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Topological Preliminaries.

Definition. A metric d on a non-empty set X is a func-

tion d : X×X → [0,∞) satisfying the following conditions.

For every x, y, z ∈ X,

(1) d(x, y) = 0 ⇔ x = y.

(2) d(x, y) = d(y, x).

(3) d(x, z) ≤ d(x, y) + d(y, z).

Example. Let X = ω = {0, 1, 2, . . .} be the set of all

natural numbers and d(m, n) = 1 whenever m 6= n. Of

course, d(m,n) = 0 whenever m = n.

Example. Let X = Rn or X a subset of Rn such as

[0, 1]n. For (x1, · · · , xn) and (y1, · · · , yn), set

d((x1, · · · , xn), (y1, · · · , yn)) =

√√√√ n∑
1

(xi − yi)2.

Example. Let X = ωω, the set of all sequences of natu-

ral numbers, or X = {0, 1}ω, the set of all sequences of 0’s

and 1’s. For α = {α(0), α(1), . . .}, β = {β(0), β(1), . . .} in

X, α 6= β, define

d(α, β) =
1

The least n(α(n) 6= β(n)) + 1
.
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Exercise. Check that d defined in all the above examples

is a metric.

Definition. Let (X, d) be a metric space, x ∈ X and

r > 0, set

B(x, r) = {y ∈ X : d(x, y) < r}.

We call B(x, r) the open ball in X with centre x and radius

r.

Exercise. Let B(x, r) and B(y, s) be open balls in a

metric space (X, d) and z ∈ B(x, r) ∩ B(y, s). Show that

there is a positive real number t such that

B(z, t) ⊂ B(x, r) ∩B(y, s).

Definition. A sequence {xn} in a metric space is said to

converge to a point x ∈ X if

∀ε > 0∃N∀n ≥ N(d(xn, x) < ε).

A sequence {xn} is called a Cauchy sequence if

∀ε > 0∃N∀m,n ≥ N(d(xm, xn) < ε).

Exercise. Show that every convergent sequence is Cauchy.
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Example. Let Q be the set of all rational numbers. Set

xn =
n∑
1

1

i!
.

Show that {xn} is a Cauchy sequence that does not con-

verge to any point in Q.

Definition. A metric space (X, d) is called complete if

every Cauchy sequence in X is convergent.

Exercise. Show that the metric spaces ω, ωω, {0, 1}ω,

Rn and [0, 1]n defined in the beginning of this section are

all complete.

Definition. Let (X, d) be a metric space. A subset U of

X is open in X if

∀x ∈ U∃r > 0(B(x, r) ⊂ U),

i.e., U is the union of a family of open balls.

Exercise. Show the following:

(1) ∅ and X are open in X.

(2) If U and V are open in X, so is U ∩ V .

(3) If {Uα} is a family of open sets in X, so is ∪Uα.

(4) There is a sequence of open sets in R whose intersec-

tion is not open.
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(5) Every subset of ω is open in ω.

Definition. Let (X, d) be a metric space. A subset F of

X is closed in X if X \ F is open in X.

Exercise. Show the following:

(1) ∅ and X are closed in X.

(2) If U and V are closed in X, so is U ∪ V .

(3) If {Uα} is a family of closed sets in X, so is ∩Uα.

(4) Every subset of ω is closed in ω.

Definition. A subset A of a metric space X is called a

Gδ set in X if we can write A = ∩nUn, Un’s open in X.

A subset A of X is called an Fσ set in X if we can write

A = ∪nFn, Fn’s closed in X.

Exercise. Let (X, d) be a metric space and F ⊂ X

closed. For each n ≥ 1, set

Un = {y ∈ X : ∃x ∈ A(d(x, y) < 1/n)}.

Show that each Un is open and F = ∩Un. Conclude that

every closed set in a metric space X is a Gδ set in X and

every open set in X is an Fσ.
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Definition. A subset D of X is called dense if D∩U 6= ∅

for every non-empty open set U . A metric space X is called

separable if it has a countable dense subset. A metric space

that is complete and separable is also called a Polish space.

Exercise. Show that the metric spaces ω, ωω, {0, 1}ω,

Rn and [0, 1]n defined in the beginning of this section are

all separable.

Definition. Let (X, d) be a metric space and B a family

of open subsets of X. We call B a base (for the toplogy of)

X if

∀open U∀x ∈ U∃B ∈ B(x ∈ B ⊂ U).

