PROBLEMS IN COMPLEX ANALYSIS

These problems are not in any particular order. I have collected them from a
number of text books. I have provided hints and solutions wherever I considered
them necessary. These are problems are meant to be used in a first course on
Complex Analysis. Use of measure theory has been minimized.

Updated in November 2012. Thanks to Sourav Ghosh for pointing out sev-
eral errors in previous version.

Notation: U = {z : |z| < 1} and T = {z : |z| = 1}.Def: f is analytic or
holomorphic on an open set if it is differentiable at each point. H() is the
class of all holomorphic functions on . =5 stands for uniform convergence on
compact sets.

1. Find a sequence of complex numbers {z,} such that sin z, is real for all
n and — 0o as n — 007

2. At what points is f(z) = |z| differentiable? At what points is f(z) = |2|*
differentiable?

3. If f is a differentiable function from a region 2 in C into R prove that f
is necessarily a constant.

4. Find all entire functions f such that f™(z) = z for all z, n being a given
positive integer.

5. If f and f are both analytic in a region © show that they are constants
on €.

6. If 2 and (f)® are analytic in a region show that f is a constant on that
region.

7. If f is analytic in a region  and if | f| is a constant on ) show that f is
a constant on €.

8. Define Log(z) = log|z| + i where —7 < § < 7 and z = |z| € (2 # 0).
Prove that Log is not continuous on C\{0}.

Consider the sequences {—1+1i/n} and {—1 —i/n}.

9. Prove that the function Log defined in above problem is differentiable on
C\{z € R: 2 < 0}. Find its derivative and prove that there is no power series
o0

Z an(z — €)™ convergent in C\{z € R: z < 0} whose sum is Log.

n=0



The main part is to verify continuity of Log. Differntiability is automatic
since its inverse is differentiable. The last part is follows from previous problem
and basic facts about power series.

10. Let p be a non-constant polynomial, ¢ > 0 and Q = {z : |p(2)| < c}.
Prove that 9Q = {z : |p(z)| = ¢} and that each connected component of
contains a zero of p.

If |p(z)| = ¢ and there is no sequence {z,} converging to z with |p(z,)| < ¢
Vn then Maximum Modulus Principle is violated. This proves the first assertion.
Let C' be any component of €. If p has no zero in  then, since 9C C 9f) we
have |p(z)| < ¢ and ‘ﬁ‘ < ¢ by Maximum Modulus Principle applied to the
region C. Hence p is a constant.

11. Prove that there is no differentiable function f on C\{0} such that
ef(?) = 2 for all z € C\{0}.

If it exists, compare it with Log.

12. Let v be a piecewise continuously differentiable map : [0,1] — C and

h : v* — C be continuous( «v* is the range of 7). Show that f(z) = /gd(
¥
defines a holomorphic function on C\y*.

1
13. If y is as in above problem show that the total variation of =y is / |/ (¢)] dt.
0

14. If p is a polynomial and if the maximum of |p| on a region {2 is attained
at an interior point show, without using The Maximum Modulus Principle, that
p is a constant.

Compute the integral of % over a circle with centre a contained in €.

15. If f(x +iy) = v/|xy| show that f is not differntiable at 0 even though
Cauchy-Riemann equations are satisfied.

16. Show that log /22 4+ y2? is a harmonic function on C\{0} which is not
the real part of any holomorphic function.

17. If f is holomorphic on Q and e/ is constant on Q show that f is constant
on ().

18. If f is an entire function and Re f (or Im f) is bounded above or below
show that f is constant.

19. Prove that ||1a:abz‘)| > ‘1“1‘_!;‘ if either |a| and |b| are both less than 1 or

both greater than 1.



20. If f : U — U is holomorphic show that LB=f@L  18=al g 4]
[1-£(B)f(e)] ~ [1-Bal
a,Bel.
Let ¢,(z) = = Apply Schwartz Lemma to ¢ )0 f o d_g.
21. Prove that a holomorphic function from U into itself has atmost one
fixed point unless it is the identity map.

Apply Schwartz Lemma to ¢;1 o f o ¢, where a is a fixed point.

22. If f is a bijective bi-holomorphic map of U show that f maps open balls
in U onto open balls. A
The only bijective bi-holomorphic maps of U are ¢?¢, and these map are

compositions of inversions, translations and dilations.[¢, is defined in Problem
20)].

23. Let Q be a region, f € C(Q2) and let f™ be holomorphic in € for some
positive integer n. Show that f is holomorphic in 2.
Use definition.

24. Tf f is an entire function such that |f(2)| <1+ /2| for all z € C show
that f is a constant.

If f is an entire function such that |f(z)| < M |z|" for |2| sufficiently large
( where M is a positive cosnatnt) show that f is a polynomial.

Consider M for the first part. For the second part use Liouville’s

Theorem for N = 0. Let g(z) = M for z # 0 and f’(0) for z = 0. Show
that g satisfies the same hypotheis as f with IV replaced by N — 1.

1
25. Find the largest open set on which / 1+%dt is analytic. Do the same

0
oo

tz
for /ﬁdt'

0

26. If f and g are holomorphic functions on a region 2 with no zeros such
that {z : fT(z) = 2-(2)} has a limit point in € find a simple relation between f
and g.

27. If f is a holomorphic function on a region 2 which is not identically zero
show that the zeros of the function form an atmost countable set.

There exist compact sets K,, increasing to {2 : look at distances of points of
Q from C\Q.



28. Is Mean Value Theorem valid in the complex case? (i.e., if f is analytic in
a convex region and z1, zo are two points in the region can we always find a point
¢ on the line segment from z1 to zo such that f(z2) — f(z1) = f({)(z2 — 21)?)

29. Let f be holomorphic on a region Q with no zeros. If there is a holo-
morphic function h such that h’ = fT show that f has a holomorphic logarithm

on  (i.e. there is a holomorphic function H such that ef! = f. Show that h
need not exist and give sufficient a condition on €2 that ensures existence of h.

30. Prove that a bounded harmonic function on R2 is constant.

31. If f is a non-constant entire function such that |f(z)| > M |z|" for
|z| > R for some n € N and some M and R in (0, 00) show that f is a polynomial
whose degree is atleast n.

Let 21, 22, ..., 2, be the zeros of fin{z: |z] < R}. Let g(z) = (Zle)(z;fj))"'(zfz’“).
Then ¢ is an entire function which satisfies an inequality of the type |g(2)| <
A+ B|z|™ for all z. Conclude that f must be a rational function, hence a

polynomial.

32. If f is an entire function which is not a constant prove that max{|f(z)| :
|z| = r} is an increasing function of r which — oo as r — co.

33. If fe CUUT)NH(U) and f(z) = 0 on {e? : a < § < b} for some
a < b show that f is identically 0.

Consider f(z)f(ze'%1)f(zei?2)...f(ze'?*) for suitable ¢y, ¢, ..., By,

34. True or false: if f and g are entire functions such that f(z)g(z) = 1 for all
z then f and g are constants. [What is the answer if f and g are polynomials?]

35. If f: U — U is holomorphic, a € U and f(a) = a prove that |f'(a)| < 1.
Define ¢, as in Problem 20 above and apply Schwartz Lemma to ¢, 0 fo¢_,.

36. The result of Problem 35 holds for any region that is conformally equiv-
alent to U. [A conformal equivalence is a bijective biholomorphic map].

37. According to Riemann Mapping Theorem, any simply connected region
other than C is conformally equivalent to U. Hence, above problem applies to
any such region. Is the result valid for C?

38. Prove that only entire functions that are one-to-one are of the type
f(z) =az+0b.

[ Let g(z) = f(1),z € C\{0}. If g has an essential singularity at 0 then
g({z : |#| > 1}) is a non-empty open set and hence it must intersect the dense
set g(U\{0}). But this contradicts the fact f (and hence g) is One-to-one. If



g has a removable singularity at 0 then f would be a constant and it cannot
be injective. Thus g has a pole at 0 and we can write g(z) = hz(ﬁ) in C\{0}
where & is entire and N is a positive integer. Now f(z) = zVh(L), z € C\{0}.
This yields | f(z)| < M |z"] for |z| sufficiently large and we conclude that f must
be a polynomial by Problem 24) above. Since f is one-to-one we see that its
derivative is a polynomial with no zeros, hence a constant]

39. Prove that {z: 0 < |z| < 1} and {z : r < |z2| < R} are not conformally
equivalent if r > 0.

If ¢ is a holomorphic equivalence then é extends to a holomorphic map g

on U and there is a holomorphic map h on U such that e = g. Use this to
show that there is a holomorphic logarithm on {z : » < |z] < R} and get a
contradiction by comparing with the principal branch of log.

40. Let 0 < r; < Ry and 0 < r9 < Ry. Prove that {z:r < |z| < Ry} and
{z :r9 < |z| < R2} are conformally equivalent < %1 = %2

[This is standard text book material. Note that all simply connected regions
other than C are conformally equivalent to each other, but the result is far from
being true for doubly connected regions (like annuli)]

41. Show that if a holomorphic map f maps U into itself it need not have
a fixed point in U. Even if it extends to a continuous map of the closure of U
onto itself the same conclusion holds.

[Look at ¢, of Problem 20]

42. If f is holomorphic on U, continuous on the closure of U and |f(z)]| < 1
on T prove that f has at least one fixed point in U. Can it have more than one
fixed point?

By Rouche’s Theorem it has exactly one fixed point.

43. If f is holomorphic : U — U and f(0) = 0 and if {f,} is the sequence
of iterates of f (i.e.f1 = f, fut1 = f © fn,n > 1) prove that the sequence {f,}
converges uniformly on compact subsets of U to 0 unless f is a rotation.

If f is not a rotation then |f’(0)| < 1. Consider sup{’@

r =sup{|z| : z € K}, K being a given compact subset of U.

: |z| < r} where

44. Let f be a homeomorphism of Co,, = CU {00} (with the metric induced
by the stereographic projection). Assume that f is differntiable at all points of
C U {oo} except f~1{oo}. Prove that f is a Mobius Transformation.

This is clear if f~'{oo} = 0. Let f(a) = oo and f(c0) = b. Let T'(z) = 2t<
where ¢ # ab. Consider f o T~!. Show that this map is entire. Since it is
one-to-one it must be a polynomial of degree 1.

45. Prove that the only conformal equivalences : U\{0} e \{0} are
rotations.



Prove that such a map extends to a conformal equivalence of U. Hence it
must be ¢, for some a and 6.

46. Prove that mcotmz = = + Z

n=1

over the rectangle with vertices £(n + 1/2) + ni.

P ng if z is not an integer.

7 cot ¢

Integrate T2

47. Prove or disprove: Log(z1z2) = Log(z1) + Log(z2)

4;g'Discuss convergence of the following infinite products:
L(p>0), H 1+ 1), H|1+
n=1
b) Prove that H(l - J5) = 3 and H 22") = ;& if [2] < 1. [See
n=2
Problem 51) for H(l + 4)].
n=1
ﬁ ) where p1,pa, ... is the sequence of primes.

[H ﬁ = Z % where A is the set of all positive integers whose prime
" JEAN
factorizations do not involve primes greater than Py. Hence the given product
o0

diverges. Also, we can conclude that Z 1% = 0.

n=1

(o)
49. Let Re(a,) > 0 for all n. Prove that H [1+4 |1 — ay|] converges if and

n=1
only if Z |Log(an)| < oco.
n=1
50. Prove or disprove the following:
Z |Log(ay)| < oo < Z |1 —a,| < oo and ZLog(an) is convergent <
n=1 n=1 n=1
Z[l — ay,] is convergent.
n=1
First part is true: Log(1+ z) behaves like z near 0. If a,, = 1+ (?/1%1 then

(S
Z[l — ap] is convergent but Z Log(a,) is not convegent. If a,, = e v» ' then

n=1 n=1



o0 oo

Z[l — ay] is not convergent but Z Log(a,) is convergent.

n=1 n=1

o0
51. Prove that H Zp converges < Z Log(zy,) converges. Use this to prove

n=1

oo
that H (14 i/n) is not convergent.
n=1
For =: w.lo.g take z, = ¢, —1 < 6,, < 7 and assume eiOrt-+0n) 1 If
N

Z 6., is close to 2kn then O is close to 2(ky — ky—1)7 and lies in (—m, 7] so

k=1
fin = kn_1!

