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Some basic facts about algebraic curves

Vishwambhar Pati

In this article we review some basic facts of algebraic
curves which will, hopefully, make the article by
Amol’d and Vasil'ev! (this issue, page 89) more
accessible. The theory of algebraic curves, which
received its first impetus from the theory of algebraic
equations, dates back to antiquity. Fortunately, however,
workers in various disciplines came to contribute to
this theory with a variety of motivations and
perspectives. For instance, complex analysis and
potential theory (Weierstrass, Riemann, Gauss, Hurwitz,
Ahlfors), differential equations and Abelian integrals
(Riemann, Hilbert, Picard, Fuchs, Abel, Jacobi), algebra
and number theory (Noether, Abel, Mordell), and
geometry and topology (Gauss, Euler, Klein, Poincare,
Riemann, Weyl) are some of the areas where this rich
theory had ramifications, and in turn drew on. Indeed, as
the article’ mentions, problems in mechanics and optics

led Newton, Fresnel and Huyghens to look at algebraic |

curves. By the turn of this century, most of the
fundamental facts about Riemann surfaces (smooth
projective curves), such as topological classification,
genus, the Riemann mapping theorem, moduli, the
Riemann-Roch theorem, had been established. However,
to this day, the fascinating story is far from over. From
Faltings’ proof of Mordell’s conjecture (see for example
ref. 2, for a readable account) to string theory in
physics, the theory of algebraic curves continues to
reverberate through all the mathematical sciences.

In this note, however, we shall touch upon only a few
elementary aspects of this vast domain. For the reader
who wishes to pursue the story, we recommend refs. 3
and 4 as being excellent ones at an elementary level,
and refs. 5-8 for the more mathematically mature.

Preliminaries

We shall assume some familiarity with basic algebra
and complex analysis. To simplify our discussion, we
will deal only with plane curves, over the field C of
complex numbers. The main reason for sticking with the
complex numbers is one of the most crucial facts of
mathematics, to wit:

The fundamental theorem of algebra. Every non-
constant polynomial
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of degree n, with complex coefficients a; has n complex

roots (or ‘zeros’) A;,4,,...,4,, (possibly repeated).
Therefore

pe=a [1 G-,

where a is a complex scalar (in fact, it is the coefficient
a, of z" in p(2)).

We remark here that there are several other
interesting fields other than C which have the above
property of being algebraically closed. Number theorists,
for example, are interested in ‘finite characteristic’
algebraically closed fields. C, however, is the most
geometrically (and analytically) accessible one with the
property above. There are several proofs of the
fundamental theorem of algebra. A proof using
Liouville’s theorem can be seen in any elementary text
on complex analysis, and is a good illustration of how
the analytical properties of C are brought to bear, to
prove an algebraic fact. A pure algebra proof can be
found in ref. 9.

Affine algebraic curves

Let us now define what we mean by a plane algebraic
complex curve. The affine plane here is complex 2-
space, viz. C2, the space of ordered pairs {(x, y): x,yeC}
of complex numbers. A plane algebraic complex curve is
defined to be the subset of this plane given by

{(x,y)eC?:f(x,y)=0},

where

fey)= Y aux"y”

mnm+n<d

is a polynomial of degree d (assumed>0) in x and y.
For example, when d=1, we get lines, if d=2, we get
conics, and if d=3, we get cubics.

How does one picture these things? There is really no
canonical way, since C? is real Euclidean 4-space R*,
and f(x,y)=0, by equating the real and imaginary
parts to 0, gives two real equations, so a complex plane
algebraic curve is some (real) two-dimensional object in
R*—not the easiest thing to visualise! However, one
way, in the case when f(x,y) has real coefficients and
some locus of real zeros, one can draw the curve on the
real plane R2. For example, the ones drawn in Figure 1.

However, there are some equations, such as x*+2y?2
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Figure 1.

+1=0 which have real coefficients, but no real zeros.
The-trick is to consider x*+2y%—1=0, which by the
complex change of coordinates x—ix, y—iy, defines the
‘same’ complex curve, but now has real zeros (an
ellipse). Such a curve, whose real locus is homeo-
morphic to a circle, is called an oval.

