
Large deviations: an introduction to 2007 Abel Prize

S. Ramasubramanian
Stat.-Math. Unit

Indian Statistical Institute
8th Mile, Mysore Road

Bangalore - 560 059

Abstract: 2007 Abel prize has been awarded to S.R.S. Varadhan for cre-
ating a unified theory of large deviations. We attempt to give a flavour of
this branch of probability theory, highlighting the role of Varadhan.

1 Introduction

The award of the prestigious Abel prize for 2007 to Professor S.R.S. Varad-
han has been widely acclaimed, especially among the mathematical commu-
nity in India. The Abel prize, perhaps the highest award in mathematics,
has been instituted by the Norwegian Academy of Science and Letters since
2003; this annual award is patterned roughly along the lines of Nobel prize
in sciences. The citation says that Varadhan is being given the award “for
his fundamental contributions to probability theory and in particular for
creating a unified theory of large deviations”.

Large deviations is a part of probability theory; it provides asymptotic esti-
mates for probabilities of rare events. It may be pointed out that the strong
law of large numbers and the central limit theorem, the versatile classical
limit theorems of probability theory, concern typical events. As large devia-
tion estimates deal with probabilities of rare events the methods needed are
more subtle. Moreover, context specific techniques play major role though
there are quite a few general principles. In this write up we attempt to give
an elementary introduction to large deviations, of course, highlighting the
role of Varadhan.
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2 Actuarial origin and theorems of Cramer and
Sanov

Suppose X1, X2, . . . are independent identically distributed real valued ran-
dom variables, real valued i.i.d.’s for short. Let F (x) = P (Xi ≤ x), x ∈ R
denote their common distribution function, and m =

∫
R

x dF (x) their com-

mon mean (expectation or “average value”). If m exists then the strong law
of large numbers states that 1

n(X1 + . . . + Xn) → m with probability 1 as
n →∞. This forms a basis for the validity of many statistical and scientific
procedures of taking averages. If a > m then the above implies.

lim
n→∞ P

(
1
n

(X1 + . . . + Xn) > a

)
= 0. ( 2.1 )

However one would like to know at what rate convergence in (2.1) takes
place.

Denote Sn = X1 + . . . + Xn, n ≥ 1. As the central limit theorem (CLT)
explains the prevalence of Gaussian distribution in various aspects of nature,
one wonders if CLT can shed more light. By the classical CLT for sums of
i.i.d.’s, assuming that the common variance is 1, we have for a > m

P

(
1
n

Sn > a

)
= P

(
1√
n

(Sn − nm) >
√

n(a−m)
)

≈ 1− Φ(
√

n(a−m)) → 0, as n →∞

where

Φ(x) =

x∫

−∞

1√
2π

e−
1
2
y2

dy, x ∈ R. ( 2.2 )

Note that Φ(·) is the distribution function of the standard normal (Gaussian)
distribution. So the CLT is not powerful enough to discern the rate.

The event {Sn > na} is a typical “rare event” of interest in insurance. For
example, Xi can denote the claim amount of policy holder i in a given year,
and hence Sn denotes the total claim amount of n policy holders. Assuming
a big portfolio for the insurance company (that is, n is very large), any
estimate for P (Sn > na), where a > m, gives information about the “right
tail” of the total claim amount payable by the company in a year.
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As another illustration from insurance, Sn can be regarded as the cumula-
tive net payout (that is, claim payment minus income from premiums and
interests) in n years. The initial capital u0 of the company is generally quite
large. If Sn exceeds u0 then the company is ruined.

It is easy to see why actuaries would be interested in the tail behaviour of Sn.
They would like to have an idea of how bad an extremely bad year can be,
and perhaps fine tune premium rates or reinsurance levels. It is no wonder
that the problem attracted the attention of the great Swedish probabilist
Harald Cramer, a pioneer in putting statistics as well as insurance modelling
on firm mathematical foundations. However, F. Esscher, a Scandinavian
actuary, may have been the first to look at the problem and come up with
some interesting ideas (in 1932) which were later sharpened/extended by
Cramer.

To appreciate Cramer’s result let us first look at two examples

Example 2.1 Let Xi be i.i.d. random variables such that P (Xi = 0) =
P (Xi = 1) = 1

2 ; that is, {Xi} is a sequence of i.i.d. Bernoulli random
variables with parameter 1

2 . Note that m = 1
2 . Let a ∈ (1

2 , 1]. It is easily
seen that (as Sn has a binomial distribution)

2−nQn(a) ≤ P (Sn ≥ na) ≤ (n + 1)2−nQn(a)

where Qn(a) = max
k≥an

(
n
k

)
. As a > 1

2 , the maximum is attained at k0 = the

smallest integer ≥ an. Using Stirling’s formula n! = nne−n
√

2πn(1 + O( 1
n))

it is not difficult to see that

lim
n→∞

1
n

log Qn(a) = −a log a− (1− a) log(1− a).

From this it follows that

lim
n→∞

1
n

log P (Sn ≥ na) = −[log 2 + a log a + (1− a) log(1− a)].

Example 2.2 Let {Xi} be i.i.d. N(0, 1) random variables so that P (Xi ∈
A) =

∫
A

n(x) dx, A ⊂ R where

n(x) =
1√
2π

exp
{
−1

2
x2

}
, x ∈ R. ( 2.3 )
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Note that P (Xi ≤ x) = Φ(x) where Φ is given by (2.2). In this case m = 0.

Note that the empirical mean 1
n Sn = 1

n

n∑
i=1

Xi has the N(0, 1
n) distribution.

Hence by the properties of normal distributions, for any a > 0

P

(∣∣∣∣
1
n

Sn

∣∣∣∣ ≥ a

)
= 2[1− Φ(a

√
n)]. ( 2.4 )

Now for any y > 0 clearly
(

1− 3
y4

)
n(y) < n(y) <

(
1 +

1
y2

)
n(y).

Integrating the above over [z,∞), where z > 0
(

1
z
− 1

z3

)
n(z) < [1− Φ(z)] <

1
z
n(z). ( 2.5 )

From (2.4) and (2.5) it easily follows that

lim
n→∞

1
n

log P

(∣∣∣∣
1
n

Sn

∣∣∣∣ ≥ a

)
= −1

2
a2. ( 2.6 )

Thus, the probability of the rare event {| 1nSn| ≥ a} is of the order exp(−1
2na2).

This is a typical large deviations statement, and 1
2 a2 is an example of a rate

function. ¤

Cramer’s theorem is about an analogue of the above for sums of i.i.d.’s.
Assume that the moment generating function (or the Laplace transform) of
X1 exists, that is,

M(t) , E[etX1 ] =
∫

R

etx dF (x) < ∞, ∀ t ∈ R. ( 2.7 )

For a > E(X1), by Chebyshev’s inequality

P

(
1
n

Sn ≥ a

)
= P

(
exp

(
θ

n
Sn

)
≥ eθa

)

≤ e−θaE

[
exp

(
θ

n
Sn

)]
= e−θa

(
M

(
θ

n

))n
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for any θ > 0. Putting θ = nt we now see that (as θ is arbitrary)

lim sup
n→∞

1
n

log P

(
1
n

Sn ≥ a

)
≤ inf

t≥0
[−ta + log M(t)]

= −
{

sup
t≥0

[ta− log M(t)]
}

= −
{

sup
t∈R

[ta− log M(t)]
}

where the last step follows as a > E(X1). In Example 2.2 we have M(t) =
e

1
2
t2 and hence 1

2a2 = sup
t∈R

[ta− log M(t)]. A similar comment is true also of

Example 2.1.

In fact we have the following theorem, which is the starting point in large
deviations.

