above, and using the Corollary 16.4.8 we find that:

strpk(ut,0) = strpk(ut, 0)2m) = strer(u,t,0) = ¢;(0)strg Zuj/z'yj (t,0) (63)
=0

On the other hand we have from (61) and Proposition 16.2.3 that scaling time by u does not affect the
integral over M, since only the time independent term g¢;(a)k,,(a) contributes to the integral. That is,

/ strpki(a,a)dV(a) = / strp (g (@)t km(a))dV (a)) = / (qut(a)(ut) " kn(a))dV (a)
M M M
= / strgkyt(a,a)dV(a) for all uwe (0,1], ¢ € (0,T]
M
In particular, by substituting (63) into this relation, and noting that k(t,0) = k:(a,a) by definitions, we have:

/strEkt(a,a)dV(a) = lim [ strgky(a,a)dV(a) = lim [ strpk(ut,0)dV(a)
M

u—0 M u—0 M

= lim strEr(u,uO)dV(a):/ streq:(0)vo0(t,0)dV (a)

u—0 s M
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Since the left hand side is independent of ¢, we can evaluate the right hand side at ¢ = 1. From the Corollary
16.4.8,

q1(0)(1,0) = (4m)~™j(R) /% exp(~F)
where R = Zij Rije; Aej is the nilpotent curvature form with R;; = %Rijkl(a)ckq, and F' = Zi<j Q})qei Nej
is the curvature form, (being regarded as a (dim V' x dim V)-matrix whose entries are 2-forms, i.e. in the
nilpotent algebra A = A% (R*™*)). By the Lemma 14.5.2, we have therefore:

stri(q1(0)7(1,0)dV = (4m) " (strg(i(R) "2 exp(—F)) = (=2i)™(4m) " try (j(R) "/? exp(—F)) j2m)
= @) (v (GR) 2 exp(—F))

where R = Ry = R,, and F' = Fy = F,,.

[2m]

. 2 N - - *
Now j(R,)" Y2 = {det (%ﬂ is by definition the element A(M)(a) = 212;:0 A(M)p(a) € AL(M).
Similarly, the Chern character of V is defined by

ch(V)(a) = Zch[p] (V) = (2mi)~"try, (exp(—F(a)))
p=0
so that R
(i)~ (v (R ™2 exp(=F)) = M) A ch(V)
and so
ind(D*) = /M A(M)eh(V)gm) = /M A(M)ch(V)
and the theorem follows. O

Corollary 16.5.2 (Atiyah-Singer). Let M be a compact spin manifold of dimension 2m. Then, for the Dirac
operator D® of the spin bundle S (called the Atiyah-Singer operator), we have:

ind(D®) = A-genus of M ::/ E(M)
M

Proof: Set £ =8, and V = M x C, the trivial bundle of rank 1, whose chern character is 1, and apply the
Theorem 16.5.1 above. a

Corollary 16.5.3 (Lichnerowicz). Let M be a compact spin manifold of everywhere strictly positive scalar
curvature. Then the A- genus of M is zero.

Proof: By the Corollary 15.4.5, there are no harmonic spinors on M, i.e. dimker DS = 0. In particular both
DT and D~ have vanishing kernels, so ind D™ = 0. This implies A(M) = 0 by the Corollary 16.5.2 above. O

17. SOME CONSEQUENCES OF THE INDEX THEOREM

Definition 17.0.4 (L-class). Let R =}, . R;je; A e; denote the curvature form of an oriented Riemannian
manifold M of dimension 4m. Define the L-class of M to be

We note that the justification for taking the square root of the determinant is identical to the one we had for
the A(M) class, see Definition 16.1.6. Its top degree component, viz. L(M ), turns out to be a polynomial
in the Pontragin forms of M, called the Hirzebruch L-polynomial.
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Theorem 17.0.5 (Hirzebruch Signature). Let M be a compact oriented manifold of dimension 4m. Then the
cup product pairing:

U: H*™(M,R) ® H*™(M,R) - R
is symmetric, and its signature is a homotopy invariant of M called the signature of M, and denoted o(M).
There is the following integral formula:

O'(M) = /M L(M)[4m]