Projectivization of affine curves

A simple construction on curves (which is crucial to
much more than just visualization) is called projectivi-
zation. There is a way to ‘close up’ affine n-space (by
throwing in points at infinity) to get a compact space
called complex projective n-space denoted CP". More
precisely, consider the space of complex lines in C"**
through the origin. Any point (z4, z,,...,2,) # (0,0...0)
determines a unique such line, and any such line
determines a non-zero vector (z,...,z,) up to scaling of
all the coordinates by a single non-zero complex scalar
4. Thus CP" is just the space of points denoted as a
ratio [z4:z,:-+-:2,], which is governed by the rules:

(i) All the z; are not 0, and
(i) For A#0 in C, [zo:2,:+--:2,]=[Azg: 42, -1 Az, ]

These coordinates z; of a point in CP”, indeterminate
up to a common scaling, are called the homogeneous
coordinates.of the point. If one now looks at the (open)
subset of CP" defined by

Up={[2o:2,::2,): 2 #0},

it is easily seen that this U, is none other than affine
complex n-space C". For the point [z4:2z,:-+-:2,] In U,
can be sent to ((z,/z),(z2/20), ... (z4/20)) in C", whereas
(wy,wy,...,w,) can be sent back to [1:w,:w,:---:w,]in
U,. These two maps, by (i) and (ii) above, are clearly
inverses of each other. Similarly, other U, for
i=1,2,...,n may be defined, which are all identifiable
as affine C"s, and CP” is covered by these (n+ 1) affine
Ujs.

By all this CP! is U,= C with the single point [0:z,]
(all values of z; #0 lead to one point, by scaling) thrown
in, so that CP' is nothing but C u oo, viz. the Riemann
sphere. Similarly, CP* is C* U CP!, by the following
process: CP! is just the space of lines in C2, so
separately close up at co each complex line in C? by the
point in CP! which is defined by that line.
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A complex projective plane curve is the subset
C={[z¢:2,:2,]1€ CP*: F (24,2,,2,)=0]},

where F(zq,2,2,) is a homogeneous polynomial of
degree d. (Homogeneous of degree d means all its terms
have total degree d, which is equivalent to saying

F(Azg,Az,,4z,)= A F (z4,2,,2,) A€C.)

We need homogeneity to make sense of the definition
because of the non-zero scaling indeterminacy of
homogeneous coordinates described above in (ii). By
putting z, (resp. z,, resp. z,) equal to 1 and calling the
remaining two z-coordinates x and y, we will get the
three polynomials F(1,x,y) resp. F(x,1,y) resp.
F(x,y,1) which will give the three affine pictures of the
given projective curve C in the affine open sets U, (resp.
U,. resp. U, ). Conversely to projectivize an affine plane
curve C given by a polynomial f(x,y) of degree d, just
plug x=(z,/z4), y=(z,/z,) into f, multiply the whole
resulting expression by z§ to clear denominators, and
let the resulting homogeneous degree d polynomial
F(z¢,2y,2,) be the defining polynomial for the project-
ivization € of C. For example, if C=(x>+y%+1=0),
then

C={[z0:2,:2,]: 28+ 2} +23=0}.

Note that C will of course be the affine model of € in
the affine subset U,. What do the affine models of C in
the other affine pieces U, and U, mean? They describe
the behaviour of the original affine curve C as we ‘go
towards infinity’. In this sense, projectivization brings
the limiting behaviour of the affine curve at oo on an
equal footing with its behaviour at any point of the
affine plane.

Pictures of some affine curves and their projectiviza-
tions are shown in Figure 2.

Indeed, all smooth projective curves are represented
(up to topological type) in Figure 3. For a beautiful
explanation of Figures 2 and 3, see ref. 3, Ch. 1.