Equivalently, B is a base for X if every set in B is open and

if every open set X is the union of a subfamily of B. We

call X second countable if X has a countable base.

Exercise. For s ∈ ωn, set

Σ(s) = {α ∈ ωω : α|n = s}.

Show that {Σ(s) : s ∈ ω<ω} is a base for ωω.

Exercise. Show that a metric space is second countable

if and only if it is separable.
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Product metric. Let (Xn, dn), n ≥ 1, be a sequence of

metric spaces and X = ΠnXn. For (xn), (yn) ∈ X, define

d((xn), (yn)) =
∑

n

dn(xn, yn) ∧ 1

2n
.

Then d is a metric on X. Convergence in (X.d) is the “co-

ordinatewise convergence.” Further, X is separable (com-

plete) if and only if each Xn is so.

Exercise. Let X and Y be metric spaces and f : X → Y

a continuous map. Show that its graph

gr(f) = {(x, y) : X × Y : y = f(x)}

is closed in X.

Here is a result which makes ωω the single most important

Polish space, at least as far as the Descriptive set Theory

is concerned.

Theorem. Every Polish space is a continuous image of

ωω.

Proof. Let (X, d) be a complete separable metric space.

Fix a countable base B for X containing X. For any A ⊂ X,

set

diameter(A) = sup{d(x, y) : x, y ∈ A}.
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Assume, without loss of generality, diameter(X) < 1. Let

ω<ω denote the set of all finite sequences of natural numbers

including the empty sequence e. Set

Ue = X.

Suppose for a finite sequence s we have defined an Us ∈ B

of diameter < 2−|s|, where |s| denotes the length of s.

Get a sequence {Usn} in B that covers Us. Further assume

that the diameter of each Usn is < 2−|s|−1 and the closure

of each Usn is contained in Us.

Note that for any α ∈ ωω, ∩nUα|n is a singleton, where

α|n denotes the restriction of α to n = {0, 1, · · · , n − 1}.

Set f(α) to be the unique point in ∩nUα|n. Check that

f : ωω → X is a continuous map from ωω onto X.

Later we shall state one more result so that we can de-

velop the entire theory for ωω only.
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Standard Borel Spaces

Definition. Let X be a non-empty set. An algebra F

on X is a family of subsets of X such that

(1) ∅, X are in F .

(2) If A is in F , so is X \ A, i.e., F is closed under

complementations.

(3) If A, B ∈ F , so does A ∪ B, i.e., F is closed under

finite unions.

Definition. Let X be a non-empty set. A σ-algebra A

on X is a family of subsets of X such that

(1) ∅, X are in A.

(2) If A is in A, so is X \ A.

(3) If {An} is a sequence is in A, ∪nAn ∈ A, i.e., A is

closed under finite unions.

Exercise. Show that every σ-algebra is closed under

countable intersections.

It is easy to see that the intersection of a family of σ-

algebras is a σ-algebra. So, given any family G of subsets

of a set X, there is a smallest σ-algebra on X containing

G.
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Definition. The smallest σ-algebra containing all open

subsets of a metric space X is called the Borel σ-algebra of

X. We shall write BX to denote the Borel σ-algebra of X.

Any set in BX is called a Borel subset of X.

Here are a few very easy remarks.

(1) Since every subset of ω is open in X, every subset of

of ω is Borel.

(2) Every closed set, every Fσ set and every Gδ set in a

metric space is Borel in X.

(3) Let (X, d) be a metric space and x ∈ X. Since {x} is

closed, it is Borel in X. It follows that every count-

able subset of X is Borel.

Definition. Let X and Y be metric space. A map f :

X → Y is called Borel measurable or simply Borel if for

every open set U in Y , f−1(U) is Borel in X.

Exercise. Let X, Y and Z be metric spaces and f :

X → Y , g : Y → Z Borel maps. Show the following:

(1) For every Borel set B in Y , f−1(B) is Borel in X.

(2) The map g ◦ f : X → Z is Borel.

(3) Assume, moreover, Y is second countable and B a

countable base for Y . Then a map h : X → Y is
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Borel if and only if f−1(B) is Borel in X for every

B ∈ B.

(4) If Y is second countable, show that gr(f) is Borel.

Lemma. Let X, Y be metric spaces and fn : X → Y a

Borel map, n ≥ 0. Assume that for each x ∈ X, {fn(x)} is

convergent and converges to, say f(x). Then f : X → Y is

Borel.

