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1 Introduction

Theorem 1 Peterson Graph can be immersed in R2 with egdes as line segments
of equal length.

Proof We define an immersion for θ ∈ (0, π
5 ]. Draw a regular pentagon

A0A1A2A3A4 with each edge of unit length. Then draw edges AjBj of unit
length such that ∠BjAjAj+1 = θ (the indexing being done modulo 5). Join Bj

to Bj+2, and this is an immersion of Peterson’s Graph.

By symmetry, each BjBj+2 has equal length, say a(θ). Clearly, a is a con-
tinuous function of θ and limθ→0 a(θ) > 1. At θ = π

5 , Aj+2Bj+2AjAj+1 form
a rhombus giving ∠BjAjBj+2 = π

5 < ∠AjBjBj+2 and hence a(θ) < 1. By
continuity ∃θ0 with a(θ0) = 1, and so we are done.

2 Main Problem

Rigidity of the Peterson Graph actually does not make any sense (since Peterson
Graph is just a topological space). But we can ask the question of whether an
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immersion of the Graph, with edges as line segments, is rigid or not. This
definitely depends on the immersion.

We do not expect a general immersion to be rigid. To fix an immersion, we
have 20 variables for the co-ordiantes of 10 vertices. But we have 15 quadratic
constraints for the 15 edges, 2 linear constraints for translation (by which we
put both the co-ordinates of some arbitrary vertex as 0), and 1 linear constraint
for rotataion (by which we put the y co-ordinate of some other vertex as 0). We
want to have the final solution space to have dimension (Zariski) ≥ 1. Since
our base field is R, which is not closed (algebraically), we cannot assume that
each equation will decrease solution space by atmost 1, but however it gives us
a good reason to believe that a general immersion, will not be rigid. For this,
let us prove the following lemmas.

Lemma 1 Let v, w : U → R2 be analytic in a neighbourhood U of (φ0, θ0) with
||v(φ0, θ0) − w(φ0, θ0)||2 ∈ (0, 2), and let (x0, y0) ∈ R2 be such that ||(x0, y0) −
v(φ0, θ0)||2 = ||(x0, y0)− w(φ0, θ0)||2 = 1.

Then ∃u : W → R2 analytic in some neighbourhood W of (φ0, θ0), with
u(φ0, θ0) = (x0, y0) and ||u(φ, θ)− v(φ, θ)||2 = ||u(φ, θ)− w(φ, θ)||2 = 1.

Proof Trivial, by Implicit function theorem, or by direct computation.

Lemma 2 With the situation as in previous lemma, let ∂w
∂θ (φ0, θ0) = 0 and

∂v
∂θ (φ0, θ0).(v(φ0, θ0)− u(φ0, θ0)) 6= 0.

Then ∂u
∂θ (φ0, θ0) 6= 0 and ∂u

∂θ (φ0, θ0).(u(φ0, θ0)− w(φ0, θ0)) = 0

Proof Trivial, by taking partial derivative with respect to θ of (||u− v||2)2 and
(||u− w||2)2 at (φ0, θ0).

Lemma 3 In the equilateral immersion of Section 1, Aj, Bj and Bj+2 are
not in a straight line.

Proof Assuming so, we get a quadrilateral AjAj+1Aj+2Bj+2 with

|AjBj+2| = 2, |AjAj+1| = |Aj+1Aj+2| = |Aj+2Bj+2| = 1

∠AjAj+1Aj+2 =
3π

5
,∠Aj+2Bj+2Aj =

4π

5
Then |AjAj+2| ≤ |AjAj+1| + |Aj+1Aj+2| = 2, and as ∠Aj+2Bj+2Aj > π

2 >
∠AjAj+2Bj+2, so |AjAj+2| > |AjBj+2| = 2, so we get a contradiction.

Lemma 4 With the same notation, complete the rhombus OA3A4A0. Let uj

denote the vector AjBj, w denote the vector B3B0 and let vj be a vector or-
thogonal to uj, such that the orientation of the basis {u0, v0} is same as that of
{u3, v3}.