We say a curve (affine or projective) is irreducible if
its defining-polynomial is irreducible, namely, cannot be

Affine curve: projectivization.

yrex(x—1)(x-2)=0

2025"21 (2= 2y) (£,~22,)

(the smooth cubic)

2,23~ 2,2}~ 21=0

Figure 2.
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Figure 3.

factorized as a product of polynomials all of strictly
smaller degree than the original polynomial. Irreduci-
bility is the natural generalization of the notion of
‘primeness’ in natural numbers, to polynomials. For
example, the curve (x2+y>=0) is irreducible, whereas
the curve (x*+y*=0) is not, being the union of the
four lines x+exp [7(2k+1)i/4] y=0, where k=0,1,2,3.
The fact that the ring of polynomials (in any fixed
number r of variables) with C coefficients is a unique
factorization domain (ref. 9, ch. v, section 6) implies that
every polynomial has an essentially unique factorization
as a product of irreducible polynomials, which in turn
means that every algebraic curve (affine, or projective,)
has a unique decomposition as a union of irreducible
curves. Therefore, in some sense, it is enough to study
irreducible curves, and how they meet in general, to
understand all curves.

Intersections of curves, Bezout’s theorem

The fundamental fact about the intersection of curves is
Bezout’s theorem. To state it, we need the notion of the
degree of an irreducible curve. This we define as the
degree d of the irreducible defining polynomial f (resp.
F) of the irreducible affine (resp. projective) plane curve
C. What is the geometric significance of this number d?
Let us stick with the affine case for the moment.
Consider a general complex line Ax+puy=v, which is
nothing but a curve of degree 1 in affine 2-space CZ.
This yields

y=px+f and/or x=1y+d

for some constants p, f,7,6 € C depending on whether
pu#0 and/or v#0. If we plug this expression for, say, y
into f(x, y), two possibilities arise: (i) either the resulting
polynomial in x vanishes identically, in which case one
can show that (1x + uy—v) divides £, and the line is thus
an irreducible component of the original curve C
defined by f. But since we assumed that the curve was
irreducible, the curve must be this line or, (ii) it becomes
a non-zero polynomial of degree d in x. In the latter
case, it will have d roots, say x=«a,,...,0,, (Which may
not be distinct). In this case the points

Pi=(o;, po;+p)i=1,2,...,d

are common points of intersection of C and the line.
Indeed, by choosing a ‘generic enough® line, we can
ensure that all the roots «; are distinct. (For example,
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the lines y=x and y=—x intersect the curve
x?*+2y+1=0 in a single point (=1, —1), and (I, — 1)
respectively, whereas any other line y=mx with
m#1, — 1, intersects it in two points, viz.

(—mz (m* = 1)}, —mEm(@m>— 1))

in C%

Thus the degree of an irreducible curve is the number
of points in which a generic line intersects it. Further,
any line always intersects it in at most d points, unless
the irreducible curve itself happens to be this line. This
fact generalizes to all (not necessarily irreducible) curves
as: a line which is not a component of the curve
intersects it in at most d points. Further, a generic
enough line intersects it with ‘total intersection
multiplicity’ d. (Each point of intersection has an order,
which is just the multiplicity of the corresponding root
a; in the x (or y) polynomial we get on substituting the
linear equation into the defining polynomial f(x,y) of
the curve, and this order > 1 in general. We add these
up for all the points of intersection to get the total
intersection multiplicity.)

A line is just a curve of degree one, so we have just
seen that a curve of degree d intersects a curve of degree
1 in at most d-1 =d points. What about the number of
intersections of a degree m and a degree n curve? This is
answered by

Bezout’s Theorem. Two dffine plane irreducible curves of
degrees m and n respectively, (which are not identical)
intersect in at most mn points. Two irreducible projective
curves of degrees m and n respectively (which are not
identical) intersect with total intersection multiplicity
exactly mn.

Let us first remark that, in the affine case, the number
of intersection points could be zero. For example, the
parallel lines (x=0) and (x+1=0) have no points of
intersection in C2. However, they do meet at infinity,
and so in CP?, they meet at a single point, which agrees
with Bezout’s theorem for projective curves. (More
precisely, their projectivizations are respectively z; =0
and z,+z,=0. In the affine set U,, where x=(z0/z,)
and y=(z,/z,), the affine models of these lines become
y=0 and x+y=0, which meet at (x=0, y=0), the
origin of the affine set U,. They have no intersection in
U,, since the first line (z;,=0) does not meet
U,={z;#0} at all. This hopefully clarifies the earlier
remarks about projectivization and behaviour at o0.)