Theorem 2.3 (Cramer, 1938): Let {Xi} be real valued i.i.d.’s having finite
moment generating function M(·). Then for any a > E(X1)

lim
n→∞

1
n

log P

(
1
n

Sn ≥ a

)
= −I(a) ( 2.8 )

where

I(a) , sup {at− log M(t) : t ∈ R} . ( 2.9 )

Similarly for a < E(X1)

lim
n→∞

1
n

log P

(
1
n

Sn ≤ a

)
= −I(a). ( 2.10 )

¤

For a proof see den Hollander [H], Dembo and Zeitouni [DZ], Varadhan [V2].

Note that log M(t) is a convex function. One can show that I(·) is also
convex and that

log M(t) = sup{ta− I(a) : a ∈ R}. ( 2.11 )

Thus log M(t) and I(a) are convex conjugates. The rate function I(·) is
also known as the Fenchel-Legendre transform of the logarithmic moment
generating function log M(·).
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As seen above, the upper bound in (2.8) is an easy consequence of Cheby-
shev’s inequality. The key idea in the proof of the lower bound is an “expo-
nential tilting” or Esscher transform of the distribution, a device having its
origins again in insurance problems. With F (·) and M(·) as above, for each
fixed t ∈ R the Esscher transform is defined by

dF̃t(x) =
1

M(t)
etx dF (x).

Under the tilted distribution the rare event { 1
nSn ≥ a} becomes a typical

event, thereby facilitating analysis. See den Hollander [H].

See Feller [F] for an account of Cramer’s theorem in the context of the
central limit problem; also illustrations from risk theory are sprinkled often
in [F]. For detailed account of insurance models, and for the role played by
Esscher transform in estimating ruin probabilities see Rolski, et al [RSST].
According to Varadhan, variations of Esscher transform is a recurring theme
in large deviations.

Under the hypothesis of Cramer’s theorem the rate function I has the fol-
lowing properties:
(i) I has compact level sets, that is, I−1([0, c]) is compact for all c ≥ 0; in
particular I is lower semicontinuous; (ii) I(z) ≥ 0 with equality if and only
if z = E(X1); (iii) I is convex on R.

If Xi has the Bernoulli distribution with parameter 0 < p < 1, then I(a) =
a log

(
a
p

)
+ (1 − a) log

(
1−a
1−p

)
, for a ∈ [0, 1], and I(a) = ∞, otherwise.

Similarly, if Xi has the Poisson distribution with parameter λ > 0, then
I(a) = λ− a + a log

(
a
λ

)
, for a ≥ 0, and I(a) = ∞ otherwise.

With the assumptions as in Theorem 2.3, if a > m note that I(z) ≥ I(a)
for all z ≥ a. So the result (2.8) can be rephrased as, denoting A = [a,∞),

lim
n→∞

1
n

log P

(
1
n

Sn ∈ A

)
= − inf

z∈A
I(z). ( 2.12 )

Such a statement holds also for nice subsets A. ¤

Even a reasonable formulation of Cramer’s theorem in Rd was perhaps
achieved only when the general framework for large deviations was given by
Varadhan. Finer aspects of convexity, like a minimax theorem, are needed
in the proof. See Varadhan [V2].
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In 1957 Russian probabilist Sanov established an important extension of
Cramer’s theorem to empirical distributions of real valued i.i.d.’s. We shall
describe it briefly. Let µ be a probability measure on R. For y ∈ R we shall
denote by δy the Dirac measure concentrated at y. Let {Yi : i ≥ 1} be a real
valued i.i.d. sequence defined on a probability space (S,F , P ) with common
distribution µ. Set

NY
n (ω, ·) , 1

n

n∑

i=1

δYi(ω)(·), ω ∈ S, n ≥ 1. ( 2.13 )

For each n, ω note that NY
n (ω, ·) is a probability measure on R; {NY

n } is
called the family of empirical distributions of {Yi}.

Let M(R) denote the set of all probability measures on the real line R. This
is a closed convex subset of the topological vector space of all finite signed
measures on R with the topology of weak convergence of measures; that is
νn converges to ν, denoted νn ⇒ ν, if and only if

∫
f dνn →

∫
f dν for all

f ∈ Cb(R).

Denote Xi(ω) = δYi(ω) ∈ M(R). Hence NY
n = 1

n

n∑
i=1

Xi, n ≥ 1, is a

family of random variables taking values in M(R). For any n, ω note that

NY
n (ω, (−∞, y]) = 1

n

n∑
i=1

I(−∞,y](Yi(ω)) , Fn(y, ω) for all y ∈ R; so for fixed

n, ω note that Fn(·, ω) is the distribution function of the probability measure
NY

n (ω, ·). By law of large numbers Fn(y, ω) → F (y) , µ((−∞, y]), for any
y ∈ R as n → ∞ for a.e.ω. That is, NY

n (ω, ·) converges in the topology of
M(R) to µ as n → ∞, a.e.ω. So questions concerning probabilities of rare
events, like P (NY

n 6∈ U) where U is neighbourhood of µ, become meaningful.

By analogy with Cramer’s theorem the rate would involve the logarithmic
moment generating function of Xi, and its convex conjugate. As Xi is
M(R)-valued random variable its logarithmic moment generating function
is a function on Cb(R) (= space of bounded continuous functions on R) given
by

log M(g) = log E[exp〈g, Xi〉] = log E[exp〈g, δYi〉]
= log

∫

R

eg(y) dµ(y), g ∈ Cb(R). ( 2.14 )

We expect the rate function to be given by

I(ν) = sup{〈g, ν〉 − log M(g) : g ∈ Cb(R)}, ν ∈M(R). ( 2.15 )
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(Here 〈g, ν〉 =
∫
R

g(y) dν(y).) In fact a more tractable expression for the rate

function can be given. Define for ν ∈M(R)

J(ν|µ) ,
{ ∫

R
f(y)[log f(y)] dµ(y), if f := dν

dµ exists

+∞, otherwise
( 2.16 )

where dν
dµ is the Radon Nikodym derivative of ν w.r.t. µ. In the case of

Bernoulli distribution with parameter p ∈ (0, 1) it is easily seen that I(a) =
J(ν|µ), 0 < a < 1 with µ = Bernoulli (p), ν = Bernoulli (a). J(ν|µ) is
referred to as the relative entropy of ν w.r.t. µ; it is also called Kullback-
Leibler information in statistics.

The preceding heuristics suggest the following

Theorem 2.4 (Sanov, 1957): Let the empirical distributions {NY
n } be given

by (2.13). Then for any convex open set A ⊂M(R)

lim
n→∞

1
n

log P (NY
n ∈ A) = − inf{I(ν) : ν ∈ A} ( 2.17 )

where the rate function I is given by (2.15). Moreover I(ν) = J(ν|µ), ν ∈
M(R) with J(·|µ) given by (2.16). ¤

For proof and extensions see Dembo and Zeitouni [DZ], Deuschel and Stroock
[DS].

Though the two results are equivalent, a difference between the set up of
Cramer’s theorem and that of Sanov’s theorem is worth pointing out. The
former deals with deviations away from a number (i.e. the mean) and the
rate is a function on R, whereas the latter concerns deviations away from a
measure and hence the rate function is defined on the space of probability
measures. As Sanov’s theorem represents a greater conceptual sophistica-
tion, it is sometimes referred to as an example of level 2 large deviations.
See [V3], [SW] and [DZ]. However, the importance of Sanov’s work was per-
haps fully realised only when the infinite dimensional version was proved by
Donsker and Varadhan in the mid 70’s; see [DS].