52. Prove that sinmz = 7z H(l — sz)

n=1

o)
sinrz = e9(*) 2 H(l — %)ez/" for some entire function g. Use Problem 46

n=1

to find g.

(oo}

53. Let B(z) = lanl an=z “prove that if 0 < |an| < 1 and Z[lf lan|] <

an 17(7an'
n=1
oo then the product conveges uniformly on comapct subsets of U and that

B(z) is a holomorphic function on this disk with zeros precisely at the points

an,m = 1,2,.... Prove that {a,} can be chosen so that every point of T is a

limit point; prove that T is a natural boundary of B in this case (in the sense

B cannot be extended to a holomorphic function on any larger open set.
[Standard text book stuft]

54. Say that a function f : R — R is analytic if for each a € R there exists
04 > 0 such that on (a —d,,a+3d,), f has a power series expansion. Show that
the zeros of an analytic function on R have no limit points.

The power series expansion in (@ — d,,a + d,) yields a holomorphic function
in B(a,d,) whose restriction to (a —d,,a+3d,) is f. Fix R and use compactness
of [~ R, R] to show that there is an open rectangle in C containing [—R, R] and a
holomorphic function on that rectangle whose restriction to [—R, R] is f. Thus,
f has atmost finitely many zeros in [—R, R].

55. If f: C — C has power series expansion around each point then it has
a single power series expansion valid on all of C. Is it true that if f : R — R
has power series expansion around each point then it has a single power series
expansion valid on all of R?

_1
1422



56. Does there exist an entire function f such that | f(z)| = |z|? €™ for all
2?7 If so, find all such functions. Do the same for |f(z)| = |z| e!™(*) Re(2),

57. Does there exist a holomorphic function f on U such that {f(%)} =

{3,313 hie f(2)=1Lifnisevenand f(1)= ”Jlrl if n is odd?

58. If the radius of convegence of Z an k(7 —a)™ exceeds R for each k and

n=0
(o]
Z ap k(z—a)” — 0 uniformly on {z : |z — 29| = r} then it converges uniformly
n=0

on {z:|z — 20| <r} provided R > r + |zg — al..

59. Let f be continuous and bounded on {z : |z| < 1}\F where F' is a finite
subset of T. If f is holomorphic on U and |f(z)| < M on QU\F show that
[f(z)] <M onU.

k

Consider H afeeLog(l_“ij)f(z) where F = {a1,as, ..., ax}.
j=1

60. Let © = {z : Re(z) > 0}. If f is continuous on the closure of €,
holomorphic on © and if | f(z)] < 1 on 99 does it follow that the same inequality
holds on 027?.

61. Let Q@ = {z : a < Im(z) < b},f € H(R) and f be bounded and
continuous on the closure of Q. Prove that if |f(z)] < 1 on 9 then the same
inequality holds on £2.

zZ—1

z+1

Compose the maps z — 77=2,2 — €* and z —

problem 59. [See also problem #85 below].

Second proof: consider m f(2) and apply Maximum Modulus Theorem
for the rectangle {z : ¢ < Im(z) < b,} — R < Rez < R} with R sufficiently
large.

. Apply the result of

62. Prove that f(z) = =7z is one-to-one on U and find the image of U.

f(z) = ﬁ — L. First find {1 : z € U}. Answer: C\(—o0, —1].
63. If p and ¢ are polynomials with deg(q) > deg(p) + 1 prove that the sum
of the residues of % at all its poles is 0.

Integrate over a large circle.

64. Evaluate /(z72)(2z+11)2(3271)3 dz and /Wdz where y(t) =
¥ ¥
e27rit(0 <t< 1)
Use problem 63.



65. Find the number of zeros of 27 + 42* 4+ 23 + 1 in U and the annulus
{1 < 7| < 2}.
Apply Rouche’s Theorem to 27 4 4z* and the given function.

66. Let p(2) = 2"+c,_12" 1 +...+c1z+co and R = \/1 + ol + ler]” + oo + Jena .
Prove that all the zeros of p are in {z : |z| < R}.
Compare with ¢(z) = 2™ (Apply Cauchy-Schwartz).

67. Let 1 < a < oco. prove that z + a — e* has exactly one zero in the left
half plane {z : Re(z) < 0}.

Let R > 1+ a and let v be the line segment from —R: to Ri followed by
the semi-circle [2| = R, T < arg(z) < 3. Compare zeros of z + a — e with the
zeros of z + a inside 7.

68. If 0 < |a] < 1 show that the equation (z — 1)"e* = a has exactly n
solutions in Rez > 0. Prove that all the roots are simple roots. If |a| < 5k

271,
prove that all the roots are in {z: [z — 1| < 1}.
la| < |(z — 1)"e?| if |z — 1| = |a|*/™ and (2 — 1)"e* — a has no zeros outside
the ball {z : |z — 1| < |a|*/"} and inside the right half plane: |(z — 1)"e*| >
la| eR¢# > |a|; there are no multiple roots because the derivative has no zeros.

69. Prove that f(z) = 1+ 2% + 22 4+ 422" 4+ .. has U as its natural
boundary in the sense it cannot be extended to a holomorphic function on any
open which properly contains U.

If § is a dyadic rational then f is unbounded on the ray {re’’ : 0 < r < 1}

bt m—1 0o
since Z (T,eQﬂi(k/Qm))Qn _ Z (T€2ﬂi(k/2m))2" 2 Z 7"2n —m.
nem n=0 n=m

70. If p is a polynomial such that |p(z)| = p(]z|) for all z prove that
p(z) = cz™ for some ¢ > 0 and some n € NU {0}.
p has no zeros in C\{0}.

71. Prove that above result holds if p is replaced by an entire function.
2

N2 n . .
Compute i / ‘ f (reze)| df in terms of the power series expansion around
0

72. Prove the two dimensional Mean value Property:
the average of a holomorphic function over an open ball is the value at the
centre.

73. Construct a conformal equivalence between the first quadrant and the
upper half plane. Also, find a conformal equivalence between U and its inter-
section with the right half plane.



Ltiz .2 apnq W0F2)
itz ? i—z

First part: z2; second part: compose

74. Find a conformal equivalence between the sector {z # 0 : 61 < arg(z) <
02} with 0 < 61 <0y < 7/2 and U.
Use previous problem and the function z.

75. Prove that if v is a closed path in a region Q and f € H(Q) then
Re( [ £(:)1(2)dz) =0,
v

Compute % |f(’7(t))‘2 :

76. Prove or disprove: given any sequence {a,} of complex numbers there
is a holomorphic function f in some neighbourhood of 0 such that £ (0) = a,
for all n.

77. If f is holomorphic on Q\{a} prove that e/(*) cannot have a pole at a.
If f has an essential singularity at a then so does ef. Suppose f has a pole
of order k at a. If possible, let |ef(z)| — 00 as z — a. Let g(2) = f(2)(z — a)*.

Then Re (zg_(z) — 00 as z — a. Choose 6§ such that a = g(a)e " € (—0c0,0).

a)k

If 2, = a+ Le® then Re[nk%] — —00, but Re[gg((z;))] — 1 a contradiction.

2
78. Prove that /log |1 — €] df = 0.

0
2

/log |1 —re|df = 0 for r € (0,1) by Mean Value Theorem for harmonic

0
functions. Split the integral into integrals over {0 : r < cos6} and {0 : r > cos 0}
and justify interchange of limit (as » — 1) and the integrals. You may need the

inequality cosf <1 — % + %,

79. Use above result to prove Jensen’s Formula:
If f € HB(O,R)),f(0) # 0,0 < r < R and aq,qq9,...,ay are the ze-
N
ros of f in B(0,r)” listed according to multiplicities then |f(0) H ] =
n=1

27

= log|f(rew)‘d6 o

e O . Also prove Jensen’s inequality: log |f(0)] < %/log |f(rei9)| de.

0
N 27

Let g(2) = f(2) H :(tlajzz) H o= Prove that log [g(0)| = %/log ’g(Tei9)| de.

n=1 n=m-+1 0

10



80. Let © be an open set containing 0 and f € H(2). Prove that f(z) = f(Z)
for all z with |z| sufficiently small < £ (0) € R for all n > 0.

81. If f € H(U), f(0) =0, f'(0) # 0 prove that there is no g € H(U\{0})
such that ¢ = f.

82. If f is an entire function such that |f(z)| — oo as |z| — oo prove that
|f(2)] > ¢|z| for some positive number ¢ for all z with |z| sufficiently large.

. 1
Consider e

83. Let Q be a region, {f,} C H(?) and assume that {f,} is uniformly
bounded on each compact subset of 2. Let C be the set of points where {f,,} is
convergent. If this set has a limit point in §2 prove that { f,,} converges uniformly
on compact subsets of 2 to a holomorphic function.

[ The family {f,} is normal. Let {f,,} converge uniformly on compact
subsets to f. Then f € H(Q). If g is another subsequential limit of {f,} then
f = g at point where {f,,(z)} converges. Thus f = g on a set with limit points
in Q]

84. Prove or disprove: If € is a region, {f,} C H(Q), ék)(z) —0asn— oo
for each z € Q and each k € {0,1,2,...} then {f,} converges (to 0) uniformly
on compact subsets of €2

[ This is a trivial consequence of problem #83 above if {f,} is uniformly
bounded on each compact subset of 2. What if this assumption is dropped?]

85. Give an example of a function f which is continuous on a closed strip,
holomorphic in the interior, bounded on the boundary but not bounded on the
strip! [See also problem #61 above].

cos(cos 2)

86. Let u(z) = Im{(32)?}. Show that u is harmonic in U and ll_irr%u(rew) =
0 for all 8. Why doesn’t this contradict the Maximum Modulus Principle for
harmonic functions?

[Answer to second part: Limit is taken only along radii]

87. If ¢(|z|) is harmonic in the region {z : Re(z) > 0} (¢ being real valued
and "smooth") prove that ¢(t) = alogt + b for some a and b.

88. Let f: U — C be a continuous function which is harmonic in U. Prove
™

that f is holomorphic in U if and only if / f(et)ei"tdt = 0 for all positive

—T

integers n.

11



f is the Poisson integral of its values on the boundary. Replace the Poisson
o0

kernel P, (t) by Z rIlei™ and interchange the sum and the integral. Note

n=—oo

0
that Z ¢nZ" is holomorphic if and only if it is a constant.
n=0

89. Let 2 = {z : Re(z) > 0}. If f is bounded and continuous on 9§ show

that it is the restriction of a continuous function on Q which is harmonic in .

oo A
Let F(z +iy) = £ / %dt. Prove that /%dt is holomorphic
—00 —A

on € and it converges to F' uniformly on compact subsets of ().

90. Prove that the square of a real harmonic function is not harmonic unless
it is a constant. When is the product of two real harmonic functions harmonic?
Find all holomorphic functions f such that |f |2 is harmonic.

91. If f: Q — C and f and f? are harmonic prove that either f is holomor-
phic or f is holomorphic. Prove the converse.

92. If u is a non-constant harmonic in a region €2 prove that the zeros of the
gradient of u in © have no limit point.

93. If u is harmonic in a region {2 prove that partial derivatives of u of all
orders are harmonic.

94. Let S ={z € R:a <z <b}. Let Q be a region containing S. Prove
that if f € H(Q\S)NC(Q) then f € H(Q).

Prove that integral of f over any triangle in €2 is 0.

95. Let f, fn(n = 1,2,...) be holomorphic functions on a region . If
Re(f,) %5 Re(f) show that f, %5 f.

™

Enough to do this in small balls. Use the formula Im[f,,(2)] = 5 / Im[zzgfj Re fn(a+

27

e®R)dt for z € B(a, R) if the closure of B(a, R) is contained in Q. [There is a
similar formula for Im[f(2)]].

1
96. Let f(z) = /idt,z € C\[-1,1]. Prove that f is holomorphic, its
1

imaginary part is bounded, but the real part is not. Prove that lim zf(z)

zZ— 00

12



exists and find this limit. Find a bounded non-constant holomorphic function
on C\[-1,1].

97. Give an example of a region €2 such that Q€ is infinite and every bounded
holomorphic function on §2 is a constant.

Take Q@ = C\{1,2,...}

Remark: it can be shown that there are non-constant bounded holomorphic
functions on C\[—1, 1] but there are no such functions on C\ K if K is a compact
subset of R with Lebesgue measure 0. Thus the complement of the Cantor
set gives a region whose complement is uncountable such that every bounded
holomorphic function on it is a constant.

