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Abstract: Basic aspects of the classical Cramer-Lundberg insurance model
are discussed.

Introduction

Recent cataclysmic events like tsunami, torrential downpour, �oods, cy-
clones, earthquakes, etc. underscore the fact that practically everyone would
like to be assured that there is some (non-supernatural) agency to bank upon in
times of grave need. If the a¤ected parties are too poor, then it is the responsi-
bility of the government and the "haves" to come to the rescue. However, there
are also sizeable sections of the population who are willing to pay regular pre-
mium to suitable agencies during normal times to be assured of insurance cover
to tide over crises. Insurance has thus become an important aspect of modern
society. In such a set up, a signi�cant proportion of the �nancial risk is shifted
to the insurance company. The implicit trust between the insured and the in-
surance company is at the core of the interaction. A reasonable mathematical
theory of insurance can possibly provide a scienti�c basis for this trust.
Certain types of insurance policies have been prevalent in Europe since the

latter half of the 17th century. But the foundations of modern actuarial math-
ematics were laid only in 1903 by the Swedish mathematician Filip Lundberg,
and later in the 1930�s by the famous Swedish probabilist Harald Cramer. In-
surance mathematics today is considered a part of applied probability theory,
and a major portion of it is described in terms of continuous time stochastic
processes.
This article should be accessible to anyone who has taken a course in prob-

ability theory. At least statements of the various results and the heuristics can
be appreciated. While proofs of some of the basic results are given, for some
others only a partial proof or heuristic arguments are indicated; of course, in a
few cases we are content with just citing an appropriate reference. [Mi], [RSST]

1These notes form part of a series of lectures given at a Refresher course on Applied
Stochastic Processes, sponsored by the Indian Academy of Sciences, Bangalore, held at the
Indian Statistical Institute, Delhi in December 2005.
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are very good books where an interested reader can �nd more information. It is
inevitable that a bit of jargon of basic probability theory is assumed. One may
look up [Fe], [HPS], [Ro1], [Ro2] for elucidation of terms like random variable,
distribution, density, expectation, independence, independent identically dis-
tributed (i.i.d.) random variables, etc. Some of the articles compiled in [DKR]
also contain a few introductory accounts.

Collective risk model

We shall mainly look at one model, known as the Cramer-Lundberg model ;
it is the oldest and the most important model in actuarial mathematics. This
model is a particular type of a collective risk model. In a collective risk model
there are a number of anonymous but very similar contracts or policies for similar
risks, like insurance against �re, theft, accidents, �oods or crop damage/ failure,
etc. The main objectives are modelling of claims that arrive in an insurance
business, and decide how premiums are to be charged to avoid ruin of the
insurance company. Study of probability of ruin and obtaining estimates for
such probabilities are also some of the interesting aspects of the model.
There are three main assumptions in a collective risk model:
1. The total number of claims, say N , occurring in a given period is random.

Claims happen at times fTig satisfying 0 � T1 � T2 � � � � We call them claim
arrival times (or just arrival times).
2. The i-th claim arriving at time Ti causes a payment Xi. The sequence

fXig is assumed to be an i.i.d. sequence of nonnegative random variables. These
random variables are called claim sizes.
3. The claim size process fXig and the claim arrival times fTjg are assumed

to be independent. So fXig and N are independent.
The �rst two assumptions are fairly natural, whereas the third one is more

of a mathematical convenience.
Take T0 = 0. De�ne the claim number process by

N(t) = maxfi � 0 : Ti � tg
= number of claims occurring by time t, t � 0 (1)

Also de�ne the total claim amount process by

S(t) = X1 +X2 + � � �+XN(t) =

N(t)X
i=1

Xi; t � 0: (2)

These two stochastic processes will be central to our discussions. Note that a
sample path of N and the corresponding sample path of S have jumps at the
same times Ti; by 1 for N and by Xi for S.

A function f(�) is said to be o(h) if lim
h!0

f(h)
h = 0; that is, if f decays at a

faster rate than h.
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Poisson process

We �rst consider the claim number process fN(t) : t � 0g. For each t � 0,
note that N(t; �) is a random variable on the same probability space (
;F ; P ).
We list below some of the obvious/ desired properties of N (rather postulates
for N), which may be taken into account in formulating a model for the claim
number process.

� (N1): N(0) � 0. For each t � 0; N(t) is a nonnegative integer valued
random variable.

� (N2): If 0 � s < t then N(s) � N(t). Note that N(t)�N(s) denotes
the number of claims in the time interval (s; t]. So N is a nondecreasing
process.

� (N3): The process fN(t) : t � 0g has independent increments; that is,
if 0 < t1 < t2 < � � � < tn < 1 then N(t1); N(t2) �N(t1); � � � ; N(tn) �
N(tn�1) are independent random variables, for any n = 1; 2; � � � . In
other words, claims that arrive in disjoint time intervals are independent.

� (N4): The process fN(t)g has stationary increments; that is, if 0 �
s < t; h > 0 then the random variables N(t) � N(s) and N(t + h) �
N(s+ h) have the same distribution (probability law). This means that
the probability law of the number of claim arrivals in any interval of time
depends only on the length of the interval.