Another major development between 1938 and 1966 was initiated by Cher-
noff in 1952. He initiated a program in which questions about asymptotic
efficiency of statistical tests and performance of estimators were analyzed
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using large deviations. Further developments/refinements of the results of
Cramer, Sanov, and Chernoff were made in the late 50’s/early 60’s. These
include in particular the works of R.R. Bahadur, R. Ranga Rao and J.
Sethuraman at the Indian Statistical Institute.

These and related works ensured the statistical pedigree of large deviations.
For accounts of the above see Bahadur [B], den Hollander [H], Dembo and
Zeitouni [DZ], Deushel and Stroock [DS]. Moreover these must have made
an impression on Varadhan, who was a graduate student at the Indian Sta-
tistical Institute, Kolkata during 1959-62.

3 “Asymptotic probabilities and differential equa-
tions”

The title of this section is borrowed from that of the landmark 1966 paper
of Varadhan [V1].

Perhaps the best known example of a convex conjugate pair is the La-
grangian and the Hamiltonian from mechanics via calculus of variations.
In mechanics, the Lagrangian denotes the difference between the kinetic
energy and the potential energy, while the Hamiltonian is the sum of the
two.

Here we consider a simplified Hamiltonian. We assume H : R → R is a
uniformly convex function; that is H ′′(·) ≥ c > 0. This function plays the
role of the Hamiltonian. Let T > 0 be fixed. We consider the terminal value
problem for the Hamilton-Jacobi equation

Ut −H(Ux) = 0, in (0, T )× R
U(T, x) = G(x), x ∈ R.

}
( 3.1 )

Here G(·) is a known continuous function, and Ut, Ux denote respectively
the derivatives w.r.t. t, x. Let L denote the corresponding Lagrangian, that
is

L(z) = sup{zx−H(x) : x ∈ R}, z ∈ R ( 3.2 )

is the convex conjugate of H. It is known from calculus of variations that
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the weak solution U of (3.1) is given by the “variational principle”

U(t, x) = sup



G(w(T ))−

T∫

t

L(ẇ(s)) ds : w(t) = x, w is C1



 ( 3.3 )

where ẇ(s) = dw
ds (s).

Remarks: (i) In calculus of variations one considers the initial value prob-

lem for Ut + H(Ux) = 0. The quantity
t∫

0

L(ẇ(s)) ds is called an “action

functional”. The analogue of (3.3) is then an infimum, and hence is called
the principle of least action. The reason for our considering the “back-
ward problem” (3.1) is that the expression (3.3) can be readily tied up with
Varadhan’s lemma later.

(ii) In optimal control theory, the modern avatar of calculus of variations,
a cost functional is minimised/maximised as in (3.3), and a nonlinear PDE
like (3.1) is derived via a dynamic programming principle.

(iii) PDE in (3.1) can also arise as a tool for solving initial/terminal value
problems for certain scalar conservation laws of the form ut− (H((u))x = 0.
In fact this served as the motivation for Varadhan [V1]. For example, if
H(x) = 1

2x2 then the inviscid Burger’s equation ut − uux = 0 is trans-
formed into an equation like (3.1) by taking certain indefinite integrals. See
Varadhan [V1] for a brief discussion on this, and Evans [E] for a detailed
account.

Let Du[0, T ] = {w : [0, T ] → R : w is right continuous, and w(t−) exists
for each t}, with the topology of uniform convergence. Let Dac = {w ∈
Du[0, T ] : w(t) = w(0) +

t∫
0

ξ(s) ds, 0 ≤ t ≤ T and
T∫

0

|L(ξ(s))|ds < ∞}.
Define the function I : Du[0, T ] → [0,∞] by

I(w) =





T∫
0

L(ẇ(s)) ds, if w ∈ Dac

+∞, otherwise.
( 3.4 )

Then it is not difficult to show that I(·) given by (3.4) has properties similar
to the rate function of Cramer’s theorem, albeit on a more complicated
space.
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An expression similar to r.h.s. of (3.3) crops up naturally in Laplace’s method
in classical asymptotic analysis. Assuming appropriate integrability condi-
tions, and denoting ‖ · ‖k for the norm in Lk(R), note that

lim
n→∞

1
n

log




∫

R

enγ(x)dx




= lim
n→∞ log ‖eγ(·)‖n = log ‖eγ(·)‖∞

= sup{γ(x) : x ∈ R} ( 3.5 )

for any nice function γ(·) on R. (Use of ‖·‖n → ‖·‖∞ in (3.5) was suggested
by R. Bhatia in place of an earlier argument.) In particular if γ(x) =
g(x)− I(x) where g is a bounded continuous function and I(·) ≥ 0 is like a
rate function then

lim
n→∞

1
n

log
∫

R

eng(x) e−nI(x) dx

= sup {g(x)− I(x) : x ∈ R}. ( 3.6 )

Note the similarity between the right sides of (3.3) and (3.6). In addition,
for each n suppose dPn(x) = e−nI(x)dx is a probability measure. Then for
large a, by similar analysis on [a,∞),

lim
n→∞

1
n

log Pn([a,∞)) = lim
n→∞

1
n

log

∞∫

a

e−nI(x) dx

= sup{−I(x) : x ≥ a} = − inf{I(x) : x ≥ a}. ( 3.7 )

Note the resemblance between (3.7) and (2.12). Clearly (3.5) - (3.7) suggest
that there could be a close connection between suitable families {Pn : n ≥
1} or {Pε : ε > 0} of probability measures similar to those encountered
in Cramer’s theorem, and approximation schemes to obtain solutions to
differential equations like (3.1).

See Evans [E] for an application of Laplace’s method in the asymptotics of
viscous Burger’s equation.

At this stage it is convenient to introduce Varadhan’s unifying framework
for large deviations. The idea is to characterize the limiting behaviour of
a family {Pε} of probability measures as ε ↓ 0, in terms of a rate function.
Let (S, d) be a complete separable metric space, and F denote its Borel
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σ-algebra. The required abstraction is contained in the following two key
definitions.

Definition 3.1 A function I : S → [0,∞] is called a rate function if I 6≡ ∞
and if the level set {x ∈ S : I(x) ≤ c} is compact in S for each c < ∞.

In particular, a rate function is lower semicontinuous; that is, I−1([0, c])
is closed in S for all c < ∞, which is equivalent to lim inf

n→∞ I(xn) ≥ I(x)
whenever xn → x in S.

Definition 3.2 Let {Pε : ε > 0} be a family of probability measures on
(S,F}. The family {Pε} is said to satisfy the large deviation principle (LDP)
with rate function I if
(a) I is a rate function,
(b) for every closed set C ⊆ S

lim sup
ε→0

ε log Pε(C) ≤ − inf
y∈C

I(y), ( 3.8 )

(c) for every open set A ⊆ S

lim inf
ε→0

ε log Pε(A) ≥ − inf
y∈A

I(y). ( 3.9 )

Remarks: (i) Let {Xi} be as in Cramer’s theorem and Pn denote the
distribution of 1

n (X1 + . . . + Xn), for n ≥ 1. Then, with ε = n−1, Cramer’s
theorem says that {Pn} satisfies LDP with rate function given by (2.9). See
(2.12).

(ii) In Sanov’s theorem S = M(R), with the topology of weak conver-
gence, is a complete separable metric space; see Parthasarathy [P]. Also
ε = n−1, Pn = distribution of NY

n , n ≥ 1. So Sanov’s theorem says that
{Pn} satisfies LDP with relative entropy given by (2.16) as the rate function.

(iii) In the place of (3.8), (3.9) the more intuitive stipulation that

lim
ε→0

ε log Pε(M) = − inf
y∈M

I(y)

turns out too strong to be useful. For example, if Pε is nonatomic for all ε,
then taking M = {x}, x ∈ S, the above can hold only if I(·) ≡ ∞. This
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would rule out most of the interesting cases. It turns out that (3.8), (3.9)
are enough to yield a rich theory.