The proof of Bezout’s theorem depends on an
algebraic gadget called the resultant of two polyno-
mials. Suppose

p(z)= Y a;z' and g(z)= Y, b,z
i1 i1

are two polynomials of degrees n and m respectively.
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We want to get a criterion in terms of the coefficients a;,
b; for these polynomials to have a common root.
Suppose 4 is a common root. Then, by factorizing,

p(z)=(z—~A)p,(z) and q(z)=(z— 1)q,(2) (1)
so that by crossmultiplying
p1(2)4(2)=4,(z)p(2), (2)

where deg(p;)=n—1 and deg(q,)=m—1.

Conversely, if there exist polynomials p,, g, of
degrees (n—1) and (m—1) respectively, satisfying (2)
above, then we must have

()
P2 44(2)
= a polynomial of deg. 1=az+b.

Since a#0 and p(z)=(az+b)p,(2);q(z)=(az+b)q,(2)
have the common root A=(—b/a). So the eq. (2) is
equivalent to p, ¢ having a common root. Suppose

Zcz q,(z Zdz (3)

then, substituting these into (eq. 2) and equating
coefficients of z' we get

Cobo=doag = ao(—do)+by(co)=0
cobyt e bo=doa, +d,a,
= ag(—d,)+a,(—do) +bolc;)+b,(c)=0,

and so on, to get (n-+m) linear equations, which can be
written in the matrix form

ag a4 a, 0 0

0 a a - a O 0

0 0 a a a, 0
(=do,» O 0 0 a, a, a,
~dp-1:Co | by b, - by 0 O 0 |=0-
“C-1) |0 by by - b, O 0

0 0 by by - b, 0 -0

_0 0 0 « by by - bm_ @

The determinant of the (m+n)x (m+n) (with m-rows of
a's and n-rows of b’s) matrix in the above is called the
resultant R(p,q) of the two polynomials p and g. For
this to have a nontrivial solution ¢;d;, it is necessary
and sufficient that the determinant R{p,q)=0, as one
knows from linear algebra.

Remark. Incidentally, this result leads to a nice
criterion for a root 4 of a polynomial p(z) to be a
repeated root. If p(z)=(z— A)*h(z) with k > 2, then it is
easy to differentiate and check that 4 is also a root of
the differentiated polynomial p'(z), and thus must be a
common root of p(z) and p’(z). Thus the resultant
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R{p,p')=0. This resultant is called the discriminant of
p(z). For example, the reader may check that for the
quadratic az?+bz+c, the discriminant is a(b?—4ac),
and if a#0, this is a genuine quadratic, and as expected
from school algebra, has equal roots if and only if
b%—4dac=0.

Now let us resume the proof of Bezout’s theorem. We
remark that if

J6,y)=0g(x,y)=0

are the equations of two curves of degrees n and m
respectively, by writing

f5.3)= ¥ a0y

g(x,y)= Zb )

we see that if (x, y) is a point of intersection of the two
curves, then y is a common root of the two polynomials
of eq. (5), and so

R(Z a;(x)y L Zbi(x))’ i) =

But this determinant is a polynomial in the coefficients
a;(x), b;(x), and thus a polynomial R(x) in x. If we could
find out its degree d, we could say that the number of
solutions for x would be at most d, and thus this d
would be an upper bound for the number of
intersection points. Since this degree is the highest
power of x in R(x), we may as well assume that the a;’s
are homogeneous of degree n—i and b; is homogeneous
of degree m—j. It can then be seen that R(x) (from the
matrix in eq. (4)) is homogeneous of degree nm in x. To
see this, just replace x by tx, so that R(x) is multiplied
by t. We need to find d. Now, x—tx multiplies (by our
homogeneity assumption on them) g,(x) by "~%, and
b;(x) by t™~% in the determinant expression for R(tx)
from eq. (4). Now multiply the ith row of a’s by t™~*1!
and the jth row of b’s by n—j-+ 1. This multiplies R(tx)
by a total of tl+2+...m+l+2+...n’ viz. t(m1+nz+m+n/2).
But now the first column has the common factor t™*",
the second t™*"!, and so on, so that pulling these
factors out of the determinant column by column, we

get t[(m+n)(m+n+1)/2]R(x). So t(m1+nz+m+n/2) R(tx)=
glmtmmintU21R(x) and thus R(tx)=t"R(x), as
claimed. This is what we wanted.