98. If Q is any region contained in C\(—o0,0] show that there exists a
bounded non-constant holomorphic function on 2.

More generally if there is a non-constant holomorphic function ¢ on €2 such
that ¢(Q) is contained in C\(—o0, 0] the same conclusion holds.
Look at e?L09(¢(2)),

99. If Q is C\(—o00,0] or a horizontal strip or a vertical strip or U° show

that there exist non-constant bounded holomorphic functions on 2.
[eiLog(z) et?_e? l]
) ’ )

100. Prove that there is no holomorphic function f on U€ such that |f(z)| —
oo as |z| — 1.

First assume that f has no zeros and look at ﬁ
expansion of ﬁ For the general case use the existence of an entire function
whose zeros match the zeros of f

Use Laurent series

101. Prove that there is no continuous bijection from Q , where Q = {z :
Re(z) > 0}, onto U which maps © onto U and is holomorphic in €.

Write down all holomorphic bijections from Q onto U and show that each
of them extend to continuous functions on  uniquely with range properly con-
tained in U [In fact the range misses exactly one point].

102. Let © be a bounded region, f € C(Q )NH () and assume that |f| is a
non-zero constant on 0Q2. If f is not a constant on €2 show that f has atleast
one zero in 2.

103. Let f be a non-constant entire function. Prove that the closure of
{z:|f(2)] < ¢} coincides with {z : |f(2)| < ¢} for all ¢ > 0.
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104. Prove that if f € H(Q2),[a,b] C Q (where [a, D] is the line segment from
a to b) then |f(b) — f(a)|] < |b—al|f'(€)| for some & € [a,b]. Also prove that

() = f(a) = (b= a)f' ()] < L5L| £7(m)] for some 7 € [a, b].

105. Evaluate /%dz where ~(t) = re2™*(0 < ¢ < 1) where 0 < r < 2.

¥
No computation is needed!
Compute the same integral for r > 2.
Use partial fractions for second part.

106. Give an example of a bounded holomorphic function f on C\R which
cannot be extended to any larger open set.

iz 5f Tmz >0
_ 1—iz : fota
Take f(z) = { }IZ i Tmz < 0 and note that Irilzniof(z) exists only for

Rez =0.

107. If f € H(0 < |z| < R) and / |f(z +dy)| dzdy < oo prove that

0<z24y2<R
f has either a removable singularity or a pole of order one at 0.
R

The coeffcients {a,} in the Laurent series expansion satisfy / r“tldra,| <
0

108. In the previous problem if / |f(x + iy)) |2 dzdy < oo prove that

0<z?+y?<R
f has a removable singularity at 0.

109. Show that there is no function f € H(U) N C’(l}) such that f(z) =
ivz e oU.

[2f(2) — 1 € H(U) N C(U) and vanishes on dU].

110. If f € C(U), f, € H(U) and f, — f in LY(U) then f € H(U).

™

1 7
[ ‘fn (ret?) — f(rei‘g)‘ rdrdd — 0 and hence ‘fnk (ret) — f(?“ew)’ do —
[ /

0 for almost all 7 for some subsequence {ny} of {1,2,...}. We can find a sequence

r; 1 1 such that / |fnk (re??) — f(rei9)| df — 0 for r = 71,7, .... By Cauchy’s

27

Integral Formula we have f,(z) — f(2) = i/%dgv,z € B(0,a/2)

o
where () = ae?™ 0 < t < 1. It follows easily from this that { f,,, } is uniformly

14



Cauchy on B(0,«). This proves (by Morera’s Theorem) that f € H(B(0,«))
and « € (0,1) is arbitrary.

111. Any conformal equivalence of C\{0) is of the form cz or of the form ¢
where ¢ is a constant.

[ This requites the Big Picard’s Theorem. Consider the Laurent series ex-

pansion f(z) = Z cn2". By Big Picard’s Theorem and the fact that f is

injective neither f(z) nor f(1) has an essential singularity at 0. This forces
oo

Z ¢n 2" to be a finite sum. Thus, f is a rational function . Since f is holo-
n=—oo
morphic on C\{0), we can write f(z) = pS-) for some j € {0,1,2,...} and
some polynomial p with p(0) # 0. It follows that its derivative has no ze-
ros in C\{0),i.e.27p'(z) — 729 "!p(2) is a polynomial with no zeros in C\{0).
This implies that z7/p/(z) — jz/~1p(z) = 2" for some n € {0,1,2,...} and
f'(z) = szTj = cz" 2. Thus, f(z) = cz**1/(k+1) where k = n — 2j. [Note that
there is holomorphic function on C\{0) whose derivative is L. Thus, k # —1].
The fact that f is injective shows that k 4+ 1 = £1].
112. If 21 > 29 > 23 > ..., {2z} — 0 and f € H(U) with f(z,) € RVn then
f®)(0) € RVE
[cmaﬂyJXO)andeO)MEraﬂ.Now,f@+lxo)::«k+¢ﬁ)gn%f“**%+fftﬁﬁ+~*f””)

where ¢; = L,(O). Taking limit along the sequence {x,, } we see that f*+1)(0) €

)
7l
R if f(0) € R for I < k.
113. Let {fn,} C H(D) where D is an open disc. Assume that f,(D) C
D\{0}¥n and that lim f,(a) = 0 where is the center of D. Then lim f,(z) =0

uniformly on compact subsets of D.

[ {fn} is normal. If a subsequence converges uniformly on comapct subsets
then either the limit has no zeros or it is identically zero].

114. Let {u,} be a sequence of (strictly) positive harmonic functions on an
open set, 2 such that Z u, = 0o at one point. Then the series diverges at every
point. Moreover, if it converges at one point it converges uniformly on compact

subsets of 2.
N

[ Apply problem 113) above to { H etnTn} where v, is a harmonic conju-

n=1
gate of u,,. Of course, it suffices to ptove the result in each closed disc contained
in €, so existence of harmonic conjugate is guaranteed].

115. Find all limit points of the sequence {% Zk‘ia}nzl’gw. where a is a

k=1
non-zero real number.
1
n

n n
k=1

{n?e} is precisely the unit circle {|z| = 1} and this would show that the desired

[) (Byel — [giedy = —L—. We claim that the set of limit points of
1+ia
0
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set is {z : |z| = ﬁ} Given a € R and € > 0 we need to show the existance
of integers n and m such that |a — alog(n) — 2mn| < e. Equivalently, 2=27% —
a—2mmn € a—2mm

a7 < log(n) < &=2m7 4 ra7- The interval (e = " Tel, e = TTT) has length
larger than 1 if —“* is sufficiently large and so it would contain an integer n.

a—2mm

Also e = Tal > 1 for such m and so n is positive].

116. Let f have an isolated singularity at a point a. Prove that e/ cannot
have a pole at a.

[ If f has a removable singularity the conclusion holds. Suppose f has an
essential singularity at a. We claim that {e/(*) : 0 < |z —a| < &} is dense in
C for each §. Of course, these implies that e/ does not have a pole at a. We
know that {f(z):0 < |z —a| < 0} is dense in C for each §. Let ¢ € C\{0} and
€ > 0. Let e? = ¢ and choose z such that 0 < |z —a| < 6 and |f(z) —d| < e.
Then |ef(z) — ed| < €[e?l9*€]. This proves the claim. Finally, if f has a pole
at a then there is a positive integer m such that (z — a)™ f(z) = g(2) (say) is

g(z

holomorphic in a neighbourhood of a and g(a) # 0. Thus, e/(?) = eT-a™ =

_p(z) . . . .
eTGoa™ () near a with h holomorphic near a, p being a polynomial of degree

at most m. If e% has a removable singulairty or a pole then e% (z—a)"
would be bounded near a for some integer k > 0. Put z = a + N where N is a
positive integer and note that e%(z —a)*® — oo as N — oo. Thus R
must have an essential singularity at a so does e% el(2) ]

117. Let f be holomorphic on U and assume that for each r € (0,1), f(re®)
has a constant argument (i.e. f(re') = |f(7"e“)} '@ where the real number a,.
does not depend on ¢t. Show that f is a constant.

[ The set U\{z : f(z) € (—o0,0]} is open. On this set Log(f) has a constant
imaginary part which implies it is a constant. Thus f is a constant on U\{z :
f(z) € (=00, 0]}. If this open set is non-empty then f is a constant everywhere.
If it is empty then Im(f) = 0 on U which implies of course that f is a constant)

118. [ based on problem 117)] Let f € H(Q2) and suppose |f] is harmonic in
). Show that f is a constant.

[f and | f| both have mean value property and this implies that the hypothesis
of previous problem is satisfied].

119. Let f € H(U), f(U) C U, f(0) = 0 and f(4) = 0. Show that | f/(0)| < 3.
Give an example to show that equality may hold.

[ Let g = % where h(z) = lz:fz = 2221 Use Maximum Modulus principle
2

to conclude that Schwartz Lemma applies to g. Now

F/(0)] = [h(0)] | (0)] < h(0)] = L. Equality holds when f = zh(2)]

120. Let f € H(U), f(U) C U, f(0) = 0, f/(0) = 0, f(0) = 0...,f*)(0) = 0
where k is a positive integer. Show that } f (%)’ < 5 and find a necessary and
sufficient condition that ’ f(3)] =%

[ Let g(2) = % Then g € H(U) and Maximum Modulus Theorem implies
g(U) C U (unless ¢ is a constant, in which case |f(%)| < 2% with equality

holding when the constant has modulus 1). Hence |f(3)| = [(2)*9(3)| < 5%
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unless f(z) = cz¥ with |c| < 1. Equality holds if and only if f(z) = cz*¥ with
le] = 1].

121. If f and zf(z) are both harmonic then f is analytic.

[C-R equations hold]

[ee]

122. Prove that f(re?) = Z 7" sin(na)e™? is harmonic in U.

n=-—oo
o0

[ Z 7" sin(na)e™? is holomorphic]
n=0

123. If @ = {z : Re(z) > 0} and f is a bounded holomorphic function on
with f(n) = 0¥n € N show that f(z) = 0Vz € Q.

[Let g(z) = f( }Ij) on U. A well known result (which is an easy consequence
of Jansen’s Formula) says that the zeros ai,aq,... of a bounded holomorphic

function g on U which is not identically 0 satisfies Z[l — lan|] < oo . Since
Z[l — ‘ﬁ‘] = 00, g must vanish identically].
124. Show that there is a holomorphic function f on {z : Re(z) > —1} such
22 Zs Z4

[f(2) = (1+2)Log(1 + 2) — 2]

2 3

125. Consider the series z—}—z—;—i—?—}—... on U and iw—(z—2)+@—@+
..on {z: |z —2| < 1}. (These two regions are disjoint). Show that there is a
region {2 and a function f € H(Q) such that Q contains both U and {z : |z — 2| <

2 3
1}, f(2) :z+§+§+... on U and f(z) :Z‘TF*(Z*2)+@*%+...
on{z:|z—2| <1}.

[Let Q =UU{z:]z—2| <1} U{z : Imz > 0}, f(2) = Log(l — z) on
QN{z:Rez < 1}, f(2) =log(l —z) on QN {z : Rez > 1} where log(z) =
log |z| 40 if z = || e? with 0 < 6 < 27, f(2) = Log(1 — z) = log(1 — ) on the
ray {iy : y > 0}].

126. Let f : U — U be holomorphic with f(0) = 0 = f(a) where a € U\{0}.
Show that |f'(0)] < |a].

[ Consider g(z) = %7—52)]

127. Prove that a complex valued function w on a simply connected region

2 is harmonic if and only if it is of the form f + g for some f,g € H(Q).
[ If part is obvious. For the converse let u; = Re(u),us = Im(u) and let

w1 +ivy tiug—va

w1 +1v1, U +v9 be holomorphic. Then u = f + g where f = 5 g =

U1+iU1*iu2+U2]

198 Let f(z) = 2+ L(z € C\{0}). Show that f({z:0 < |2| <1}) = f({=:
|z] > 1} = C\[-2,2] and that f({z : |z| = 1}) = [-2,2]. Show also that f is
conformal equivalence of both the regions {z : 0 < |z| < 1})and {z : |z| > 1}
with C\[—2,2]. Prove that {z : |z| > 1} is not simply connected. [How many
proofs can you think of?]