� (N5): Probability of two or more claim arrivals in a very short span of
time is negligible; that is,

P (N(h) � 2) = o(h); as h # 0: (3)

� (N6): There exists � > 0 such that

P (N(h) = 1) = �h+ o(h); as h # 0: (4)

The number � is called the claim arrival rate. That is, in very short time
interval the probability of exactly one claim arrival is roughly proportional
to the length of the interval.

Remark 1: The �rst two postulates are self evident. The hypothesis (N3)
is quite intuitive; it is very reasonable at least as a �rst stage approximation
to many real situations. (N5),(N6) are indicative of the fact that between two
arrivals there will be a gap, but may be very small; (note that bulk arrivals are
not considered here). (N4) is a time homogeneity assumption; it is not very
crucial.
Remark 2: In formulating a model it is desirable that the hypotheses are

realistic and simple. Here �realistic�means that the postulates should capture
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the essential features of the phenomenon/ problem under study. And �simple�
refers to the mathematical amenability of the assumptions; once a model is cho-
sen, theoretical properties and their implications should be considerably rich
and obtainable with reasonable ease. These two aspects can be somewhat con-
�icting; so success of a mathematical model depends very much on the optimal
balance between the two. �
To see what our postulates (N1)�(N6) lead to, put

Pn(t) = P (N(t) = n); t � 0; n = 0; 1; 2; � � � (5)

Observe that

P0(t+ h) = P (N(t) = 0; N(t+ h)�N(t) = 0) (by (N1),(N2))

= P (N(t) = 0) � P (N(t+ h)�N(t) = 0) (by (N3))

= P0(t) � P (N(h) = 0) (by (N4),(N1))

= P0(t) � [1� �h+ o(h)] (by (N5),(N6))

whence we get (as 0 � P0(t) � 1 ),

d

dt
P0(t) = ��P0(t); t > 0: (6)

By (N1), note that P0(0) = P (N(0) = 0) = 1: So the di¤erential equation (6)
and the above initial value give

P0(t) = P (N(t) = 0) = P (N(t+ s)�N(s) = 0)
= exp(��t); t � 0; s � 0: (7)

Similarly for n � 1; using (N3)�(N6), we get

Pn(t+ h) = P (N(t+ h) = n) = I1 + I2 + I3;

where

I1 = P (N(t) = n;N(t+ h)�N(t) = 0);
I2 = P (N(t) = n� 1; N(t+ h)�N(t) = 1);
I3 = P (N(t) � n� 2; N(t+ h)�N(t) � 2);

and hence

Pn(t+ h) = Pn(t)[1� �h+ o(h)] + Pn�1(t)[�h+ o(h)] + o(h):

We now get as before

d

dt
Pn(t) = ��Pn(t) + �Pn�1(t); t > 0: (8)

To solve (8) inductively, set Qn(t) = e�tPn(t); t � 0; n = 0; 1; 2; � � � Then using
(8) it is easy to get

d

dt
Qn(t) = �Qn�1(t); t > 0; n = 1; 2; � � �
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By (7) note that Q0(�) � 1: So from the equation above it follows that Q1(t) =
�t+ c where c is a constant. As Q1(0) = P1(0) = P (N(0) = 1) = 0; clearly
c = 0; hence Q1(t) = �t; t � 0: Using the above equation for Qn(�) and the
initial value Qn(0) = Pn(0) = P (N(0) = n) = 0; n � 2 it is now simple to
obtain inductively Qn(t) =

1
n!�

ntn: Hence

Pn(t) = e��tQn(t) = e��t
(�t)n

n!
; n = 0; 1; 2; � � � ; t � 0:

Thus we have proved

Theorem 1 Let the stochastic process fN(t) : t � 0g satisfy the postulates
(N1)�(N6). Then for any t � 0; s � 0; k = 0; 1; 2; � � �

P (N(t+ s)�N(s) = k) = P (N(t) = k) =
(�t)k

k!
exp(��t): (9)

The stochastic process fN(t)g is called a time homogeneous Poisson process
with arrival rate � > 0: �

Remark 3: The assumptions (N1)�(N6) are qualitative, whereas the con-
clusion is quantitative. Such a result is usually indicative of a facet of nature;
that is, phenomena observed in di¤erent disciplines, in unrelated contexts may
exhibit the same law/ pattern. In fact, Poisson distribution and Poisson process
do come up in diverse �elds like physics, biology, engineering, and economics.
See [Fe], [KT], [Ro1]. �
The Poisson arrival model owes its versatility to the fact that many natural

(and, of course, useful) quantities connected with the model can be explicitly de-
termined. We give a few examples which are relevant in the context of insurance
as well.