Proof. Let U ⊂ Y be open. The for any x ∈ X,

f(x) ∈ U ⇔ ∃N∀n ≥ N(fn(x) ∈ U).

Thus,

f−1(U) = ∪N ∩n≥N f−1
n (U).

Since each fn is Borel, for every open U in X, f−1
n (U) is

Borel. Hence, f−1(U) is Borel.

Exercise. Let X, Yn, n ≥ 1, be metric spaces. Further

assume that each Yn is separable. Show that a map f : X →

ΠnYn is Borel if and only if each πn ◦ f : X → Yn, n ≥ 1, is

Borel, where πn : Y → Yn is the projection function to Yn.

Lemma. Let X be a metric space. Then BX is the

smallest class C of subsets of X that contains all open (or
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all closed sets) and that is closed under countable unions

and countable intersections.

Proof. We shall consider the open case only because the

closed case is proved similarly. The main reason for this

result to be true is that every closed set in X is a Gδ in X.

(For closed case, use that every open set is an Fσ.) Clearly

C ⊂ BX . So, the result will be proved if we show that C is

closed under complementations. Set

D = {A ∈ C : X \ A ∈ C}.

Since every closed set is a Gδ, every open set is in D. Now

take a sequence {An} in D. So for every n, both An and

its complement X \ An are in C. We have

X \ ∪nAn = ∩n(X \ An)

and

X \ ∩nAn = ∪n(X \ An).

Since C is closed under countable unions and countable in-

tersections, both ∪nAn and ∩nAn are in D. Since C is

the smallest family containing all open sets and closed un-

der countable unions and countable intersections, it follows

that C ⊂ D, i.e., C is closed under complementations.
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As a corrolary to this lemma we get the following inter-

esting result.

Theorem. Every standard Borel space is a continuous

image of ωω.

Proof. Let (X, d) be a complete, separable metric space.

Let C denote the family of all subsets of X that is contin-

uous image of ωω. Since every closed subset of X is a

complete separable metric space, they belong to C. By the

last lemma, it is now sufficient to show that for every se-

quence {An} in C, ∪nAn,∩nAn ∈ C. Towards showing it,

fix a continuous onto map fn : ωω → An, n ≥ 0.

Define g : ωω → X by

g(α) = fα(0)(α(1), α(2), . . .) α ∈ ωω.

Check that g is a continuous map on ωω with range ∪nAn.

To show that ∩nAn ∈ C, set

C = {(α0, α1, . . .) ∈ (ωω)ω : f0(α0) = f1(α1) = f2(α2) = . . .}.

Check that C is a Polish space. Hence there is a continuous

map h from ωω onto C. Now set

f(α) = f0(h(α)(0)), α ∈ ωω.

Then f is a continuous map from C onto ∩nAn.
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Cardinalities of Standard Borel Spaces

Definition. A Borel subset of a Polish space is called

standard Borel.

We prove the following important result in this section.

Theorem. Any uncountable metric space that is a con-

tinuous image of ωω is of the cardinality c. In particular,

any uncountable standard Borel space is of the cardinality

c.

Remark. This result was first proved by P. S. Alexan-

drov who, it seems, had thought that a counterexample to

the Continuum Hypothesis can be found among standard

Borel spaces. So, he was a bit disappointed to prove this

result which is arguably the first important result in De-

scriptive Set Theory. In its proof the Souslin operation

makes its first appearance. Incidentally, the Souslin opera-

tion was initially called Operation(A). But Alexandrov was

not a favorite of Lusin and Souslin was. This seems to be

the reason for Lusin changing the name of this important

set-theoretic operation.

The proof needs the following result from topology.
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Cantor-Bendixson Theorem. Let X be a second count-

able space. Then we can write X = Y ∪Z, where Y and Z

are disjoint, Y is countable and open and Z has no isolated

points.

Proof. Take a countable base B for X. Set

Y = ∪{U ∈ B : |U | ≤ ℵ0},

and Z = X \ Y .

Proof of the Theorem. Let f : ωω → X be a continu-

ous map with range uncountable. By the Axiom of Choice

there is an uncountable subset Y of ωω such that f |Y is one-

to-one. By the Cantor-Bendixson theorem, without loss of

generality, we can assume that Y has no isolated points.

Let 2<ω be the set of all finite sequences of 0’s and 1’s in-

cluding the empty sequence e. For each s ∈ 2<ω, we define

closed set Fs in ωω satisfying the following properties:

(1) Fs ∩ Y 6= ∅.