129. Show that there is no bounded holomorphic function f on the right-
hlaf plane which is 0 at the points 1,2,3, ... and 1 at the point /2. What is the
answer if ’bounded’ is omitted?
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[Let g(z) = f(%) for z € U and note that the zeros {a,} of a non-zero

bounded function in H () must satisfy the condition Z[l — |ag]] < oo (as a
consequence of Jensen’s Theorem)].

130. Prove or disprove: if {a,} has no limit points and {c, } C C then there
is an entire function f with f(a,) = ¢,Vn.

[ This is true and it follows easily from Mittag Lefler’s Theorem].

131. Let Q2 be a bounded region, f € H(2) and limsup |f(z)| < M for every

point a on the boundary of Q.Show that |f(z)| < M for every z € Q.
[ Let My = sup{|f(2)| : z € Q}. (This may be 00). Let |f(z,)| — M7 with

{zn} C Q. Let {z,, } be a subsequence converging to (say) z. Of course, z € Q.
If z € O then limsup | f(zy, )| < M by hypothesis and hence M; < M. If z € Q
k—o0

then f is a constant by Maximum Modulus Theorem].

132. Let f be an entire function such that @ — 0 as |z| — oo. Show that
f is a constant.

133. Let f be an entire function which maps the real axis into itself and
the imaginary axis into itself. Show that f(—z) = —f(z)Vz € C.

[Let f(z) = Z anz", z € C. Clearly, a, = f“’T)!(o) € RVn. [In fact, f("(z) €

n=0
RVYnVz € R]. Now Z an (iy)™ is purely imaginary and hence Z agn(—1)"y?" =
n=0 n=0

0Vy. Thus, as, = 0Vn|

134. Let f be a continuous function : C — C such that f(2% 4 2z — 6) is
an entire function. Show that f is an entire function.

[Let @ € C,a # —7 and b*> + 2b — 6 = a. In a neighbourhood of b the
function p(z) = 22 + 2z — 6 is one-to-one (because 2b + 2 # 0)and the image
of this neighbourhood is an open set V.Further, p~! is holomorphic on V. Now
f(z) = (fop) op H(2)Vz € V and hence f is differntiable at a.Finally, f
has a removable singularity at a. Note that z? + 22 — 6 can be replaced by any
ploynomial; in fact we replace it any entire function p such that {p(b) : p’'(b) = 0}
is isolated).

135. If f and g are entire functions with no common zeros and if h is an
entire function show that h = fF + gG for some entire functions F' and G.

[Let ¢ = % on C\g~{0}. Let a1, az, ... be the zeros of f. Let ¢, = ¢(an),n >
1. We can find an entire function G such that G(a,) = ¢,,n > 1 and such that
¢ — ¢, and G — ¢, have zeros of the same order at a,, for each n. It follows that

F = h}Gg is entire].

136. Show that the series Z % converges if |z| <1 and z # 1.

n=1
'S

[This is a standard result in Fourier series; we will show that Z %m) and

n=1
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S ) hoth converge if ¢ # 0.

n=1

Let —7 < t < m,t # 0. Let a, = cost + cos(2t) + ... + cos(nt),n >
1,040 — 0. Then a, = Re[ it + e2it + ...+ eint] — Re 674(71+1)t_glt. Thus, a, =

eit—1
i(n+1) i —i . _ \
Relle |ezt 12@ =] _ cosnt)= Coj(eg?jll‘)t) Ltcos(t) proving that {a,, } is bounded.
N3 Ny No No—1
Now Z 7C°S7(1"t) = Z fn—tn-l This gives Z 70037(1"“ aNl L+ Z a]
n=N; n=N; n=N; j=N1
o0
jﬁ) + ajgz This clearly implies convergence of Z M . The proof of conveg-
o n=1
ence of Z Smfzim) uses the same argument with a,, replaced by sin(t) +sin(2¢) +
n=1
.. + sin(nt)].

[SS)
137. Show that the convergence of Z Sm(Tm) implies that z € R.
n=1
[ sin(nz) cosh(ny) 0 and cos(nz)sinh(ny) 0. If y 7& 0 then cos}‘;gny) and

n
sinh( ny

|l

138. If f € C((_]) N H(U) and f is real valued on T = QU then f is a
constant.
[ Maximum modulus principle to e’/ and e~*/]

139. Let Q = {z : Im(2) > 0} and f € H(Q) N C(Q). If f(z) = 2* — 222 for
0 <z <1find f(i).

[One solution is to use Schwartz Reflection Principle. We can extend f to a
holomorphic function on Q U Qy where ; = {z: 0 < Rez < 1}. It the follows
that f and 2% —222 coincide on a set with limit points and hence f(z) = 2% —222
on Q.

140. Let Q be a region and m denote Lebesgue measure on Q. If {f,} C
H(Q) N L*(Q) and if {f,,} converges in L?(2) to f show that f € H(Q).

[ Let B(a,2r) C Q. Consider Tzirl / fn(o\q—fqﬁdm(o where

ri<[(—al<rs

To T
z € B(a,r) and 0 < 71 < 12 < r. We can write this as T,;Tl//fn(a +

T —T

peit)p(a+pezt z) pdpdt Now /fn a + pe”) (a+p;t7z) dt = ( )/fn dC where
5
v(t) = a+ pe't. By Cauchy’s Integral Formula we now see that if z € B(a,r1/2)

T2

[ RO = 2 [0 = s

r1<[¢—al<r2 T1

then
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Let hz(() = ﬁm,g‘ﬁ‘[rlgmfﬂgrg' We have fn(z) = /fn(C)hz(C)dm(C)
Since b, € L2(9) we get fu(2) — [ F(Q)he(O)dm() and hence £() = [ F(Oh-(C)am(¢)

a.e. [m]. It suffices therefore to show that g(z) = /f(g)hz(c)dm(g) defines a

holomorphic function on B(a,r1/2). But g(z) = /Cizdu(g) where %(C) =

f(©) T;Tl \E:Z\ and g has a power series expansion in B(a,r1/2) by a standard

argument.

141. Let Q be a region containing U and f € H(Q). If |f(z)| = 1 whenever
|z] = 1 show that U C f(9).

[ If f has no zeros then (using Maximum Modulus Theorem to f and % we
see that f is a constant. Thus 0 € f(Q2). Now we apply Rouche’s Theorem; if
a € U then |f(z) — (f(z) —a)| = |a] <1 =|f(z)| whenever |z| = 1 and hence
f and f — a have the same number of zeros in U. Since f has a zero, so does
f—al.

142. Let 2 be a bounded region, f,g : 2 — C be continuous and holomorphic
in Q. If | f(2) —g(2)| < |f(2)] + |g(2)| on 90 show that f and g have the same
number of zeros in 2.

[This is a well known generalization of Rouche’s Theorem. See e.g., "An In-
troduction To Classical Complex Analysis" by Robert Burckel, Vol. 1, Theorem
8.18, p.265]

143. Let © be a bounded region f: Q — U be continuous and f € H(Q), f
not a constant. If | f(z)| = 1 whenever z € 9 show that U = f(Q).

[ This is proved by the same argument as the one used in problem 141)
above, with Rouche’s Theorem replaced by problem 142)].

Problem 148) below says that any continuous function on R can be approx-
imated uniformly by an entire function [ A result of Carleman/. The next 4
problems are required to solve that problem.

144. Given any continuous fucntion f : R — C there is an entire function g
such that g has no zeros and g(z) > |f(z)| Yz € R.

o0

Consider a series of the type a + Z[nzjl]k" This series converges unifrmly

n=1

on {z:|z] < N} if [éfl]k” < [3]" for n > 2N?2. This is true if k, > n. Thus

h(z) = a+ Z[nzjl]k" defines an entire function provided k,, > n Vn. Now, for
n=1

real h(z) > [25]% > [L5)F > max{|f(y)| : § < [yl < j+1} forj < o] < j+1

provided k, is sufficiently large and a > max{|f(y)| : 0 < |y| < 1}. Take g = €”].

145. Let f : R — C be continuous. Then we can write f as Z fn(z —n)
n=-—oo
where each f,, is continuous and f,(z) = 0 if |z| > 1.
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o0

[ Let fo(z) = % where G(z) = Z g(z —n) and g(z) = 1 for
n=-—oo
x| < %,g(ax) =0 for |x| > 1 and g is piece-wise linear. If n — % <z<n+ %
then G(z) > g(z — n) = 1].
146. Let f : R — C be continuous and f(x) = 0 for |z| > 1. Let S = {z :
|[Re(z)| > 3 and |Re(z)| > 2|Im(z)| }. Given € > 0 we can find an entire function

g such that |f(z) — g(x)] < e Vx € R and |g(2)| < e Vz € S.
1
[Let fn(2) = \/%/e_"z(z_t)zf(t)dt. It is easily seen that f, is entire for

each n. Also, f, — f uniformly on [-2, 3] and f,, — 0 uniformly for R\[—2, %]
[See problem 149 below] Hence f, — f uniformly on R. If z € S and [t| < 1
then Re[n?(z — t)?] = [(a: —t)% — %

T S T e R e

()ldt < / oy

147. Let f : R — C be continuous. Then there is an entire fucntion g such
that |f(z) — g(z)| < 1 Vz € R.

Hence |f,,(2)

n —
(&
— V27
-1

[Write f as Z frn(x—n) where each f, is continuous and f,(z) = 0if |z| >
1.For each n there is an entire function g, such that |f,(z) — gn(z)| < 2727I"!
Vo € R and |g,(2)] < 271" V2 € S. If |2| < N and |n| > 3N +3 then z —n € S

and hence |g,(z —n)| < 27", This implies that Z gn(x — n) converges

uniformly on compact subsets of C. Let g(z) = Z gn(z —m). g is entire.
Also [f(z) —g(@)] < D gnlw—n) = fulw—n)| < D 2727 =13

148. Let f : R — C and n : R — (0,00) be continuous. Then there is an
entire function g such that |f(x) — g(x)| < n(z) Vo € R.

[There is an entire function ¢ with no zeros such that ¢(x) > n(x)
There is an entire function g such that |f(z)¢(x) — g(z)| < 1Vz € R].

149. [Used in problem 146) above]

Vz € R.

b
Leta < band f : [a,b] — C be continuous. Let f,,(z) = ﬁ/e‘”z(m_tyf(t)dt.
Then f,(x) — f(x) uniformly on [a 4+ §,b — §] and f,(x) — 0 uniformly on

R\[a — §,b+ 4] for each § > 0.
[Let f be 0on {b+1,00) and (—0c0,a—1] and linear in [a—1, a] and [b, b+1].
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Note that the second part is trivial. Write f,, (z)— f(z) as ——= / e [f (x4

ez
Vi(a—z)
Vn(a—z)
- feldut A [ el ) - Sl
n(a—x)
n(b—z)
v [ e U@l @) [ e i) |t ) - )] <
Vvn(b—z) n(a—z)
0/2 for u € [y/n(b—2),] and a <z < b if n > some ns. We may also choose n;
evn
such that \/%? / e du—1| < & where M is an upper bound for |f].
—evn

150. Show that the family of all analytic maps f : U — {z : Re(z) > 0} with
|f(0)] <1 is normal.

[Let g(z) = LE=JO) Then ¢(U) C U and Schwartz Lemma gives |g(z)| < 2|
f(2)+f(0)
which gives |f(2)] < if‘é}]
151. Let f € H(Q) and f be injective. If {2 : |z — a| < r} C Q show that

1z) = 2m/ Cfo(cld( Vz € f(B(a,r)), where y(t) = a +re?®,0 <t < 1.
2!

[Let B(a,r+¢) C Q. Then 5& fC(fo C)z d¢ equals the residue of the integrand

o
at the sole pole zo = f~1(2)].

K

152. 1If f € C(U)NH(U) show that f(z) = i Im(f(0))+ 5= / ¢ 42 Re f(eit)dt

et—z

—T

VzeU.