(iv) The framework of complete separable metric space is known to be op-
timal for a rich theory of weak convergence; see Parthasarathy [P]. In the
case of large deviations too this seems to be so.

(v) We can now formulate Cramer’s theorem in Rd. Let {Xi} be Rd-valued
i.i.d.’s with finite moment generating function M . Let I(z) = sup{〈θ, z〉 −
log M(θ) : θ ∈ Rd} for z ∈ Rd. Let Pn denote the distribution of 1

n(X1 +
. . . + Xn), n = 1, 2, . . .. Then {Pn} satisfies the LDP with rate function I.
See Varadhan [V2] or Dembo and Zeitouni [DZ] for a proof.

The following elementary result gives a way of getting new families satisfying
LDP’s through continuous maps. This is also a main reason for not insisting
that the rate function be convex.

Theorem 3.3 (Contraction principle): Let {Pε} satisfy the LDP with a
rate function I(·). Let (Ŝ, d̂) be a complete separable metric space, and
π : S → Ŝ a continuous function. Put P̂ε = Pεπ

−1, ε > 0. Then {P̂ε} also
satisfies the LDP with a rate function

Î(y) =
{

inf{I(x) : x ∈ π−1(y)}, if π−1(y) 6= φ
∞, otherwise.

¤

Note: In the above π can also depend on ε, with some additional assump-
tions. See Varadhan [V2].

Recall that {Pε} converges weakly to P (denoted Pε ⇒ P ) if

lim
ε→0

∫

S

f(x) dPε(x) =
∫

S

f(x) dP (x)

for any bounded continuous function f . Also Pε ⇒ P is equivalent to any
one of

lim sup
ε→0

Pε(C) ≤ P (C), C ⊆ S, C closed,

lim inf
ε→0

Pε(A) ≥ P (A), A ⊆ S, A open.
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The formal similarity between (3.8), (3.9) and the above suggests that LDP
may be suitable for handling convergence of integrals of exponential func-
tionals. Indeed we have the following fundamental result, which is the key
to diverse applications.

Theorem 3.4 (Varadhan’s lemma (1966)): Let {Pε} satisfy the LDP with
a rate function I(·). Then for any bounded continuous function g on S

lim
ε→0

ε log




∫

S

exp
(

1
ε
g(x)

)
dPε(x)




= sup{g(x)− I(x) : x ∈ S}. ( 3.10 )

¤

Thus Varadhan’s lemma is an extension of Laplace’s method to an abstract
setting. See Varadhan [V1], [V2], Dembo and Zeitouni [DZ] for proof and
discussion. Moreover the factor exp(1

ε g(·)) in (3.10) is reminiscent of the
Esscher tilt. This strategy highlights the contribution of “rare events”, that
is, sets with very small Pε-measure where g(·) may take large values.

Example 3.5 We now present a ‘toy example’, taken from den Hollan-
der [H], to indicate that probabilities of rare events can decisively influence
asymptotic expectations. Let {Xi} be i.i.d.’s such that P (Xi = 1

2) = P (Xi =
3
2) = 1

2 . Let Pn denote the distribution of 1
n(X1 + . . . + Xn), n ≥ 1. By

Cramer’s theorem {Pn} satisfies the LDP with rate function

I(z) =
{

log 2 +
(
z − 1

2

)
log

(
z − 1

2

)
+

(
3
2 − z

)
log

(
3
2 − z

)
, if 1

2 ≤ z ≤ 3
2

∞, otherwise.

Now

E

((
1
n

n∑

i=1

Xi

)n)
=

∫

[ 1
2
, 3
2
]

exp(n log x) dPn(x) =
∫

R

exp(n g(x)) dPn(x)

where g is a bounded continuous function on R such that g(x) = log x, 1
2 ≤

x ≤ 3
2 . By Varadhan’s lemma,

lim
n→∞

1
n

log E

[(
1
n

n∑

i=1

Xi

)n]
= sup

{
log x− I(x) : x ∈

[
1
2
,
3
2

]}

, b, say. ( 3.11 )

14



It can be shown easily that b > 0. By the law large numbers 1
n(X1 + . . . +

Xn) → 1 with probability 1. So one might naively expect l.h.s. of (3.11)
to be zero. However, as shown above it is not so. Thus the asymptotic
expectation is determined not by the typical (or almost sure) behaviour

but by the rare event when 1
n

n∑
i=1

Xi takes values near x∗, the value where

supremum is attained in (3.11). ¤

Exit problem, discussed in the next section, gives a more concrete example
where rare event determines the quantity/characteristic of interest.

Now, as I(·) given by (3.4) is a rate function, the similarity between the
r.h.s. of (3.3) and (3.10) is quite striking. In fact, if we can have a family
{Qn} of probability measures on Du[0, T ] satisfying LDP with rate function
given by (3.4), then (3.10) gives an approximation scheme for the solution
to (3.1).

Suppose H(θ) = c log MF (θ), θ ∈ R where MF is the moment generating
function (Laplace transform) of a probability distribution F on R. Let {Xi}
be an i.i.d. sequence with distribution F , and Sn = X1+. . .+Xn, n ≥ 1. For
n = 1, 2, . . . define the stochastic process Zn(t) = 1

n S[nt], 0 ≤ t ≤ T ; (here
[z] denotes the integer part of z). Then the sample paths (or trajectories)
of Zn(·) are in Du[0, T ]. Let Qn denote the probability measure induced by
the process Zn on Du[0, T ]; (Qn may be called the distribution of the process
Zn(·)). It can be proved that {Qn} satisfies LDP with rate function given
by (3.4); this is basically a functional version of Cramer’s theorem, proved
in Varadhan [V1].

If the Hamiltonian is not a logarithmic moment generating function then
the approximation scheme, though similar in spirit, is more involved. But
once again, it uses processes with independent increments. Hamilton-Jacobi
equations (of the type (3.1)) with non-zero right side can also be handled.
See Varadhan [V1].

Even at the pain of repetition, it may be worth mentioning the following.
Thanks to the work of Hopf, Lax and Oleinik, it was shown only in the late
50’s/early 60’s that U given by (3.3) is the weak solution, in a suitable sense,
to (3.1). In more modern jargon (3.3) gives the viscosity solution to (3.1).
See Evans [E] for a detailed discussion on this circle of ideas. Varadhan
[V1] has given an approximation scheme for (3.3) in terms of probabilistic
objects. On the way, a unifying framework for large deviations has been
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synthesized, with Varadhan’s lemma set to play a key role.

4 Sample path LDP, Wentzell-Freidlin theory and
Exit problem

We begin with LDP in connection with the best known stochastic process,
viz. the Brownian motion.

Let C0[0, T ] = {w : [0, T ] → R : w continuous, w(0) = 0}. Let X(t, w) =
w(t), 0 ≤ t ≤ T, w ∈ C0[0, T ] denote the coordinate projections. Let
P denote the standard one dimensional Wiener measure on C0[0, T ]. So
P (C0[0, T ]) = 1, and under P , for 0 < t1 < t2 < . . . < tk < T the random
variables X(t1), X(t2)−X(t1), . . . , X(tk)−X(tk−1) are independent having
respectively N(0, t1), N(0, t2 − t1), . . . , N(0, tk − tk−1) distributions. That
is, under P the stochastic process {X(t) : 0 ≤ t ≤ T} is a standard one
dimensional Brownian motion.