(2) Diameter of Fs < 2−|s|.

(3) Fsε ⊂ Fs for ε = 0 or 1.

(4) (s 6= t ∧ |s| = |t|) ⇒ Fs ∩ Ft = ∅.

(5) (s 6= t ∧ |s| = |t|) ⇒ f(Fs) ∩ f(Ft) = ∅.
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We assume the existence of such a system of closed sets

and complete the proof first. For any α ∈ 2ω, define g(α)

to be the unique point in ∩nFα|n. Now note that f ◦ g is

a one-to-one function from 2ω into the range of f . So, the

cardinality of the range of f is c.

We define {Fs : s ∈ 2<ω} by induction on the length of s.

Set Ue = Fe = ωω. Note that Ue is open. Now let Us be an

open set whose closure is Fs and which intersects Y . Since

Y has no isolated points, there exists at least two distint

points in Y ∩ Us, say x0 and x1. Since f is one-to-one on

Y , f(x0) 6= f(x1). By continuity of f we get open sets

Us0 3 x0 and Us1 3 x1 of diameters < 2−|s|−1, with closures

contained in Us and such that f(Us0) ∩ f(Us1) = ∅. Set

Fsε = Usε, ε = 0 or 1.

Remark. We have proved that any uncountable space

that is a continuous image ωω contains a homeomorph of

2ω. Hence, such spaces also contains a homeomorph of ωω.

Definition. Two metric spaces X and Y are called Borel

isomorphic if there is a bijection f : X → Y such that both

f and f−1 are Borel.
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A very important result in theory of standard Borel spaces

is the following:

Borel Isomorphism Theorem. Two standard Borel

spaces are Borel isomorphic if and only if they are of the

same the cardinalities. In particular, every uncountable

Polish space (being of the cardinality c) is Borel isomorphic

to ωω.

Probably, the simplest proof of it is given in

B. V. Rao and S. M. Srivastava, An elementary proof of

the Borel isomorphism theorem, Real Analysis Exchange,

20(1), 1994-95, 1—3.

This proof is also presented in

S. M. Srivastava, A Course on Borel Sets, GTM 180,

Springer.

Remark. We shall be interested in studying Borel sets

and Projective sets in Polish spaces. Mainly because of the

Borel isomorphism theorem, it is sufficient to develop the

theory on ωω.
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Hierarchy of Borel Sets.

The main goal of this section is to present a universal set

argument. The idea is quite important.

Let X be a set and F a family of subsets of X. We put

¬F = {A ⊂ X : X \ A ∈ F},

Fσ = {∪nAn : An ∈ F}

and

Fδ = {∩nAn : An ∈ F}.

So, Fσ (Fδ) is the family of countable unions (resp. count-

able intersections) of sets in F . The family of finite unions

(finite intersections) of sets in F will be denoted by Fs

(resp. Fd). It is easily seen that

F ⊂ Fs ⊂ Fσ, F ⊂ Fd ⊂ Fδ,

Fσ = ¬(¬F)δ, and Fδ = ¬(¬F)σ.

Let X = ωω or any metric space. Let Σ0
1 denote the set

of all open sets in ωω and Π0
1 denote the set of all closed

sets. Note that Σ0
1 equals ¬Π0

1.

Finally we put

∆0
1 = Σ0

1 ∩ Π0
1.
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For ordinals 1 < α < ω1, we define Σ0
α to be the collection

of those subsets A of X of the form ∪n(X \Bn), where Bn ∈

Σ0
βn

for some βn < α. Finally define Π0
α to be ¬Σ0

α and

∆0
α = Σ0

α ∩ Π0
α.

Note that for 1 < α < ω1, Σ0
α equals (∪β<αΠ

0
β)σ and Π0

α

equals (∪β<αΣ
0
β)δ.

The next few results can be easily proved by induction

on α.

Theorem. Σ0
α is closed under countable unions and

finite intersections, Π0
α is closed under finite unions and

countable intersections and ∆0
α is closed under finite unions,

finite intersections and complementations.

Theorem. Let X be any metric space.

(1) Σ0
α ⊂ Π0

α+1, Π0
α ⊂ Σ0

α+1.

(2) Σ0
α ∪ Π0

α ⊂ ∆0
α+1.