T

[ Just observe that Re / ¢ 42 Re f(e?)dt = Re /{Re etz }f(e™)dt].

eit—z eit—z
—7

—T
153. If Q is simply connected show that for any real harmonic function v on

Q, a harmonic conjugate v of w is given by v(z) = Im[u(a) + /(gz zay)dz]

5
where a is a fixed point of  and + is any path from a to z in Q.
[Since € is simply connected u indeed has a harmonic conjugate. Let g €

H(Q) with Reg = u. We may assume that g(a) = u(a). Now g(z) = g(a) +

/ g (Q)d¢ and ¢'(2) = g; Zay (from definition of derivative and Cauchy-

b
Riemann equations)].
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154. Let Q be a region and f,g € H(Q). If | f| + |g| attains its maximum on
Q) at some point a of 2 then f and g are both constants.

[ 1£(@)] + lg(@)] > £(2)] + |g(2)| ¥= € 9. Replace f by ¢i*f and g by ei’g
where s and t are chosen such that €' f(a) and e’ g(a) both belong to [0, 0).
This reduces the proof to the case when f(a) and g(a) both belong to [0, c0).
We now have f(a)+g(a) > |f(2)|+1g(2)| > Re f(2)+Re g(z) = Re(f() +g(2).
Maximum Modulus principle applied to f + g shows that f 4+ g is a constant.
Now f(a) +g(a) > /()] + 9(2)] = Ref(z) + Reg(z) = Re(f(2) + 9(2)) =
Re(f(a) + g(a)) which implies that equality holds throughout. In particular
()] = Re(f(2)) and |g(2)] = Re(g(2)) V2],

155. If f and g are entire functions with f(n) = g(n) ¥n € N and if
max{|f(2)|,]g(z)| < el*l for |z| sufficiently large with 0 < ¢ < 1 show that
f(z) = g(2) Vz € C. Show that this is false for ¢ = 1.

[c =1 : take f(z) = sin(7z),g(z) = sin(27z). Now let 0 < ¢ < 1. If the
conclusion does not hold then 3 a € (0,1) such that f(a) # g(a). Let ¢(z) =
f(z+a) — g(z +a) Vz € C. Then |¢(2)| < crel?l for |z| sufficiently large.
Consider the disk B(0, N — a) where N is an integer > 1. We apply Jensen’s
Formula to ¢ on this ball. If oy, as, ... ak are the zeros of ¢ in the closure of

—/10g|¢(N a)e”‘dt

< elogclJrc\Nfa\ for N

N

B(0,N — a) then |¢(0)

sufficiently large. Since & TI > 1 V5 we get |¢(0) cIN=al - Also,
J

u’:]z

N
il =5 —a< 50 60)| [] 254 < erel ol This gives
j=1
|¢(0 )|1/N Noa_ < cl/N cl1=a/NI_ We conclude that hmsuplog[(N,)l/N] <

N|)1/N =
/N
c. However, % — 1 as N — oo (by Stirling’s Formula) and we get

lim sup log[e,l;\\[[lw] < ¢ which says 1 < ¢, a contradiction].
156. Show that there is a function f in C(&) N H(U) whose power series

does not converge uniformly on U.

[ This is a well known result in the theory of Fourier series. In fact, the power
series need not even converge at all points of OU. See Theorem 1.14, Chapter
VIII Trigonometric Series by A. Zygmund].

157. It {f,} € H(?) and nlLIrolofn(z) = f(z) exists ¥V z €  show that there

is a dense open subset Oy of 2 such that f € H(Q).

[Use Baire Category Theorem)]

158. Let L : H(Q) — H(Q) be linear and mulitplicative, not identically 0.
Show that there is a point ¢ € 2 such that L(f) = f(¢) ¥V f € H(Q).

[Let f € H(Q) and ¢ = L(z) ( where z stands for the identity map). If ¢ ¢ €2
then we get the contradiction 1 = L(1) = L((z—¢)-2) = L((z—¢))(L(:X)) =
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0((L(+X)). Thus ¢ € Q. Let g(z) = (Zz):f(c) if z# cand f'(c) if z = c. Apply
L to the identity f(z) — f(c) = (z — ¢)g(2)].

159. Let 2 be a region and f € H(Q) with f(z) # 0 Vz € Q. If f has a
holomorphic square root does it follow that it has a holomorphic logarithm?
What if it has a holomorphic k& — th root for infinitely many positive integers k?

[ Q = U\{0}, f(2) = 2? is a counter-example to the first part. Suppose

now that ky < ke < ... and f; € H(Q) with [f;(2)]% = f(z) V2 € Q, Vj > 1.
Then fT, = kj% If ~ is any close path in Q then /fT =k /; If v;(t) =

8! 8!
. . : 7
fj(v(t)), then ~; is a closed path in C and Ind, (0) = =L j{—j = 5= 7=
8! 8!

ka / — 0 as j — oo. This implies that {Ind, (0)} vanishes eventually and

Y

hence that 27rzk / fT/ = 0 for j sufficiently large. We have proved that / TI =

¥ ¥
for every close path v in . Hence there exists h € H(Q2) such that fT/ =h.

Now (e7"f)" = 0,e~" f is a (non-zero) constant and hence f has a holomorphic
logarithm.
160. lim£&) = 1i

z—a9(z)

a, f(a) = g(a) =0 )

161. If f and g are analytic in some neighbourhood of a,|f(z)] — oo and

lg(z)] — o0 as z — a then lim Ez; lim L E ; provided hm f,g ; exists.

162. Let f be an entire function such that |f(z)| = T whenever |z| =
Show that f(z) = cz™ for some non-negative integer n and some constant c¢
with modulus 1

[ If f has no zeros in U we see that f is a constant. If oy, qo,...,an are
the zeros of f in U\{0} and if 0 is a zero of f of order m (m may be 0)
let B(z) = zgmE=ar 2=22 224N and g(z) = f(2)/B(z). Then |f(2)] = 1

l—a1z 1—asz l—anz
whenever |z| = 1 and Maximum Modulus Theorem shows ¢ is a constant. Thus
f(z) = cgmZ=2r 2202 2=aN iy [J, The two sides must coincide on C\{(a;)
l—a1z 1—agz l—anz

:1 < j < N} and we get a contradiction to the fact f is bounded in a

m 1f f and ¢ are analytic in some neighbourhood of
d

-1

neighbourhood of (a;) ~!. This shows that there are no zeros of f other than
0].

164. Let Q be a region (not necessarily bounded) which is not dense in C,
fe C’((Z) NHQ),|f(z)] < M Vz € 9Q. Suppose f is bounded on €. Then
[f(2)| < M VzeQ.

[ First note that the hypothesis that is bounded on €2 is necessary: sin(z) is
bounded by 1 on the boundary of the upper-half plane but but bounded by 1 in
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the upper-half plane. Also, the conclusion obviously holds for bounded regions

since |f| attains its maximum at some point of Q in this case.

Since €2 is not dense in C there is an open ball disjoint from 2. By translation
we may assume that B(0,0) NQ = 0. Fix zy € Q. Let € > 0 and n be a positive
integer such that (|zo| /6)1/™ < 1+ e Let R > max{|zo|,(4)"} where M; is
a bound for f on Q. Then 2y € C for some component C of QN B(0, R). We

now apply Maximum Modulus Principle to the function @ on C. Since the
aC c d(QN B(0,R)) C 92U dB(0, R) we see that (fi” M Mn
on OC since B(0,6) N Q = (). Thus, by Maximum Modulus Principle we get

£(z0)] < l2o"/™ max{ 2, 2} = |2|"" L in view of the fact that R >
§(&)". Finally, since (|zo| /6)Y/™ < 1+ € we get |f(z0)] < M(1 + €). Since
zp € Q2 and € > 0 are arbitrary we are done.

165. In above problem the hypothesis that 2 is not dense can be deleted
provided Q # C.

[ Note that the result is obviously false for Q@ = C. Now 9Q # ). Let ¢ € 992
and consider a small ball B(c, p) around c¢. We may suppose |f(z)| < M + € on
QNI(B(c,p)). Let Q1 = Q\[B(c, p)]~. The |f(2)] < M + € on 994 and we can

apply above result to ].

< max{

166. If f is an entire function such that |f(z)| = 1 whenever |z| = 1 show
that f(z) = cz™ for some n > 0 and ¢ € C with |¢| = 1.

[ Let n be the order of zero 0f f at 0 and let a1, aq,,,,,ar be the remain-
k
ing zeros of f (if any) in U. Let g(2) = f(2)/{z" H =%} Then |g(2)] = 1
l—ajz
j=1 %

whenever |z| = 1 and ¢ has no zero in U. Maximum Modulus Principle applied
to g and % shows that g is a constant. We now have an equation of the type

k
f(z) = ez™ =2 on C\{(ej)7' : 1 < j < k} which contradicts the fact
i=1 l—aj;z
that f is bounded near (a;)~!. This says that ai,as,,,,,ar don’t exist’ and

f(z) = e2™].

167. Let f € H(Q\{a,a1,a2,...}) where  is a region, a,, — a, a,,s are dis-
tinct points of Q and a € Q. If f has a pole at each a,, show that f(B(a,€)\{a,a1,az,...})
is dense in C for every € > 0.

[ Note that a is not an isolated singularity of f and hence the usual theo-
rems on classifiation of singularities do not apply directly. However, a standard
argument applies: suppose f(B(a,€)\{a,a1,az,...}) is not dense in C for some
€ > 0. Let B(wyp, p) be an open ball disjoint from f(B(a,€)\{a,a1,az,...}). Let
g9(z) = m on B(a,¢)\{a,a,as,...}. First note that |g(z)| < % so g has
a removable singularity at each of the points aq,as,.... After removing these
singularities we see that g € H(B(a,€)\{a}) and we can then remove the sin-
gularity at a also!l. This gives us g in H(B(a,¢)) and g(a,) = 0 for all n such
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that a,, € B(a,€) because f has a pole at a,. But this contradicts the fact that
zeros of g are isolated].

168. If fis a rational function such that |f(z)| = 1 whenever |z| = 1 show

that f(z) = cz"{H Al }/{H =5 Y for some n € Z and ay, as, ..., an, by, bs, ..

lsz
C\T,c € C with |c\ = 1
[ Assume first that f does not vanish at 0 and that it does not have a pole at
0. Let and let a1, ava, , , , , i be the zeros of f (if any) and by, ba, .., by, the poles of

m

f inU. Let g(2) :f(z)H ==b; /{H =%}, Then |g(z)| = 1 whenever |z| =1

= 11— bz = 1 QG2

and g has no zero in U. Maximum Modulus Principle applied to g and % shows

k
that ¢ is a constant. We now have an equation of the type f(z) = C{H 12 2}/
j=1"
{H Z=b Yon C\{(aj) "t :1<j <k} LJ{(I);-)’1 : 1 <j <m}. Zero or pole of f

%z

at 0 is easy to handle].

169. Let f and g be holomorphic on U with g one-to-one and f(0) = ¢g(0) =
0, If f(U) C g(U) show that f(B(0,r)) C g(B(0,r)) for any r € (0, 1].

Let Q = g(U). If g is a constant then so is f and there is nothing to prove.
Otherwise,  is a region. g=* : Q — U is hilomorphic and so is g~ to f : U — U.
Further, (g7* o f)(0) = 0. By Schwartz Lemma |(g~' o f)(z)| < |2| V2 € U. If
|z| < rthen f(z) € f(U) C g(U) so we can write f(z) as g(¢) for some ¢ € U.
Now [¢] = [(g7" o f)(2)] < |2| <7].

170. All injective holomorphic maps from U onto itself are of the type c==2
l—az

with |a| < 1,]c¢| = 1. Find all m — to — 1 holomorphic maps of U onto itself for
a given positive integer m.

They are all of the type f(z) = CH =L with {a1,a2,..,am} C U (d}
7(1 z
j=1 /
not necessarily distinct) and |¢| = 1. First note that if f is of this type and
w € U then the equation f(z) = w is a polynomail equation of degree m.

