
Solutions to September-October problems

Solution to 1 :
(i) Let us first show that 0 is a limit point of the set {f(a) : f ∈ S}. Fix ε > 0.
Let Sn, S+

n denote, respectively, the sets of polynomials in S of degrees ≤ n and,
those in Sn with non-negative coefficients. Clearly, there are 2n+1 elements in
S+

n . If f ∈ P+
n , then

0 ≤ f(a) ≤ 1 + a + · · ·+ an =
an+1 − 1

a− 1
.

If f 6= g are in S+
n , then f − g ∈ Sn and, therefore, by the pigeon hole principle,

there exist fn 6= gn in S+
n with

0 < |fn(a)− gn(a)| ≤ 1
2n+1

an+1 − 1
a− 1

.

As 1 < a < 2, the right hand side can be made smaller than ε for large n and
thus 0 is indeed a limit point.
Now, let us show that this already implies that the values are dense on the whole
line. Let n, k be arbitrary positive integers. Choose f ∈ S with 0 < f(a) <
a−n−k. Choose m ≥ n such that a−m−1−k ≤ f(a) < a−m−k. Thus, we have

a−k−1 ≤ amf(a) < a−k · · · · · · (♥)

Now, ±tmf(t) is also in S. Using this simple observation, we shall construct a
sequence of polynomials {fN} in S each of which satisfies a−k−1 ≤ fN (a) < a−k

and for which no pair has common terms. To do this, start with f1, f2, · · · , fl ∈ S
satisfying the above properties that a−k−1 ≤ fr(a) < a−k for r = 1, · · · l and no
two have common terms. To choose fl+1 in S, get m such that (♥) is satisfied
for some f in S and put fl+1(t) = tmf(t). Thus the sequence has been defined
inductively and satisfies

Na−k−1 ≤ f1(a) + f2(a) + · · ·+ fN (a) ≤ Na−k.

Note that the polynomial f1(t) + · · ·+ fN (t) ∈ S as well. As N, k are arbitrary
and a > 1, it is clear that elements of {f(a) : f ∈ S} approximate arbitrarily
any non-negative real number and, hence, any real number.
(ii) Order the polynomials in S lexicographically according to decreasing expo-
nents of the terms. More precisely, say that f(t) = a0 + a1t + · · · + antn is
of smaller rank than g(t) = b0 + b1t + · · · + bmtm if the first k ≥ 0 for which
|ak| 6= |bk| satisfies ak = 0 6= bk. In case |al| = |bl| for all l, it is convenient
to define f to be of smaller rank than g if f(e) < g(e). Of course, e is just an
essentially arbitrary choice.
Now, let us look at the values {f(b) : f ∈ S}. The special property to keep in
mind about b is that b2 = b+1. In particular, we will keep using bd+2 = bd+1+bd.
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Now, if s is a value at b, let fs denote the polynomial of smallest rank in S with
fs(b) = s. Write

fs(t) = ±(th(s) + · · ·+ tα(s) − tβ ± · · ·)

In the above expression, h(s) is the highest term, and α(s) is the first place
where it changes sign. We claim that all the terms with exponents less than
α(s) occur and they occur with alternating signs. Now,

fs(b) = ±(bh(s) + · · ·+ bα(s) − bβ ± · · ·)

First, we observe that if β = α(s) − 2, then the terms tα(s) − tα(s)−2 can be
replaced by tα(s)−1 of smaller rank, a contradiction. If β < α(s) − 2, then the
term tα(s)− tβ can be replaced by −tα(s)−1− tα(s)−2− tβ whose rank is smaller.
Therefore, β = α(s) − 1. Further, if γ > 1 and if ±(tγ − tγ−1) occurs, then
±tγ−2 also occurs where the sign is that of tγ . If not, one can replace the terms
tγ − tγ−1 + 0.tγ−2 by ±tγ−2 or the terms ±(tγ − tγ−1 − tγ−2) by 0 which have
smaller rank, a contradiction. Hence, finally we have

s = fs(b) = ±(bh + bh−1 + · · · bα + (−1)α
α−1∑
r=0

(−1)rbr)

= ±(bh + bh−1 + · · · bα − (bα ± 1)
b + 1

).

Evidently, |s| → ∞ as h → ∞, which implies that the values {f(b) : f ∈ S} is
discrete.

Solution to 2 :
This can be easily proved by partial fractions. But, in fact, it is a special case
of a class of identities involving arctan function which can be easily proved by
the method of telescoping. Let us see how. Indeed, consider any real function
f(x) with fixed sign and look at the function g(x) = f(x+1)−f(x)

1+f(x+1)f(x) . Then, by
telescoping property of the sum, one has

n∑
r=1

tan−1g(r) = tan−1f(n + 1)− tan−1f(1)

for each n. Taking limits as n → ∞ and assuming f has a limit f(∞) (which
includes the possibility of limit being ∞), we have

∞∑
r=1

tan−1g(r) = tan−1f(∞)− tan−1f(1).

The assumption about f having same sign is necessary; otherwise, one will have
to add multiples of π etc. to get proper identities. Looking at the particular
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case f(x) = ax for fixed a and in x > 0, gives us g(x) = a
1+a2x+a2x2 and, so we

get
∞∑

r=1

tan−1 a

1 + a2r + a2r2
=

π

2
− tan−1a.

Differentiating with respect to a yields,

∞∑
r=1

a2r2 + a2r − 1
a4r4 + 2a4r3 + (2a2 + a4)r2 + 2a2r + 1 + a2

=
1

1 + a2
.

The special case a = 1 gives us the identity posed. One can get several such
identities by taking different such functions f(x).

Solution to 3 :
This is yet another appearance of the Catalan number Cn = 1

n+1

(
2n
n

)
(!)

Actually, this combinatorial description coincides with the following group-
theoretic description. In the group SL(n,C), any matrix A which satisfies
An+1 = I is diagonalizable and its eigenvalues are (n + 1)-th roots of unity.
Note that the product of the eigenvalues of A is also required to be 1. There-
fore, the number of conjugacy classes [A] of SL(n,C) satisfying An+1 = I equals
the number of multi-sets in Z/(n + 1)Z whose sum is zero.

Solution to 4 :
Both questions can be rephrased in terms of matrices. Associate to a graph
(to be found!) a symmetric matrix A of the following type (and size to be the
number of vertices !). The diagonal entries are all equal to 2 and, for i 6= j, the
entry aij = −1 if and only if the vertices corresponding to i, j are connected.
The first problem is to find all such ‘connected’ matrices A and all positive
solutions x (column vector with all entries positive) such that Ax = 0. Clearly,
a solution vector gives a labelling. Similarly, for the second problem, one has to
solve Ax = 2 for positive solutions x, where the 2 on the right hand side above
is the column vector with all entries equal to 2. The solutions to these linear
algebra problems are not all that obvious, but they turn out to give the following
graphs answering the two questions. Any one interested in seeing a working of
the linear algebra assertion may either consult Victor Kac’s ‘Infinite-dimensional
Lie algebras’, chapter 4 or write to this email.

3



Graphs for (i)
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Graphs for (ii)
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1(n) 3(n−2) (k+1)(n−k) (n)1

2(n−1) k(n−k+1) (n−1)2
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