For ε > 0 let Pε denote the distribution of the process {√εX(t) : t ≥ 0}; so
for any Borel set A ⊆ C0[0, T ] note that Pε(A) = P

(
1√
ε
A

)
. Clearly Pε ⇒ δ0

as ε ↓ 0 where δ0 is the probability measure concentrated on the function
which is identically 0.

We look at an example, some aspects of which had been alluded to earlier,
to justify why an LDP for {Pε} may be useful.

Example 4.1 Let T > 0 and g be a continuous function on R. Consider
the terminal value problem for the viscous Burger’s equation:

uε
t − uεuε

x + 1
2ε uε

xx = 0, in (0, T )× R
uε(T, x) = g(x), x ∈ R

}
. ( 4.1 )

Here ε > 0 is a parameter. As ε ↓ 0 we expect uε to converge to the solution
to the equation

ut −
(

1
2
u2

)

x

= 0, in (0, T )× R ( 4.2 )

with terminal value u(T, x) = g(x), x ∈ R.
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The conservation law (4.2) is also called inviscid Burger’s equation. If we de-
note by U ε, G respectively the indefinite integrals (w.r.t. the space variable)
of uε, g, then

U ε
t −

1
2
(U ε

x)2 +
1
2
ε U ε

xx = 0, in (0, T )× R ( 4.3 )

with terminal value U ε(T, x) = G(x), x ∈ R. If U ε solving (4.3) can be
obtained then, uε = U ε

x solves (4.1). The nonlinear equation (4.3) can be
transformed into heat equation by the Cole-Hopf transformation V ε(t, x) =
exp(−1

ε U
ε(t, x)). Then

V ε
t + ε

2V ε
xx = 0, in (0, T )× R

V ε(T, x) = exp
(−1

ε G(x)
)

}
. ( 4.4 )

Once heat equation is encountered can probability be far behind?

It is known that the solution to (4.4) can be written in terms of the heat
kernel or equivalently the Brownian motion; see Karatzas and Shreve [KS].
Indeed

V ε(t, x) =
∫

R

[
exp

(
−1

ε
G(y)

)]
· 1√

2πε(T − t)
exp

{
− (y − x)2

2ε(T − t)

}
dy

=
∫

R

[
exp

(
−1

ε
G(x + z)

)]
· 1√

2πε(T − t)
exp

{
− z2

2ε(T − t)

}
dz

=
∫

R

[
exp

(
−1

ε
G(x + z)

)]
· dPεX

−1
T−t(z)

=
∫

C0[0,T ]

[
exp

(
−1

ε
G(x + X(T − t, w))

)]
dPε(w). ( 4.5 )

Inverting the Cole-Hopf transformation we see that

−U ε(t, x) = ε log V ε(t, x)

= ε log




∫

C0[0,T ]

exp
{

1
ε
[−G(x + X(T − t, w))]

}
dPε(w)


 . ( 4.6 )

Clearly r.h.s. of (4.6) suggests that limit of U ε as ε ↓ 0 can be handled using
Varadhan’s lemma, once it is shown that {Pε : ε > 0} satisfies the LDP and
the rate function is identified.
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Also as ε ↓ 0 we expect U ε to converge to the solution of the Hamilton-Jacobi
equation

Ut − 1
2
(Ux)2 = 0, in (0, T )× R ( 4.7 )

with the terminal value U(T, x) = G(x), x ∈ R. From this solution to
(4.2) can be obtained by differentiating w.r.t. x. Here the Hamiltonian
is H(y) = 1

2y2 and hence the Lagrangian is L(z) = 1
2z2. Note that the

approximation scheme suggested here is somewhat different from the one
discussed in the preceding section. This problem was considered by Donsker
and his student Schilder at the Courant Institute around 1965, serving as
another motivation for [V1]. ¤

Now define IB : C0[0, T ] → [0,∞] by

IB(w) =





1
2

T∫
0

|ẇ(s)|2ds, if w ∈ Dac ∩ C0[0, T ]

∞, otherwise
( 4.8 )

where Dac is as in (3.4) with L(x) = 1
2x2; so IB is the restriction of I given

by (3.4) to C0[0, T ] with L(x) = 1
2x2.

Theorem 4.2 (Schilder 1966): {Pε : ε > 0} satisfies the LDP with rate
function IB given by (4.8). An analogous result holds also for the d-dimensional
Brownian motion. ¤

An important ingredient of the proof is the Cameron-Martin formula which
gives the Radon-Nikodym derivative of translation by an absolutely contin-
uous function with respect to the Wiener measure. See Varadhan [V2] for a
proof. In view of Example 2.2 and Cramer’s theorem the rate function IB

may not be surprising. Theorem 4.2 is an example of a sample path large
deviations principle. This is a level 1 LDP like Cramer’s theorem.

A far reaching generalization of the above is the LDP for diffusion processes,
again a sample path LDP, due to Wentzell and Friedlin (1970); some special
cases had been considered earlier by Varadhan. A diffusion process can be
represented as a solution to a stochastic differential equation. Let {X(t) :
t ≥ 0} denote a standard d-dimensional Brownian motion, where d ≥ 1 is
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an integer. Let σ(·), b(·) respectively be (d × d) matrix valued, Rd-valued
functions on Rd. The stochastic differential equation

dZ(t) = σ(Z(t)) dX(t) + b(Z(t)) dt ( 4.9 )

with initial value Z(0) = z0 is interpreted as the stochastic integral equation

Z(t) = z0 +

t∫

0

σ(Z(s)) dX(s) +

t∫

0

b(Z(s)) ds. ( 4.10 )

Here expressions of the form
t∫

0

ξ(s) dX(s) denote Ito integrals. When σ, b

are Lipschitz continuous, by a Picard iteration unique solution to (4.10) can
be obtained. The diffusion process given by (4.10) is a Markov process; that
is, if the “present” is known, then the “past” and the “future” of the process
are independent; this is also called the memoryless property. See Karatzas
and Shreve [KS]. The sample paths of the diffusion are continuous; so the
process {Z(t) : 0 ≤ t ≤ T} induces a probability measure on C([0, T ] : Rd).

Theorem 4.3 (Wentzell-Freidlin, 1970): Let σ, b be Lipschtz continuous.
Assume that a(·) , σ(·) σ(·)† is uniformly positive definite; that is, ∃ λ0 > 0
such that 〈a(x) ξ, ξ〉 ≥ λ0|ξ|2, for all x, ξ ∈ Rd. Let x ∈ Rd be fixed. For
ε > 0 consider the diffusion process

dZε,x(t) =
√

ε σ(Zε,x(t)) dX(t) + b(Zε,x(t)) dt ( 4.11 )

with initial value Zε,x(0) = x. Let Qε,x denote the probability measure
induced on C([0, T ] : Rd) by the process {Zε,x(t) : 0 ≤ t ≤ T}. Then
{Qε,x : ε > 0} satisfies LDP with the rate function

Ix(w) =





1
2

T∫
0

〈ẇ(t)− b(w(t)), a−1(w(t)) (ẇ(t)− b(w(t)))〉dt, if w ∈ Dx

∞, otherwise
( 4.12 )

where

Dx = {w ∈ C([0, T ] : Rd) : w(t) = x +

t∫

0

ξ(s) ds, ξ ∈ L2[0, T ]}.

¤
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Remark: If σ(·) ≡ identity matrix, b(·) ≡ 0 then the above reduces to
Schilder’s theorem. In fact, if σ(·) ≡ constant, then the above result is
a simple consequence of Schilder’s theorem and the contraction principle.
So the expression (4.12) may not be surprising; however the proof in the
general case involves a delicate approximation. See Freidlin and Wentzell
[FW], Varadhan [V2].