Parametrizations, Newton—Puiseux series

There are always local parametrizations available for
affine curves in a small neighbourhood of an arbitrary
point (x,, yo). That is, if C=(f(x,y)=0), we would like
to have functions x(f), y(t) of a single complex
parameter ¢, well defined for small |¢| such that
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() f(x (1), y(t) = 0, and
(i) x(0)= %o, Y(0)= yo.

This is called a local parametrization of C at (Xg, yo)-
Before one talks about the existence of such, we need to
define smooth and singular points on an affine curve. A
point P=(x,, yo) on C=(f(x,y)=0) is a sniooth point if

(i) f(xq, yo)=0, namely P lies on C,
(i) ((2f70x) (xos Yol (8f/0¥)(Xqs Yo)) #0;

(iiy above means that there is a non-zero normal
direction defined at P and hence a well-defined tangent
direction at P. A point which is not smooth is called a
singular point. For example, on the curve y?=x?+x3
(called the node, Figures 1 and 2) it is easily checked that
only (0,0) is a singular point, and all other points are
smooth. Similarly, the cusp (Figure 1) defined by
(x*+y3=0) also has (0,0) as the only singularity.
Similarly, the curve x*+y*=0 has a singular point at
the origin. Intuitively, if P is a point on C where C has
a sharp corner (see Figure 4,a), or through which it is
multiple (Figure 4,b), then P is a singular point. Note
that since singular points are common points of
intersection of the curves /=0, (9f/éx)=0 and (8f/3y)=0,
by the last section, they are finitely many in number. A
curve with no singular points is called a smooth curve.
Similar definitions can be made for projective curves.
A singular point on any of the three affine models of a
projective curve is called a singular point of the
projective curve, and a projective curve that has no
singular points is called smooth. However, a smooth
affine curve can acquire a singularity at oo and thus
have a singular projectivization. (For example, the
smooth affine curve y+x*=0 projectivizes to z3z,+z3
=0, whose affine model in U, (putting z,=1, z5=x,
z;=y)is x*+y3=0, a cusp singularity at (0,0)e U,.)

Local parametrization at a smooth point

Suppose (xo,¥0) is a smooth point on the affine
algebraic curve defined by f(x,y)=0. Then, by the
definition above, at least one of the partials (0f/dx)
(X0, Yo)s (0f/0y)(x9, yo) is non-zero. Say, the latter one is
non-zero. Then, since f is a holomorphic function of
(x,y), one can apply the holomorphic implicit function

Figure 4a
(Cusp)

Figure 4b
(Node)

Singular
point: (0,0)

Singular point: (0,0)
v
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theorem (cf. ref. 10, ch. 1, theorem B.4, e.g.) to conclude
that in a small neighbourhood, |x — x| <e, the variable y
can actually be solved as a holomorphic function y(x)

of x. More precisely, '

y=yo= 3,

I<i<®

a;(x =), (6)

which converges absolutely for |x—x,|<e. If the other
partial is non-zero at P=(xq, y,), the roles of x and y
can be changed in the foregoing to yield x as a function
of y. If both partials are non-zero, each of x, y is
solvable locally as a holomorphic function of the other.
Note that this solving is always possible locally, and
seldom globally.

Example. Consider x?>+y*+1=0. The curve is a
smooth curve, and (0,i) is a smooth point. In the
neighbourhood |x| <1, there is the holomorphic power
series expansion of y

1 1
y—i=i<—2—x2-—§x4+ ),

which just arises by writing y=i(1+x??* and expand-
ing. Note that this expansion is only local, for |x|<1,
and cannot be extended holomorphically to a disk of
radius> 1 around x=0.