Interarrival and waiting time distributions

Let fN(t) : t � 0g be a Poisson process with arrival rate � > 0: Set
T0 � 0: For n = 1; 2; � � � de�ne Tn = infft � 0 : N(t) = ng = time of
arrival of n-th claim (or waiting time until the n-th claim arrival). Put An =
Tn � Tn�1; n = 1; 2; � � � so that An = time between (n � 1)-th and n-th claim
arrivals. Recall from our initial comments that we had in fact de�ned the process
fN(t)g starting from fTig: The random variables T0; T1; T2; � � � are called claim
arrival times (or waiting times); the sequence fAn : n = 1; 2; � � � g is called the
sequence of interarrival times.
For any s > 0 note that fT1 > sg = fN(s) = 0g; hence by (9)

P (A1 > s) = P (T1 > s) = P (N(s) = 0) = exp(��s): (10)

So P (A1 � s) = 1 � e��s; s � 0: Therefore the random variable A1 has an
Exp(�) distribution ( = exponential distribution with parameter � > 0); that
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is,

P (A1 2 (a; b)) =
bZ
a

�e��sds; 0 � a � b <1: (11)

Next let us consider the joint distribution of (T1; T2). Let F(T1;T2) denote the
joint distribution function of (T1; T2); that is, F(T1;T2)(t1; t2) = P (T1 � t1; T2 �
t2). As 0 � T1 � T2 it is enough to look at F(T1;T2)(t1; t2) for 0 � t1 � t2: It is
clear that for 0 � t1 � t2;

fT1 � t1; T2 � t2g = fN(t1) � 1; N(t2) � 2g
= fN(t1) = 1; N(t2)�N(t1) � 1g [ fN(t1) � 2g;

where the r.h.s. is a disjoint union. So using properties (N3),(N4) and equation
(9) we get

F(T1;T2)(t1; t2) = P (N(t1) = 1; N(t2)�N(t1) � 1) + P (N(t1) � 2)
= �t1e

��t1(1� e��(t2�t1)) + [1� (e��t1 + �t1e��t1)]
= ��t1e��t2 +H(t1)

where H is a function depending only on t1: Consequently the joint probability
density function f(T1;T2) of (T1; T2) is given by

f(T1;T2)(t1; t2) , @2

@t2@t1
F(T1;T2)(t1; t2)

=

�
�2e��t2 ; if 0 < t1 < t2 <1
0; otherwise

�
(12)

To �nd the joint distribution of (A1; A2) from the above, note that�
A1
A2

�
=

�
T1

T2 � T1

�
=

�
1 0
�1 1

��
T1
T2

�
: (13)

The linear transformation given by the (2� 2) matrix in (13) has determinant
1; and transforms the region f(t1; t2) : 0 < t1 < t2 <1g in 1� 1 fashion onto
f(a1; a2) : a1 > 0; a2 > 0g: So the joint probability density function f(A1;A2) of
(A1; A2) is given by

f(A1;A2)(a1; a2) = f(T1;T2)(a1; a1 + a2)

=

�
(�e��a1)(�e��a2); if a1 > 0; a2 > 0
0; otherwise

�
(14)

Thus A1; A2 are independent random variables each having an exponential
distribution with parameter �:

With more e¤ort one can prove
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Theorem 2 Let fN(t) : t � 0g be a time homogeneous Poisson process
with arrival rate � > 0: Let A1; A2; � � � denote the interarrival times. Then
fAn : n = 1; 2; � � � g is a sequence of independent, identically distributed ran-
dom variables (or in other words an i.i.d. sequence) having Exp(�) distribution.
�

In view of the argument above for the case n = 2; the general idea of
the proof is clear. One proves �rst that the joint distribution function of
T1; T2; � � � ; Tn is given by

F(T1;T2;��� ;Tn)(t1; t2; � � � ; tn) = ��
n�1

 
n�1Y
i=1

ti

!
e��tn +H(t);

if 0 � t1 < t2 < � � � < tn < 1; where H(�) is a function such that
@nH=(@t1@t2 � � � @tn) = 0: In fact H(�) is a sum of a �nite number of terms;
each term is a product of powers of ti and e��tj with atleast one tk; k � 2
missing! Establishing this is the tedious part of the proof. Once this is done
the joint probability density function of T1; T2; � � � ; Tn is given by

f(T1;T2;��� ;Tn)(t1; t2; � � � tn) =
�
�n exp(��tn); if 0 < t1 < t2 < � � � < tn <1

0; otherwise

�
Note that the analogue of (13) is0BBBBB@

A1
A2
A3
...
An

1CCCCCA =

0BBBBB@
T1

T2 � T1
T3 � T2

...
Tn � Tn�1

1CCCCCA =

0BBBBB@
1 0 0 0 � � � 0 0
�1 1 0 0 � � � 0 0
0 �1 1 0 � � � 0 0
...

...
...
...

...
...

...
0 0 0 0 � � � �1 1

1CCCCCA

0BBBBB@
T1
T2
T3
...
Tn

1CCCCCA
One can now proceed exactly as in the earlier case to obtain the theorem. The
reader is invited to work out the details at least when n = 3; 4: �
Note: As A1 has Exp(�) distribution, its expectation is given by E(A1) =

1
� ; so

1
� is the mean arrival time. Thus the arrival rate being � is consistent

with this conclusion.
Note: It is an easy corollary of the theorem that Tn = A1 +A2 + � � �+An

has the gamma distribution �(n; �).