Theorem. For any metric space X, BX = ∪α<ω1
Σ0

α and

also BX = ∪α<ω1
Π0

α

It is interesting to note that if X is an uncountable stan-

dard Borel space, the above hierarchy of Borel sets is strict,

i.e., for every 1 ≤ α < ω1, Σ
0
α 6= Π0

α. The idea of its proof is
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also quite important. We shall prove the result for X = ωω

only. The result for general X follows quite easily from

this.

So fix a countable base B = {Wn} for X = ωω. Define

Uσ
1 = {(α, β) ∈ ωω × ωω : ∃n(β ∈ Wα(n))}.

It is easily checked that Uσ
1 is open in ωω×ωω and that for

every open set V in ωω, there is an α ∈ ωω such that

V = {β ∈ ω : (α, β) ∈ Uσ
1 }.

Such an universal open set produces a closed set that is not

open:

Set

A = {α ∈ ωω : (α, α) 6∈ Uσ}.

Note that A is closed in ωω. Suppose A is also open. Then

get a γ ∈ ωω such that

A = {β ∈ ω : (γ, β) ∈ Uσ
1 }.

Now, by the Cantor’s diagonal argument, we see that

β ∈ A ⇔ β 6∈ A.

This contradiction proves that A is not open.
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By setting

U δ
1 = (ωω × ωω) \ Uσ

1

we get an universal closed sets. Now by induction on α,

we produce an universal set for each Borel pointclasses Σ0
α

and Π0
α. Then by the above diagonal argument, we shall

arrive at our claim.

Suppose 1 < α < ω1 and that universal sets Uσ
β for Σ0

β

and Uπ
β for Π0

β have been defined for all 1 ≤ β < α.

We produce an universal set Uσ
α for Σ0

α now. Fix a

sequence of ordinals {βn}, 1 ≤ βn < α, such that α =

supn{βn +1}. Fix a bijection (k0, k1) → 〈k0, k1〉 from ω×ω

onto ω. Define Uσ
α ⊂ ωω × ωω by

(α, β) ∈ Uσ
α ⇔ ∃k((α(〈k, 0〉), α(〈k, 1〉), α(〈k, 2〉), . . .), β) ∈ Uπ

βk
.

Check that Uσ
α is in Σ0

α and that it is univeral for Σ0
α.

Having defined Uσ
α , take Uπ

α = (ωω × ωω) \ Uσ
α .

Exercise. Let X be an uncountable standard Borel

space. Show that for every 1 ≤ α < ω1, Σ0
α 6= Π0

α.
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Analytic and Coanalytic Sets.

Definition. Let X be a Polish space. A subset A of X

is called analytic if there is a continuous map f from ωω

onto A. A subset C of X is called coanalytic if X \ C is

analytic.

Σ1
1 will denote the pointclass of all analytic sets and Π1

1

for the pointclass of all conalytic sets. Further, we set

∆1
1 = Σ1

1 ∩ Π1
1.

We have already seen that the family of all subsets of X

that are continuous images of ωω is closed under countable

unions and countable intersections and that it contains all

Borel sets. Hence, we have the following theorem.

Theorem. Σ1
1 and Π1

1 are closed under countable unions

and countable intersections. Further, Σ1
1 is closed under

continuous images. Borel sets are simultaneously both an-

alytic and coanalytic.

Theorem. Every uncountable analytic set is of cardinal-

ity c. Indeed, they contain a homeomorph of {0, 1}ω.

A very curious question arises now: Is every analytic set

Borel? Using the universal set argument, we show that
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this is not the case. We give some equivalent definitions of

analytic sets first.

Proposition. Let X be a Polish space and A ⊂ X. The

following statements are equivalent.

(1) A is analytic.

(2) A is the projection of a closed set in X × ωω.

(3) A is the projection of a Borel set in X × ωω.

(4) A is the projection of a Borel set in X × Y for some

Polish space Y .

(5) A is the image of a standard Borel space under a

Borel map.

Remark. Let X = Y = Z = ωω. There is a closed set

C in X × (Y × Z) that is universal for closed subsets of

Y × Z. Set

U = πX×Y C.

Then U is analytic and universal for all analytic subsets

of Y . Also note that W = (X × Y ) \ U is coanalytic and

universal for coanalytic subsets of Y .

Example. Let U and W be as defined above. Set

A = {α ∈ ωω : (α, α) ∈ U}.
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Then A is analytic. If possible, suppose A is Borel. Then

B = ωω \ A is analytic. Note that

B = {α ∈ ωω : (α, α) 6∈ U}.

There exists a γ ∈ ωω such that

B = {β ∈ ωω : (γ, β) ∈ U}.