We next indicate a connection between diffusions and second order ellip-
tic/parabolic PDE’s. With σ, a, b as in Theorem 4.3 define the elliptic dif-
ferential operator L by

Lg(x) =
1
2

d∑

i,j=1

aij(x)
∂2g(x)
∂xi∂xj

+
d∑

i=1

bi(x)
∂g(x)
∂xi

( 4.13 )

where a(·) = ((aij(·))). The operator L is called the infinitesimal gener-
ator of the diffusion process Z(·) given by (4.9), (4.10). The probabilistic
behaviour of the diffusion is characterized by L. In particular, the tran-
sition probability density function of Z(·) is the fundamental solution to
the parabolic operator ∂

∂t + L. (For example the generator corresponding

to Brownian motion is the d-dimensional Laplacian 1
2∆ := 1

2

d∑
i=1

∂2

∂x2
i
, and

the heat kernel is the corresponding transition probability density function).
See Karatzas and Shreve [KS].

Let G ⊂ Rd be a bounded smooth domain. Consider the (Dirichlet) bound-
ary value problem

Lu(x) = −g(x), x ∈ G with u(x) = f(x), x ∈ ∂G ( 4.14 )

where g, f are known functions. Then the unique solution to (4.14) can be
written as

u(x) = E


f(Z(τ)) +

τ∫

0

g(Z(s)) ds

∣∣∣∣∣∣
Z(0) = x


 , x ∈ Ḡ ( 4.15 )

where Z is the diffusion given by (4.9), (4.10), and τ = inf{t > 0 : Z(t) 6∈
G} = first exit time from G. Note that r.h.s. of (4.15) denotes taking
expectation given that Z(0) = x. The random variable τ is an example of
a stopping time. As a(·) is uniformly positive definite, we have τ < ∞ with
probability 1. Thus (4.15) gives a stochastic representation to the solution
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to the Dirichlet problem (4.14); this can be proved using stochastic calculus.
See Karatzas and Shreve [KS].

For ε > 0, x ∈ Rd let Zε,x(·) be given by (4.11). The infinitesimal generator
Lε of the diffusion Zε,x is given by

Lεv(x) =
ε

2

d∑

i,j=1

aij(x)
∂2v

∂xi∂xj
(x) +

d∑

i=1

bi(x)
∂v

∂xi
(x). ( 4.16 )

For each ε > 0, with the same g, f , the problem

Lεuε(x) = −g(x), x ∈ G with uε(x) = f(x), x ∈ ∂G ( 4.17 )

has the solution

uε(x) = E


f(Zε,x(τε)) +

τε∫

0

g(Zε,x(s)) ds


 , x ∈ Ḡ ( 4.18 )

where τε = inf{t > 0 : Zε,x(t) 6∈ G}. In particular, x 7→ Ex(τε) := E(τε |
Zε,x(0) = x) is the solution to (4.17) with f ≡ 0, g ≡ −1.

For ε = 0 note that the equation (4.11) becomes the ODE

dz(t) = b(z(t)) dt, with z(0) = x. ( 4.19 )

We make the following assumption:

(A) There exists x0 ∈ G (an interior point) such that for any x ∈ Ḡ the
solution z(·) to (4.19) with initial value z(0) = x satisfies z(t) ∈ G for all
t > 0 and lim

t→∞ z(t) = x0; that is, x0 is the unique stable equilibrium point

in Ḡ of the ODE (4.19).

Some questions of interest are: What happens to uε as ε ↓ 0? In particular,
what about Ex(τε) as ε ↓ 0? What can one say about the hitting distribution
on ∂G in the limit?

For small ε, the trajectories of the diffusion Zε,x(·) are close to the determin-
istic trajectory z(·) with very high probability. And, as the deterministic
trajectory z(·) does not exit G at all, a reasonable guess would be that the
system Zε,x tends to stay inside G for small ε. In such an eventuality note
that limiting exit time and exit place are not defined.
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To get a handle on the problem, we proceed differently. By continuity of
sample paths, Zε,x(τε) is ∂G-valued. So for any ε > 0, the hitting distribu-
tion, i.e. the distribution of Zε,x(τε) is a probability measure on ∂G. Since
∂G is compact this family of probability measures has limit points.

To appreciate the importance of the problem let us look at two situations.
The first example is from chemistry, which is the origin of the ‘exit problem’.
It is known that molecules need to overcome a potential barrier to be able
to participate in a chemical reaction. As the molecules are in motion, their
energy is modelled by a diffusion of the type Zε,x(·), oscillating about a stable
state; here ε > 0 is the so called Arrhenius factor. The potential barrier θ
is represented by the diameter of the domain G. In general ε << θ. So exit
from the ‘right end’ of G for small ε means reaction will proceed. Hence
the asymptotic rate of exit at the right end of the potential well, as ε ↓ 0,
gives a very good estimate of reaction rate. See van Kampen [Kp], Schuss
[S] for more background information and ad hoc ε-expansion method due to
Kramers.

The second example is from engineering, concerning track loss in radar sys-
tems. In such a system the observed tracing error, due to evasive maneuvres
of the target as well as to observation noise, is modelled by a diffusion of
the type Zε,x(·). Here ε gives the variance parameter in the observation
noise. As radar systems are quite sophisticated this parameter is very small
compared to the actual tracing error. Since the observation device has a
limited field of view, Zε,x(·) ceases to model the observation process as soon
as the tracking error exits from the field of view. So exiting the domain in
this case is an undesirable event. Hence information on probability of exit,
mean time of exit, exiting place on ∂G, etc. may be useful in designing
optimal devices. See Dembo and Zeitouni [DZ] for a detailed discussion.

Motivated by the rate function in Theorem 4.3, for 0 < t < ∞ define

It(y(·)) =
1
2

t∫

0

〈(ẏ(s)− b(y(s))), a−1(y(s))(ẏ(s)− b(y(s)))〉 ds

if y is absolutely continuous with square integrable derivative ẏ. Set

ϕt(x, y) = inf{It(y(·)) : y(0) = x, y(t) = y, y absolutely
continuous, ẏ square integrable, }

ϕ(x, y) = inf
t>0

ϕt(x, y), x, y ∈ Rd.
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Heuristically ϕt(x, y) can be interpreted as the cost of forcing the diffusion
Zε,x(·) to be at the point y at time t. Define the function ϕ̄ by

ϕ̄(y) = ϕ(x0, y), y ∈ Ḡ ( 4.20 )

where x0 is the unique stable equilibrium point of the ODE (4.19) as in (A).

Theorem 4.4 (Wentzell-Freidlin, 1970): Let σ, b, a be as in Theorem 4.3.
Assume (A). Further assume that there exists ȳ ∈ ∂G such that ϕ̄(ȳ) < ϕ̄(y)
for y ∈ ∂G, y 6= ȳ. Then the following hold.
(i) For any x ∈ G, Zε,x(τε) → ȳ with probability 1. So the hitting distribu-
tion converges (weakly) to δȳ as ε ↓ 0, whatever be the starting point.
(ii) Let uε be the solution to (4.17) for continuous boundary data f , and
g ≡ 0. Then lim

ε↓0
uε(x) = f(ȳ) for any x ∈ G. (Part (ii) is an immediate

consequence of part (i).)
(iii) lim

ε↓0
ε log Ex(τε) = ϕ̄(ȳ), for any x ∈ G. ¤

The intuitive explanation is along the following lines. “Any wandering away
from x0 has an overwhelmingly high probability of being pushed back to x0,
and it is not the time spent near any part of ∂G that matters but the a
priori chance for a direct, fast exit due to a rare segment in the Brownian
motion’s path” - see p.198, Dembo and Zeitouni [DZ]. This is possible since
p0(t, x, y) > 0 for any t > 0 (however small), any x, y ∈ Rd (however large
|x − y| may be), where p0 is the heat kernel. For proof and discussion see
Varadhan [V2], Freidlin and Wentzell [FW], Dembo and Zeitouni [DZ].