Remark 4: One can also go in the other direction. That is, let 0 =
T0 � T1 � T2 � � � � be the claim arrival times; let An = Tn � Tn�1; n �
1: Suppose fAng is an i.i.d. sequence having Exp(�) distribution. De�ne
fN(t)g by (1). Then the stochastic process fN(t) : t � 0g can be shown
to be time homogeneous Poisson process with rate �. In the jargon of the
theory of stochastic processes, Poisson process is the renewal process with i.i.d.
exponential arrival rates.
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Order statistics property

This is another important property of the Poisson process. Recall that for
events G;H; the conditional probability of G given H is de�ned by P (G j
H) , P (G\H)

P (H) : We �rst prove

Theorem 3 Notation as earlier. For 0 � s � t;

P (A1 < s j N(t) = 1) = s

t
; (15)

that is, given that exactly one arrival has taken place in [0; t], the time of the
arrival is uniformly distributed over (0; t):

Proof: As the Poisson process has independent increments,

P (A1 < s j N(t) = 1) = P (A1 < s;N(t) = 1)

P (N(t) = 1)

=
P (N(s) = 1; N(t)�N(s) = 0)

P (N(t) = 1)

=
P (N(s) = 1) � P (N(t)�N(s) = 0)

P (N(t) = 1)

=
�se��se��(t�s)

�te��t
=
s

t
;

completing the proof. �
A natural question is: If N(t) = n; what can one say about the conditional

distribution of T1; T2; � � � ; Tn?

Theorem 4 Let fN(t) : t � 0g; T1; T2; � � � be as before. For any t > 0; and
any n = 1; 2; � � � the conditional density of (T1; T2; � � � ; Tn) given N(t) = n is

fT1;T2;��� ;Tn((s1; s2; � � � ; sn) j N(t) = n) = n! � 1
tn
; (16)

for 0 < s1 < s2 < � � � < sn < t:

Proof: For notational simplicity we take n = 2; the general case is similar.
Let 0 < s1 < s2 < t; take h1; h2 > 0 small enough that 0 < s1 < s1+h1 < s2 <
s2 + h2 < t: Then again using the independent increment property and (9), we
get

P (s1 < T1 < s1 + h1; s2 < T2 < s2 + h2 j N(t) = 2)

=
1

P (N(t) = 2)
P

0@ N(s1) = 0; N(s1 + h1)�N(s1) = 1;
N(s2)�N(s1 + h1) = 0;

N(s2 + h2)�N(s2) = 1; N(t)�N(s2 + h2) = 0

1A
=

e��s1�h1e
��(s1+h1�s1)e��(s2�(s1+h1))�h2e

��(s2+h2�s2)e��(t�(s2+h2))

e��t(�t)2=2!

=
2!

t2
h1h2:
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Dividing by h1h2 and letting h1; h2 # 0 we get the desired result. �
Remark 5: Let Y1; Y2; � � � ; Yn be i.i.d. random variables with probability

density function f(�); that is, P (Yi 2 G) =
R
G

f(x)dx; for any reasonable subset

G of R: Let Y(1) � Y(2) � � � �Y(n) denote the order statistics of Y1; Y2; � � � ; Yn;
(that is, Y(k)(!) is the k-th smallest value among Y1(!); Y2(!); � � � ; Yn(!); k =
1; 2; � � � ; n for any ! 2 
). Clearly the joint probability density function of
Y1; Y2; � � � ; Yn is f(Y1;Y2; ��� ;Yn)(y1; y2; � � � ; yn) = f(y1)f(y2) � � � f(yn): Note that
(Y(1); Y(2); � � � ; Y(n)) takes values in the set � = fy1 < y2 < � � � < yng: (Why?).
Let B � � be a reasonable set. Let Bi; i = 1; 2; � � � ; (n!) correspond to
disjoint sets obtained by permutation of coordinates in B: Observe that

P ((Y(1); Y(2); � � � ; Y(n)) 2 B) = P ((Y1; Y2; � � � ; Yn) 2
n![
i=1

Bi)

=

n!X
i=1

P ((Y1; Y2; � � � ; Yn) 2 Bi)

=
n!X
i=1

Z
Bi

f(z1)f(z2) � � � f(zn)dz1dz2 � � � dzn

= (n!)

Z
B

f(z1)f(z2) � � � f(zn)dz1dz2 � � � dzn:

So the joint probability density function of Y(1); Y(2); � � � ; Y(n) is given by

g(y1; y2; � � � ; yn) =
�
(n!)f(y1)f(y2) � � � f(yn); if y1 < y2 < � � � < yn

0 otherwise

�
(17)

Now let V1; V2; � � � ; Vn be i.i.d. random variables each having a uniform
distribution over (0; t); where t > 0 is �xed. Note that the probability density
function of each Vi is given by fVi(s) =

1
t ; if 0 < s < t (and it is 0 otherwise).

Let V(1) � V(2) � � � � � V(n) denote the order statistics of V1; V2; � � � ; Vn: That
is, V(1)(!); V(2)(!); � � � ; V(n)(!) denotes V1(!); V2(!); � � � ; Vn(!) arranged in in-
creasing order for any ! 2 
: By (17) it is clear that the joint probability density
function of V(1); V(2); � � � ; V(n) is given by the r.h.s. of (16). So the preceding
theorem means that ((T1; T2; � � � ; Tn) j N(t) = n)

d
= (V(1); V(2); � � � ; V(n));

where d
= denotes that two sides have the same probability distribution. If

U1; U2; � � � ; Un are i.i.d. U(0,1) random variables (that is, having uniform dis-
tribution over (0; 1)), then the above can be expressed as

((T1; T2; � � � ; Tn) j N(t) = n)
d
= (tU(1); tU(2); � � � ; tU(n)): (18)