Proof: We first note that there is the chirality operator 74, which acts on & := CI(M) = AL(T*M), and
decomposes it into the F1-eigenbundles £*. With its Levi-Civita connection, we know by 15.1.8 and 15.2.8
that this gives it the structure of a Dirac bundle, and indeed, in the proof of Bochner’s theorem 15.4.7, we saw
that the Dirac operator D = d + §. We just need to (a) show that the index of D is the signature o(M), and
(b) identify the integrand which is the supertrace strg (k:(a, a))dV (a).
In (v) of Lemma 14.1.7, we showed that
Tam = PTFEMTR=D (44) for ¢ € AF
where p = [%] = 2m. Thus
Tam = €(k) % on AF where e(k):= (—1)7HkkE—1/2

In particular 74, is a real operator on AL(T*M), and for the middle dimension m + 2m(2m — 1)/2 = m +
m(2m — 1) = 2m?, so 74, agrees with * on A?™. Hence we have:

AL(T*M) = @ocr<am(l+ e(k))AE(T* M) = Gam<r<am (1 + e(k)*) AZ" (T M)
AZ(T*M) = Sock<am(l — (b)) AE(T* M) = Gamck<am (1 — e(k)x)AZ" (T M)
We know that D(74,w) = —T4mDw, since VxTym = i2™V xwim = 0 and 7o, anticommutes with e; in the

Clifford algebra. Hence
Dox=(£l)*0D

From this it follows that w € A¥(M,C) is a form in the kernel of D? = d§ + dd = A, iff xw € A*™~k(M,C) is
in the kernel of D? = A as well. Denoting the harmonic forms in A¥(M,C) by H*, the above decompositions
imply that for AT = D™ D% and A~ = DT D™~ we have:

ker(A+) = @ogkgzm(l + e(k)*)Hk

ker(A7) = @o<p<om(l — e(k)x)H"

Now, for 0 < k < 2m, since * maps H* isomorphically to the space H*™~* with H* N HA™~* = {0}, we see
that (1 + e(k)*)H* and (1 — e(k)*)H* are isomorphic for 0 < k < 2m.

For k = 2m, we have €(2m) = 1, and (1£€(2m)*)H?™ are precisely the (£1)-eigenspaces of * : H2™ — H2™.
By the Hodge theorem, these are precisely the (41)-eigenspaces of the star operator * on H*™(M,C). Call
them H3™. Since:

<aU6,[M]>=/ anp

M
it follows that the cup product pairing is positive definite (resp. negative definite) on the space H*>™(M,R)*
which is the real form of H?™* (since * is a real operator) (resp. H?™(M,R)~, the real form of H*™~). Thus

ind(D") = dimc(ker AT) — dimg(ker A7) = dime H*™" — dime H?™~
= dimg H*™(M,R)" — dimg H*™(M,R)”™ = (M)

Now it remains to identify the integrand. Since every manifold is locally spin, say on some coordinate chart
U, and so we have the identification:

(CZ(M)‘U = S(M)|U ®S(M)‘U
by (i) in Example 15.1.10. We need to apply the Atiyah-Singer theorem to get the local integrand, with V = S.
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~ 1/2
We already know A(M) = [det (%)} where R is the curvature operator. We need to compute

try(exp(—F)) = trs(exp(—F))
where F is the curvature form of S with respect to the connection VY = V<, i.e. the spin connection on S. We

have already seen that F' = —R as elements of A% ® so(2m) ~ A2 ® Cs. So we need a formula for trs(exp(R)).
Note that R is a skew-symmetric 2m x 2m-matrix of 2-forms since the spin connection is unitary.

Since we are at a point a € M, we replace S, by Sa;,,. First assume R € End¢(S2,,) is a skew-symmetric ma-
trix with real scalar entries, instead of 2-form entries. If we find a power series representation for trg,, (exp(R))
in this case, then we can use the same power series representation when R has entries in A%, since R would
then be nilpotent. (The same principle we applied in the proof of the Proposition 16.1.7).