An interesting application of sample path LDP arises in queueing networks.
Identification of the rate function in a general setting is not very easy. But
once the rate function is found and is regular, it can be used to charac-
terize decoupling of data sources and to define “effective bandwidth” of
each source; this is of importance to traffic engineering in communication
networks. Moreover the most likely way in which buffers overflow can be
determined by considering “minimizing large deviation paths” for certain
reflected Brownian motion processes that arise as heavy traffic models for
queueing networks. See Schwartz and Weiss [SW], Atar and Dupuis [AD],
Ramanan and Dupuis [RD], and Dupuis and Ramanan [DR] and references
therein.
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5 LDP for occupation times: prelude to Donsker-
Varadhan theory

We next look at large deviation methods in connection with principal eigen-
values.

Let V (·) be a continuous periodic function on R with period 2π, and consider
the problem

∂u

∂t
(t, x) =

1
2

∂2u

∂x2
(t, x) + V (x) u(t, x), t > 0, x ∈ R

with the initial value u(0, x) = 1. By Feynman-Kac formula the solution is
given by

u(t, x) = Ex


exp





t∫

0

V (X(s)) ds








, E


exp





t∫

0

V (X(s)) ds



 | X(0) = x




where X(·) denotes one-dimensional Brownian motion; this can be proved
using stochastic calculus; see Karatzas and Shreve [KS].

Since V and the initial value are periodic, x 7→ u(t, x) is also periodic.
Note that Y (t) , X(t) mod 2π, t ≥ 0 is the Brownian motion on the 1-
dimensional torus (circle) T. So the problem as well as the solution can be
considered on T rather than on R. In other words, the problem is basically

∂u

∂t
(t, θ) = Au(t, θ) ,

(
1
2

∂2

∂θ2
+ V (θ)

)
u(t, θ), t > 0, θ ∈ T

u(0, θ) = 1, θ ∈ T ( 5.1 )

and the solution, by Feyman-Kac formula, is

u(t, θ) = E


exp





t∫

0

V (Y (s))ds





∣∣∣∣∣∣
Y (0) = θ


 , t ≥ 0, θ ∈ T. ( 5.2 )

The one dimensional Schrödinger operator A , 1
2

∂2

∂θ2 +V (θ) is an unbounded
operator on L2(T); so domain (A) ⊂ L2(T). It is known from the theory
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of second order elliptic differential equations that A−1 is a bounded self
adjoint compact operator. So by spectral theory A has a sequence {λi}
of eigenvalues, and a corresponding sequence {ψi(·)} of eigenfunctions such
that lim

m→∞ λm = −∞, λ1 > λ2 ≥ λ3 ≥ . . . , the principal eigenvalue λ1

is of multiplicity one and the corresponding eigenfunction ψ1(·) > 0. See
Evans [E] or Kesavan [K]. The semigroup {Tt} corresponding to (5.1) can
be formally written as {etA} and hence by spectral theory again

u(t, θ) = (etA 1)(θ) =
∞∑

k=1

eλkt〈ψk, 1〉ψk(θ) ( 5.3 )

where 1 denotes the function which is identically 1 on T, and 〈·, ·〉 denotes
the inner product in L2(T). As λ1 > λi, i ≥ 2 and ψ1 > 0, from (5.3) we
have

u(t, θ) = eλ1t〈ψ1, 1〉ψ1(θ) [1 + O(e−(λ1−λ2)t)]

and consequently

lim
t→∞

1
t

log u(t, θ) = λ1. ( 5.4 )

This is a result due to Kac.

Now the bilinear form associated with A is

B[f, g] = 〈Af, g〉 =
∫

T

1
2
f ′′(θ) g(θ)dθ +

∫

T

V (θ) f(θ) g(θ)dθ

= −
∫

T

1
2
f ′(θ) g′(θ)dθ +

∫

T

V (θ) f(θ) g(θ) dθ ( 5.5 )

where in the last step we have used integration by parts and periodicity. It
is known by the classical Rayleigh-Ritz variational formula (see Evans [E] or
Kesavan [K]) that the principal eigenvalue λ1 can be given, in view of (5.5)
by

λ1 = sup{B[g, g] : g differentiable, ‖g‖L2 = 1}

= sup





∫

T

V (θ) g2(θ) dθ − 1
2

∫

T

|g′(θ)|2dθ : g differentiable, ‖g‖L2 = 1



 .

( 5.6 )
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Similar analysis is possible also on R if lim
x→±∞V (x) = −∞. The above dis-

cussion basically means that the Perron-Frobenius theorem for nonnegative
irreducible matrices goes over to self adjoint second order elliptic operators.

A natural question, whose implications turn out to be far reaching, is: Is
there a direct way of getting (5.6) from (5.2) without passing through differ-
ential equation (5.1) or the interpretation of the limit in (5.4) as an eigen-

value? If it is possible to do so, then one can replace
t∫

0

V (Y (s)) ds by more

general functionals of the form F (Y (t)) depending on Brownian paths and
hope to calculate lim

t→∞
1
t log E[exp(F (Y (t)))]. In such a case there may

be no connection with differential equations. Moreover one can also con-
sider processes other than Brownian motion. Donsker’s firm conviction that
something deep was going on here propelled the investigation along these
lines.

Put f(θ) = g2(θ). Then what we seek can be written as

lim
t→∞

1
t

log E


exp



 t





1
t

t∫

0

V (Y (s)) ds









∣∣∣∣∣∣
Y (0) = y




= sup





∫

T

V (θ) f(θ) dθ − 1
8

∫

T

1
f(θ)

|f ′(θ)|2dθ : ‖f‖L1 = 1, f ≥ 0





( 5.7 )

for any y ∈ T. If (5.7) can be considered as a special case of (3.10) then our
purpose would be served by Varadhan’s lemma. Also (5.7) implies that the

factor exp(
t∫
0

V (Y (s)) ds) in the Feyman-Kac formula (5.2) can be viewed

upon as an Esscher tilt.

Towards this, let Ω = {w : [0,∞) → T : w continuous}; this can be taken
as the basic probability space. Define Y (t, w) = w(t), t ≥ 0, w ∈ Ω. For
y ∈ T let Py denote the probability measure on Ω making {Y (t) : t ≥ 0} a
Brownian motion on T starting at y; that is, Py is the distribution induced
on Ω by the Brownian motion on the torus starting at y. For t ≥ 0, w ∈
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Ω, A ⊆ T define

M(t, w, A) =
1
t

t∫

0

IA(Y (s, w)) ds, ( 5.8 )

denoting the proportion of time that the trajectory Y (·, w) spends in the
set A during the period [0, t]. This is called the occupation time. Note that
A 7→ M(t, w, A) is a probability measure on the torus. Let M(T) denote
the space of probability measures on T, endowed with the topology of weak
convergence of probability measures. For t ≥ 0 fixed, let Mt denote the map
w 7→ M(t, w, ·) ∈ M(T). Let Q

(y)
t , PyM

−1
t denote the distribution of Mt.

So Q
(y)
t is a probability measure onM(T); in other words Q

(y)
t ∈M(M(T)),

for any t ≥ 0, y ∈ T.