�
An important consequence of Theorem 4 and Remark 5 is the following result

whose proof is quite involved; see [Mi].
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Theorem 5 Let fN(t) : t � 0g be a time homogeneous Poisson process with
rate � > 0; let 0 < T1 < T2 < � � � denote the claim arrival times corresponding
to N(�): Let fXi : i = 1; 2; � � � g be an i.i.d. sequence independent of the
process fN(t)g: Then there exists a sequence fUj : j = 1; 2; � � � g such that
(i) fUjg is a sequence of i.i.d. random variables having U(0,1) distribution,
(ii) the families fUjg; fXig; fN(t)g are independent of each other, (iii) for any
reasonable function g of two variables

N(t)X
i=1

g(Ti; Xi)
d
=

N(t)X
i=1

g(tUi; Xi); t � 0: (19)

�

The basic strategy for proving Theorem 5 can be easily stated. Conditioning
the l.h.s. of (19) by fN(t) = ng; we use Theorem 4 to replace Ti by tU(i):
Then invoking independence of the families fUig; fXjg and the fact thatXj�s are
i.i.d.�s, we permute X1; X2; � � � ; Xn suitably to facilitate the desired conclusion.
Mathematical justi�cation requires measure theoretic machinery.

Cramer-Lundberg model

This is the classical and very versatile model in insurance. The claim ar-
rivals fTig happen as in a time homogeneous Poisson process with rate � > 0:
The claim sizes fXig are i.i.d. nonnegative random variables. The sequences
fXig; fTjg are independent of each other. The total claim amount upto time t
in this model is given by

S(t) = X1 +X2 + � � �+XN(t) =

N(t)X
i=1

Xi; t � 0:

which is the same as (2). Note that fS(t) : t � 0g is an example of a compound
Poisson process.
We now look at the discounted sum corresponding to the above model. Let

r > 0 denote the interest rate. De�ne

S0(t) =

N(t)X
i=1

e�rTiXi; t � 0: (20)

This is the �present value�(at time 0) of the cumulative claim amount over the
time horizon [0; t]: By Theorem 5 for any t � 0

S0(t)
d
=

N(t)X
i=1

e�rtUiXi; (21)
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where fUig is an i.i.d. U(0,1) sequence as in the theorem. Therefore using the
independence of the three families of random variables we get

E(S0(t)) = E

0@N(t)X
i=1

e�rtUiXi

1A
=

1X
n=0

E

"
nX
i=1

e�rtUiXi j N(t) = n

#
� P (N(t) = n)

=
1X
n=0

n � E
�
e�rtU1

�
� E(X1) � P (N(t) = n)

= E(N(t)) � E(X1) �

0@ 1Z
0

e�rtydy

1A = �
1

r
(1� e�rt) � E(X1):

So we have proved

Theorem 6 With the notation as above

E

0@N(t)X
i=1

e�rTiXi

1A = �
1

r
(1� e�rt) � E(X1): (22)

That is, in the Cramer-Lundberg model, the average/ expected amount needed
to take care of claims over [0; t] is given by (22). �

Next let p(t) denote the premium income in the time interval [0; t]: In
the Cramer-Lundberg model it is assumed that p(�) is a deterministic linear
function; that is, p(t) = ct; t � 0 where c > 0 is a constant called the premium
rate. With the total claim amount S(�) de�ned by (2), put for t � 0;

U(t) = u+ p(t)� S(t) = u+ ct�
N(t)X
i=1

Xi: (23)

The process fU(t) : t � 0g is called the risk process (or surplus process) of
the model; here u is the initial capital. Note that U(t) is the insurance
company�s capital balance at time t: Letting r # 0 in (22) or otherwise, note
that E(S(t)) = �tE(X1) and hence

E(U(t)) = u+ ct� E(S(t)) = u+ ct� �tE(X1) (24)

By (24), a minimal requirement in choosing the premium rate may be taken to
be

c > �E(X1) (25)
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so that on the average, claim payments are taken care of by premium in-
come. This somewhat simple criterion can be justi�ed by other considera-
tions also, as we shall see later. A more prudent condition is to require that
c > (1 + �)�E(X1); where � > 0 is called a safety loading factor.

Ruin problem in the Cramer-Lundberg model

As mentioned earlier, in an insurance set-up the �nancial risk is shifted to
the insurance company to a large extent. There have been many instances when
insurance companies have gone bankrupt unable to cope up with claims during
major catastrophes. So a theoretical understanding of conditions leading to ruin
of the company, probability of ruin, severity of ruin, etc. will help at least in
avoiding certain pitfalls. Study of ruin problems has, therefore, a central place
in insurance mathematics.
The event that the surplus U(�) falls below zero is called ruin. Set

T = infft > 0 : U(t) < 0g; (26)

T is called the ruin time; it is the �rst time the surplus falls below zero. The
probability of ruin is then

 (u) = P (T <1 j U(0) = u) (27)

for u > 0; it is considered as a function of the initial capital u: Note that  (�)
depends on the premium rate c as well. A very natural question is: For what
premium rates c and initial capital u can it happen that  (u) = 1? That is,
when is ruin certain?
By the de�nition of U(�); note that U(�) increases in the intervals [Tn; Tn+1); n �

0: Therefore ruin can occur only at some Tn: Now for n � 1;

U(Tn) = u+ cTn �
nX
i=1

Xi (because N(Tn) = n)

= u+
nX
i=1

(cAi �Xi) (because Tn =
nX
i=1

Ai) (28)

Put Zi = Xi � cAi; i � 1; S0 = 0; Sn =
nP
i=1

Zi; n � 1: Then (28) is just

U(Tn) = u � Sn; n � 1: Since "ruin" = fU(Tn) < 0 for some ng; it is now
easy to see that

 (u) = P (sup
n�1

Sn > u): (29)

Since the families fAig and fXjg are mutually independent, and each is a se-
quence of i.i.d.�s, note that fZig is a sequence of i.i.d.�s and hence fSn : n � 0g
is a random walk on the real line R: The following result concerning random
walks on R is known.