First note that as a Cly,,-module by left multiplication, Cls,, breaks up into 2™ identical copies of Ss,,, by
(i) of Proposition 14.4.1. Thus for an endomorphism R € Endc¢(Sa,) = Clay,, we have:

trg(exp(R)) = 27 ™trey,,, (exp(R))
Suppose R € Cly,, is of the special block-diagonal form:
R =tiei1es +toezeq + ... + ty€om_1€2m
Then, since ezj_1€2; commutes with ear_1e9 for j # k, we have:
exp(R) = exp(tie1ez) exp(tzeses)... exp(tme2am—1€2m)
We have already seen in the proof of (v) in Proposition 13.2.2 that
exp(tjeqj_1€25) = cos t;.I + sin tjeq;_1e9;
Note that epj_iez; acts as a skew symmetric matrix on the plane spanned by es;_; and ey;, and a skew-
symmetric matrix on the span of 1 and ez;_1e2;, and off-diagonal on all the rest of Cly,,. Thus it contributes

nothing to the trace of R. Similar reasoning applies to any product of distinct doublets eg;_ie2;. Thus one

sees that:
m

tre,,, exp(tieres) exp(taeses)... exp(tmeam—1€2m) = trey,,, cos ty cos ta....cos ty,I = 22" H cos t;
j=1
Now the endomorphism R = tie1eq + taezeq + ...tmeam—1€2) is in Co(V) = Lie Spin(2m) ~ so(2m), and is
identified with the matrix with 2 x 2-blocks of the form:

0 =2
2, 0

whose eigenvalues are ++/—1(2¢;). Thus cosh R/2 has eigenvalues cosh(4+/—1t;) = cos t;. Hence det cosh R/2 =
H;.n:l cos? t;. As a consequence, we find that for R of the block diagonal form above:

trg, (exp(R)) = 2 ™trey,, (exp(R)) = 27™22™ (det cosh R/2))"/? = 2™ (det cosh R/2)"/?

Now we can assert the same formula for any skew-symmetric 2m x 2m-matrix by choice of suitable orthonormal
basis ey, ..., €2, since both quantities of the equation above are unaffected by such a change.

Thus

A(M) A ch(V) = (2mi)~2mam {det <Si£/;/2> det (cosh R/Q)] v (—2m)~™ {det (mﬁ/]zw)] v L(M)

and we have the signature theorem

o(M) = /M L(M)

from the Atiyah-Singer Theorem 16.5.1. O
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We recall the definition of the Pfaffian of a 2m x 2m skew-symmetric real matrix A. We note that there is
a polynomial of degree m in the entries of A called the Pfaffian of A, and which satisfies:

(Pf(A))? =det A

The easiest way to write an explicit formula for the Pfaffian in the entries of A is to note that by an orthogonal
transfomation we can bring A into a normal block diagonal form with m 2 x 2-blocks each of the kind:

0 —Q;

a; 0
Then the Pfaffian is just [[/*, a; = (det A)Y/2. If we define the 2-form associated with a skew-symmetric
matrix A, viz. wy := ZKj Ajje; N ej then, at least for A of the form above, we see that

1
Pf(Awam = o (WaAwa Ao Awa)

An easy computation shows that an orthonormal change of basis e; — Pe; := f; results in transforming
ZKJ- A;je; A ej into de(PAPt)k,lfk A fi, and so the above formula holds good for all skew- symmetric A.

Expanding the right hand side, we find that

1
Pf(A)= pooe Z Asyo(2)As3)o(4) - Ac(2m—1)(2m)

" 0E€Sam

Definition 17.0.6 (Euler form). Let M be an oriented Riemannian manifold of dimension 2m. Let R =
ZKj R;ije; ANej be its curvature 2-form, where each R;; is the skew-symmetric matrix % de Rijricier. We can
then regard R as a 2m X 2m-skew-symmetric matrix whose (k, [)-entry is the 2-form RF = % sz Rijrie; Nej.
Then define the Fuler form of M by the formula:

1 1

Pf(R) — (27T)mm' Z RU(I)J(2) /\RU(B)J(4)'" /\RU(mel)a(Zm)

ocESam

which is a 2m-form.

Theorem 17.0.7 (Gauss-Bonnet-Chern-Allendoerfer). For M an oriented compact Riemannian manifold of
dimension 2m, we have:
2m

X(M)(=Euler characteristic of M) := / e(M) = Z(—l)i dim¢ H*(M, C)
M i=0

Proof: In this case the Dirac bundle is £ = CI(M) = AL(T*M)), and the grading is not the chirality grading,
but the parity grading (which comes from conjugation by wa,, € Spin(2m) when M is a spin manifold). That
is, ET = CIY(M) = A&(T*M), £ = CIY(M) = A2T*M) (see (ii) of Remark 15.1.11). The Dirac operator
is of course d + J, as we saw in the proof of the Bochner theorem 15.4.7. Thus D? = A, the Laplace-Beltrami
operator on M, and by the Hodge-deRham Theorem (Corollary 9.5.3), we have ker(D~D*) = @™ H* (M, C),
and ker(D*D~) = @ H* (M, C). Thus

2m

ind D* = dim ker(D™D*) — dimker(D* D) =) "(~1)" dime H'(M,C)

i=0
Again, to identify the integrand, we may use the fact that a coordinate chart U is spin, and decompose
Cl(U) = S(U) ® S(U). However, to compute the supertrace, we have to compute with respect to this parity
grading.