Now observe that

1
t

t∫

0

V (Y (s, w)) ds =
∫

T

V (θ) M(t, w, dθ) ( 5.9 )

and consequently

E


exp



t





1
t

t∫

0

V (Y (s)) ds









∣∣∣∣∣∣
Y (0) = y




=
∫

Ω


exp



t

∫

T

V (θ) M(t, w, dθ)






 dPy(w)

=
∫

M(T)


exp



t

∫

T

V (θ) µ(dθ)






 dQ

(y)
t (µ)

=
∫

M(T)

exp(tΨ(µ)) dQ
(y)
t (µ) ( 5.10 )

where

Ψ(µ) =
∫

T

V (θ) µ(dθ), µ ∈M(T). ( 5.11 )
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Note that (5.9), (5.10) imply that l.h.s. of (5.7) is of the same form as l.h.s.
of (3.10) with S = M(T), ε = 1

t , Pε = Q
(y)
t , g(x) = Ψ(µ). It can be shown

that I0(·) defined by

I0(µ) =

{ 1
8

∫
T

1
f(θ) |f ′(θ)|2dθ, if dµ(θ) = f(θ) dθ, and f differentiable

∞, otherwise
( 5.12 )

is rate function on M(T); note that M(T) is a compact metric space by
Prohorov’s theorem. In fact we have the following

Theorem 5.1 (Donsker-Varadhan, 1974): For any y ∈ T, the family {Q(y)
t :

t ≥ 0} of probability measures on M(T), induced by the occupation time
functionals of Brownian motion on T, satisfies LDP with rate function I0

given by (5.12). Consequently, by Varadhan’s lemma (5.7) holds. ¤

For proof see Donsker and Varadhan [DV1]. Moreover asymptotics of func-
tionals of the form Ψ(M(t, w, dθ)) can be described. Like Sanov’s theorem,
the above result of Donsker and Varadhan is a level 2 LDP.

The basic space in the above set up is the torus which has a canonical
measure, viz. the rotation invariant (Haar) measure dθ. The basic process
is the Brownian motion on the torus. Its generator is the Laplacian which is
uniformly elliptic and self adjoint. Hence the normalized Haar measure on
the torus turns out to be the unique ergodic probability measure for the basic
process. This important fact has played a major role in the background.

The above result is the proverbial tip of the iceberg. It led to an extensive
study, by Donsker and Varadhan, of LDP for occupation times for Markov
chains and processes. Some of the results were also independently obtained
by Gartner [G]. This in turn formed the basis for providing a variational
formula for the principal eigenvalue of a not necessarily self adjoint sec-
ond order elliptic differential operator, a solution to the problem of Wiener
sausage, etc. However it is not powerful enough to deal with the polaron
problem from statistical physics.

For this a LDP at the process level is needed. This is called level 3 large
deviations. A crowning achievement is the LDP for empirical distributions
of Markov processes, due to Donsker and Varadhan. We briefly describe this
far reaching extension of Theorem 5.1.

28



Note that (5.8) can also be written as

M(t, w, A) = lim
n→∞

1
2n

2n∑

k=1

δY (tk2−n,w)(A).

On the r.h.s. of the above we have a sequence of empirical distributions.
To handle large deviation problems, the proper way to extend the notion of
empirical distribution to stochastic processes turns out to be as follows.

Let Σ be a complete separable metric space. Let Γ = {w : (−∞,∞) → Σ : w
right continuous, w(t−) exists for all t}. Under the Skorokhod topology on
bounded intervals, Γ is a complete separable metric space. Let Γ+ denote
the corresponding space of Σ-valued functions on [0,∞). For r ∈ (−∞,∞)
let θr denote the translation map on Γ given by θrw(s) = w(r + s).

For w ∈ Γ, t > 0 let wt be such that wt(s + t) = wt(s) for all s ∈ (−∞,∞),
and wt(s) = w(s) for 0 ≤ s < t; that is, the segment of w on [0, t) is extended
periodically to get wt. For w ∈ Γ, t > 0, B ⊂ Γ define

Rt,w(B) =
1
t

t∫

0

IB (θrwt)dr. ( 5.13 )

It can be shown that Rt,w(θσB) = Rt,w(B) for any B ⊆ Γ, σ > 0. So B 7→
Rt,w(B) is a translation invariant probability measure on Γ. Let MS(Γ)
denote the space of all translation invariant probability measures on Γ, with
the topology of weak convergence. This is a complete separable metric space.
For fixed t ≥ 0, note that w 7→ Rt,w is a mapping from Γ into MS(Γ). It is
called the empirical distribution functional.

We write M(t, w, A) = 1
t

t∫
0

IA(w(s)) ds, A ⊆ Σ to denote the analogue of

(5.8) in the present context. It can be seen that M(t, w, ·) = Rt,wπ−1
0 , where

π0 is the projection from Γ onto Σ given by w 7→ w(0). Thus the occupation
time functional is the marginal distribution of the empirical distribution
functional.

Let P0,x denote the distribution of a Σ-valued ergodic Markov process start-
ing from x ∈ Σ at time 0; it is a probability measure on Γ+. For t ≥ 0, x ∈ Σ
let ζ

(x)
t be defined by

ζ
(x)
t (E) = P0,x{w ∈ Γ : Rt,w ∈ E}, E ⊆MS(Γ). ( 5.14 )
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So ζ
(x)
t is a probability measure onMS(Γ). As the Markov process is ergodic

there is a unique invariant probability measure ν on Σ. Let µ ∈ MS(Γ) be
the translation invariant measure on Γ with ν as its marginal distribution;
that is, for t1 < t2 < . . . < tk, k ≥ 1 one has µπ−1

t1,...,tk
= ν × . . .× ν (k-fold)

where πt1 , . . . , tk(w) = (w(t1), . . . , w(tk)). Using ergodic theorem it can be
proved that ζ

(x)
t ⇒ δµ as t →∞ for any x ∈ Σ, where δµ denotes the Dirac

measure concentrated at µ.

A stochastic process, in particular a Markov process, can be identified with
an appropriate element of M(Γ+), while a stationary stochastic process
can be identified with an element of MS(Γ). For each ergodic Markov
process we associate a stationary stochastic process. Since {P0,x} as well as
{Rt,w} represent stochastic processes, an LDP for {ζ(x)

t } ⊂ M(MS(Γ)) is
considered an example of the highest level large deviations.

It is a deep result due to Donsker and Varadhan (1983) that, under suitable
conditions, for any x ∈ Σ the family {ζ(x)

t : t ≥ 0} satisfies LDP with a rate
function H(·) defined on MS(Γ) in terms of a relative entropy function.
For details see Donsker and Varadhan [DV2], as well as Varadhan [V2] and
Deuschel and Stroock [DS]. The rate function H(·) is called entropy w.r.t.
the Markov process {P0,x}.

The process level LDP turned out to be essential for Donsker and Varadhan
(1983) to solve the polaron problem. This problem involves showing that
the limit

η(α) , lim
t→∞

1
t

log E



exp


α

t∫

0

t∫

0

e−|s−r|

|B(s)−B(r)| dr ds








exists, where B(·) is the three dimensional Brownian motion, and establish-
ing a conjecture made in 1949 by Pekar concerning the asymptitics of η(α)
as α →∞. For a description of the polaron problem see Roepstorff [R]. See
Varadhan [V2] and the references therein for details.

In this write up we have attempted to give just a flavour of large deviations.
While Varadhan [V2], [V3] give succinct overview, Deuschel and Stroock,
[DS], Dembo and Zeitouni [DZ] and den Hollander [H] are excellent text-
books on the subject; the latter two also discuss applications to statistics,
physics, chemistry, engineering, etc. An interested reader may also look
up Dupuis and Ellis [DE], Ellis [El], Freidlin and Wentzell [FW], Orey [O],
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Simon [S], Schwartz and Weiss [SW], and Feng and Kurtz [FK] for diverse
aspects, applications and further references.
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