12



Theorem 7 Let fZig; fSng be as above; assume that Zi is not identically
zero, and E(Zi) exists.

(a) If E(Z1) > 0; then P ( lim
n!1

Sn = +1) = 1:

(b) If E(Z1) < 0; then P ( lim
n!1

Sn = �1) = 1:

(c) If E(Z1) = 0; then P (lim sup
n!1

Sn = +1; lim inf
n!1

Sn = �1) = 1:

�

Note: While (a),(b) above are immediate consequences of the strong law of
large numbers, assertion (c) requires a lengthy proof; see [RSST]. The special
case when Zi can take only the values �1 (so that at each stage the transition
is only to one of the nearest neighbours) is well known; see [KT], [Ro1], [Ro2].
The intuition behind the general case is similar. �
From (29) and the above theorem it follows that  (u) = 1 for all u > 0,

if E(X1) � cE(A1) � 0; note that E(A1) =
1
� as A1 has an exponential

distribution with parameter �; so in the Cramer-Lundberg model ruin is certain
if (25) is not satis�ed. The condition (25) is called the net pro�t condition,
which is generally assumed to be satis�ed.
If (25) holds, the above does not imply that ruin is avoided; it only means

that one may hope to have  (u) < 1; u > 0:
Now let u > 0: Suppose there exists r > 0 such that

E[exp(rZ1)] = E[exp(r(X1 � cA1))] = 1: (30)

Such an r > 0 is called the adjustment or Lundberg coe¢ cient. This leads
to a useful martingale. Recall that a sequence fYn : n = 0; 1; 2; � � � g of in-
tegrable random variables is said to be a martingale if the conditional expec-
tation E(Yn+1jY0 = y0; Y1 = y1; � � � ; Yn = yn) = yn for any y0; y1; � � � ; yn
with P (Yi = yi; i = 0; 1; 2; � � � ; n) > 0; for n = 0; 1; 2; � � � : Martingale the-
ory is a powerful tool in a probabilist�s kit. We illustrate this in the following
discussion. One may see [KT], [Ro2] for some of the elementary aspects and
applications of martingales, and [RSST] for applications to insurance.

Theorem 8 Let fZig; fSng be as above. Suppose there exists an adjustment
coe¢ cient r > 0: Then fexp(rSn) : n = 0; 1; 2; � � � g is a martingale.

Proof: Integrability of erSn is left as an exercise. (Use the fact that
if W1;W2 are independent integrable random variables then W1W2 also has
�nite expectation and E(W1W2) = E(W1)E(W2)). To prove the theorem we
just need to prove for n = 0; 1; 2; � � �

E[exp(rSn+1) j S0 = 0; S1 = s1; � � � ; Sn = sn] = exp(rsn):

13



Indeed, by independence of Zn+1 and fSi : i � ng, using (30) we get

l.h.s. of the above = E[erSnerZn+1 j S0 = 0; S1 = s1; � � � ; Sn = sn]

= E[ersnerZn+1 j S0 = 0; S1 = s1; � � � ; Sn = sn]

= ersnE[erZn+1 j S0 = 0; S1 = s1; � � � ; Sn = sn]

= ersnE(erZn+1)

= ersn ,

completing the proof. �

As E(erZ) = 1 if r = 0 for any random variable Z; no useful purpose will
be served if the adjustment coe¢ cient is allowed to be zero. So we seek a unique
r > 0 satisfying (30). In this direction we have

Theorem 9 Notation as above. Suppose E(Z1) < 0; this is the net pro�t
condition. Assume moreover that there is h1 > 0 such that the moment
generating function m(h) , E(ehZ1) < 1 for all �h1 < h < h1; and that
lim
h"h1

m(h) =1: Then there is a unique adjustment coe¢ cient r > 0:

Proof: As the moment generating function exists in a neighbourhood of
zero, note that m(�) has derivatives of all orders in (�h1; h1): It can be shown
that m0(h) = E(Z1e

hZ1);m00(h) = E(Z21e
hZ1) for �h1 < h < h1; these can be

justi�ed using the dominated convergence theorem. As E(Z1) < 0 it follows
that P (Z1 6= 0) > 0; and hence m00(h) > 0: So m is convex on (�h1; h1):
Again by hypothesis m0(0) = E(Z1) < 0; therefore m is decreasing in a
neighbourhood of 0. Since m(h) " 1 as h " h1, and m(0) = 1, it now follows
that there exists a unique s 2 (0; h1) such that m(s) < 1;m0(s) = 0; and that
on (s; h1) the function m(�) is strictly increasing to +1: Consequently there
is a unique r 2 (0; h1) such that m(r) = 1: As the moment generating function
of Z1 does not exist on [h1;1) (Why?), uniqueness on (0;1) follows. �

