
Solutions to January - March 2007 problems

Solution 1 (Ashay Burungale).

Writing an+1 = [(1+
√

2)2n+1]+2
4

, note that an+1 = (1+
√

2)2n+1−(
√

2−1)2n+1+2
4

. This
follows since the last expression is seen to be an integer by the binomial ex-

pansion and since this expression is obtained from the real number (1+
√

2)2n+1+2
4

by subtracting the real number (
√

2−1)2n+1

4
which is between 0 and 1. Now,

clearly by induction on n, we have

an+1 = 6an − an−1 − 2.

As a2 = 4 and an is non-decreasing, we have that aeven is even ≥ 4. To see
that aodd is composite, rewrite

an+1 =
(1 +

√
2)2n+1 − (

√
2− 1)2n+1 + 2

4

=
(1 +

√
2)n+1 − (

√
2− 1)n+1

2
√

2

(1 +
√

2)n + (
√

2− 1)n

√
2

.

If n + 1 is odd, then both the fractions above are integers as seen by the
binomial expansion.

Solution 2 (Ashay Burungale).
Now xx′(xx′)xx′ = xx′(xx′x)x′ = xx′xx′ = xx′ which shows (by uniqueness)
xx′ = (xx′)′ (1)
From this, it is easy to see that (xx′)d = xx′ for all d. Also x′xx′ = x′ since
x(x′xx′)x = xx′x = x. Therefore, by the characterizing property of (x′)′,
we have (x′)′ = x (2)
Notice that (2) implies the version x′x = (x′x)′ of (1). Further, (xy)′xx′ has
the characterizing property of (xy)′ since

(xy)((xy)′xx′)(xy) = xy(xy)′xy = xy.

Therefore, (xy)′xx′ = (xy)′ (3)
Now, xx′ also has the property characterizing ((xy)(xy)′)′ since

xy(xy)′(xx′)xy(xy)′ = (xy(xy)′xy)(xy)′ = xy(xy)′.

Therefore, xx′ = (xy(xy)′)′ = xy(xy)′ by (1) (4)
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We also get from (x(yx)′)y(x(yx)′) = x(yx)′(yx)(yx)′ = x(yx)′ that
y = (x(yx)′)′ (5)
We notice that yxx′ also satisfies the characterizing property of (x(yx)′)′

because
x(yx)′yxx′x(yx)′ = x(yx)′yx(yx)′ = x(yx)′.

Thus, we have yxx′ = (x(yx)′)′ (6)
From (5),(6) we get y = yxx′ for all x, y which implies that

y′y(xx′)y′y = y′(yxx′)y′y = y′yy′y = y′y;

hence xx′ = (y′y)′ = y′y ∀ x, y (7)
In other words, e := xx′ is a uniquely defined element not depending on the
choice of x. It is a left identity by definition. Indeed, we have also for any x
that xe = x(x′(x′)′) = x(x′x) = x and e is a right identity as well. For any
x, we have xx′ = e and so x′ is a right inverse. Finally, x′x = e means x′ is
also the right inverse. This proves that G is a group.

Solution 3
The eigenvalues x, y, z of such a matrix would be roots of

T 3 − (a2 + b2 + c2)T − 2abc = 0.

Thus, we are looking for a, b, c non-zero integers with distinct a2, b2, c2 for
which the above polynomial has all zeroes to be integers. Thus, one really
needs to study the system of equations

x + y + z = 0

xy + yz + zx = −(a2 + b2 + c2)

xyz = 2abc

This defines actually a 2-dimensional surface S in the projective 5-space P5.
In fact, the equation x + y + z = 0 shows that it is contained even in P4. In
order to find integral (or rational) points on S, it is useful to look for rational
curves on it; that is, find polynomials in one variable satisfying the defining
equations. Such a study has been made by some people who show how
to completely solve the problem; those interested in this study are referred
to an article by F.Beukers, R.van Luijk & R.Vidunas in Nieuw Archief voor
wiskunde, June 2002. However, the question here was to find just one solution
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which could be found by hit and trial methods. For example, two solutions
are {a, b, c} = {26, 51, 114} and {a, b, c} = {−125, 99,−57}.
Solution 4 (Ashay Burungale)
First, we consider part (i).
For n = 2, an equilateral triangle with unit side length does the job. In
general, we shall apply induction on n. Consider Rn−1 as a hyperplane H
in Rn. Assuming the result for n − 1, there is a set {a1, · · · , an} of vectors
in H satisfying ||ai − aj|| = 1 for 1 ≤ i 6= j ≤ n. Look at the ‘centre of
mass’ cn =

∑n
i=1 ai and the vectors bi = ai − cn. Now,

∑n
i=1 bi = 0 and

||bi − bj|| = ||ai − aj|| = 1 for 1 ≤ i 6= j ≤ n. Therefore, for every i, j we get

||bi||2 − 2 < bi, bj > +||bj||2 = 1.

For a fixed i, summing over all j 6= i, and using
∑n

k=1 bk = 0, we get

(n− 1)||bi||2 + 2 < bi, bi > +
∑

j 6=i

||bj||2 = n− 1

which means that n||bi||2 = n − 1 − ∑n
j=1 ||bj||2. As the right side is inde-

pendent of i, all the bi’s have the same length which is equal to
√

n−1
2n

. If en

is a unit vector in Rn orthogonal to H, then we take a0 = cn + ten where

t =
√

n+1
2n

. Note that ||a0 − ai|| = 1 since

||a0 − ai||2 = ||ten − bi||2 = t2 + ||bi||2 =
n + 1

2n
+

n− 1

2n
= 1.

Thus a0, a1, · · · , an form a regular n-simplex in Rn.

Now, we look at part (ii).
Let a0, a1, · · · , an in Rn form a regular n-simplex. As the centre of mass c of

the simplex is
∑n

i=0
ai

n+1
, the vectors bi := ai− c sum to zero and as before ||bi||

are all equal (to β, say). Now, the dihedral angle δ = π − arccos(t) where

t = <bi,bj>

||bi||||bj || , which is cosine of the angle between bi and bj. Taking inner

product of the equality
∑n

i=0 bi = 0 with b1, we have (1 + nt)β2 = 0. Thus,
we get t = −1/n from which δ = arccos(1/n).
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