But then

γ ∈ B ⇔ γ 6∈ B.

Theorem. Let X be a Polish space, µ a continuous

probability measure on X and A ⊂ X analytic. Let ε > 0.

Then there is a compact K ⊂ A such that µ(A \ K) < ε.

In particular, analytic and coanalytic sets are universally

measurable.

Proof. For s = (n0, · · · , nk−1) ∈ ωk and any i ∈ ω, set

Σ∗(si) = {α ∈ ωω : α|k = s ∧ α(k) ≤ i}.

Let µ∗ denote the outer measure induced by µ. Since

f(Σ∗(n)) ↑ f(Σ), there exists n0 such that

µ∗(f(Σ) \ f(Σ∗(n0))) < ε2−1.

We get n1 such that for each i ≤ n0,

µ∗(f(Σ(i)) \ f(Σ∗(in1))) < ε2−2.
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Proceeding inductively we get a sequence n0, n1, . . . such

that forall k and for all i0 ≤ n0, · · · , ik−1 ≤ nk−1,

µ∗(f(Σ(i0, · · · , ik−1)) \ f(Σ∗(i0, · · · , ik−1, nk))) < ε2−k−1.

Let

L = {α ∈ ωω : ∀k(α(k) ≤ nk)}.

Then L is compact. Check that

µ∗(A \ f(L)) < ε.

Definition. A subset A of a Polish space X is said to

have Baire Property if there is an open set U in X such

that A∆U is meager.

We shall omit the proof of the next couple of theorems.

Theorem. Sets with Baire property form a σ-algebra; it

is the smallest σ-algebra containing all Borel sets and all

meager sets.

Theorem. Every analytic and every coanalytic set has

Baire property.
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Separation and Reduction Principles.

By a pointclass Γ we shall mean a family of subsets of all

Polish spaces. If Γ is a pointclass, we set

∆ = Γ ∩¬ Γ.

Definition. We say that Γ satisfies separation principle

if for any two disjoint sets A and B in Γ, there is a C in ∆

such that

A ⊂ C ∧B ∩ C = ∅.

Exercise. Show that if Γ is closed under countable

unions and countable intersections and if it satisfies the

separation principle, then for every sequence {An} of pair-

wise disjoint sets in Γ, there is a sequence {Bn} of pairwise

disjoint sets in ∆ such that ∀n(An ⊂ Bn).

The next result is of fundamental importance in the the-

ory of Borel sets.

First Separation Principle for Analytic Sets. (Souslin)

Let X be a Polish space and A and B be disjoint analytic

subsets. Then there is a Borel set C such that

A ⊂ C ∧B ∩ C = ∅.
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Thus, Σ1
1 satisfies the separation principle.

Proof. We need a lemma first.

Lemma. Let {An} and {Bm} be a sequence of subsets

of X such that there is no Borel set C satisfying

∪nAn ⊂ C ∧ ∪mBm ∩ C = ∅.

Then there is a n and a m such that there is no Borel set

Cnm satisfying

An ⊂ Cnm ∧Bm ∩ Cnm = ∅.

Proof of the Lemma. Suppose for every n and m, a

Borel set Cnm satisfying the above condition exist. Set

C = ∪n ∩m 6=n Cnm.

Then

A ⊂ C ∧B ∩ C = ∅.

Proof of the separation principle. Let f : ωω → A

and f : ωω → A be continuous surjectios. Assume that

there is no Borel set C such that

A ⊂ C ∧B ∩ C = ∅.
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By applying the last lemma repeatedly and proceeding by

induction, we get α, β ∈ ωω such that for every k there is

no Borel set C satisfying

f(Σ(α|k)) ⊂ C ∧ g(Σ(β|k)) ∩ C = ∅.

Since A and B are disjoint, f(α) 6= g(β). Get disjoint open

sets U and U in X such that f(α) ∈ U and g(β) ∈ V . By

continuity of f and g, there is a k such that

f(Σ(α|k)) ⊂ U ∧ g(Σ(β|k)) ⊂ V.

We have arrived at a contradiction.

Corollary. Every ∆1
1 set is Borel.

Mokobodzki modified the above argument beautifully,

and gave a similar proof of the following result.

Generalized Separation Principle. Let X be a Polish

and {An} a sequence of analytic subsets such that ∩nAn =

∅. Then there is a sequence {Bn} of Borel sets such that

∀n(Bn ⊃ An) and ∩nBn = ∅.