Remark 6: In the Cramer-Lundberg model Z1 = X1�cA1; A1 has Exp(�)
distribution, c > 0; � > 0: So for h > 0; we have m(h) , mZ1(h) =
mX1

(h)mA1
(�ch) = mX1

(h) �
�+ch ; (here for a random variable W we write

mW (h) = E(ehW )). Thus, if the net pro�t condition (25) holds, and if there
exists h1 > 0 such that mX1

(h) < 1; h < h1 and lim
h"h1

mX1
(h) = +1;

then by the above theorem there is a unique adjustment coe¢ cient r > 0: In
addition suppose that X1 � Exp(�); that is, claim sizes are i.i.d. exponentially
distributed random variables with parameter � > 0: Then mX1

(h) = �
��h for

h < � and clearly lim
h"�

mX1
(h) = +1: Observe that (25) holds , �

� < c ,

� � (�=c) > 0: It is easily checked that mZ1(h) = 1; h > 0 , �
(��h)

�
(�+ch) =

1; h > 0 , h = � � (�=c) > 0: Therefore in this case the unique adjustment
coe¢ cient is given by r = � � (�=c): �
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Note: Suppose X1 � 0; P (X1 > 0) > 0: Then there exist " > 0; � > 0
such that P (X1 � ") � �: Consequently for h > 0; by Chebyshev�s inequality

E[ehX1 ] � eh"P (ehX1 � eh") � �eh" !1; as h " 1:

Thus in the Cramer-Lundberg model, if the net pro�t condition (25) holds and
if the moment generating function of X1 exists in a neighbourhood of 0, then
a unique adjustment coe¢ cient r > 0 exists. �

Assume now that the net pro�t condition (25) holds and that an adjustment
coe¢ cient r > 0 exists. Put

�u = inffn � 0 : Sn > ug
= �rst time the random walk fSng exceeds u:

Observe that f�u � kg =
kS
i=0

fSi > ug; so to know if �u � k or not it is

enough to look at Si; 0 � i � k; for any k = 0; 1; 2; � � � ; in other words �u
is a stopping time. Clearly  (u) = P (�u < 1): Similarly for a > 0 put
�a = inffn � 0 : Sn < (�a)g; this is also a stopping time. As (25) holds, by
Theorem 7(b), P (�a < 1) = 1: Consequently (�u ^ �a) , minf�u; �ag is a
stopping time with P ((�u ^ �a) < 1) = 1: Since fexp(rSn) : n = 0; 1; 2; � � � g
is a martingale by Theorem 8, using the optional sampling theorem we now get

1 = E[erS0 ] = E[exp(rS(�u^�a))]

= E[exp(rS�u) : f�u < �ag] + E[exp(rS�a) : f�a < �ug]
� E[exp(rS�u) : f�u < �ag]
� eruP (�u < �a) (31)

as S�u > u: (In the above E[g : B] ,
R
B

g denotes expectation of gIB , for any

set B and any random variable g:) It can be shown without much di¢ culty
that P ( lim

a!1
�a =1) = 1; for otherwise, P (Sk = �1) > 0 for some k; which

is not possible as E(jSnj) < 1 for all n: So letting a " 1 in (31) we get
P (�u <1) = lim

a!1
P (�u < �a) � e�ru: Thus we have proved

Theorem 10 In the Cramer-Lundberg model let the net pro�t condition (25)
hold, and let an adjustment coe¢ cient r > 0 exist. Then the ruin probability
 (�) satis�es

 (u) = P (�u <1) � exp(�ru); u > 0: (32)

(32) is known as Lundberg inequality. �

Note: Note that jSn(!)j � juj + jaj; for all n � (�u ^ �a)(!) for all !.
So there is no problem in applying the optional sampling theorem in the above
proof.
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Remark 7: Consider the Cramer-Lundberg model with X1 s Exp(�),� >
0. Then Remark 6 and Theorem 10 imply that the ruin probability satis�es

 (u) � expf�(� � �

c
)ug; u > 0;

where c > 0 is the premium rate. As expected, larger the initial capital u
smaller is the ruin probability  (u): Now assume that the premium rate is
determined by

ct = p(t) = (1 + �)E(S(t)) = (1 + �)
�

�
t; (33)

where � > 0 is the safety loading factor; see the comments following (25).
Hence c = (1+ �)�=�; and consequently the adjustment coe¢ cient is given by
r = � � �

c = ��=(1 + �): Therefore

 (u) � exp
�
��
�

�

1 + �

�
u

�
; u > 0: (34)

As � " 1; by (33) c " 1; while by (34) the bound on  (u) does not
change signi�cantly; the latter assertion is due to the fact that �=(1 + �) " 1
as � " 1: These observations together with some of the preceding results can
be interpreted as follows. In view of the net pro�t condition (25) and Theorem
7, relatively small values of the safety loading factor � a¤ord good cushion
against ruin with just marginal increases in premium rate. However, large values
of � steeply increase the premium rate, without perhaps o¤ering comparable
assurances against ruin; in such a case the policy becomes unattractive to the
insured without tangible bene�ts for the company. �
Remark 8: In addition to the above bound one can also derive an integral

equation for the ruin probability. Suppose E(X1) <1 and that the net pro�t
condition holds. Then one can get a distribution function G (explicitly in terms
of the distribution function of X1) such that