It has no root outside U because |z| > 1 implies |z — a;| > )1 - a_jz‘ Hence

f is indeed a m — to — 1 holomorphic map of U onto itself. Now let f be
any m — to — 1 holomorphic map of U onto itself. We claim that |f(z)| — 1
as |z| — oo. Once this claim is established we can apply Maximim Modulus

principle to f/g and g/ f where g(z H

a s being the zeros of f counted
1— %z
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according to multiplicities to complete the proof. Suppose the claim is false.
Then there exists a sequence {z,} of distinct points in U and 6 > 0 such that
|zn] — 1 and |f(zn)] < 1 — 3§ Yn. We may assume that f(z,) — w (say).
Since |w| < 1 —J, we see that w € U. Consider the equation f(z) = w. This
equation has exactly m solutions by hypothesis. Let ¢y, ca, ..., ¢ be the distinct
points in f~'{w} and let my,ma, ..., my be the multiplicities of zeros of f(z)—w
at c1,ca, ..., ¢k respectively. By Theorem 10.30 of Rudin’s Real And Complex
Analysis there are neighbourhoods Vi, Vs, ..., V}, of ¢1,ca, ..., ¢ respectively and
one-to-one holomorphic functions ¢q, ¢, ..., ¢, on these neighbourhoods and
integers n;,1 < j < k such that f(z) = w + [¢(2)]" on V; and such that ¢
maps V; onto an open abll centered at 0. We may assume that Vi, Vs, ..., V}, are
disjoint. Also note that in the Theorem referred to above n; is the order of zero
of f(z) —w at ¢;. In other words, n; = m; Vj. We now get a contradiction by
showing that if n is large enough then the equation f(z) = f(z,) has m solutions
in V where V. =V UV, U...U V. Since z = z, is another solution we get a

contradiction. Indeed, Visa compact subset of U so z,, ¢ V if n is large enough.

Let R = sup{|z| : z € V} and choose n such that |z,| > R, f(z,) # w and
f(zn) € f(Vj) for each j. [ Zeros of f(z) —w are precisely c1,ca, ..., ¢ and z, is
not one of these points for large n!. Note that w = f(c¢;) € f(V;) and f(z,) = w
so f(zn) € f(Vj) if nis large enough]. The equation f(z) = f(z,) has exactly m;
solutions in V; for each j [see the remark after Theorem 10.30 in Rudin’s book].
Thus the number of solutions of f(z) = f(z,) in Vismy +mo+ ... +mp =m
and the proof is complete.

171. Let ©; and 29 be bounded regions. Let f : 3 — Q3 be a holomorphic
map such that there is no sequence {z,} in ; converging to a point in 99
such that {f(z,)} converges to a point in Q5. Then there is a positive integer
m such that fis m —to—1 on ;.

Proof: If w € gy then f — w can only have a finite number of zeros in
Oy : if it had distinct zeros zi, zo, ... then some subsequence {z,,} converges

to some z € Q. If z € 9Q; then we have a contradiction to the hypotheisis
since f(zyn,) = w Vk. Thus z € ; which forces f —w to be a constant and this
contradicts the hypothesis again. Let n(w) be the number of zeros of f —w on
)q for each w € Q. If we show that n is continuous on {25 we can conclude that
it is a constant and this completes the proof. Show that {w € Qs : n(w) =k is
open for each k.

172. The condition in Problem 169) above that there is no sequence {z,}
in Q; converging to a point in 92y such that {f(z,)} converges to a point in
s, is equivalent to the fact that f~!(K) is compact whenever K is a compact
subset of 5.

Suppose f~1(K) is compact whenever K is a compact subset of Q. Let

{zn} Dbe a sequenec in  converging to a point z in 9. If f(z,) — w € Q2
then K = {w, f(21, f(22),...} is a compact subset of 3 and f~!(K) contains
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the sequence {z,} with no convergent subsequence in ;. Conversely let the
hypothesis of Problem 169 hold and let K be compact in §25. No subsequence of
a sequence {z,} in f~1(K) can have a limit point on Q7 whcih means f~1(K)
is a closed (hence compact) subset of €.

173. Prove that the analogue of Problem 169) when ©; = Q3 = C and 9y
is interpreted as (the boundary in Cy i.e.) {oco} holds. Give an example to
show that Problem 169) fails for a general unbouded region ;.

First part follows from the fact if f is entire and |f(z)| — oo as |z] — oo
then f is a polynomial. For the second part take Q3 = Qg = {z : Im(z) > 0}
and f(z) = sin(z).

174. Let f € H(U),61 € R,0; € R and |f(re®)| = [£(0)] = | f(re?2)] for
all € (0,1). Show that f is a constant if 2=%2 is irrational.
Let g(z) = f(l‘;e(igflz). Note that of f(0) = 0 then there is nothing to prove.
Choose § € (0, 1) so small that g has no zeros in U. Since U is simply connected
we can write g as e for some h € H(U). Now |g(5z)| = ’f(lzf(ig)zlz) =1VzeU.
Also, |g(§ei(‘91_92)z)’ = 1Vz € U. These two equations give eRe([52) = 1
and eRenl5e" 72 — 1 That is to say Reh([%2]) = 0 = Re h([%ei®r=02)2))

(o)
vr € (0,1). Let Zanz” be the power series expansion of h. From the first

n=0

o0
equation here we get Re(z anz") = 0 whenever z € (0,2). In other words

n=0
Im(z @nz") = 0 whenever z € (O,g). This implies that “» € R Vn. The
n=0

oo
second realtion above yields the fact that Im(z %ei(el’(’?)”z”) = 0 whenever
n=0

i(g}_%)n € R Vn. Since not all the coefficients a,, are 0

z € (0,2). This gives ¢
we see that e?1=02)" ¢ R for some n. So sin[(f; — 02)n] = 0 Vn. This imples
that (61 — 02) is a rational multiple of 27.

175. Suppose 61 € R,0 € R and f € H(U), |f(re')| = |f(0)| = | f(re'®2)|

for all r € (0,1) implies that f is a constant. Show that % is irrational.

[ If %792 is a rational number EpgeZ)let f(z) = eism([zefwl]q)]

176. A second order differential equation: let Q2 be a convex region and
g € H(Q). Show that any holomorphic function f satifying the differential
equation f” + f = g in Q can be expressed as h(z)sin(z) + ¢(z) cos(z) for
suitable h, ¢ € H(Q).
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Let £(2) = f(2) —h(z) sin(z) — ¢(z) cos(z) where h(z) = ¢1+ / g(¢) cos(¢)d¢

[a,2]

and ¢(z) = ¢ — /g(() sin(¢)d¢ and c¢;,co are chosen such that f(a) =

[a,z]
h(a)sin(a)+¢(a) cos(a), f'(a) = h(a) cos(a)—¢(a) sin(a). [ I fact, ¢; = f(a)sin(a)+
f'(a)cos(a), ca = f(a)cos(a) — f'(a)sin(a)]. Straightforward computation show
that & +¢& = 0 and &(a) = 0,&'(a) = 0. The coefficients in the power seires
expansion of £ around a are all zero and hence £ = 0.

177. Show that U\{0} is not conformally equivalent to {z: 1 < |z| < 2}.

If possible let ¢ : U\{0} — {2z :1 < |z| < 2} be a bijective (bi-) holomorphic
map. Since ¢ is bounded it extends to a holomorphic function g on U and its
range is contained in {z : 1 < |z| < 2}. Since g has no zeros the Maximum
Modulus Principle applied to g and l shows that g(0) € {z:1 < |z] < 2}. Let

c = (i)_l( (0)). Then 0 = hmf = hmd) (gb(f)) = ¢ ( (0)) because gzﬂ(%) =

g(1) — g(0) and ¢~ is contlnuous on {z :1 < |z| < 2}. This contradicts the

n

fact that ¢~ '({z:1 < |2| < 2}) € U\{0}.

178. Let f be continuous on {z : |z| < R} and holomorphic on B(0, R). Let
M(r) = sup{|f(2)| : |z] = r} and ¢(r) = sup{Re f(2) : |z| =r} for 0 < r < R.
Show that ¢(r) < gﬂ’: Re f(0) + #550(r) and M(r) < §+: |£(0)] + 5 o(r) for
0<r<R.

We may assume that ¢(R) > Re f(0) because ¢(R) > Re f(0) and equality
holds only when f is a constant (in which case the desired inequalities hold
with equality). Let g(z) = f(0) — {¢(R) — Re f(0)} {2
equivalence from U onto {z : Re(z) < ¢(R)}. [Use the facts that 1= is a con-
formal equivalence from U onto {Re(z) > 0} and 22 = 1=2 — 1 is a conformal
equivalence from U onto {Re(z) > —1}]. Now f(B(0,R)) C {z: Re(z) < ¢(R)}.
Thus f(B(0,R)) C g(U). Writing fr(z) = f(Rz) we get fr(U) C g(U). We
now use Problem 167) above to conclude that fr(rU) C g(rU) for 0 < r <
In other words, [z| < 7 = f(2) € g(B(0,%),0 < r < R. Hence M(r

<

)
sup{[¢| : ¢ € g(B(0, )} = Sup{‘f(o)—{sb(R)—Ref( ) S IR E I 3t
|£(0)] + {&(R) — Re f(0)} 2475 which gives M(r) < ¢(R) 7 +|f( )| e T
prove the inequality ¢(r) < g_ﬁq Re f(0)+ ;lrgb(r) we write u( ) = ¢(R)—f(z).

By Harnack’s Inequality we have R+|‘ |‘ Reu(0) < Reu(z) for |z| < R. This com-

pletes the proof.

179. If f is an entire function such that Re f(z) < B|z|" for |z| > R then f
is a polynomial of degree at most n.
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We have ¢(r) < Br™ for » > R in the notations of Problem 176). By
that problem we get M(r) < 3:1: £ (0)] + 231#)(7") < |f(0)] + 2Br™ and
|f(2)] < $|f(0)] + 2B|z|" if |2| > R. This implies that f is a polynomial of

degree at most n.

180. Let Q be a region and A be a subset of Q with no limit points in 2.
Show that Q\A is a region.

Since A has no limit points it is closed in Q, so 2\ A is open in C. Now
fix 2o in Q\A and let S = {z € Q : Iy : [0,1] — Q with v(¢t) € Q\A for
t < 1,7(0) = zp, 7(1) = z and ~ is continuous}. It is easy to see that S is
closed in Q. To show that it is open in Q pick z € S\{zp} and choose a ball
B(z,6) such that B(z,0)\{z} € Q\A. Pick any ¢ € B(z,0). Let v : [0,1] — Q
be a map with y(t) € Q\A for t < 1,7(0) = 29, ¥(1) = z and ~ continuous.
If 2 ¢ A we can combine v with the segment [z, (] to conclude that ¢ € S.
If z € A then there exists tg € [0,1) such that y(ty) € B(z,0)\{z}. [ If this
is not true then there would be a discontinuity of v at inf{t : v(¢) = z}].
Combine ~ restricted to [0,%o] with [v(to), (] to see that ¢ € S if z & [y(to), ]
If 2 € [y(to),¢] let 2y = z + ee’GH9) where 6 is the argument of ¢ — z and
0 < € < . Note that z; € B(z,0)\{z} and that the segments [y(t), 21], [21, (]
are both contained in the convex set B(z,¢), as well as in B(z,0)\{z} C (Q\A).
[ If z is on on eof these segments it is easy to see that the ratio of ( —z to z; — 2z
is real. However, the definition of z; show that these two are orthogonal (i.e.
Re[ (( —2) (21 —2)7] = 0). We may now combine =y restricted to [0, o] with the
segments [y(tg), z1] and [21, (] to see that ¢ € S. Finally we prove that zq is an
interior point of S : any point of a ball B(zg,d) that is contained in Q\A can
be joined by a continuous arc to zg by a single line segment.

181. Show that C\(Q x Q) is connected.

We prove a more general result:
Let A C R™ be countable. Then R™\ A is path connected.

Let o € A. Consider the sets {x¢ + tx : ¢ > 0} where ||z|| = 1. These sets
are disjoint and hence only countable many of them can intersect A. Similarly
{y : ||z|]| = r} can intersect A for at most countably many positive numbers r.
Removing these we get rays and circles disjoint from A and any two points of
R™\ A can be joined by a path consisting of two line segments and an arc of a
circle.

182. Prove the formula /eitze_m2/2daz = V2me " /2(t € R) in four different

— 00
ways.

Contour integration: assume that ¢ > 0 and integrate eitte=7"/2 gver the

rectangle with vertices — R, R, R + it, — R + it.
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Power series method: justify / Z i tn " et/ 20y — Z ntn /33 e~ 2y
n=0 n=0

— 00
oo

and compute the integrals / z"e~%"/2dg for each n explicitly.