Theorem. Let X be a standard Borel space, Y a Polish

space and f : X → Y a one-to-one Borel map. Then f(X)

is Borel.
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Proof. Replacing X by the graph of f and f by the

projection to Y , without any loss of generality, we assume

that f is continuous. Since every standard Borel space

is a one-to-one continuous image of a closed subset of ωω,

without any loss of generality, we assume that X is a closed

subset of ωω. We shall prove the result for X = ωω only.

The proof can be easily modified for closed subsets of ωω.

By the induction on the length of s ∈ ω<ω, we define a

system {Bs : s ∈ ω<ω} of Borel sets in Y such that for

every s, t ∈ ω<ω and every n ∈ ω, the following conditions

are satisfied:

(1) |s| 6= |t| ⇒ Bs ∩Bt = ∅.

(2) Bsn ⊂ Bs.

(3) f(Σ(s)) ⊂ Bs ⊂ f(Σ(s)).

Since f is one-to-one and continuous, {f(Σ(n))} is a se-

quence of pairwise disjoint analytic sets in Y . Hence, by the

separation principle, there is a sequence of pairwise disjoint

Borel sets, Bn ⊃ f(Σ(n)). Replacing Bn by Bn ∩ f(Σ(n)),

we see that the last condition is also satisfied by sequences

of length 1.

Suppose Bs has been defined. Note that {Bs∩f(Σ(sn))}

is a sequence of pairwise disjoint analytic sets in Y . Hence,

by the separation principle, there is a sequence of pairwise
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disjoint Borel sets, Bsn ⊃ f(Σ(sn)). Replacing Bsn by

Bs∩f(Σ(sn)), we see that the last condition is also satisfied

by each sn.

Now observe that

f(ωω) = ∩n ∪|s|=n Bs.

Weak Reduction Principle for Coanalytic Sets.

Let X be a Polish space, {Cn} a sequence of coanalytic

sets with B = ∪nCn Borel. Then there exist pairwise dis-

joint Borel sets Bn ⊂ Cn such that ∪nBn = ∪nCn.

Proof. Get Borel sets Dn ⊃ B \Cn such that ∩nDn = ∅.

Now take En = B \Dn, n ≥ 0. Set B0 = E0 and for n > 0,

Bn = En \ ∪m<nEn.

Exercise. Let X and Y be Polish spaces and f : X → Y

any map. The following conditions are equivalent:

(1) f is Borel.

(2) The graph of f is Borel.

(3) The graph of f is analytic.
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Projective Hierarchy.

We fix some notation first. Let X and Y be Polish spaces

and P ⊂ X×Y . We define subsets Q = ∃Y P and R = ∀Y P

of X by

Q = {x ∈ X : ∃y ∈ Y ((x, y) ∈ P )}

and

R = {x ∈ X : ∀y ∈ Y ((x, y) ∈ P )}.

Note that

∃Y P = X \ ∀Y ((X × Y ) \ P )

and

∀Y P = X \ ∃Y ((X × Y ) \ P ).

Let Γ be a pointclass, i.e., it is a family of subsets of all

Polish spaces. For any Polish space Y , we define

∃XΓ = {∃Y P : P ∈ Γ }

and

∀XΓ = {∀Y P : P ∈ Γ }.

Note that

Σ1
1 = ∃ωω

∆1
1

and

Π1
1 = ∀ωω

∆1
1.
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The projective hierarchy consists of the pointclasses Σ1
n,

Π1
n and ∆1

n, n ≥ 1, defined by induction as follows:

Σ1
n+1 = ∃ωω

Π1
n

and

Π1
n+1 = ∀ωω

Σ1
n.

Finally, we put

∆1
n = Σ1

n ∩∆1
n.

Projective classes have following closure properties.

(1) Σ1
n = ¬Π1

n, Π1
n = ¬Σ1

n.

(2) Let Γ be any of the projective class Σ1
n or Π1

n or

∆1
n. Then Γ is closed under countable unions and

countable intersections. ∆1
n is closed under comple-

mentations. Furthr, assume that X and Y are Polish

spaces, f : X → Y a Borel map and A ⊂ Y is in Γ.

Then f−1(A) ∈ Γ.

(3) For every Polish space Y , Σ1
n is closed under ∃Y and

Π1
n is closed under ∀Y .

(4) Σ1
n ∪ Π1

n ⊂ ∆1
n+1.
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Universal Projective Sets.