 (t) =
�E(X1)

c
[1�G(t)] + �E(X1)

c

tZ
0

 (t� y)dG(y): (35)

The equation (35) is a renewal type equation; however it is a defective renewal
equation because �E(X1)=c < 1 (as the net pro�t condition holds). Still fol-
lowing the methods of renewal theory one can get a series solution to (35). See
[Mi], [RSST] for details. �

Claim size distribution

The common distribution of the i.i.d. sequence fXig is called the claim size
distribution. With the exception of Theorem 10 and the discussion leading to it,
we have not made any speci�c reference to the claim size distribution so far. A
conventional assumption is that Xi have an exponential distribution. In such
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a case P (Xi > x) = e��x; x > 0, where � > 0; that is, the (right) tail of the
claim size distribution decays at an exponential rate. Most of the distributions
used for modelling in statistics have this property. The ubiquitous normal (or
Gaussian) distribution decays even at a faster rate. Such distributions are called
light tailed distributions; for these distributions the moment generating functions
exist in a neighbourhood of 0.
An important development of late is to consider claim sizes that are not

necessarily light tailed. Risks regarding insurance of airplanes, skyscrapers,
dams, bridges, etc. are very high. In recent years, companies have also faced
ruin or near ruin due to a very small number of very huge claims; in some
instances, a single massive claim has done the damage. There are quite a few
notions of heavy tailed distributions; invariably the moment generating function
does not exist in any neighbourhood of 0 for these distributions. A versatile
notion of heavy-tailedness in the insurance context is given below.
Let F be a distribution function supported on (0;1); (this corresponds to

a positive random variable). Let X1; X2; � � � be an i.i.d. sequence with common
distribution function F . Set Sn =

nP
i=1

Xi;Mn = maxfX1; X2; � � � ; Xng: If

lim
x!1

P (Sn > x)

P (Mn > x)
= 1; for n � 2; (36)

then F is said to be subexponential. Equation (36) means that the partial sum
and the partial maximum have the same tail behaviour; this corresponds to the
intuitive notion that largeness of the cumulative claim is basically determined
by that of the biggest claim. If F is subexponential then it can be shown
that eaxP (X � x) ! 1; for any a > 0; where X is a random variable
with distribution function F: So moment generating function does not exist in
any neighbourhood of 0 for such distributions. Two classes of subexponential
distributions are given below.
(i) Weibul distribution: In this case F (x) , 1 � F (x) = exp(�cx� ); if

x > 0; and F (x) = 0; if x � 0; where c > 0; � > 0 are constants. This
family of distributions has been useful in reliability theory, besides insurance.
If 0 < � < 1; then F is subexponential. See [Mi], [RSST ].
(ii) Pareto distribution: Again it is convenient to de�ne in terms of the right

tail of the distribution; here F (x) , 1 � F (x) = ��=(� + x)�; x > 0; where
�; � > 0 are constants. This class is subexponential; (even expectation exists
only when � > 1.) This family has also been used in economics to describe
income distributions.
As the moment generating function does not exist for heavy tailed distrib-

utions, note that Theorem 10 is not applicable. In fact, when the claim size
distribution belongs to an appropriate subclass of subexponential distributions,
it can be established that the ruin probability decays only at a power rate, viz.
 (u) behaves like Ku�� for large u; where K; � > 0 are suitable constants. Con-
trast this to the exponential rate e�ru; where r > 0 in Theorem 10. So ruin is
much more formidable if the claim size distribution is heavy tailed. See [Mi],
[RSST].
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Assorted comments

We have dealt with a few elementary aspects of just one model. Comments
below are meant to give a �avour of some other aspects/ models in insurance.
1. A more general model is the renewal risk model (also called Sparre

Andersen model). In this model, the interarrival times A1; A2; � � � are just
i.i.d. nonnegative random variables (not necessarily exponentially distributed).
The net pro�t condition is given by an analogue of (25), viz. c > E(X1)=E(A1):
Lundberg inequality holds provided that the net pro�t condition is satis�ed and
that the adjustment coe¢ cient exists. Renewal risk model with subexponential
claim sizes continue to be objects of research.
2. Life insurance/ pension insurance models are generally described in terms

of continuous time Markov processes with state space having only a �nite num-
ber of elements; at least one state is absorbing, and certain transitions may be
disallowed. For example, in the simplest life insurance model there are only
two states, one signifying "alive" and the absorbing state indicating "dead",
re�ecting the status of the insured.
3. In addition to the basic insurance aspects, more complex models can be

considered. For example, an insurance company can invest part of its surplus in
bonds giving returns at �xed rates, and another part in stocks which are subject
to the volatility of the market. Some problems of interest are how optimally
should these investments be made so that the ruin probability is minimized, or
so that the dividend payment by the company is maximized.
4. We have not touched upon any statistical aspect like estimation of claim

arrival rate, parameters of the claim size distribution, or when does claim size
data indicate heavy tailed behaviour, etc.
[Mi], [RSST] and the references therein deal with the above issues and more.
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