In the decomposition £ = S ® V of a Dirac bundle on a spin manifold, we have assumed S is given the
chirality grading and V is ungraded. The integrand of the Atiyah-Singer index theorem (i.e. the index density)
has been calculated for this situation by using the fact that if @ ® F' is an endomorphism of a Clifford module
E = S5, ® V, with a € End¢(S2,,) = A*(R?*™*) and F € Endc(V), then
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strp(a® F) = trp(mem o (@ ®@V)) = (=2i)" (agm) @ try F) (64)
(See Lemma 14.5.2). In the present situation, F = Sa,;, ® Say,, which we are regarding as a graded module
with the grading operator ws,, ® wa,, instead of the earlier grading operator 79,, ® 1.
But then, if a ® F € Endc(S2m) ® Endc(Sam) = AL (R?*™*) @ Cly,y,, we have:
strp(a®F) = trg[(wom @ wam) o (@ ® F))

= trg[((i) " Tam 0 @) ® (wom @ F)] = (—i)"trs,,, (Tom@)trs,,, (wWam o F)

= (=1)"(=20)" () [2m)tT5s,, (Wom © F)

= (72)ma[2m]tr52m(w2mF)
(Note incidentally that trg,, (we,, o F) = (—i)™trs,,, (Tom o F') = (—i)™strg,,, F)

So for a general endomorphism & € Endc(E) = A* ® Cl, we must modify the formula (64) by the formula:

strpk = (—=2)"[trs,,, (Wamk)][2m] (65)
where k is to be regarded as an element of A%(R?*™) with coefficients in Cla,,, = End(Sa,,), and the trace is to

be applied to the coefficients after composing with wo,.

So in the Atiyah-singer theorem, we will have to make the corresponding modification of the integrand to
read:

ind (d + 6) = (—27)~™ / [A0Drs (waum exp(R))]
M
Again, by the same reasoning as in the proof of Hirzebruch signature theorem 17.0.5,
trs(wam exp(R)) = 27" trer (wam exp(R))
Taking R of the special form R = 377" tjez;1e2; we had computed in the proof of 17.0.5 that

[2m]

m
exp(R) = [ [ ((cost;)T + (sint;)ea;—1e3;)
j=1
which implies, since distinct doublets ez;_1ez; and ea_1ea, commute, that:

m m
Wom eXp(R) = H €2j_1€2j((COStj)I + (Sintj)@j_legj) = H((— sintj)I—|— (COStj)egj_legj)
j=1 j=1
As in the proof of the Hirzebruch theorem again, only the scalar term contributes to the trace, and this trace
is .
trey(wom exp(R)) = (=1)™(2*) [ [ sin ¢;

Hence

Hsm t;

On the other hand, R corresponds to the block (2m x 2m)—matr1x whose 2 x 2 blocks are

0 -2t
2; 0

m 2m
det sinh(R/2) = H (sinh(it;))(sinh(—it;) = H(z sin t;)(—isin t;) H sin’ ¢;

j=1

trs (w2m eXp

so that

So we conclude that for R of the spec1al form above,

(=2)™ (det(sinh(R/2))"/? = trs(wam exp(R))
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Now once concludes the above formula for all skew-symmetric R as before, by change of orthonormal basis.
Hence the index theorem now reads:

nd(d+5) = (=2m)™ /M [E(M)trS(WQm exp(R))] (2m]

1/2
- (_27r)—m/M det (sinf(/R2/2)> (=2)™ (det (sinh(R/2))"/?

[2m]
_ L e 1/2 _ )™ e 1/2
(m) /M<d H(R/2)1/2 = (21) /M<d H(R))
- /M(%)’mPf(R) - /N ()
This proves the proposition. O
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