In this section we prove that every uncountable Polish

space contains a set in Σ1
n that is not in Π1

n. The proof

goes by the usual universal set argument whose existence

is based on the fact that a subset A of X is analytic if and

only if it is the projection of a closed set in X × ωω, i.e.,

Σ1
1 = ∃ωω

Π0
1 and that Π0

1 admits universal sets.

Theorem. Let Γ be Σ1
n or Π1

n, n ≥ 1. Then for every

Polish space X, there is a set U ⊂ ωω × X in Γ which is

universal for Γ subsets of X.

Proof. Let Γ be Σ1
1. Let W ⊂ ωω × (X × ωω) be a

closed set that is universal for the family of closed subsets

of X × ωω. Then

U = ∃ωω

W = {(α, x) : ∃β((α, x, β) ∈ U)}

is in Σ1
1 and universal for Σ1

1 subsets of X.

If U ⊂ ωω ×X is in Σ1
n and universal for Σ1

n subsets of

X, then (ωω×X)\U is in Π1
n and universal for Π1

n subsets

of X.
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If U ⊂ ωω × (X × ωω) is in Π1
n and universal for Π1

n

subsets of X × ωω, then ∃ωω

U is in Σ1
n+1 and universal for

Σ1
n+1 subsets of X.

Use Cantor’s diagonal argument in the following two ex-

ercises.

Exercise. Show that for every n ≥ 1, there is a subset

of ωω that is in Σ1
n but not in Π1

n. Conclude this for all

uncountable Polish spaces X.

Exercise. Let n ≥ 1. Show that there is no U ⊂ ωω×ωω

in ∆1
n that is universal for ∆1

n subsets of ωω.
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Some More Concepts And Results.

Definition. Let S ⊂ X, X any set. An ordinal valued

map ϕ on S is called a norm on S.

Let Γ be a pointclass.

Definition. Let X be Polish and S ∈ Γ. A norm ϕ on

S is called a Γ-norm on S, if there exists binary relations

≤Γ
ϕ in Γ and ≤¬Γ

ϕ in ¬Γ such that for every y ∈ S,

(x ∈ S ∧ ϕ(x) ≤ ϕ(y)) ⇔ x ≤Γ
ϕ y ⇔ x ≤¬Γ

ϕ y.

The following is a non-trivial result.

Theorem. Every Π1
1 set S in a Polish space admits a

Π1
1-norm ϕ : S → ω1.

Proposition. Let S be a Π1
1 set and ϕ : S → ω1 a Π1

1

norm. Then for every α < ω1, the set

Sα = {x ∈ S : ϕ(x) = α}

is Borel.

Note that in the above proposition, S = ∪α<ω1
Sα. Fur-

ther, if S is Π1
1 and not Borel, then {α < ω1 : Sα 6= ∅}
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is unbounded in ω1. It is a little hard to show that if S is

Borel then Sα 6= ∅ only for countably many α’s.

Theorem. Let S be a Π1
1 set. Then S is either countable

or of cardinality ℵ1 or of cardinality c.

Exercise. Let S be a Σ1
2 set. Show that S is either

countable or of cardinality ℵ1 or of cardinality c.

Definition. Let S ⊂ X, X a Polish space. A scale on

S is a sequence {ϕn} of norms on S such that whenever

xi ∈ S, xi → x, and for each n, {ϕi(xn)} is eventually a

constant, say µn, x ∈ S and ∀n(ϕn(x) ≤ µn).

Definition. Let S ∈ Γ. A scale {ϕn} on S is called a

Γ-scale if each ϕn is a Γ-norm on S.

The next result is also non-trivial. It was implicit in a

proof given by Kondo. Moschovakis and his colleagues did

quite a bit of work to make things quite clear.

Theorem. Every Π1
1 set admit a Π1

1-scale.

We now state an important consequence of the above

theorem.
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Definition. A pointclass Γ is said to have uniformization

property if for every S ⊂ X × Y , X, Y Polish, in Γ, there

is a G ⊂ S in Γ such that

∀x ∈ πX(S)∃!y((x, y) ∈ G),

where πX : X×Y → X is the projection map and ∃! means

“there exists a unique.”

Theorem (Kondo) Π1
1 has the uniformization property.

Exercise. Show that Σ1
2 has the uniformization prop-

erty.

We have stated some of the important results that can be

proved in ZF +DC. We require set-theoretic hypothesis to

extend these results for higher projective classes. Professor

Benedikt Lowe will speak on this in this school.