Local parametrization at a singular point

Local parametrization in the neighbourhoods of singular
points involves the notion of a fractional power series,
or Puiseux series. Indeed, holomorphic parametriza-
tions are not possible. For example, look at the
singularity (0,0) of the cusp x?>+)*=0. If x were

<0
expressible as a holomorphic power series x= Y ;)"

i=1

in some small y-neighbourhood, then if a,#0, the
lowest order term in y in x2+y® would be a?y? which
is non-zero. On the other hand, if a, were 0, then y3
will be the lowest order y term in x2+y> which is
again non-zero. In neither case will x*>+y® vanish
identically therefore. Similarly, y as holomorphic power
series of x in a small x neighbourhood can also be ruled
out. The only thing one can say in a neighbourhood of
the origin is that x=iy} or y=—x% which are the
simplest possible examples of Puiseux series. A Puiseux
series in x*/ is defined to be a power series in x*/ for
some fixed positive integer d. Clearly, a Puiseux series
in x** is a Puiseux series in x'/*.for any fixed positive
integer k > 1, and one can add (or multiply) a Puiseux
series in x'/? and another one in x4’ by regarding both
of them as formal power series in x'/4¢ | and adding (or
multiplying) them as one does power series. At any rate,
we have the basic theorem:

Newton—Puiseux Theorem. Let us (without loss of
generality) assume that (0,0) is a singular pgint of the
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plane irreducible curve f(x,y)=0. Then for |x|<e¢, and ¢
small enough, there is an absolutely convergent Puiseux
series expansion

y=0(xXM)=7% axi (7)
i=(
such that f(x, ¢(x!M) )=0.

A few words about x' are in order before we
proceed. A complex number a #0 has d dth roots, which
are all scalar multiples of each other by the complex
numbers {e2"*:k=0, 1, 2,...,d—1} of unit modulus.
Of course, 0 has a single dth root 0, and so the quantity
z' is a ‘multivalued function’ with branch point 0 (and
also oo, if we projectivize C to the Riemann sphere
CP!). Thus a Puiseux series of y in the theorem above
is also multivalued in x. This is an essential feature of
singular points. Indeed, the number 4 in the theorem is
1, if and only if y is a smooth function of x.

Let us now actually construct a Puiseux series by the
Newton polygon method. (Another proof using resolu-
tion of curve singularities can be seen in ref. 11, ch. 4,
section 4.3). First let us define the order of an infinite
series

h (x)= a, xlm /i) a, xlmafng) 4 .. a‘-x(”“/"") 4 (8)

with positive fractional exponents (m,/n,) < (my/n,)---
<(my/n) < --- to be the least exponent (m/n;), and
denote it by O(h).
Now, let f(x,y) be the equation of our curve. First
"rewrite f as a polynomial in y with x-polynomial
coefficients, viz. as

a(x)y". ©)

M=

i

fxy)=
i=0

For instance, let us take as our prototype example the

rhamphoid cusp which, written in this form, is

S y)=xt =2y + (1 =x+x)y2, (10)

a curve of degree 4. Let us denote, in (9) above,
O(a)=a; and plot the graph of points P,=(i,a;) for
0<i<n Join successive P; by line segments. The
resulting figure (Figure 5,a) is called the Newton
polygon of f. For instance, in our example (10) above,
ay=0(ao)=4, a;=0(a,)=2 and «,=0(a,)=0. The
Newton polygon is Figure 5,b. We remark here that in

a { Figure 5a d;‘ Figure 5b
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eq. (9), the coefficients could even be infinite series of the
type eq. (8) for the o; and Newton polygon to make
sense.

The next step is to pick a line segment P,P; (i#/)
such that all the points P, for all k=0, 1,...,n lie above
this segment. For example, in Figure 5,a, we could
choose the segments P,P; or P;P,, but not P,P, or
P,P,. This means that the number defined by
a;+iy; =o;+jy, =p, in other words, by

_HTY

Y1 —
J—1

satisfies the relation
a,Tky, = f=o+iy =o;+jy,,
forall k=0,1,...,n (11)
In our example (10), of course, Figure 5,b shows that
y,=2 f=4=0,+ky, for k=0,1,2.

To get hold of the Puiseux series of y, let us assume

that

y=c XNt xhi T d e xiit et 4 (12)

This does not make it a Puiseux series, however, and
what one needs to do for a Puiseux series is

where y, >0, y,>0 for i > 2 are rational exponents.