Then (v0 − v3) is not orthogonal to w.
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Proof Assuming the contrary, (v0 − v3).w = 0.
Also w lies in the angle formed by u0 and u3. Thus ∃r0, r3 ≥ 0 (with both

not 0 as w has unit norm) with w = r0u0 + r3u3.
Let cj > 0 be such that cjvj has unit norm. There exists linear transforma-

tion T (which is rotation by π
2 or −π

2 ) with cjvj = Tuj . So w.Tw = 0 gives
w.(c0r0v0 + c3r3v3) = 0.

But u0 and u3 are linearly independent, and hence are v0 and v3. cjrj ≥ 0
(with both not 0) gives c0r0v0 + c3r3v3 and v0− v3 linearly independent. w 6= 0
being orthogonal to both of them gives a contradiction.

Now, we try to prove that the equilateral immersion, as described in Section
1 is not rigid. For this, let us define θ0 as in Section 1 and φ0 = 3π

5 . We give
an immersion for each (φ, θ) in some neighbourhood of (φ0, θ0), as follows.

Put A0 at (0, 0) and A1 at (1, 0). Let A4, A2 and B0 be such that ∠A4A0A1 =
∠A0A1A2 = φ and ∠B0A0A1 = θ. Clearly the co-ordinates of all these 5 points
are analytic functions of φ and θ. For (φ, θ) = (φ0, θ0), length of A4A2 ∈ (0, 2).
Hence by Lemma 1, let A3 be the (unique) point which is at a distance of 1
from A2 and A4, with co-ordinates as analytic functions of φ and θ, and agreeing
with A3 of Section 1 for (φ, θ) = (φ0, θ0).

Similarly construct B2 to be of unit distance from each of B0 and A2, and
inductively after constructing Bj , construct Bj+2 at unit distance from Bj and
Aj+2 (indices obviously being read modulo 5). Join Aj to Aj+1, Aj to Bj

and Bj to Bj+2. All the edges (except possibly B0B3) are of length 1, and at
(φ, θ) = (φ0, θ0) the immersion coincides with the one described in Section 1.

Thus, now we are in a setting to prove the following theorem, which will
settle the problem.

Theorem 2 If f(φ, θ) = |B0B3|2, then ∃g : U → R with U a neighbourhood of
φ0 such that g(φ0) = θ0 and f(φ, g(φ)) = 1.

Proof Let aj and bj be the co-ordinate functions (from a neighbourhood of
(φ0, θ0) to R2) of Aj and Bj respectively.

By a repeated application of the Lemma 1, we know that b0 and b3 are
analytic and hence f is analytic function of (φ, θ).
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For j ∈ {0, 2, 4, 1} and with (φ, θ) = (φ0, θ0), assume ∂bj

∂θ (φ0, θ0) 6= 0 and it
is orthogonal to AjBj , then by Lemma 3 ∠AjBjBj+2 6= π, so ∂bj

∂θ (φ0, θ0) is
not orthogonal to BjBj+2. Since Bj+2 was defined as the point at unit distance
from Bj and Aj+2, so by Lemma 2, ∂bj+2

∂θ (φ0, θ0) 6= 0 and is orthogonal to
Aj+2Bj+2.

Since the above assumption is clearly true for j = 0, so by induction it is
true for j = 3. Now at (φ0, θ0), there could be two cases. As θ increases,
the direction of Bj ’s rotation around Aj , could be the same or reverse of the
direction of Bj+2’s rotation around Aj+2. In either case however, the directions
of rotation of B0 and B3 (around A0 and A3 respectively) are the same. As θ
increases, B0 rotates anti-clockwise, and hence so does B3.

Thus by Lemma 4, (∂b0
∂θ − ∂b3

∂θ )(φ0, θ0) is not orthogonal to B0B3. This
gives ∂f

∂θ (φ0, θ0) 6= 0. As f(φ0, θ0) = 1, hence by Implicit function theorem,
∃g : U → R with the required properties.
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