— 00
o0

Using the fact that zeros are isolated: let ¢(z) = /eiz”’e_”’z/zdx, show that
—00
¢ is entire and compute ¢(it) for real ¢t. This gives the desired identity with ¢
changed to it and that is good enough!
Differential equation method: prove that ¢'(t) = —t$(t). This and the fact

that ¢(0) = /2 give ¢(t) = v2me /2.
1

[/(/emzdu)ds = EZL and hence |e'* — 1 — iz| < |2|? / / Wz du)ds| <

|2|? e‘ 2l / 2. This inequality is useful in the lsat two methods].

‘ 2

183. Prove that |e* —1— z] < 2 Lzl vz € € and e 71—z| < B if
Re(z) = 0. Also show that [e* — 1 —z — 22/21 — .. — 2" /nl| < ( +1)!e| vz eC.

/ / “du)ds = / ’1ds = %(ezz—’l -1) = ez’z%’z. Hence |e* — 1 — 2] <
1

2|? /(/e“zdu)ds < |z|2/ / ulzldu)ds < |2 el ‘/ /du ds and this gives
0 0

0 0

the first inequality. If Re(z) = 0 the |e"*| = 1 and we can replace el?l by 1 in
1

above inequalities. For the last part use induction and the fact that / [e* —1—

—

0
tz—t222 /20— =t nl]dt = Le* —1—2—2%/21 = 23 /31— . — 2"V /(n+1)!].
184. Let f be a non- constant entire function. Show without using Picard’s
Theorem that 1‘1r‘n inf |f(2)] € {0,00}.
Z|—00

If g(2) = f(2) has an essential singularity at 0 then {g(z) : 0 < |2| < 1} is

dense in C and this implies lllrln inf [f(z)| = 0. If it has a pole or an essential
Z|—00
singularity then Problem 24) above shows f is a polynomial.

185. Let 2 be open and f € H() be one-to-one. Let v be any closed path
in Q and = {z € Q\v* : Ind,(z) # 0}. Show that f~(w)Ind,(f~(w)) =
ok [ 75k dz vw € f().
¥
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This follows imeditely from Residue Theorem. The integrand has a simple
pole at f~1(w) with residue f~!(w)! Note that if

Ind,(a) = 0 or 1 for any a € C\v* then f~!(w) = ﬁ/fz(ﬁ;(fzudz Yw €

Y

f().
186. Let f € H(U\{0}) and assume that f has an essential singularity
at 0. Let f,(2) = f(5%),n > 1,z € U\{0}. Show that {f,} is not normal in

H(U\{0}).
We can find {c, } such that |c,41] < |en|,[ca] — 0,]c1| < 3 and lim f(c,) =

0. Let ny € N with ng < —% <np+1,k=12,.. Clearly ny < ngy1 and

ny — 00 as k — oo. Let z;, = 2" ¢;,. Then i <z < % Note that fp, (zr) =
f(27"2) = f(ex) — 0. If possible, let {f,} be normal. Let f,, Y h. Let M
be an upper bound for {fnkJ} on{z:1 < |z <1} IfCe B(O,ﬁ)\{O}

then there exists j such that W <€ < ﬁ Since 2"%i ¢ € {z: 1 < [z

< 1} we get fnkj (27 ())‘ < M which means |f(¢)| < M. Thus, f is bounded

in a neighbourhood of 0 contradicting the hypothesis that f has an essential
singularity at 0.

187. Let © be an open set in C such that C,,\Q is connected. Let v be
closed path in . Show that Ind,(a) = 0 Va € C\Q.

Remark: some books give a lengthy proof. Here is a simple proof: let
F(oco) = 0 and F(z) = Indy(a) for a € C\vy*. Then F is an integer valued
continuous function on Cy\v*. Continuity at co follows from the fact that

/ziadz < M%ML(V) where L(7) is the length of v and M = sup{|z| : z €
v*}. If Coo\Q2 is connected then F is a constant on this set. Since it is 0 at co
it is 0 on Co\Q2 as well.

188. If f is an entire function which is not a transaltion show that f o f has
a fixed point.

Let g(z) = % If f o f has no fixed point then f also cannot have
a fixed point ans g is an entire function with no zeros. Also g(z) = 1 =
f(f(2)) = f(2) which implies that f(z) is a fixed point of f and this is a
contradiction. Hence, by Picard’s Theorem, g is a constant different from both
0 and 1. Let f(f(2)) — z = c[f(2) — z]. From this we have to show that f is a
translation. We have f'(f(2))f'(z) — 1 = ¢[f’(z) — 1] which can be written as
PRI (f(z)—cd=1—c (%) If f/(f(z)) =0 we can replace z by f(z) in (*)

to get ¢ = 1, a contradiction. Hence, neither f’(z) nor f'(f(z)) can be 0 for any
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z. Thus, f’ o f is an entire function whose range misses 0 and c. Using Picard’s
Theorem again we conclude that f’o f is a constant. By (x) f’ is also a constant
and hence f(z) = az+b for some constants a and b. But (fo f)(z) = a®?z+ab+b
has a fixed point unless a® = 1, i.e. unless a = 1.

189. Show that there is a sequence of polynomials {p,, } such that lim p,(z) =

0if Im(z) =0

1if Im(z) >0

—1if Im(z) >0

Fix n Let K = {z: —n < Re(z) <n,L <Imz <n}U{z:-n < Re(z) <
n,—n < Imz < =1} U{z: —n < Re(z) < n,Im(z) = 0}. This is a compact
subset of the open set Q@ = {z : —n — 1 < Re(z) < n+ 1,5 < Imz <
n+1}U{z:-n—1<Re(z)<n+1l,-n-1<Imz<-—5}U{z:-n—-1<
Re(z) <n+1,[Im(z)| < 3}

Let f belon {z:-n—-1<Re(z) <n+1l5 <Imz<n+1},-1on
{z:-n—1<Re(z) <n+1,—n—1<Imz < —3-} and 0 elsewhere. Since
Co\K is connected and f is holomorphic on Q we can find a polynomial p,
such that |f(z) — pa(2)| < L on K.

190. Show that there is a sequence of polynomials {p,, } such that lim pn(2) =

0 Vz € C but the convergence is not uniform on at least one compact set.

If {p,} is the sequence in Problem 189) then {p2 — pi} is a sequence of
polynomials converging to 0 pointwise. If this sequence converges uniformly on
compact subsets of C then it is uniformly bounded on each compact set. Since
|p2 —pi| > Ipnl® [lpnl® = 1], the sequence {p,} is also bounded uniformly on
compacts. It is therefore a normal sequence and there must be a subsequence
that converges ucc to an entire function, a contradiction.

191. If A is bounded in C then C.\A is connected if and only if C\A is
connected. If A is unbounded and C\A is connected does it follow that Co.\ A
is connected? If Cy\ A is connected does it follow that C\ A is connected?

Let |z| < R for all z € A. Let Vg = {2z : |z|] > R}. If C\A is connected
and Coo\A = FU F with E and F disjoint open subsets of Coo\A let 0o € E.

Then C\A = (E\{oo}) U F which implies that either ' = () or E = {oo}. Hence
{0} = VN (Cx\A) for some open set V in Co. But then all complex numbers
z with |z| sufficiently large are in V' N (Cyo\A) = {o0} which is a contradiction.
If Coo\A is connected and C\A = EU F with E and F disjoint open subsets of
C\A then Vg = (Vg N E)U (Vg N F) and the connectedness of Vi shows that

either VRN E =0 or VRN F = (. In the first case Vg C F which implies that

FU{oo} is open in Cy. Since Coo\A = EU (F U{c0}) we get E = (). Similarly
if VRN F =0 we get F' = 0.
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For the counter-examples consider C\{0} and {z : 0 < Re(z) < 1}. To see
that Co,\A is connected in the second example consider the closures in Co, of
{z:1 <Re(2)} and {z: Re(z) < 0}.

192. Let © be a bounded region, a € Q and f : Q — Q be a holomorphic
map such that f(a) = a. Show that |f'(a)| < 1.

Let {z : |z—a| < r} C Q. Let M = sup{|[¢] : ¢ € Q}. Let g(z) =
17f(2) + a. Then |g(z) —a|] < r and Open Mapping Theorem implies that g
maps B(a,r) into itself. Also g(a) = (1 + §7)a. Applying Schwartz Lemma to
h(z) = 2220 (5 € U) we get |W/(0)] < 1— |a|® /M2, This gives |f'(a)| < .
Thus |f’(a)| has a bound which depends only on a and €2 and not on f. Now
we note that the iterates f, f o f, fo f o f,... satisfyu the same hypothesis as f
and hence sup |f},(a)| < oo where f, denotes the n — th iterate of f. But this

means sup |f/(a)|" < oo which means |f’(a)| < 1.
n

193. Let f € H(U\{0}) and |f(2)| < log; Vz € U\{0}. Show that f
vanishes identically.

zf(z) € H{U\{0}) and |zf(z)| < —|z|log(|z]) — 0 as z — 0. Hence zf(z)
has a removable singularity at 0 and the extended function on U vanishes at 0.
This says that f has removable singularity at 0. By Maximum Moduls Principle
applied to {z : |z] <1 — 6} we get |f(z)| < log 1=5 for [2] <1 —4. Let § — 0.

194. Let f be an entire function with |z||f(z +dy)| < 1 Vz,y € R then
f(z) =0VzeC.

If 22 4+9y?> = R?and y > 0 then R —y = % < %2 < |z| and hence
|z +i(y — R)| |z +i(y + R)||f(2)] < 4R. Changing y to —y we see that the same
inequality holds even if y < 0. By Maximum Modulus Principle |z + Ri| |z — Ri| | f(z)| <
4R for |z| < R.For |z| < R/2 we get |f(2)] < ﬁ = 18 Clearly this implies
that f is bounded, hence constant. The hypothesis implies that the constant is
necessarily 0.

195. Let f, : U — U be holomorphic and suppose f,(0) — 1. Show that

ucc

o — 1.

Since {f,} is normal there is a subsequence f,, Y g (say). Note that
g € H{U) and g(0) = 1. If g is not a constant then g — 1 has no zeros in
some deleted neighbourhood of 0. Let § > 0 be such that g has no zero on
|z| = 6. For |2| = 6 and j sufficiently large we have |(f,,(z) — 1) — (g(2) — 1)| <
inf{|g(z) — 1| : |z| = d}. Hence f,,,(z) — 1 has same number of zeros as g — 1
in B(0,0). However g(0) = 1 and f,,(2) — 1 has no zero on B(0,0) because
fn,;(U) C U! This proves that g(z) =1 Vz so

In; 25" 1. Going to subsequences we conclude that f, = g.
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196. If n € {3,4,...} show that the equation z" = 2z — 1 has a unique
solution in U.

Note that |14 2" < 141 = |—22| on OU. If we had strict inequality we
could conclude that 2™ —2z+41 and —22z have the same number of zeros in U and
that is what we are aiming at. However strict inequality fails at z = 1. We claim
that (1 —¢)™ <1 —2tif ¢ > 0 is sufficiently small. Indeed, by L’Hopital’s Rule
}%w =n—2>0. We now have |2|" = (1—-t)" < 1-2t = —1+|—2z]
if |z2| =1 —t. Hence |1 + 2" < 14 |2"| < |—2z| for |z| =1 —t. This shows that
1+ 2™ — 2z and —22z have the same number of zeros in |z| < 1 —¢. This holds
for all sufficiently small positive numbers ¢.

197. Show that there are (restrictions to R of) entire functions which tend
to oo faster than any given function. More precisely, if ¢ : (0,00) — (0,00) is
any increasing function then there is an entire function f such that f(z) > ¢(x)
YV € (0,00).

Let f(z) = 1+ Z(f)mf where m; < mo < ..., Then f is entire. We
j=1
choose m/;s with the additional property 1+ ;™ > ¢(((j + 1)?). Any number
x > 1 lies between 52 and (j + 1)? for some j € N and f(z) > 1+ (7)™ =
m, . 2 -1 ifz>1 .
L™ 2 66+ D) 2 600 1) = { SIS hen v is

increasing function : (0, 00) — (0, c0) and there is an entire function g such that
g(x) > Y(x) Yo > 0. Let f(z) = g(z+1).

