Solutions due by March 31, 2009

Q 1. (Elemnetary)

Let G be a finite group of order n. For any subset S of G, put

$$S^k = \{s_1 \cdots s_k : s_i \in S\}$$

for each $k \geq 1$. Prove that S^n is always a subgroup.

\mathbf{Q} **2.** (Advanced)

There exist real functions which are continuous at each irrational and discontinuous at each rational number. For instance, f(p/q) = 1/q if p/q is in its lowest terms with q > 0 and with f(irrationals) = 0 is one such. Prove that there is no function $f : \mathbf{R} \to \mathbf{R}$ which is differentiable at every irrational and discontinuous at every rational.

Q 3. (Elementary)

Prove that an equilateral triangle cannot have all its vertices to be lattice points (points whose co-ordinates are integers). More generally, show that a regular *n*-gon can have all vertices to be lattice points if, and only if, n = 4.

Q 4. (Elementary)

Prove that $\sum_{r=1}^{n} \cot^2\left(\frac{r\pi}{n+1}\right) = \frac{n(2n-1)}{3}$. More generally, for $m, n \ge 1$, show that $\sum_{r=1}^{n} \cot^{2m}\left(\frac{r\pi}{n+1}\right) = c_{2m}n^{2m} + c_{2m-1}n^{2m-1} + \dots + c_0$ and obtain c_{2m} .

\mathbf{Q} 5. (Elementary)

Consider the *n*-th cyclotomic polynomial $\Phi_n(X) = \prod_{(r,n)=1} (X - e^{2ir\pi/n})$. Determine all those natural numbers *n* for which all coefficients of Φ_n are non-negative.

Q 6. (Advanced)

Let B be a ring and A be a subring with the property that whenever $a \in B$ satisfies $a^n \in A$ for every large enough n, then $a \in A$. Show that the power series ring A[[X]] satisfies the same property as a subring of B[[X]].

Use this to give another proof of problem numbered 5 in the previous set (viz., if $f : \mathbf{R} \to \mathbf{R}$ is a function such that f^2, f^3 are smooth, then so is f). There is also a simpler proof of this not using the above ring-theoretic lemma.