(i) determine ¢; and y; by a well-defined procedure

(ii) show that the v, for all i > N (and some N) have a
fixed denominator dy. Then, if d,,d,,...,dy- are the
denominators of y,7,,...,7y-1, the whole expression
(12) will then clearly be a Puiseux series in x{!) where
d=dd,...dy

(i) show that the resulting series converges for small
|x|.

We shall only dwell on (i) and (ii), referring to (ref. 12,
ch. 13.) for the proof of (iii). We rewrite the expression
(12) as

y=x"(c; T), (13)

where y, is the number determined in (11), from the
Newton polygon. Plug this expression (13) into (9) to
get

Jlx,y)=ag(x)+a; (x)x" (¢, +y)t e @ (X)X (1 F )"
, (14)
Now, by the definition of «; as O(a;), each

a;(x)=K;x*% + ...(higher order terms in x)

so that the lowest power of x occurring in the kth term
of eq. (14) is o, + ky, which, by the choice of y, above, is
> o;+iy; =a;+jy; =B. So all powers of x in eq. (14) are
greater or equal to f. Thus we may rewrite eq. (14) as

fO6y)=fxx"(c; +y,))

= ( Z chli>xﬂ+ (xﬂfl (x!Y1)>’ (15)
atky, =f
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where we have collected up the coefficient of the lowest
power x? of x in the first parenthesis of eq. (15), and the
rest in the second. For eq. (15) to identically vanish, the
coefficient of the lowest power x* in the first parenthesis
above has to equal 0. This will yield a polynomial
equation for ¢, (which is nontrivial, since it has at least
two terms, contributed by the ith and jth terms in
eq. (15), for i#j, so two different degrees ¢} and c}
definitely appear) which, by the fundamental theorem of
algebra, will have at least one complex solution. In our
example (10), e.g. we get on substituting y=x2(c; +y,)
that the coefficient of the lowest power x* of x on being
set equal to 0 gives

Ko+K e, +K,c2=1-2¢,+ct=0

which means ¢, =1 is the unique solution. (Note that
the solution for ¢; will not be unique in general, but
just choose one.) Having now found ¢, in our example,
we plug y=x%(1+y,) into eq. (10) to get the expression

X[ =x)+2(2=x)y, +y2(x*—x+1)]=0. (16)
One sees from eq. (15) that
fl(xayl)zx_ﬂf(xsxh(cl+y1)a

because the first parenthesis of eq. (15) vanishes by
definition of ¢;. For our example (10) of the rhamphoid
cusp, since ff=4, this becomes:
Sl y) =2 =) +2( ~x)y, + (x> —x+ 1)y .
(17)

Now one repeats the whole procedure, finding y,>0

from the Newton polygon for f,(x,y,) and then setting

y1=Xx"(c,+y,), plugging into expression for f,, solving
a polynomial for c,, etc. Again, in our example (10), we
have the Newton polygon of f; to be the Figure 6.

o; ‘ Figure 6.

The segment PP, of slope (—7y,)=~1/2 has Py, P,, P,

above it, and thus

Y1=x72(c, + y))=x (e, + y,). (18)

The lowest power of x is x, and equating its coefficient
to O after substituting for y, from eq. (18) into
fi(e,y,)=01n eq. (17) leads to ¢, =1.

Now one could go on in this manner to find f,.
However, we end up being lucky, and the expression
(17) f1 (x, y,)=0 leads to '

(x—x)(1+y,) =yl

Ty _ x~¥(1-x)"t
Y1

= x(1-x)
Y 1—-x¥(1—-x)?

=y=x>(1+y,)=x*[1-x}(1-x)*]"L (19)

However,
28

is a Puiseux series in x*, and after plugging this Puiseux
series into eq. (19) above, we easily get the Puiseux
series for y.

In general, a more detailed look at the successive
Newton polygons for f;(x, y;) (see ref. 4, ch. IV, section
3), one shows that the denominators of the y; stabilize
after a finite stage, so as to yield (i) above and the
Newton—Puiseux theorem.
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