198. Find a necessary and sufficient condition that A = {z : |az2 + bz + c| <
r} is connected.

If a = 0 then A is always connected. Assume a # 0. We claim that A is
connected if and only if |b? — 4ac| < 4r|a|. Note that A = {¢ — & : ’§2 -8 <
ﬁ} where 8 = % — £. It suffices to show that B = {( : ‘CQ -8 < ﬁ} is

connected if and only if [b* — 4ac| < 4r |a| which translates into |8] < ra7- Let
a? =31 |B] > ra then the relation B = [BNB(a, /=)]U[BNB(—«, /)]

la la]
shows that B is not connected. If |§| < ra7 then tz € B whenever z € B and
0 <t <1 proving that B is connected.

199. If z,¢1,¢2,c3 € C and Z_l + 2 4+ L = 0 show that z belongs to

c1 zZ—C2 zZ—C3
the closed triangular region with vertices c; ¢z, c3.

We prove a more general result: if z, ¢ ¢, ..., ¢, € C and 27—161 + chz 4.+

z_lcn = 0 we show that z belongs to the convex hull of ¢; ca, ..., cy.

This requires a standard "Seperation Theorem": if C is a closed convex set in
C and z is a complex number in C\C then there is a complex number a such that
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Re(aC) < Re(az) for each ¢ € C. Let C be the convex hull of ¢; ca, ..., c,. The
given equation gives — +—1— .+ = 0. If z does not belongs

az—acy az—acsy az—acy
to the convex hull of ¢; ca, ..., ¢, Wwe choose a as above, multiply the numerator

and the denominator of each term by the conjugate of the denominator and take
real parts on both sides to get a contradiction.

200. Prove the following result of Gauss and Lucas: if p is a polynomial then
every zero of p’ is in the convex hull of the zeros of p.

We may suppose p(z) = (z — ¢1)(z — ¢c2)...(z — ¢,). If p’(2) = 0 then 0 =
B - 14 L4 4

p(z) = = z—co z—Cn,

and previous problem can be applied.

1 s
201. Let f € C(U) N H(U). Show that /|f(x)|2da: g/\f(eit)det.
—1 0

Let v consist of the line segment from —1 to +1 and the semi-circular arc

_ 1
{e’t: 0 <t < 7}. By Cauchy’s Theorem /f(z)f(g)dz = 0. Hence / |f ()| do =
-1

5
s

— / flef (e:“)ie”dt. Apply Cauchy-Schwartz inequality.
0

202. Prove Brouer’s Fixed Point Theorem in two dimensions: every contin-

uous map ¢ : U — U has a fixed point.

e?™is — 2t p(e? %)) is t € [0,1/2) and s € [0,1
Suppose not. Let H(t, s) = { (2 - 2<t)62m's o2 2)t))62”5))[if t/e )[1 /2,1] an[d 8]6 0, 1]
This is a continuous function : [0,1] x [0,1] — C\{0}. Also, H(0,s) =
e?™5 0 < s <1 and H(1,5) = —¢(0),0 < s < 1. This shows that the path
v(s) = €2™s,0 < s < 1 is homotopic to a constant path in C\{0}. This implies
that the index of 0 w.r.t. the path v(s) = €*>™,0 < s < 1 is 0, a contradiction.

203. If ¢ : T — C\{0} is continuous and if ¢(—z) = —¢(z) Vz € T show
that there is no continuous function g on T such that g% = ¢.

Consider h(z) = gg((_zj). We have h? = —1 and h is continuous. This implies
h(z) =i ¥z or h(z) = —i Vz. Let us write h(z) = ¢ so the constant c is either ¢
or —i. But then ¢? = h(—2)h(z) = ;Z(f;) ‘;(_5) =1, a contradiction.

204. Prove that if K is a non-empty compact convex subset of C then every
continuous map ¢ : K — K has a fixed point.
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Let H = %K where R > 0 is so large that H C U. For each z € U
there is a unique point g(z) € H such that |g(z) — z| < | — 2| V¢ € H. The
existence is an easy consequence of compactness of H. Uniqueness is proved
as follows: if |(; —z| < |(—2| V¢ € H and |[{y, —z| < | — 2| V¢ € H then
% — z‘ < M;Kle < |¢ — z| V¢ € H and this holds, in particular for

(= # by convexity of H. This implies that (; —z = A(y—z2) for some A > 0

and hence (;, (5, z are colinear. The fact that ‘CI%CQ = W forces

_ Z‘
z to be 'between’ ¢; and ¢, which implies that z € H by convexity. But then

(1 = (5 = z. We have now proved the existence of a map g : U — H such that

lg(z) — 2| < |¢ — 2| ¥¢ € H. Now define f : U—U by f(z) = £¢(Rg(z)). Note
that g is continuous: if z, — z and g(z,) — ¢, then [g(z,) — zn| < | — 24|
V¢ € H Vn implies |(, — z| < |¢ — z| V¢ € H. But then g(z) = (,, by definition.
It follows that f is a continuous map from U into itself. By Problem 202) above

there is a point z € U such that f(2) = z. But then ¢(Rg(z)) = Rz. But
Rg(z) € RH = K so Rz = ¢(Rg(z)) € K which means z € H. But this implies
g(z) = z and we get ¢(Rz) = Rz. Since Rz € K we are done.

205. If f € H(B(0,0)), f(0) =0 and f(z) # 0 Vz € B(0,0)\{0} show that
|f(2)] is not harmonic. (Example: |z|™)

MVP fails.

206. Prove Rado’s Theorem

Let Q be a region, f € C(Q) and f € H(Qp) where Qo = Q\f~1{0}. Then
feHQ)

Remark: this problem requires some measure theory and properties of sub-
harmonic functions.

We first prove that €y is dense in Q.

Let A={z€Q: / log | f(¢)|d¢ > —oo for some § > 0 with [B(z,d)]” C

B(z,6)
Q} and B={z € Q: f vanishes in some neibourhood of z}. Clearly A and B
are disjoint subsets of 2 and B is open. If we show that A is also open we can
conclude that one of these sets is . If B = Q then f € H(Q) and f~'{0} is
countable. If A = Q then the fact that Q\ f~1{0} is dense in (2 is clear from the

fact that / log |f(¢)]d¢ > —o0 = {¢ € B(2,6) : f(¢) = 0} is a (Lebesgue)

B(z,8)
null set. [Of course, log|f(¢)| is bounded above on B(z,0) if the closure of this
ball is contained in .
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It remains to show that A is open. Let z € A and § > 0 be such that
log |f(¢)]d¢ > —o0 and [B(z,0)]” C . Let w € B(z,d) and choose r > 0
B(2,5)
such that B(w,r) C B(z,9). Then / log | f(¢)|d¢ = / log | f(¢)| d¢+
B(w,r) B(w,r)n{|f|<1}
log | f(¢)| d¢. The second term here is non-negative, so it suffices to
B(w,r)n{|f|>1}
show that / log | £(¢)|d¢ > —o0. Since —log|f(¢)| > 0 on B(w,r)N

B(w,r)n{|f[<1}

{If| < 1} it follows that / log | f(¢)|d¢ > / log [f(¢)|d¢ =

B(w,r)n{|f|<1} B(z,0)n{|f|<1}
/ log | £(¢)| d¢ — / log | £(¢)| d > —oo because / log |£(¢)] d¢ >
B(z,0) B(z,8)n{|f|>1} B(z,0)

—o00 and / log | f(¢)]d¢ < 0.

B(z,6)n{|f[>1}

Next we prove the following:
Lemma

Let f be continuous on a region containing U and suppose U\ f~1{0} is
dense in U. If f € H(U\f~*{0}) then Re f is harmonic in .

Grant this Lemma for the moment. We can change U to any open ball whose
closure is contained in 2. It would follow that Re f is harmonic in any ball
contained in £2, hence in €. Applying the result to if we see that Im f is also
harmonic. The Cauchy-Riemann equations are satisfied on Q\f~*{0} which
is dense in 2 and since the real and imaginary parts of f are C'*° functions,
the Cauchy Riemann hold throughout € and the proof of Rado’s Theorem is
complete.

Proof of the lemma: i

let 4 be subharmonic on a region containing U. Claim: u(z) < /PT(H -

—T

tu(e)dt ¥z = re® € U. For this let u,,,n > 1 be continuous functions on OU
™

decreasing to u. Let v, (z) = /PT(H — up(et)dt Vz = ret € U,v,(2) = un(2)

—T

for z € OU. Then v],s are harmonic. Since u — v,, is subharmonic and < 0 on
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OU we see that u — v, < 0in U and letting n — oo we get u(z) < /PT(H -

—T

tu(e)dt Vz = re’? € U. We apply this result to the subharmonic function
u = Re f + elog|f| [ Note that the inequality u( /P — t)u(e)dt holds

if u(z) = —o0, i.e. f(0) = 0. It holds for r sufficiently small if f(0) # 0. Hence

u is subharmonic]. We get
™

Re f(2) + elog|f(2)] < /PT(O — t){Re f(e) + elog | f(e™)|}dt Vz = re €

U. If f(z) # 0 we get Re f(z /P (6 — t)Re f(e't)dt by letting e — 0.
Changing f to — f we get the reverse mequahty By continuity of Re f we see

that Re f(z) = /PT(O —t)Re f(e')dt Vz = re?® € U. This proves the lemma.

207. Let f € H(C\{0}) and suppose f does not have an essential singularity
at 0. If f(e') € R Vt € R show that f(z) = %:) for some non-negative integer
k and some polynomial p whose degree does not exceed 2k.

Since f has a pole or a removable singularity at 0 we can Write Ff(z) =

Z a, 2" Vz € C for some non-negative integer k.. Also, a,, = —/ ik=n)t £(eit)dt
n=0
27r

VYn > 0. By hypothesis, a,, = —/ —ilk=n)t £ (i) dt ¥n > 0. Now/ —ilk=n)t £ (i)t
0
fi/z”*k’lf(z)dz = 0 for n > 2k + 1 (by Cauch’y Theorem), where (t) =
g

et 0 <t < 2m. Hence 2*f(2) = Z an 2"
n=0

208 Find a necessary and sufficient condition that az? + bz + ¢ (with a # 0)
is one-to-one in U.

If it is one-to-one then 2az 4+ b has no zeros in U which implies |—%| >1
or |b| > 2]a|. Conversely, if this condition holds then az? + bz + ¢ = aw? +
bw+ ¢ = (z — w)(az + aw + b) = 0 and this implies that z = w because
laz + aw + b > |b] — |a| |z + w| > |b] — 2|a| > 0.
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n
209 Let ¢y, ca, ..., ¢, be distinct complex numbers. Show that Z H G =

Cj—Cg
k=1j#k
1 for all ¢ € C.

The left side is a polynomial of degree (n — 1) which has the vale 1 at each
of the points ¢y, ca, ..., cp.

210.
Let 1 be a finite positive measure on the Borel subsets of (0, 00). If g € L (u)

and /e‘””p(x)g(x)d,u(x) = 0 for every polynomial p show that g = 0 a.e. [u].
0
Conclude that {e~®p(z) : p is a polynomial} is dense in L!(p).
The second part follows immediately from the first. For the first part let

o(z) = /e’“g(x)du(z) for z € C with Re(z) > 0. A straightforward argu-

0
ment shows that ¢ is analytic in {z € C: Re(z) > 0}. Further, ¢("(z) =

/(fm)”e*“g(z)du(x) for z € C and n > 0. By hypothesis this gives ¢™ (1) = 0
0

oo
Yn > 0. It follows that ¢(z) = 0 whenever Re(Z) > 0. In particular [ e~ g(z)du(z)

0
0 if ¢ > 0. The finite positive measures v; and vy defined by dv; = g*du and

dve = g~ dp have the same Laplace transform and hence they are equal. This
means g(z)du(x) = 0 which is what we wanted to prove.

211.

Let Q = C\{0,1} and f € H(Q). Show that if f is not a constant then it
must be one of six specific Mobius transformations. [Proposed and solved by
Walter Rudin in Amer. Math. Monthly]

By Picard’s Theorem f cannot have an essential singularity at 0 and 1.
Also f(1) cannot have an essential singularity at 0. Thus p1 (2)p2(1 — 2) f(z) is
an entire function which has a removable singularity or a pole at oo for some
polynomials p; and py. It follows that f = 2 for some polynomials p and ¢
with no common zeros. Since f does not take the value 0 it follows that p can
have zeros only at 0 and 1. Also, ¢ satisfies the same property. Thus p(z) is
cz,c(l — z) or cz(1 — z) for some constant c. The same is true of ¢. It is now a
routine matter to write down all possibilities for f.
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